
ar
X

iv
:1

90
4.

08
55

4v
6

 [
cs

.L
G

]
 2

8
Se

p
20

20

Go�a Catch ’Em All: Using Honeypots to Catch Adversarial
A�acks on Neural Networks

Shawn Shan
shansixiong@cs.uchicago.edu

University of Chicago

Emily Wenger
ewillson@cs.uchicago.edu
University of Chicago

Bolun Wang
bolunwang@cs.uchicago.edu

University of Chicago

Bo Li
lbo@illinois.edu

UIUC

Haitao Zheng
htzheng@cs.uchicago.edu
University of Chicago

Ben Y. Zhao
ravenben@cs.uchicago.edu

University of Chicago

ABSTRACT

Deep neural networks (DNN) are known to be vulnerable to ad-

versarial attacks. Numerous efforts either try to patch weaknesses

in trained models, or try to make it difficult or costly to compute

adversarial examples that exploit them. In our work, we explore

a new “honeypot” approach to protect DNN models. We inten-

tionally inject trapdoors, honeypot weaknesses in the classifica-

tion manifold that attract attackers searching for adversarial ex-

amples. Attackers’ optimization algorithms gravitate towards trap-

doors, leading them to produce attacks similar to trapdoors in the

feature space. Our defense then identifies attacks by comparing

neuron activation signatures of inputs to those of trapdoors.

In this paper, we introduce trapdoors and describe an implemen-

tation of a trapdoor-enabled defense. First, we analytically prove

that trapdoors shape the computation of adversarial attacks so that

attack inputswill have feature representations very similar to those

of trapdoors. Second, we experimentally show that trapdoor-protected

models can detect, with high accuracy, adversarial examples gen-

erated by state-of-the-art attacks (PGD, optimization-based CW,

Elastic Net, BPDA), with negligible impact on normal classification.

These results generalize across classification domains, including

image, facial, and traffic-sign recognition. We also present signif-

icant results measuring trapdoors’ robustness against customized

adaptive attacks (countermeasures).

CCS CONCEPTS

• Security and privacy; • Computing methodologies → Neu-

ral networks; Artificial intelligence;Machine learning;

KEYWORDS

Neural networks; Adversarial examples; Honeypots

ACM Reference Format:

Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao Zheng, and Ben

Y. Zhao. 2020. Gotta Catch ’Em All: Using Honeypots to Catch Adversarial

Attacks on Neural Networks. In 2020 ACM SIGSAC Conference on Computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417231

and Communications Security (CCS ’20), November 9–13, 2020, Virtual Event,

USA. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3372297.3417231

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial attacks

[39, 46], in which, given a trained model, inputs can be modified in

subtle ways (usually undetectable by humans) to produce an incor-

rect output [2, 10, 34]. These modified inputs are called adversarial

examples, and they are effective in foolingmodels trained on differ-

ent architectures or different subsets of training data. In practice,

adversarial attacks have proven effective against models deployed

in real-world settings such as self-driving cars, facial recognition,

and object recognition systems [24, 25, 41].

Recent results in adversarial machine learning include a long

list of proposed defenses, each proven later to be vulnerable to

stronger attacks, and all focused on either mitigating or obfuscat-

ing adversarial weaknesses. First, many defenses focus on disrupt-

ing the computation of gradient optimization functions critical to

adversarial attacks [16, 32]. These “gradient obfuscation” defenses

(e.g. [3, 15, 18, 31, 38, 42, 49]) have been proven vulnerable to black-

box attacks [34] aswell as approximation techniques like BPDA [2]

that avoid gradient computation.Other defenses increase model ro-

bustness to adversarial examples [35, 50] or use secondary DNNs

to detect adversarial examples [33]. Finally, other defenses [8, 31]

identify adversarial examples at inference time. All of these fail or

are significantly weakened against stronger adversarial attacks or

high confidence adversarial examples [2, 7–9, 21].

History suggests it may be impossible in practice to prevent ad-

versaries from computing effective adversarial examples, and an

alternative approach to model defense is sorely needed. What if,

instead of trying to prevent attackers from computing effective

adversarial examples, we instead design a “honeypot” for attack-

ers, by inserting a subset of chosen model vulnerabilities, making

them easy to discover (and hard to ignore)? We could ensure that

when attackers create adversarial examples, they find our honey-

pot perturbations instead of natural weaknesses. When attackers

apply these honeypot perturbations to their inputs, they are easily

identified by our model because of their similarity to our chosen

honeypot.

We call these honeypots “trapdoors,” and defenses using them

trapdoor-enableddetection. Consider a scenario where, starting from

an input x , the attacker searches for an adversarial perturbation

that induces a misclassification from the correct label yx to some

target yt . This is analogous to looking for a “shortcut” through the

http://arxiv.org/abs/1904.08554v6
https://doi.org/10.1145/3372297.3417231
https://doi.org/10.1145/3372297.3417231

a) Choose Label(s) to Defend b) Create / Deploy Trapdoored Model

Defend label (y):

20 km speed limit

 Trapdoor

Instances
...

Benign

Instances

Train
...

Trapdoored model

...
...

Adversarial Example Against Label (y)

Benign

Input
Adversarial

example

c) Compute “signature” of Trapdoor

 Filter any inputs w/ similar signature

Input Similar to Trapdoor:

Reject & Sound Alarm

Compute Adver-

sarial Input

Label y’s

Trapdoor

Trapdoored model

Misclassification Attack

Output

Label

Figure 1: Overview of the trapdoor defense. a) We choose which target label(s) to defend. b) We create distinct trapdoors for

each target label and embed them into the model. We deploy the model and compute activation signatures for each embedded

trapdoor. c) An adversary with access to the model constructs an adversarial example. At run time, the model compares the

neuron activation signature of each input against that of the trapdoor. Thus it recognizes the attack and sounds the alarm.

model from yx to yt that involves a small change to x that invokes

the shortcut to yt . Along these lines, trapdoors create artificial

shortcuts embedded by the model owner that are easier to locate

and smaller than any natural weaknesses attackers are searching

for. On a “trapdoored model,” an attacker’s optimization function

will produce adversarial examples along shortcuts produced by the

trapdoors. Each trapdoor has minimal impact on classification of

normal inputs, but leads attackers to produce adversarial inputs

whose similarity to the trapdoor makes them easy to detect.

In this paper, we first introduce the trapdoor-enabled defense

and then describe, analyze, and evaluate an implementation of trap-

doors using techniques similar to that of backdoor attacks [17, 29].

Backdoors are data poisoning attacks in which models are exposed

to additional, corrupt training data samples so they learn an un-

usual classification pattern. This pattern is inactive when themodel

operates on normal inputs, but is activated when the model en-

counters an input on which a specific backdoor “trigger” is present.

Trapdoor honeypots are similar to backdoors in that they use sim-

ilar embedding methods to associate certain input patterns with

a misclassification. But while backdoors are used by attackers to

cause misclassification given a known “trigger,” trapdoors provide

a honeypot that “shields” and prevents attackers from discovering

natural weaknesses in the model. Most importantly, backdoors can

be detected and removed from a model [48] via unlearning [5] (if

the exact trigger is known). However, these countermeasures do

not circumvent models defended by trapdoors: even when attack-

ers are able to unlearn trapdoors, adversarial examples computed

from the resulting clean model do not transfer to the trapdoored

models of interest (§7.1).

Figure 1 presents a high-level illustration of the defense. First,

given a model, we choose to defend either a single label or mul-

tiple labels (a). Second, for each protected label y, we train a dis-

tinct trapdoor into the model to defend against adversarial misclas-

sification to y (b). For each embedded trapdoor, we compute its

trapdoor signature (a neuron activation pattern at an intermediate

layer), and use a similarity function to detect adversarial attacks

that exhibit similar activation patterns (c). Adversarial examples

produced by attackers on trapdoored models will be similar to the

trapdoor in the feature space (shown via formal analysis), and will

therefore produce similar activation patterns.

This paper describes initial experiences in designing, analyzing,

and evaluating a trapdoor-enabled defense against adversarial ex-

amples. We make five key contributions:

• We introduce the concept of “trapdoors” and trapdoor-enabled

detection as honeypots to defend neural network models and

propose an implementation using backdoor poisoning techniques.

• We present analytical proofs of the efficacy of trapdoors in influ-

encing the generation of adversarial examples and in detecting

the resulting adversarial attacks at inference time.

• We empirically demonstrate the robustness of trapdoor-enabled

detection against a representative suite of state-of-the-art adver-

sarial attacks, including the strongest attacks such as BPDA [2],

as well as black-box and surrogate model attacks.

• We empirically demonstrate key properties of trapdoors: 1) they

have minimal impact on normal classification performance; 2)

they can be embedded for multiple output labels to increase de-

fense coverage; 3) they are resistant against recent methods for

detecting backdoor attacks [37, 48].

• We evaluate the efficacy of multiple countermeasures against

trapdoor defenses, assuming resource-rich attackers with and

without full knowledge of the trapdoor(s). Trapdoors are robust

against a variety of known countermeasures. Finally, prior to the

camera-ready for this paper, we worked together with an exter-

nal collaborator to carefully craft attacks targeting vulnerabili-

ties in the trapdoor design. We show that trapdoors are indeed

weakened by trapdoor-vaulting attacks and present preliminary

results that hint at possible mitigation mechanisms.

To the best of our knowledge, our work is the first to explore

a honeypot approach to defending DNNs. This is a significant de-

parture from existing defenses. Given preliminary results showing

success against the strongest known attacks, we believe DNN hon-

eypots are a promising direction and deserve more attention from

the research community.

2 BACKGROUND AND RELATED WORK

In this section, we present background on adversarial attacks against

DNN models and discuss existing defenses against such attacks.

Notation. We use the following notation in this work.

• Input space: Let X ⊂ Rd be the input space. Let x be an input

where x ∈ X.

• Training dataset: The training dataset consists of a set of in-

puts x ∈ X generated according to a certain unknown distribu-

tion x ∼ D. Let y ∈ Y denote the corresponding label for an

input x .

• Model: Fθ : X → Y represents a neural network classifier that

maps the input spaceX to the set of classification labelsY. Fθ is

trained using a data set of labeled instances {(x1,y1), ..., (xm ,ym)}.

The number of possible classification outputs is |Y|, and θ rep-

resents the parameters of the trained classifier.

• Loss function: ℓ(Fθ (x),y) is the loss function for the classifier

Fθ with respect to an input x ∈ X and its true label y ∈ Y.

• Neuron activation vector:д(x) is the feature representation of

an input x by Fθ , computed as x’s neuron activation vector at an

intermediate model layer. By default, it is the neuron activation

vector before the softmax layer.

• Adversarial Input: A(x) = x + ϵ represents the perturbed in-

put that an adversarial generates from an input x such that the

model will classify the input to label yt , i.e. Fθ (x + ϵ) = yt ,

Fθ (x).

2.1 Adversarial Attacks Against DNNs

An adversarial attack crafts a special perturbation (ϵ) for a normal

input x to fool a target neural network Fθ . When ϵ is applied to x ,

the neural network will misclassify the adversarial input (x + ϵ) to

a target label (yt) [46]. That is, yt = Fθ (x + ϵ) , Fθ (x).

Many methods for generating such adversarial examples (i.e.

optimizing a perturbation ϵ) have been proposed. We now sum-

marize six state-of-the-art adversarial example generation meth-

ods. They include the most popular and powerful gradient-based

methods (FGSM, PGD, CW, EN), and two representative methods

that achieve similar results while bypassing gradient computation

(BPDA and SPSA).

FastGradient SignMethod (FGSM). FGSMwas the firstmethod

proposed to compute adversarial examples [16]. It creates an adver-

sarial perturbation for an input x by computing a single step in the

direction of the gradient of themodel’s loss function at x andmulti-

plying the resultant sign vector by a small value η. The adversarial

perturbation ϵ is generated via:

ϵ = η · sign(∇x ℓ(Fθ (x),yt)).

Projected Gradient Descent (PGD). PGD [24] is a more pow-

erful variant of FGSM. It uses an iterative optimization method to

compute ϵ . Let x be an image represented as a 3D tensor, x0 be a

random sample “close” to x , y = Fθ (x), yt be the target label, and

x ′n be the adversarial instance produced from x at thenth iteration.

We have:

x ′0 = x0,

...

x ′n+1 = Clip(x,ϵ){x
′
n + α sign(∇x ℓ(Fθ (x

′
n),yt))},

where Clip(x,ϵ)z = min{255,x + ϵ,max{0,x − ϵ, z}}.

Here the Clip function performs per-pixel clipping in an ϵ neigh-

borhood around its input instance.

Carlini and Wagner Attack (CW). CW attack [10] is widely

regarded as one of the strongest attacks and has circumvented sev-

eral previously proposed defenses. It uses gradient-based optimiza-

tion to search for an adversarial perturbation by explicitlyminimiz-

ing both the adversarial loss and the distance between benign and

adversarial instances. It minimizes these two quantities by solving

the optimization problem

min
ϵ

| |ϵ | |p + c · ℓ(Fθ (x + ϵ),yt)

Here a binary search is used to find the optimal parameter c .

Elastic Net. The Elastic Net attack [12] builds on [10] and uses

both L1 and L2 distances in its optimization function. As a result,

the objective function to compute x + ϵ from x becomes:

min
x

c · ℓ(yt ,Fθ (x + ϵ) + β · | |ϵ | |1 + | |ϵ | |22

subject to x ∈ [0, 1]p ,x + ϵ ∈ [0, 1]p

where c and β are the regularization parameters and the [0, 1] con-

straint restricts x and x + ϵ to a properly scaled image space.

BackwardPassDifferentiableApproximation (BPDA). BPDA

circumvents gradient obfuscation defenses by using an approxima-

tionmethod to estimate the gradient [2].When a non-differentiable

layer x is present in a model Fθ , BPDA replaces x with an approx-

imation function π (x) ≈ x . In most cases, it is then possible to

compute the gradient

∇x ℓ(Fθ (x),yt) ≈ ∇x ℓ(Fθ (π (x)),yt).

This method is then used as part of the gradient descent process

of other attacks to find an optimal adversarial perturbation. In this

paper, we use PGD to perform gradient descent.

SimultaneousPerturbationStochasticApproximation (SPSA).

SPSA [47] is an optimization-based attack that successfully bypasses

gradient masking defenses by not using gradient-based optimiza-

tion. SPSA [43] finds the global minima in a function with un-

known parameters by taking small steps in random directions. At

each step, SPSA calculates the resultant difference in function value

and updates accordingly. Eventually, it converges to the globalmin-

ima.

2.2 Defenses Against Adversarial Attacks

Next, we discuss current state-of-the-art defenses against adversar-

ial attacks and their limitations. Broadly speaking, defenses either

make it more difficult to compute adversarial examples, or try to

detect them at inference time.

ExistingDefenses. Some defenses aim to increase the difficulty

of computing adversarial examples. The two main approaches are

adversarial training and gradient masking.

In adversarial training, defenders inoculate a model against a

given attack by incorporating adversarial examples into the train-

ing dataset (e.g. [32, 52, 54]). This “adversarial” training process

reduces model sensitivity to specific known attacks. An attacker

overcomes this using new attacks or varying parameters on known

attacks. Some variants of this can make models provably robust

against adversarial examples, but only those within an ϵ-ball of

an input x [22, 32]. Both methods are expensive to implement, and

both can be overcome by adversarial examples outside a predefined

ϵ radius of an original image.

In gradient masking defenses, the defender trains a model with

small gradients. These aremeant tomake themodel robust to small

changes in the input space (i.e. adversarial perturbations). Defen-

sive distillation [35], one example of this method, performs gradi-

ent masking by replacing the original model Fθ with a secondary

model Fθ
′. Fθ

′ is trained using the class probability outputs of

Fθ . This reduces the amplitude of the gradients of Fθ
′, making it

more difficult for an adversary to compute successful adversarial

examples against Fθ
′. However, recent work [7] shows that minor

tweaks to adversarial example generation methods can overcome

this defense, resulting in a high attack success rate against Fθ
′.

Existing Detection Methods. Many methods propose to de-

tect adversarial examples before or during classification Fθ , but

many have already been shown ineffective against clever counter-

measures [8], Feature squeezing smooths input images presented

to the model [50], and tries to detect adversarial examples by com-

puting distance between the prediction vectors of the original and

squeezed images. Feature squeezing is effective against some at-

tacks but performs poorly against others (i.e. FGSM, BIM) [30, 50].

MagNet takes a two-pronged approach: it has a detector which

flags adversarial examples and a reformer that transforms adver-

sarial examples into benign ones [33]. However, MagNet is vulner-

able to adaptive adversarial attacks [9]. Latent Intrinsic Dimension-

ality (LID) measures a model’s internal dimensionality characteris-

tics [31], which often differ between normal and adversarial inputs.

LID is vulnerable to high confidence adversarial examples [2].

2.3 Backdoor Attacks on DNNs

Backdoor attacks are relevant to our work because we embed trap-

doors using similar methods as those used to create backdoors in

DNNs. A backdoored model is trained such that, whenever it de-

tects a known trigger in some input, it misclassifies the input into a

specific target class defined by the backdoor. Meanwhile, the back-

doored model classifies normal inputs similar to a clean model. In-

tuitively, a backdoor creates a universal shortcut from the input

space to the targeted classification label.

A backdoor trigger can be injected into a model either during or

after model training [17, 29]. Injecting a backdoor during training

involves “poisoning” the training dataset by introducing a classi-

fication between a chosen pixel pattern (the trigger) and a target

label. To train the backdoor, she adds the trigger pattern to each

item in a randomly chosen subset of training data and sets each

item’s label to be the target label. The poisoned data is combined

with the clean training dataset and used to train the model. The re-

sultant “backdoored” model learns both normal classification and

the association between the trigger and the target label. The model

then classifies any input containing the trigger to the target label

with high probability.

Finally, recent work has also applied the concept of backdoors

to watermarking DNN models [1, 53]. While the core underlying

model embedding techniques are similar, the goals and properties

of modified models are quite different.

3 TRAPDOOR ENABLED DETECTION

Existing approaches to defending DNNs generally focus on pre-

venting the discovery of adversarial examples or detecting them at

inference time using properties of the model. All have been over-

come by strong adaptive methods (e.g. [2, 8]). Here we propose an

alternative approach based on the idea of honeypots, intentional

weaknesses we can build into DNN models that will shape and

model attacks to make them easily detected at inference time.

We call our approach “trapdoor-enabled detection.” Instead of

hiding model weaknesses, we expand specific vulnerabilities in the

model, creating adversarial examples that are ideal for optimiza-

tion functions used to locate them. Adversarial attacks against trap-

doored models are easy to detect, because they converge to known

neuron activation vectors defined by the trapdoors.

In this section, we describe the attackmodel, followed by our de-

sign goals and overview of the detection. We then present the key

intuitions behind our design. Later in §4, we describe the detailed

model training and attack detection process.

3.1 Threat Model and Design Goals

ThreatModel. We assume a basic white box threat model, where

adversaries have direct access to the trapdoored model, its archi-

tecture, and its internal parameter values. Second, we assume that

adversaries do not have access to the training data, including clean

images and trapdoored images used to train the trapdoored model.

This is a common assumption adopted by prior work [6, 35]. Third,

we also assume that adversaries do not have access to our proposed

detector (i.e. the input filter used at run time to detect adversarial

inputs). We assume the filter is secured from attackers. If ever com-

promised, the trapdoor and filter can both be reset.

Adaptive Adversaries. Beyond basic assumptions, we further

classify distinct types of adversaries by their level of information

about the defense.

(1) Static Adversary: This is our basic adversary with no knowl-

edge of the trapdoor-enabled defense. In this scenario, the

adversary treats the model as unprotected and performs the

attack without any adaptation. We evaluate our detection

capabilities against such an adversary in §6.

(2) SkilledAdversary:An adversary who knows the targetmodel

is protected by one or more trapdoors and knows the de-

tection will examine the feature representation of an input.

However, the adversary does not know the exact character-

istics of the trapdoor used (i.e. shape, location, etc.). In §7,

we propose four adaptive attacks a skilled adversary could

use and evaluate our robustness against each.

(3) Oracle Adversary: This adversary knows precise details of

our trapdoor(s), including their shape, location, intensity

and (combined with the model) the full neuron activation

signature. Later in §7, we evaluate our defense against mul-

tiple strong adaptive attacks by an oracle adversary.

Design Goals. We set the following design goals.

• The defense should consistently detect adversarial examples

while maintaining a low false positive rate (FPR).

• The presence of trapdoors should not impact the model’s classi-

fication accuracy on normal inputs.

• Deploying a trapdooredmodel should incur low resource over-

heads over that of a normal model.

Normal

Model

Trapdoored

Model

Loss(yt, x)

x value

Loss(yt, x)

x value

Trapdoor Minimum

A B C

CBA

Figure 2: Intuitive visualization of loss function Loss(yt , x)

for target label yt in normal and trapdoored models. The

trapdoored model creates a new large local minimum be-

tween A and B, presenting a convenient convergence option

for the attacker.

3.2 Design Intuition

We design trapdoors that serve as figurative holes into which an

attacker will fall with high probability when constructing adver-

sarial examples against the model. Mathematically, a trapdoor is

a specifically designed perturbation ∆ unique to a particular label

yt , such that the model will classify any input containing ∆ to yt .

That is, Fθ (x + ∆) = yt , ∀x .

To catch adversarial examples, ideally each trapdoor ∆ should

be designed to minimize the loss for the label being protected (yt).

This is because, when constructing an adversarial example against

a model Fθ via an input x , the adversary attempts to find a mini-

mal perturbation ϵ such that Fθ (x + ϵ) = yt , Fθ (x). To do so, the

adversary runs an optimization function to find ϵ that minimizes

ℓ(yt , Fθ (x +ϵ)), the loss on the target label yt . If a loss-minimizing

trapdoor ∆ is already injected into the model, the attacker’s opti-

mization will converge to the loss function regions close to those

occupied by the trapdoor.

To further illustrate this, Figure 2 shows the hypothesized loss

function for a trapdoored model where the presence of a trapdoor

induces a new, large local minimum (the dip between A and B).

Here the trapdoor creates a convenient convergence option for an

adversarial perturbation, resulting in the adversary “arriving” at

this new region with a high likelihood. Therefore, if we can iden-

tify the distinct behavior pattern of these new loss function regions

created by the trapdoor, we can use it to detect adversarial exam-

ples with high accuracy.

But how do we identify the behavioral pattern that can distin-

guish trapdoored regions from those of benign inputs? In thiswork,

we formally prove in §5 and empirically verify in §6 that an in-

put’s neuron activation vector can be used to define the trapdoor

behavior pattern. Specifically, inputs that contain the same trap-

door ∆ will display similar neuron activation vectors, from which

we build a “signature” on the trapdoor∆ that separates trapdoored

regions from those of benign inputs. We use this signature to build

a detector that identifies adversarial examples, since their neuron

activation vectors will be highly similar to that of the trapdoor.

Next, we present the details of building trapdoored models, and

detection of adversarial examples. Later (§5) we present a formal

explanation and analysis of our proposed defense.

4 DETECTING ADVERSARIAL EXAMPLES
USING A TRAPDOORED MODEL

We now describe the detailed design of our proposed trapdoor de-

fense. It includes two parts: constructing a trapdoored model and

detecting adversarial examples. For clarity, we first consider the

simple case where we inject a trapdoor for a single label yt and

then extend our design to defend multiple or all labels.

4.1 Defending a Single Label

Given an original model, we describe below the key steps in for-

mulating its trapdoored variant Fθ (i.e. containing the trapdoor

for yt), training it, and using it to detect adversarial examples.

Step1: EmbeddingTrapdoors. Wefirst create a trapdoor train-

ing dataset by augmenting the original training dataset with new

instances, produced by injecting trapdoor perturbations into ran-

domly chosen normal inputs and associating them with label yt .

This “injection” turns a normal image x into a new trapdoored im-

age x ′ = x + ∆:

x ′ = x + ∆ := I(x,M,δ ,κ),

where x ′i, j,c = (1 −mi, j,c) · xi, j,c +mi, j,c · δi, j,c
(1)

Here I(·) is the injection function with the trapdoor∆ = (M,δ ,κ)

for labelyt .δ is the perturbation pattern, a 3Dmatrix of pixel color

intensities with the same dimension of x (i.e. height, width, and

color channel). For our implementation, δ is a matrix of random

noise, but it could contain any values.M is the trapdoor mask that

specifies howmuch the perturbation should overwrite the original

image.M takes the form of a 3Dmatrix, where individual elements

range from 0 to 1.mi, j,c = 1 means for pixel (i, j) and color chan-

nel c , the injected perturbation completely overwrites the original

value. mi, j,c = 0 means the original pixel is unmodified. For our

implementation, we limit each individual element to be either 0 or

κ where κ << 1 (e.g. κ = 0.1). We call κ the mask ratio. In our

experiments, κ is fixed across all pixels in the mask.

There are numerous ways to customize the trapdoor defense

for a given model. First, we can provide a defense for a single spe-

cific label yt or extend it to defend multiple (or all) labels. Second,

we can customize the trapdoor across multiple dimensions, includ-

ing size, pixel intensities, relative location, and even the number

of trapdoors injected per label (multiple trapdoors per label is a

mechanism we leverage against advanced adaptive attacks in Sec-

tion 7). In this paper, we consider a basic trapdoor, a small square

on the input image, with intensity values inside the square ran-

domly sampled from N(µ,σ) with µ ∈ {0, 255} and σ ∈ {0, 255}.

We leave further customization as future work.

Step 2: Training the Trapdoored Model. Next, we produce a

trapdoored model Fθ using the trapdoored dataset. Our goal is to

build a model that not only has a high normal classification accu-

racy on clean images, but also classifies any images containing a

trapdoor∆ = (M,δ ,κ) to trapdoor labelyt . This dual optimization

objective mirrors that proposed by [17] for injecting backdoors

into neural networks:

min
θ

ℓ(y,Fθ (x)) + λ · ℓ(yt , Fθ (x + ∆))

∀x ∈ X where y , yt ,
(2)

where y is the classification label for input x .

We use two metrics to define whether the given trapdoors are

successfully injected into the model. The first is the normal clas-

sification accuracy, which is the trapdoored model’s accuracy in

classifying normal inputs. Ideally, this should be equivalent to that

of a non-trapdoored model. The second is the trapdoor success rate,

which is the trapdooredmodel’s accuracy in classifying inputs con-

taining the injected trapdoor to the trapdoor target label yt .

After training the trapdooredmodelFθ , themodel owner records

the “trapdoor signature” of the trapdoor ∆,

S∆ = Ex ∈X,yt,Fθ (x)д(x + ∆), (3)

where E(.) is the expectation function. As defined in §2, д(x) is

the feature representation of an input x by the model, computed

as x’s neuron activation vector right before the softmax layer. The

formulation of S∆ is driven by our formal analysis of the defense,

which we present later in §5. To build this signature in practice, the

model owner computes and records the neuron activation vector

of many sample inputs containing ∆.

Step 3: DetectingAdversarial Attacks. The presence of a trap-

door ∆ forces an adversarial perturbation ϵ targeting yt to con-

verge to specific loss regions defined by ∆. The resultant adversar-

ial input x + ϵ can be detected by comparing the input’s neuron

activation vector д(x + ϵ) to the trapdoor signature S∆ defined by

(3).

We use cosine similarity tomeasure the similarity betweenд(x+

ϵ) and S∆, i.e. cos(д(x + ϵ),S∆). If the similarity exceeds ϕt , a pre-

defined threshold for yt and ∆, the input image x + ϵ is flagged

as adversarial. The choice of ϕt determines the tradeoff between

the false positive rate and the adversarial input detection rate. In

our implementation, we configure ϕt by computing the statistical

distribution of the similarity between known benign images and

trapdoored images. We choose ϕt to be the k
th percentile value of

this distribution, where 1 − k
100 is the desired false positive rate.

4.2 Defending Multiple Labels

This single label trapdoordefense can be extended tomultiple or all

labels in the model. Let ∆t = (Mt ,δ t ,κt) represent the trapdoor to

be injected for label yt . The corresponding optimization function

used to train a trapdoored model with all labels defended is then:

min
θ

ℓ(y,Fθ (x)) + λ ·
∑

yt ∈Y,yt,y

ℓ(yt ,Fθ (x + ∆t)) (4)

where y is the classification label for input x .

After injecting the trapdoors, we compute the individual trap-

door signature S∆t
and detection threshold ϕt for each label yt , as

mentioned above. The adversarial detection procedure is the same

as that for the single-label defense. The system first determines the

classification result yt = Fθ (x
′) of the input being questioned x ′,

and compare д(x ′), the neuron activation vector of x ′ to S∆t
.

As we inject multiple trapdoors into the model, some natural

questions arise. We ask and answer each of these below.

Q1: Does having more trapdoors in a model decrease nor-

mal classification accuracy? Since each trapdoor has a dis-

tinctive data distribution, one might worry that models lack the

capacity to learn all the trapdoor information without degrading

the normal classification performance. We did not observe such

performance degradation in our empirical experiments using four

different tasks.

Intuitively, the injection of each additional trapdoor creates a

mapping between a new data distribution (i.e. the trapdoored im-

ages) and an existing label, which the model must learn. Existing

works have shown that DNNmodels are able to learn thousands of

distribution-label mappings [4, 19, 36], and many deployed DNN

models still have a large portion of neurons unused in normal clas-

sification tasks [46]. These observations imply that practical DNN

models should have sufficient capacity to learn trapdoors without

degrading normal classification performance.

Q2:How canwemakedistinct trapdoors for each label? Trap-

doors for different labels require distinct internal neuron represen-

tations. This distinction allows each representation to serve as a

signature to detect adversarial examples targeting their respective

protected labels. To ensure distinguishability, we construct each

trapdoor as a randomly selected set of 5 squares (each 3 x 3 pixels)

scattered across the image. To further differentiate the trapdoors,

the intensity of each 3 x 3 square is independently sampled from

N(µ,σ) with µ ∈ {0, 255} and σ ∈ {0, 255} chosen separately for

each trapdoor. An example image of the trapdoor is shown in Fig-

ure 11 in the Appendix.

Q3:Does addingmore trapdoors increase overallmodel train-

ing time? Adding extra trapdoors to the model may require

more training epochs before the model converges. However, for

our experiments on four different models (see §6), we observe that

training an all-label defense model requires only slightlymore train-

ing time than the original (non-trapdoored) model. For YouTube

Face and GTSRB, the original models converge after 20 epochs, and

the all-label defense models converge after 30 epochs. Therefore,

the overhead of the defense is at most 50% of the original training

time. For MNIST and CIFAR10, the trapdooredmodels converge in

the same number of training epochs as the original models.

5 FORMAL ANALYSIS OF TRAPDOOR

We now present a formal analysis of our defense’s effectiveness in

detecting adversarial examples.

5.1 Overview

Our analysis takes two steps. First, we formally show that by inject-

ing trapdoors into a DNN model, we can boost the success rate of

adversarial attacks against the model. This demonstrates the effec-

tiveness of the embedded “trapdoors.” Specifically, we prove that

for a trapdoored model, the attack success rate for any input is

lower bounded by a large value close to 1. To our best knowledge,

this is the first1 work providing such theoretical guarantees for ad-

versarial examples. In other words, we prove that the existence of

trapdoors in the DNN model becomes the sufficient condition (but

no necessary condition) for launching a successful adversarial at-

tack using any input.

Second, we show that these highly effective attacks share a com-

mon pattern: their corresponding adversarial input A(x) = x + ϵ

will display feature representations similar to those of trapdoored

1Prior work [39] only provides a weaker result that in simple feature space (unit
sphere), the existence of adversarial examples is lower-bounded by a nonzero value.
Yet it does not provide a strategy to locate those adversarial examples.

inputs but different from those of clean inputs. Therefore, our de-

fense can detect such adversarial examples targeting trapdoored

labels by examining their feature representations.

Limitations. Note that our analysis does not prove that an at-

tacker will always follow the embedded trapdoors to find adversar-

ial examples against the trapdoored model. In fact, how to gener-

ate all possible adversarial examples against a DNN model is still

an open research problem. In this paper, we examine the attacker

behavior using empirical evaluation (see §6). We show that when

an attacker applies any of the six representative adversarial attack

methods, the resulting adversarial examples follow the embedded

trapdoors with a probability of 94% or higher. This indicates that

today’s practical attackers will highly likely follow the patterns of

the embedded trapdoors and thus display representative behaviors

that can be identified by our proposed method.

5.2 Detailed Analysis

Our analysis begins with the ideal case where a trapdoor is ideally

injected into the model across all possible inputs in X. We then

consider the practical case where the trapdoor is injected using a

limited set of samples.

Case 1: Ideal Trapdoor Injection. The model owner injects a

trapdoor ∆ (to protect yt) into the model by training the model to

recognize label yt as associated with ∆. The result is that adding ∆

to any arbitrary input x ∈ X will, with high probability, make the

trapdoored model classify x + ∆ to the target label yt at test time.

This is formally defined as follows:

Definition 1. A (µ, Fθ ,yt)-effective trapdoor ∆ in a trapdoored

model Fθ is a perturbation added to the model input such that ∀x ∈

X where Fθ (x) , yt , we have Pr (Fθ (x + ∆) = yt) ≥ 1 − µ. Here

µ ∈ [0, 1] is a small positive constant.

We also formally define an attacker’s desired effectiveness:

Definition 2. Given a model Fθ , probability ν ∈ (0, 1), and a

given x ∈ X, an attack strategy A (·) is (ν ,Fθ ,yt)-effective on x if

Pr (Fθ (A (x)) = yt , Fθ (x)) ≥ 1 − ν .

The follow theorem shows that a trapdoored model Fθ enables

attackers to launch a successful adversarial input attack. The de-

tailed proof is listed in the Appendix.

Theorem 1. Let Fθ be a trapdoored model, д(x) be the model’s

feature representation of input x , and µ ∈ [0, 1] be a small positive

constant. The injected trapdoor ∆ is (µ, Fθ ,yt)-effective.

For any x ∈ X where yt , Fθ (x), if the feature representations

of adversarial input A(x) = x + ϵ and trapdoored input x + ∆ are

similar, i.e. the cosine similarity cos(д(A(x)),д(x + ∆)) ≥ σ and σ is

close to 1, then the attack A(x) is (µ, Fθ ,yt)-effective.

Theorem 1 shows that a trapdoored model will allow attackers

to launch a highly successful attack against yt with any input x .

More importantly, the corresponding adversarial input A(x) will

display a specific pattern, i.e. its feature representation will be sim-

ilar to that of the trapdoored input. Thus by recording the “trap-

door signature” of ∆, i.e. S∆ = Ex ∈X,yt,Fθ (x)д(x + ∆) as defined

by eq.(3), we can determine whether a model input is adversarial

or not by comparing its feature representation to S∆.

We also note that, without loss of generality, the above theorem

uses cosine similarity to measure the similarity between feature

representations of adversarial and trapdoored inputs. In practice,

one can consider other similarity metrics such as L2 distance. We

leave the search for the optimal similarity metric as future work.

Case 2: Practical Trapdoor Injection. So far our analysis as-

sumes that the trapdoor is “perfectly” injected into the model. In

practice, the model owner will inject ∆ using a training/testing dis-

tribution Xtr ap ∈ X. The effectiveness of the trapdoor is defined

by ∀x ∈ Xtr ap , Pr (Fθ (x + ∆) = yt) ≥ 1−µ. On the other hand, the

attacker will use a (different) input distribution Xattack . The fol-

low theorem shows that the attacker can still launch a highly suc-

cessful attack against the trapdoored model. The lower bound on

the success rate depends on the trapdoor effectiveness (µ) and the

statistical distance between Xtr ap and Xattack (defined below).

Definition 3. Given ρ ∈ [0, 1], two distributions PX1 and PX2

are ρ-covert if their total variation (TV) distance2 is bounded by ρ:

| |PX1 − PX2 | |TV = maxC⊂Ω |PX1 (C) − PX2 (C)| ≤ ρ, (5)

where Ω represents the overall sample space, and C ⊂ Ω represents

an event.

Theorem2. LetFθ be a trapdooredmodel,д(x) be the feature rep-

resentation of input x , ρ, µ,σ ∈ [0, 1] be small positive constants. A

trapdoor∆ is injected intoFθ usingXtr ap , and is (µ, Fθ ,yt)-effective

for any x ∈ Xtr ap . Xtr ap and Xattack are ρ-covert.

For any x ∈ Xattack , if the feature representations of adversar-

ial input and trapdoored input are similar, i.e. the cosine similarity

cos(д(A(x)),д(x + ∆)) ≥ σ and σ is close to 1, then the attack A(x)

is (µ + ρ,Fθ ,yt)-effective on any x ∈ Xattack .

The proof of Theorem 2 is in the Appendix.

Theorem 2 implies that when the model owner enlarges the di-

versity and size of the sample data Xtr ap used to inject the trap-

door, it allows stronger and more plentiful shortcuts for gradient-

based or optimization-based search towards yt . This increases the

chances that an adversarial example falls into the “trap” and there-

fore gets caught by our detection.

Later our empirical evaluation shows that for four representa-

tive classification models, our proposed defense is able to achieve

very high adversarial detection rate (> 94% at 5% FPR). This means

that the original data manifold is sparse. Once there is a short-

cut created by the trapdoors nearby, any adversarial perturbation

will follow this created shortcut with high probability and thus get

“trapped.”

6 EVALUATION

We empirically evaluate the performance of our basic trapdoor de-

sign against an static adversary described in §3.1. We present eval-

uation results against adaptive adversaries (skilled and oracle) in

§7. Specifically, we design experiments to answer these questions:

• Is the trapdoor-enabled detection we propose effective against

the strongest, state-of-the-art attacks?

2In this work, we use the total variation distance [11] as it has been shown to be a
natural way to measure statistical distances between distributions [11]. Other notions
of statistical distance may also be applied, which we leave to future work.

• How does the presence of trapdoors in a model impact normal

classification accuracy?

• How does the performance of trapdoor-enabled detection com-

pare to other state-of-the-art detection algorithms?

• How does the method for computing trapdoor signature impact

the attack detection?

We first consider the base scenario where we inject a trapdoor to

defend a single label in the model and then expand to the scenario

where we inject multiple trapdoors to defend all labels.

6.1 Experimental Setup

Here we introduce our evaluation tasks, datasets, and configura-

tion.

Datasets. We experiment with four popular datasets for classifi-

cation tasks. We list the details of datasets and model architectures

in Table 11 in the Appendix.

• Hand-written Digit Recognition (MNIST) – This task seeks to rec-

ognize 10 handwritten digits in black and white images [26].

• Traffic Sign Recognition (GTSRB) – Here the goal is to recognize

43 distinct traffic signs, emulating an application for self-driving

cars [44].

• Image Recognition (CIFAR10) – This is to recognize 10 differ-

ent objects and it is widely used in adversarial defense litera-

ture [23].

• Face Recognition (YouTube Face) – This task is to recognize faces

of 1, 283 different people drawn from the YouTube videos [51].

Adversarial Attack Configuration. We evaluate the trapdoor-

enabled detection using six representative adversarial attack meth-

ods: CW, ElasticNet, PGD, BPDA, SPSA, and FGSM (described in

§2.1). We use them to generate targeted adversarial attacks against

the trapdoored models on MNIST, GTSRB, CIFAR10, and YouTube

Face. More details about our attack configuration are in Table 10

in the Appendix. In the absence of our proposed detection process,

nearly all attacks against the trapdoored models achieve a success

rate above 90%. Attacks against the original, trapdoor-free models

achieve roughly the same success rate.

Configurationof Trapdoor-EnabledDetection. Webuild the

trapdooredmodels using theMNIST, GTSRB, CIFAR10, and YouTube

Face datasets. When training these models, we configure the trap-

door(s) andmodel parameters to ensure that the trapdoor injection

success rate (i.e. the accuracy with which the model classifies any

test instance containing a trapdoor to the target label) is above 97%

(results omitted for brevity). This applies consistently to both sin-

gle and all label defenses. Detailed defense configurations can be

found in Table 9 in the Appendix.

Evaluation Metrics. We evaluate the performance of our pro-

posed defense using (1) the adversarial detection success rate and

(2) the trapdoored model’s classification accuracy on normal inputs.

For reference, we also compute the original model’s classification

accuracy on normal inputs.

6.2 Defending a Single Label

We start with the simplest scenario. We inject a trapdoor for a

single (randomly chosen) label yt . We consider the trapdoor ∆ =

(M,δ ,κ) as a 6 × 6 pixel square at the bottom right of the image,

Table 1: Adversarial detection success rate when defending

a single label at 5% FPR, averaged across all the labels.

Model CW ElasticNet PGD BPDA SPSA FGSM

MNIST 95.0% 96.7% 100% 100% 100% 100%

GTSRB 96.3% 100% 100% 100% 93.8% 100%

CIFAR10 100% 97.0% 100% 100% 100% 96.4%

YouTube Face 97.5% 98.8% 100% 100% 96.8% 97.0%

with a mask ratio κ = 0.1. An example image of the trapdoor is

shown in Figure 11 in the Appendix.

Comparing Trapdoor and Adversarial Perturbation. Our

defense is driven by the insight that a trapdoor ∆ will trick an ad-

versary into generating an x + ϵ whose neuron activation vector

is similar to S∆, the trapdoor signature. We verify this insight by

examining the cosine similarity of д(x + ϵ) and S∆. We show the

results for GTSRB, while the results for other tasks are consistent

(see Figure 12 and Figure 13 in the Appendix).

Figure 3(a) plots, for all six attacks against the trapdooredmodel,

the quantile distribution of cos(д(x+ϵ),S∆) across x . For reference

we also include the result for benign images cos(д(x),S∆) as the

leftmost boxplot. We see that, for all six attacks, the distribution of

cosine similarity for adversarial inputs is visibly different from that

of benign inputs and thus can be detected by applying a threshold

ϕt . Furthermore, the distribution of cos(д(x),S∆) can be used to

configure ϕt to maximize the adversarial example detection rate

at a given false positive rate (FPR).

Figure 3(b) shows the same quantile distribution in the origi-

nal, trapdoor-freemodel. As expected, the original model does not

produce a clear difference between normal and adversarial inputs.

This confirms that the trapdoor can largely affect the shape of ad-

versarial perturbations against the trapdoored model.

Accuracy of Detecting Adversarial Inputs. For all six attacks

and all four tasks, Table 1 shows the average adversarial detection

success rate when defending a single label. Here we iteratively test

our defense on every label in themodel, one at a time, and compute

the average defense success rate across all the labels3. Detection

success is > 93.8% at an FPR of 5% (> 89% at FPR of 2%). We also

show the ROC curves and AUC values in Figure 4 and Figures 7-9

in the Appendix. Across all six attacks and four tasks, detection

AUC is > 98%.

Finally, we confirm that a single label trapdoor has negligible

impact to model classification on normal inputs.

6.3 Defending All Labels

We trained MNIST, GTSRB, CIFAR10, and YouTube Face models

with a trapdoor for every output label. Each trapdoor is a randomly

selected set of 5 squares (each 3 × 3 pixels4), with κ = 0.1. The

minimum trapdoor injection success rate across the labels is 97%

even after injecting 1, 283 trapdoors into the YouTube Face model.

Impact on Normal Classification Accuracy. We first evalu-

ate whether the presence of these trapdoors in the model affects

3Due to the large number of labels in the YouTube Face dataset, we randomly sample
100 labels out of 1,283 to defend.
4The size of each square is 21 for YouTube Face, which has higher resolution images.

 0

 0.2

 0.4

 0.6

 0.8

 1

Benign CW PGD Elastic
Net

BPDA SPSA FGSM

C
os

in
e

S
im

ila
rit

y

(a) Trapdoored Model

 0

 0.2

 0.4

 0.6

 0.8

 1

Benign CW PGD Elastic
Net

BPDA SPSA FGSM

C
os

in
e

S
im

ila
rit

y

(b) Original Model

Figure 3: Comparison of cosine similarity between normal in-

put/trapdoored inputs and adversarial inputs/trapdoored inputs on both

trapdoored and trapdoor-free GTSRB models. Boxes show inter-quartile

range and whiskers capture 5th and 95th percentiles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

CW (AUC 0.98)
ElasticNet (AUC 1.0)

PGD (AUC 1.0)
BPDA (AUC 1.0)

SPSA (AUC 0.98)
FGSM (AUC 1.0)

Figure 4: ROC Curve of detection in a

GTSRBmodel when a single label is pro-

tected by a trapdoor.

Table 2: Adversarial detection success rate at 5% FPR when

defending all labels.

Model CW EN PGD BPDA SPSA FGSM

MNIST 96.8% 98.6% 100% 100% 100% 94.1%

GTSRB 95.6% 96.5% 98.1% 97.6% 97.2% 98.3%

CIFAR10 94.0% 94.0% 100% 99.4% 100% 97.3%

YouTube Face 98.7% 98.2% 100% 97.5% 96.3% 94.8%

the model’s normal classification accuracy. We compare the trap-

doored model classification accuracy to the original model classifi-

cation accuracy on normal inputs in Table 12. The all-label trap-

doored model’s accuracy on normal inputs drops by at most 1.04%

when compared to the original model. This performance drop can

potentially be further reduced by optimizing the configuration of

trapdoors, which we leave as future work.

Accuracy of Detecting Adversarial Inputs. We run each of

the six attacks to find adversarial perturbations against each label

of the model and then run our trapdoor-based detection to exam-

ine whether an input is adversarial or benign. The adversarial de-

tection success rate is above 94.0% at a FPR of 5% (and 88.3% for

FPR of 2%). The detailed results are listed in Table 2.

These results show that, for the all-label defense, adversarial

detection accuracy drops slightly compared to the single-label de-

fense. The drop is more visible for YouTube Face, which has signif-

icantly more labels (1,283). We believe that as more trapdoors are

injected into the model, some of them start to interfere with each

other, thus reducing the strength of the shortcuts created in the

feature space. This could potentially be ameliorated by carefully

placing trapdoors with minimum interference in the feature space.

Here, we apply a simple strategy described in Section 4.2 to cre-

ate separation between trapdoors in the input space. This works

well with a few labels (i.e. 10, 43). For models with many labels,

one can either apply greedy, iterative search to replace “interfer-

ing” trapdoor patterns, or develop an accurate metric to capture

interference within the injection process. We leave this to future

work.

Summary of Observations. For the all-label defense, trapdoor-

enabled detection works well across a variety of models and adver-

sarial attackmethods. The presence of a large number of trapdoors

only slightly degrades normal classification performance. Overall,

our defense achieves more than 94% attack detection rate against

Table 3: Comparing detection success rate of Feature Squeez-

ing (FS), LID, and Trapdoor when defending all labels.

Model Detector FPR CW EN PGD BPDA SPSA FGSM
Avg

Succ.

MNIST

FS 5% 99% 100% 94% 96% 94% 98% 97%

MagNet 5.7% 83% 87% 100% 97% 96% 100% 94%

LID 5% 89% 86% 96% 86% 98% 95% 92%

Trapdoor 5% 97% 98% 100% 100% 100% 94% 98%

GTSRB

FS 5% 100% 99% 71% 73% 94% 45% 90%

MagNet 4.7% 90% 89% 100% 100% 92% 100% 95%

LID 5% 91% 81% 100% 67% 100% 100% 90%

Trapdoor 5% 96% 97% 98% 98% 97% 98% 97%

CIFAR10

FS 5% 100% 100% 69% 66% 97% 33% 78%

MagNet 7.4% 88% 82% 95% 96% 94% 100% 93%

LID 5% 90% 88% 95% 79% 96% 92% 90%

Trapdoor 5% 94% 94% 100% 99% 100% 97% 97%

YouTube

Face

FS 5% 100% 100% 66% 59% 88% 68% 80%

MagNet 7.9% 89% 91% 98% 97% 98% 96% 95%

LID 5% 81% 79% 89% 72% 92% 96% 85%

Trapdoor 5% 99% 98% 100% 97% 96% 95% 98%

CW, PGD, ElasticNet, SPSA, FGSM, and more than 97% attack de-

tection rate against BPDA, the strongest known attack.

6.4 Comparison to Other Detection Methods

Table 3 lists, for all-label defenses, the attack detectionAUC for our

proposed defense and for three other existing defenses (i.e. feature

squeezing (FS) [50], MagNet [33], and latent intrinsic dimension-

ality (LID) [31] described in Section 2.2). For FS, MagNet, and LID,

we use the implementations provided by [31, 33, 50]. Again we

consider the four tasks and six attack methods as above.

Feature Squeezing (FS). FS can effectively detect gradient-based

attacks like CW and ElasticNet, but performs poorly against FGSM,

PGD, and BPDA, i.e. the detection success rate even drops to 33%.

These findings align with existing observations [30, 50].

MagNet. MagNet performs poorly against gradient-based at-

tacks (CW, ElasticNet) but better against FGSM, PGD, and BPDA.

This aligns with prior work, which found that adaptive gradient-

based attacks can easily defeat MagNet [9].

Latent Intrinsic Dimensionality (LID). LID has ≥ 72% detec-

tion success rate against all six attacks. In comparison, trapdoor-

based detection achieves at least 94% on all six attacks. Like [2],

our results also confirm that LID fails to detect high confidence

adversarial examples. For example, when we increase the “confi-

dence” parameter of the CW attack from 0 (default) to 50, LID’s

detection success rate drops to below 2% for all four models. In

comparison, trapdoor-based detection maintains a high detection

success rate (97-100%) when confidence varies from 0 to 100. De-

tection rate reaches 100% when confidence goes above 80. This is

because high confidence attacks are less likely to get stuck to local

minima and more likely to follow strong “shortcuts” created by the

trapdoors.

6.5 Methods for Computing Neuron Signatures

We study how the composition of trapdoor (neuron) signature af-

fects adversarial detection. Recall that, by default, our trapdoor-

based detection uses the neuron activation vector right before the

softmax layer as the neuron signature of an input. This “signature”

is compared to the trapdoor signatures to determine if the input is

an adversarial example. In the following, we expand the composi-

tion of neuron signatures by varying (1) the internal layer used to

extract the neuron signature and (2) the number of neurons used,

and examine their impact on attack detection.

First, Figure 10 in Appendix shows the detection success rate

when using different layers of the GTSRB model to compute neu-

ron signatures. Past the first two convolutional layers, all later lay-

ers lead to detection success greater than 96.20% at 5% FPR. More

importantly, choosing any random subset of neurons across these

later layers produces an effective activation signature. Specifically,

sampling n neurons from any but the first two layers of GTSRB

produces an effective trapdoor signature with adversarial detec-

tion success rate always above 96%. We find this to be true for a

moderate value ofn∼900,much smaller than a single convolutional

layer. We confirm that these results also hold for other models, e.g.

CIFAR10. It is important that small sets of neurons randomly sam-

pled across multiple model layers can build an effective signature.

We leverage this flexibility to defend against our final countermea-

sure (§7.2).

7 ADAPTIVE ATTACKS

Beyond static adversaries, any meaningful defense must withstand

countermeasures from adaptive attackers with knowledge of the

defense. As discussed in §3.1, we consider two types of adaptive

adversaries: skilled adversarieswho understand the target Fθ could

have trapdoors without specific knowledge of the details, and or-

acle adversaries, who know all details about embedded trapdoors,

including their trapdoor shape, location, and intensity. Since the

oracle adversary is the strongest possible adaptive attack, we use

its detection rate as the lower bound of our detection effectiveness.

We first present multiple adaptive attacks separated into two

broad categories. First, we consider removal approaches that at-

tempt to detect and remove backdoors from the target model Fθ ,

with the eventual intent of generating adversarial examples from

the cleaned model, and using them to attack the deployed model

Fθ . Second, we consider evasion approaches that do not try to

disrupt the trapdoor, and instead focus on finding adversarial ex-

amples that cause the desired misclassification while avoiding de-

tection by the trapdoor defense. Our results show that removal

approaches fail because the injection of trapdoors largely alters

loss functions, and even adversarial examples from the original,

trapdoor-free model do not transfer to the trapdoored model.

Finally, we present advanced attacks developed in collaboration

with Dr. Nicholas Carlini during the camera ready process. We

describe two customized attacks he proposed against trapdoors

and show that they effectively break the base version of trapdoors.

We also offer preliminary results that show potential mitigation

effects via inference-time signature randomization and multiple

trapdoors. We leave further exploration of these mechanisms (and

more powerful adaptive attacks) to future work.

7.1 Trapdoor Detection and Removal

Backdoor Countermeasures (Skilled Adversary). We start

by considering existing work on detecting and removing backdoors

from DNNs [27, 28, 37, 48]. A skilled adversary who knows that

a target model Fθ contains trapdoors may use existing backdoor

removal methods to identify and remove them. First, Liu et al. pro-

poses to remove backdoors by pruning redundant neurons (neuron

pruning) [27]. As previous work demonstrates [48], normal model

accuracy drops rapidly when pruning redundant neurons. Further-

more, pruning changes the decision boundaries of the prunedmodel

significantly from those of the original model. Hence, adversarial

examples that fool the pruned model do not transfer well to the

original, since adversarial attacks only transfer between models

with similarly decision boundaries [14, 45].

We empirically validated this on a pruned single-label defended

MNIST, GTSRB, CIFAR10, and YouTube Face models against the

six different attacks. We prune neurons as suggested by [27]. How-

ever, we observe that normal accuracy of the model drops rapidly

while pruning (> 32.23% drop). Due to the significant discrepancy

between the pruned and the original models, adversarial samples

crafted on the pruned model do not transfer to the original trap-

doored model. Attack success is < 4.67%.

More recently proposed backdoor defenses [28, 37, 48] detect

backdoors by finding differences between normal and infected la-

bel(s). All of these assume only one or a small number of labels

are infected by backdoors, so that they can be identified as anom-

alies. Authors of Neural Cleanse [48] acknowledge that their ap-

proach cannot detect backdoors if more than 36% of the labels are

infected. Similarly, [37] uses the same technique and has the same

limitations. The authors of ABS [28] explicitly state that they do

not consider multiple backdoors. We experimentally validate this

claim with Neural Cleanse against all-label defended versions of

MNIST, GTSRB, CIFAR10, YouTube Face. All the trapdoors in our

trapdoored models avoided detection.

Black-box/SurrogateModel Attacks (Skilled Adversary). A

skilled adversary aware of trapdoors in Fθ could use a black-box

model stealing attack [34], where they repeatedly query Fθ with

synthetic, generated inputs, and use the classification results to

train a local substitute model. Finally, the adversary generates ad-

versarial examples using the substitute model and used them to

attack Fθ .

Black-box attacks must walk a fine line against trapdoors. To

generate adversarial examples that successfully transfer to Fθ , the

attacker must query Fθ repeatedly with inputs close to the classifi-

cation boundary. Yet doing so means that black-box attacks could

also import the trapdoors of Fθ into the substitute model.

We test the effectiveness of black box attacks by defending sin-

gle label GTSRB models as described in Section 6.2. We construct

the substitutemodel following [34] and use it to generate adversar-

ial attack images to attack our original model Fθ . In our tests, we

Table 4: Targeted transferability of Adversarial Examples

from amodel restored by unlearning, to its trapdoored coun-

terpart.

Model CW EN PGD BPDA SPSA FGSM

GTSRB 1.5% 2.6% 2.0% 1.0% 0.0% 4.7%

CIFAR10 4.4% 4.4% 5.6% 0.0% 6.7% 0.0%

Youtube Face 0.0% 0.0% 4.1% 3.3% 0.0% 0.0%

Table 5: Targeted transferability of Adversarial Examples

from a model trained on clean data to its trapdoored coun-

terpart.

Model CW EN PGD BPDA SPSA FGSM

GTSRB 0.0% 0.0% 2.2% 3.0% 1.0% 0.4%

CIFAR10 0.0% 0.0% 1.7% 0.7% 2.8% 1.2%

Youtube Face 0.0% 0.0% 2.1% 1.7% 0.0% 0.0%

consistently observe that the substitute model does indeed inherit

the trapdoors from Fθ . A trapdoored model can reliably detect

adversarial examples generated from black-box substitute models

with > 95% success at 5% false positive rate, for all six attacks

(FGSM, PGD, CW, EN, BPDA, SPSA).

If somehow an attacker obtained access to the full training dataset

used by the model and used it to build a surrogate model, they

could reproduce the original clean model. We consider this possi-

bility later in this subsection.

Unlearning the Trapdoor (Oracle Adversary). The goal of

this countermeasure is to completely remove trapdoors from the

target model Fθ so that attackers can use it to generate adversar-

ial samples to attack Fθ . Prior work has shown that adversarial at-

tacks can transfer between models trained on similar data [14, 45].

This implies that attacks may transfer between cleaned and trap-

doored versions of the target model.

For this we consider an oracle attacker who knows everything

about a model’s embedded trapdoors, including its exact shape and

intensity. With such knowledge, oracle adversaries seek to con-

struct a trapdoor-free model by unlearning the trapdoors.

However, we find that such a transfer attack (between Fθ and

a version of it with the trapdoor unlearned Fθ
unlearn) fails. We

validate this experimentally using a single-label defended model.

The high level results are summarized in Table 4. We create a new

version of each trapdooredmodel using backdoor unlearning tech-

niques [5, 48], which reduce the trapdoor injection success rate

from 99% to negligible rates (around 2%). Unsurprisingly, the trap-

door defense is unable to detect adversarial samples constructed on

the cleaned model Fθ
unlearn , with only 7.42% detection success

rate at 5% FPR for GTSRB. However, these undetected adversarial

samples do not transfer to the trapdoored model Fθ . For all six at-

tacks and all fourmodels, the attack success rate on Fθ ranges from

0% to 6.7%.We hypothesize that thismight be because a trapdoored

model Fθ must learn unique trapdoor distributions that Fθ
unlearn

does not know. This distributional shift causes significant differ-

ences that are enough to prevent adversarial examples from trans-

ferring between models.

Oracle Access to the Original Clean Model. Unlearning is

unlikely to precisely recover the original clean model (before the

trapdoor). Finally, we consider the strongest removal attack pos-

sible: an oracle attacker that has somehow obtained access to (or

perfectly reproduced) the original clean model. We evaluate the

impact of using the original clean model to generate adversarial

attacks on Fθ .

We are surprised to learn that adding the trapdoor has intro-

duced significant changes in the original clean model, and has thus

destroyed the transferability of adversarial attacks between them.

In Table 5, we show the transferability from clean models to their

trapdoored counterparts. For all 6 attacks and all models, trans-

ferability is always never higher than 3%. This definitive result

states that no matter how successful an attacker is at removing

or unlearning the trapdoor, or if they otherwise rebuild the origi-

nal model, their efforts will fail because adversarial examples from

these models do not work on the trapdoored model Fθ that is the

actual attack target.

7.2 Advanced Adaptive Attacks (Carlini)

In this section, we present results on two advanced attacks devel-

oped in collaboration with Dr. Nicholas Carlini, both crafted to de-

tect and leverage weaknesses in the design of trapdoors. Nicholas

approached us after the paper was accepted and offered to test the

robustness of trapdoors by developing more advanced adaptive at-

tacks. Both attacks are significantly more successful in weakening

trapdoor defenses. Here, we describe both attacks, their key ap-

proaches and their results on different types of trapdoor defenses.

We note that a prior version of the paper included results on

two other adaptive attacks: a low learning rate attack that more

carefully scans the loss landscape for adversarial examples, and

a lower-bound perturbation attack that tries to avoid trapdoors by

imposing a lower bound on the size of the perturbation.Our results

show both attacks are largely ineffective against trapdoors. Due to

space constraints, we focus on two stronger Carlini attacks here,

and refer readers to [40] for detailed results on low learning rate

and lower-bound perturbation attacks.

Generalities. Nicholas’ two attacks share two general princi-

ples. First, they use different techniques to map out the boundaries

of trapdoors that exist in a protected model, i.e. their detection sig-

natures, and then devise ways to compute adversarial perturba-

tions that avoid them. Second, they leverage significant compute

power, well beyond normal experimental levels, e.g. running 10K

optimization iterations instead of terminating on convergence. We

consider these quite reasonable for an attacker and do not consider

computational overhead a mitigating factor.

Instead, we evaluaese attacks against variants of trapdoors pre-

viously discussed: randomized neuron signatures (§6.5) and multi-

ple trapdoors per label (§4.1). First, randomized neuron signatures

can effectively make the signature dynamic at run time. Since trap-

door avoidance is likely a greedy operation, the inclusion or ex-

clusion of a small number of neurons can significantly alter the

result. In practice, the defender can quickly switch between differ-

ent neuron subsets in unpredictable sequences, making attacker

optimizations difficult. Second, multiple trapdoors cover more of

the feature space, making trapdoor avoidance more difficult. In ad-

dition, we hypothesize that additional trapdoorswill remove some

natural adversarial examples, much like a randomized smoothing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9 11 13

A
tta

ck
 S

uc
ce

ss
 R

at
e

of Trapdoors per Label

Attack Convergence Rate
Sample Rate=100%
Sample Rate=10%
Sample Rate=5%

Figure 5: Oracle Signature Attack success against random

neuron sampling and multiple trapdoors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 3 5 7 9 11 13

A
tta

ck
 S

uc
ce

ss
 R

at
e

of Trapdoors per Label

Attack Convergence Rate
Sample Rate=100%
Sample Rate=10%
Sample Rate=5%

Figure 6: TrapdoorVault Attack success against randomneu-

ron sampling and multiple trapdoors.

function. When we evaluate using multiple trapdoors, we assume

the attacker knows exactly the number of trapdoors that have been

inserted into the model per label. Note that we generated 5 mod-

els for each trapdoor configuration to eliminate variance in results

due to randomness in trapdoor placement and then performed 10

attacks on each model to generate each single data point.

Oracle Signature Attack. Nicholas’ first attack uses our oracle

adversary assumptions, where the attacker knows the precise val-

ues of the trapdoor. Combined with whitebox access to the model,

the attacker is thus able to generate neuron values matching input

with the trapdoor for any layer in the model. The attacker then

jointly optimizes for maximum cosine distance from the known

trapdoor signature while searching for adversarial examples.

We plot in Figure 5 the results of the oracle signature attack on

MNIST with both neuron randomization and multiple trapdoors

per label for all label defense. The top (black) line shows the at-

tack’s ability to find successful adversarial examples. The red line

marked as 100% sample rate represents the attack success after de-

tection by trapdoor defense without neuron randomization. With-

out randomized neuron sampling, the signature attack succeeds

nearly 90% of the time, effectively breaking the trapdoor defense.

The other two lines show the attack success rate using neuron ran-

domization. We do see that neuron sampling helps to mitigate the

attack, reducing attack success to 40% after detection, by using only

5% of neuron values to build the detection signature. Recall that the

defender can update the random neuron subset in real time with

near zero computational cost. We note that additional trapdoors

have only a slight effect on detection, because the attacker always

knows the number of trapdoors present.

TrapdoorVault Attack. Nicholas’ second attack, which we call

the vault attack, does not require knowledge of the trapdoor signa-

ture. Instead, it estimates the trapdoor signature from the results

of computing adversarial examples on multiple input images. We

extrapolate this further to target multiple trapdoors by using a his-

togram/clustering approach to approximate neuron signatures for

each of the N trapdoors. The attacker then computes joint opti-

mization that maximizes distance to known trapdoor signatures

while searching for adversarial examples. Again we assume attack-

ers know the exact number of trapdoors present in the model.

We plot in Figure 6 the results of the vault attack onMNISTwith

both neuron randomization and multiple trapdoors. Again, we see

only small benefits from having multiple trapdoors in the model.

However, in this setting the trapdoor defense does detect more at-

tacks because of errors in the signature approximation (which can

likely be improved with effort). We do note that when combining

randomized neuron sampling (at 5%) with multiple trapdoors, we

can detect significantly more attacks, dropping attack success to

below 40%.

Discussion and Next Steps. Time constraints greatly limited

the amount of exploration possible in both mitigation mechanisms

and further adaptive attacks. Under base conditions (single trap-

door with 100% neuron signature sampling), both attacks effec-

tively break the trapdoor defense. While our preliminary results

show some promise ofmitigation, clearlymuchmorework is needed

to explore additional defenses (andmore powerful adaptive attacks).

These attacks are dramatically more effective than other coun-

termeasures because theywere custom-tailored to target trapdoors.

We consider their efficacy as validation that defense papers should

work harder to include more rigorous, targeted adaptive attacks.

8 CONCLUSION AND FUTUREWORK

In this paper, we propose using honeypots to defend DNNs against

adversarial examples. Unlike traditional defenses, our proposedmethod

trains trapdoors into normal models to introduce controlled vul-

nerabilities (traps) into the model. Trapdoors can defend all la-

bels or particular labels of interest. Across multiple application

domains, our trapdoor-based defense has high detection success

against adversarial examples generated by a suite of state-of-the-

art adversarial attacks, including CW, ElasticNet, PGD, BPDA, FGSM,

and SPSA, with negligible impact on normal input classification.

In addition to analytical proofs of the impact of trapdoors on ad-

versarial attacks, we evaluate and confirm trapdoors’ robustness

against multiple strong adaptive attacks, including black-box at-

tacks and unlearning attacks. Our results on Carlini’s oracle and

vault attacks show that trapdoors do have significant vulnerabil-

ities. While randomized neuron signatures help mitigation, it is

clear that further effort is necessary to study both stronger attacks

and mitigation strategies on honeypot-based defenses.

ACKNOWLEDGMENTS

Weare thankful for significant time and effort contributed byNicholas

Carlini in helping us develop stronger adaptive attacks on trap-

doors. We have learned much in the process. We also thank our

shepherd TingWang and anonymous reviewers for their construc-

tive feedback. This work is supported in part by NSF grants CNS-

1949650, CNS-1923778, CNS-1705042, and by the DARPA GARD

program. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and do

not necessarily reflect the views of any funding agencies.

REFERENCES
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning your weakness into a strength: Watermarking deep neural net-
works by backdooring. In Proc. of USENIX Security.

[2] Anish Athalye, Nicholas Carlini, and DavidWagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In Proc. of ICML.

[3] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow. 2018. Thermometer encoding:
One hot way to resist adversarial examples. In Proc. of ICLR.

[4] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. 2018.
Vggface2: A dataset for recognising faces across pose and age. In 2018 13th IEEE
International Conference on Automatic Face&Gesture Recognition (FG 2018). IEEE,
67–74.

[5] Yinzhi Cao, Alexander Fangxiao Yu, Andrew Aday, Eric Stahl, Jon Merwine, and
Junfeng Yang. 2018. Efficient Repair of Polluted Machine Learning Systems via
Causal Unlearning. In Proc. of ASIACCS.

[6] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey
Kurakin. 2019. On Evaluating Adversarial Robustness. arXiv preprint
arXiv:1902.06705 (2019).

[7] Nicholas Carlini and David Wagner. 2016. Defensive distillation is not robust to
adversarial examples. arXiv preprint arXiv:1607.04311 (2016).

[8] Nicholas Carlini and David Wagner. 2017. Adversarial examples are not easily
detected: Bypassing ten detection methods. Proc. of AISec (2017).

[9] Nicholas Carlini and DavidWagner. 2017. Magnet and efficient defenses against
adversarial attacks are not robust to adversarial examples. arXiv preprint
arXiv:1711.08478 (2017).

[10] Nicholas Carlini and DavidWagner. 2017. Towards evaluating the robustness of
neural networks. In Proc. of IEEE S&P.

[11] Antonin Chambolle. 2004. An algorithm for total variation minimization and
applications. Journal of Mathematical Imaging and Vision 20, 1 (2004), 89–97.

[12] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. 2018.
EAD: elastic-net attacks to deep neural networks via adversarial examples. In
Proc. of AAAI.

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
preprint arXiv:1712.05526 (2017).

[14] Ambra Demontis, MarcoMelis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In
Proc. of USENIX Security. 321–338.

[15] G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi, A. Khanna, Z. C.
Lipton, and A. Anandkumar. 2018. Stochastic activation pruning for robust ad-
versarial defense. In Proc. of ICLR.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain. In Proc. of
Machine Learning and Computer Security Workshop.

[18] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. 2018. Countering adversarial
images using input transformations. In Proc. of ICLR.

[19] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. 2016. Ms-
celeb-1m: A dataset and benchmark for large-scale face recognition. In European
Conference on Computer Vision. Springer, 87–102.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. of CVPR.

[21] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. 2017.
Adversarial example defenses: Ensembles of weak defenses are not strong. In
Proc. of WOOT.

[22] J. Zico Kolter and Eric Wong. 2017. Provable defenses against adversarial exam-
ples via the convex outer adversarial polytope. In Proc. of NeurIPS.

[23] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Technical Report.

[24] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[25] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial machine
learning at scale. In Proc. of ICLR.

[26] Yann LeCun, LD Jackel, Léon Bottou, Corinna Cortes, John S Denker, Harris
Drucker, Isabelle Guyon, UA Muller, Eduard Sackinger, Patrice Simard, et al.
1995. Learning algorithms for classification: A comparison on handwritten digit
recognition. Neural Networks 261 (1995), 276.

[27] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. In International

Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 273–294.
[28] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xi-

angyu Zhang. 2019. ABS: Scanning neural networks for back-doors by artificial
brain stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 1265–1282.

[29] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In
Proc. of NDSS.

[30] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
2019. NIC: Detecting Adversarial Samples with Neural Network Invariant
Checking. In Proc. of NDSS.

[31] Xingjun Ma, Bo Li, Yisen Wang, SarahM Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. 2018. Character-
izing adversarial subspaces using local intrinsic dimensionality. In Proc. of ICLR.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial at-
tacks. In Proc. of ICLR.

[33] Dongyu Meng and Hao Chen. 2017. Magnet: a two-pronged defense against
adversarial examples. In Proc. of CCS.

[34] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Ce-
lik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proc. of AsiaCCS.

[35] Nicolas Papernot, PatrickMcDaniel, XiWu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In Proc. of IEEE S&P.

[36] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep face
recognition.. In bmvc, Vol. 1. 6.

[37] Ximing Qiao, Yukun Yang, and Hai Li. 2019. Defending Neural Backdoors via
Generative Distribution Modeling. arXiv preprint arXiv:1910.04749 (2019).

[38] P. Samangouei, M. Kabkab, and R. Chellappa. 2018. Defensegan: Protecting clas-
sifiers against adversarial attacks using generative models. In Proc. of ICLR.

[39] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein.
2019. Are adversarial examples inevitable?. In Proc. of ICLR.

[40] Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao Zheng, and Ben Y. Zhao.
2020. Gotta Catch ’Em All: Using Honeypots to Catch Adversarial Attacks on
Neural Networks. arXiv preprint: 1904.08554 (2020).

[41] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recogni-
tion. In Proc. of CCS.

[42] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman. 2018. Pixeldefend:
Leveraging generative models to understand and defend against adversarial ex-
amples. In Proc. of ICLR.

[43] James C Spall et al. 1992. Multivariate stochastic approximation using a simul-
taneous perturbation gradient approximation. IEEE Trans. Automat. Control 37,
3 (1992), 332–341.

[44] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. 2012. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neu-
ral Networks (2012).

[45] Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé III, and Tudor Du-
mitraş. 2018. When Does Machine Learning FAIL? Generalized Transferability
for Evasion and Poisoning Attacks. In Proc. of USENIX Security.

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural net-
works. In Proc. of ICLR.

[47] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet
Kohli. 2018. Adversarial risk and the dangers of evaluating against weak attacks.
arXiv preprint arXiv:1802.05666 (2018).

[48] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. 2019. Neural Cleanse: Identifying and Mitigating Back-
door Attacks in Neural Networks. In Proc. of IEEE S&P.

[49] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille. 2018. Mitigating adversarial
effects through randomization. In Proc. of ICLR.

[50] Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature squeezing: Detecting
adversarial examples in deep neural networks. In Proc. of NDSS.

[51] YouTube [n.d.]. https://www.cs.tau.ac.il/~wolf/ytfaces/. YouTube Faces DB.
[52] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. 2017. Efficient

defenses against adversarial attacks. In Proc. of AISec.
[53] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing

Huang, and Ian Molloy. 2018. Protecting intellectual property of deep neural
networks with watermarking. In Proc. of AsiaCCS.

[54] Stephan Zheng, Yang Song, Thomas Leung, and IanGoodfellow. 2016. Improving
the robustness of deep neural networks via stability training. In Proc. of CVPR.

https://www.cs.tau.ac.il/~wolf/ytfaces/

Table 6: Model Architecture for MNIST. FC stands for fully-

connected layer.

Layer Type # of Channels Filter Size Stride Activation

Conv 16 5×5 1 ReLU

MaxPool 16 2×2 2 -

Conv 32 5×5 1 ReLU

MaxPool 32 2×2 2 -

FC 512 - - ReLU

FC 10 - - Softmax

Table 7: Model Architecture of GTSRB.

Layer Type # of Channels Filter Size Stride Activation

Conv 32 3×3 1 ReLU

Conv 32 3×3 1 ReLU

MaxPool 32 2×2 2 -

Conv 64 3×3 1 ReLU

Conv 64 3×3 1 ReLU

MaxPool 64 2×2 2 -

Conv 128 3×3 1 ReLU

Conv 128 3×3 1 ReLU

MaxPool 128 2×2 2 -

FC 512 - - ReLU

FC 43 - - Softmax

APPENDIX

8.1 Proof of Theorem 1 & 2

Proof of Theorem 1
Proof. This theorem assumes that after injecting the trapdoor

∆ into the model, we have

∀x ∈ X, Pr (Fθ (x + ∆) = yt , Fθ (x)) ≥ 1 − µ. (6)

When an attacker applies gradient-based optimization to find ad-

versarial perturbations for an input x targeting yt , the above equa-

tion (6) implies that the partial gradient from x towards x + ∆ be-

comes the major gradient to achieve the target yt . Note that Fθ (x)

is the composition of non-linear feature representation д(x) and

a linear loss function (e.g. logistic regression): Fθ (x) = д(x) ◦ L

where L represents the linear function. Therefore, the gradient of

Fθ (x) can be calculated via д(x):

∂lnFθ (x)

∂x
=

∂ln[д(x) ◦ L]

∂x
= c
∂lnд(x) ◦ L

∂x
(7)

Here c is the constant within the linear function L. To avoid am-

biguity, we will focus on the derivative on д(x) in the rest of the

proof.

Given (7), we can interpret (6) in terms of the major gradient:

Px ∈X[
∂[lnд(x) − lnд(x + ∆)]

∂x
≥ η] ≥ 1 − µ, (8)

where η represents, for the given x , the gradient value required to

reach yt as the classification result.

Next, since ∀x ∈ X, cos(д(A(x)),д(x + ∆)) ≥ σ , and σ → 1,

without loss of generality we have д(A(x)) = д(x + ∆) + γ where

|γ | << |д(x + ∆)|. Here we rewrite the adversarial input A(x) as

A(x) = x + ϵ . Using this condition, we can prove that the follow-

ing two conditions are true. First, because the value of γ does not

depend on x , we have

∂(д(x + ∆) + γ)

∂x
=

∂д(x + ∆)

∂x
. (9)

Furthermore, because |γ | << |д(x + ∆|), we have

1

д(x + ∆) + γ
≈

1

д(x + ∆)
. (10)

Leveraging eq. (8)-(10), we have

Px ∈X [
∂[lnд(x) − lnд(x + ϵ)]

∂x
≥ η]

=Px ∈X [
1

д(x)

∂д(x)

∂x
−

1

д(x + ϵ)

∂д(x + ϵ)

∂x
≥ η]

=Px ∈X [
1

д(x)

∂д(x)

∂x
−

1

д(x + ∆) + γ

∂(д(x + ∆) + γ)

∂x
≥ η]

≈Px ∈X [
1

д(x)

∂д(x)

∂x
−

1

д(x + ∆)

∂(д(x + ∆))

∂x
≥ η]

=Px ∈X [
∂[lnд(x) − lnд(x + ∆)]

∂x
≥ η]

≥1 − µ.

�

Proof of Theorem 2
Proof. This theorem assumes that, after injecting the trapdoor

∆, we have

Px ∈Xtr ap [
∂[lnд(x) − lnд(x + ∆)]

∂x
≥ η] ≥ 1 − µ (11)

Following the same proof procedure in Theorem 1, we have

Px ∈Xtr ap [
∂[lnд(x) − lnд(x + ϵ)]

∂x
≥ η] ≥ 1 − µ (12)

Since Xtr ap and Xattack are ρ-covert, by definition (see eq. (5))

we have that for any event C ⊂ Ω, the largest possible difference

between the following probabilities Px ∈Xattack [C] and Px ∈Xtr ap [C]

is bounded by ρ.

Next let C represent the event: (
∂[lnд(x)−lnд(x+ϵ)]

∂x
≥ η). We

have, for x ∈ Xattack ,

Px ∈Xattack [
∂[lnд(x) − lnд(x + ϵ)]

∂x
≥ η]

≥Px ∈Xtr ap [
∂[lnд(x) − lnд(x + ϵ)]

∂x
≥ η] − ρ

≥1 − (µ + ρ).

�

8.2 Experiment Configuration

Evaluation Dataset. We discuss in details of training datasets

we used for the evaluation.

• Hand-written Digit Recognition (MNIST) – This task seeks to rec-

ognize 10 handwritten digits (0-9) in black andwhite images [26].

The dataset consists of 60, 000 training images and 10, 000 test

images. The DNNmodel is a standard 4-layer convolutional neu-

ral network (see Table 6).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

CW (AUC 0.99)
ElasticNet (AUC 0.99)

PGD (AUC 1.0)
BPDA (AUC 1.0)
SPSA (AUC 1.0)
FGSM (AUC 1.0)

Figure 7: ROC Curve of detection on

MNIST with single-label defense.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

CW (AUC 0.99)
ElasticNet (AUC 0.99)

PGD (AUC 1.0)
BPDA (AUC 1.0)
SPSA (AUC 1.0)

FGSM (AUC 0.99)

Figure 8: ROC Curve of detection on CI-

FAR10 with single-label defense.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

CW (AUC 1.0)
ElasticNet (AUC 1.0)

PGD (AUC 1.0)
BPDA (AUC 1.0)
SPSA (AUC 1.0)
FGSM (AUC 1.0)

Figure 9: ROC Curve of detection on

YouTube Face with single-label defense.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
et

ec
tio

n
S

uc
ce

ss
 R

at
e

DNN Layer Number

Figure 10: Detection success rate of CW attack at 5% FPR

when using different layers for detection in a GTSRBmodel.

Table 8: ResNet20 Model Architecture for CIFAR10.

Layer Name (type) # of Channels Activation Connected to

conv_1 (Conv) 16 ReLU -

conv_2 (Conv) 16 ReLU conv_1

conv_3 (Conv) 16 ReLU pool_2

conv_4 (Conv) 16 ReLU conv_3

conv_5 (Conv) 16 ReLU conv_4

conv_6 (Conv) 16 ReLU conv_5

conv_7 (Conv) 16 ReLU conv_6

conv_8 (Conv) 32 ReLU conv_7

conv_9 (Conv) 32 ReLU conv_8

conv_10 (Conv) 32 ReLU conv_9

conv_11 (Conv) 32 ReLU conv_10

conv_12 (Conv) 32 ReLU conv_11

conv_13 (Conv) 32 ReLU conv_12

conv_14 (Conv) 32 ReLU conv_13

conv_15 (Conv) 64 ReLU conv_14

conv_16 (Conv) 64 ReLU conv_15

conv_17 (Conv) 64 ReLU conv_16

conv_18 (Conv) 64 ReLU conv_17

conv_19 (Conv) 64 ReLU conv_18

conv_20 (Conv) 64 ReLU conv_19

conv_21 (Conv) 64 ReLU conv_20

pool_1 (AvgPool) - - conv_21

dropout_1 (Dropout) - - pool_1

fc_ (FC) - Softmax dropout_1

• Traffic Sign Recognition (GTSRB) – Here the goal is to recog-

nize 43 different traffic signs, emulating an application for self-

driving cars.We use the German Traffic Sign Benchmark dataset

(GTSRB), which contains 35.3K colored training images and 12.6K
testing images [44]. The model consists of 6 convolution layers

and 2 dense layers (see Table 7). This task is 1) commonly used as

an adversarial defense evaluation benchmark and 2) represents

a real-world setting relevant to our defense.

• Image Recognition (CIFAR10) – The task is to recognize 10 differ-

ent objects. The dataset contains 50K colored training images

and 10K testing images [23]. The model is an Residual Neural

Network (RNN)with 20 residual blocks and 1 dense layer [20] (Ta-

ble 8). We include this task because of its prevalence in general

image classification and adversarial defense literature.

• Face Recognition (YouTube Face) – This task is to recognize faces

of 1, 283 different people drawn from the YouTube videos [51].

We build the dataset from [51] to include 1, 283 labels, 375.6K

training images, and 64.2K testing images [13]. We use a large

ResNet-50 architecture architecture [20] with over 25 million pa-

rameters. We include this task because it simulates a more com-

plex facial recognition-based security screening scenario. De-

fending against adversarial attack in this setting is important.

Furthermore, the large set of labels in this task allows us to ex-

plore the scalability of our trapdoor-enabled detection.

Model Architecture. We now present the architecture of DNN

models used in our work.

• MNIST (Table 6) is a convolutional neural network (CNN) con-

sisting of two pairs of convolutional layers connected by max

pooling layers, followed by two fully connected layers.

• GTSRB (Table 7) is a CNN consisting of three pairs of convolu-

tional layers connected by max pooling layers, followed by two

fully connected layers.

• CIFAR10 (Table 8) is also a CNN but includes 21 sequential con-

volutional layers, followed by pooling, dropout, and fully con-

nected layers.

• YouTube Face is the ResNet-50 model trained on the YouTube

Face dataset. It has 50 residual blocks with over 25 millions pa-

rameters.

Detailed information on attack configuration. We evalu-

ate the trapdoor-enabled detection using six adversarial attacks:

CW, ElasticNet, PGD, BPDA, SPSA, and FGSM (which we have de-

scribed in Section 2.1). Details about the attack configuration are

listed in Table 10.

Sample Trapdoor Patterns. Figure 11 shows sample images

that contain a single-label defense trapdoor (a single 6 × 6 square)

and that contain an all-label defense trapdoor (five 3 × 3 squares).

The mask ratio of the trapdoors used in our experiments is fixed

to κ = 0.1.

Table 9: Detailed information on datasets and defense configurations for each trapdoored model when protecting all labels.

Model
#

of Labels

Training

Set Size

Testing

Set Size
Injection Ratio Mask Ratio Training Configuration

MNIST 10 50,000 10,000 0.5 0.1 epochs=5, batch=32, optimizer=Adam, lr=0.001

GTSRB 43 35,288 12,630 0.5 0.1 epochs=30, batch=32, optimizer=Adam, lr=0.001

CIFAR10 10 50,000 10,000 0.5 0.1 epochs=60, batch=32, optimizer=Adam, lr=0.001

YouTube Face 1,283 375,645 64,150 0.5 0.2 epochs=30, batch=32, optimizer=Adam, lr=0.001

Table 10: Detailed information on attack configurations. For MNIST experiments, we divid the eps value by 255.

Attack Method Attack Configuration

CW binary step size = 9, max iterations = 1000, learning rate = 0.05, abort early = True

PGD max eps = 8, # of iteration = 100, eps of each iteration = 0.1

ElasticNet binary step size = 20, max iterations = 1000, learning rate = 0.5, abort early = True

BPDA max eps = 8, # of iteration = 100, eps of each iteration = 0.1

SPSA eps = 8, # of iteration = 500, learning rate = 0.1

FGSM eps = 8

(a) Single Label Defense Trapdoor (b) All Label Defense Trapdoor

Figure 11: Sample trapdoor examples used in our defense.

While the actual trapdoors we used all have a mask ratio of

κ = 0.1, here we artifically increase κ from 0.1 to 1.0 in order to

highlight the trapdoors from the rest of the image content.

Table 11: Dataset, complexity, model architecture for each

task.

Task Dataset
of

Labels

Input

Size

Training

Images

Model

Architecture

Digit

Recognition
MNIST 10 28 × 28 × 1 60,000 2 Conv, 2 Dense [6]

Traffic Sign

Recognition
GTSRB 43 32 × 32 × 3 35,288 6 Conv, 2 Dense [7]

Image

Recognition
CIFAR10 10 32 × 32 × 3 50,000 20 Resid, 1 Dense [8]

Facial

Recognition

YouTube

Face
1,283 224 × 224 × 3 375,645 ResNet-50 [20]

Table 12: Trapdoored model and original model classifica-

tion accuracy when injecting trapdoors for all labels.

Model
Original Model

Classification Accuracy

Trapdoored Model (All Labels)

Classification Accuracy

MNIST 99.2% 98.6%

GTSRB 97.3% 96.3%

CIFAR10 87.3% 86.9%

YouTube Face 99.4% 98.8%

Datasets and Defense Configuration. Tablel 9 lists the spe-

cific datasets and training process used to inject trapdoors into the

four DNN models.

SelectingTrapdoor InjectionRatio. Asmentioned earlier, our

analysis shows that the size and diversity of the training data used

to inject a trapdoor could affect its effectivess of trapping attackers.

To explore this factor, we define trapdoor injection ratio as the ratio

between the trapdoored images and the clean images in the train-

ing dataset. Intuitively, a higher injection ratio should allow the

model to learn the trapdoor better but could potentially degrade

normal classification accuracy.

We defend the model with different trapdoor injection ratios

and examine the detection success rate. We see that only when

the injection ratio is very small (e.g. < 0.03 for GTSRB), the model

fails to learn the trapdoor and therefore detection fails. Otherwise

the trapdoor is highly effective in terms of detecting adversarial

examples. Thus when building the trapdoored models, we use an
injection ratio of 0.1 for MNIST, GTSRB, CIFAR1010, and 0.01 for

YouTube Face (see Table 10).

8.3 Additional Results on Comparing Trapdoor
and Adversarial Perturbation

Figure 12 and Figure 13 show that the neuron signatures of adver-

sarial inputs have high cosine similarity to the neuron signatures

of trapdoors in a trapdoored CIFAR10 and YouTube Face models

(left figures), and the trapdoor-free models (right figures).

 0

 0.2

 0.4

 0.6

 0.8

 1

Benign CW PGD Elastic
Net

BPDA SPSA FGSM

C
os

in
e

S
im

ila
rit

y

(a) Trapdoored Model

 0

 0.2

 0.4

 0.6

 0.8

 1

Benign CW PGD Elastic
Net

BPDA SPSA FGSM

C
os

in
e

S
im

ila
rit

y

(b) Original Model

Figure 12: Comparison of cosine similarity of normal images and adversarial images to trapdoored inputs in a trapdoored

CIFAR10 model and in an original (trapdoor-free) CIFAR10 model. The boxes show the inter-quartile range, and the whiskers

denote the 5th and 95th percentiles.

 0

 0.2

 0.4

 0.6

 0.8

 1

Benign CW PGD Elastic
Net

BPDA SPSA FGSM

C
os

in
e

S
im

ila
rit

y

(a) Trapdoored Model

 0

 0.2

 0.4

 0.6

 0.8

 1

Benign CW PGD Elastic
Net

BPDA SPSA FGSM

C
os

in
e

S
im

ila
rit

y

(b) Original Model

Figure 13: Comparison of cosine similarity of normal images and adversarial images to trapdoored inputs in a trapdoored

YouTube Face model and in an original (trapdoor-free) YouTube Face model. The boxes show the inter-quartile range, and the

whiskers denote the 5th and 95th percentiles.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Adversarial Attacks Against DNNs
	2.2 Defenses Against Adversarial Attacks
	2.3 Backdoor Attacks on DNNs

	3 Trapdoor Enabled Detection
	3.1 Threat Model and Design Goals
	3.2 Design Intuition

	4 Detecting Adversarial Examples Using a Trapdoored Model
	4.1 Defending a Single Label
	4.2 Defending Multiple Labels

	5 Formal Analysis of Trapdoor
	5.1 Overview
	5.2 Detailed Analysis

	6 Evaluation
	6.1 Experimental Setup
	6.2 Defending a Single Label
	6.3 Defending All Labels
	6.4 Comparison to Other Detection Methods
	6.5 Methods for Computing Neuron Signatures

	7 Adaptive Attacks
	7.1 Trapdoor Detection and Removal
	7.2 Advanced Adaptive Attacks (Carlini)

	8 Conclusion and Future Work
	References
	8.1 Proof of Theorem 1 & 2
	8.2 Experiment Configuration
	8.3 Additional Results on Comparing Trapdoor and Adversarial Perturbation

