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1 INTRODUCTION

The Internet of Things(IoT) is an extension of the Internet. It can connect things to the network
for communication by using sensors to realize intelligent management, positioning, identification,
monitoring, and other functions. At present, IoT is rapidly emerging and has driven the vigor-
ous development of various related application services. It has been applied in many fields such
as smart home [19], human health detection [16], disaster management [21], building structure
safety [15], person identificationand [22] and so on.

As shown in Fig. 1, IoT has been closely integrated with various fields. However, various appli-
cation services need to deploy a large number of IoT devices while providing rich functions, which
puts heavy pressure on communication. Besides, various new IoT devices such as smart home de-
vices and wearable devices are also emerging and they have extremely stringent requirements on

the bandwidth, delay, and privacy of the network [29, 31], which pose challenges to the quality of
the communication.

BunONION
fayend N

Fig. 1. The applications of loT.

Catering for the increasing service requirement, massive IoT devices will be deployed in a per-
vasive fashion to carry out tasks like monitoring, sensing data collection and preprocessing and
immediate decision-making. The above tasks usually require a large number of computing re-
sources, while the ability of IoT devices is relatively weak to support. However, edge computing
can offload tasks and is expected to solve this problem [25, 33]. In detail, edge computing can of-
fload computing tasks submitted by IoT devices to similar edge nodes to provide rich computing
resources. Besides, the edge node in edge computing systems is adopted as a coordinator among
them and responsible for their communications and even load-balance [37].

ACM Trans. Sensor Netw., Vol. X, No. XXX, Article 1. Publication date: September 2019.



Computation Offloading with Multiple Agents in Edge Computing-supported loT 1:3

In solving the resource allocation problem in task offloading, in addition to using convex op-
timization [6] and game theory [7], Deep Reinforcement Learning (DRL) is used in [8] to handle
the comprehensive resource allocation in computation offloading. This approach can maximize the
long-term benefits of energy consumption and execution latency and requires no prior knowledge
of network statics and partial information. In detail, this kind of optimization has many advantages.
First, the IoT device does not need to obtain global information, which is conducive to communi-
cation transmission and privacy protection. Secondly, it has the adaptability to the dynamic envi-
ronment. Finally, this kind of optimization not only optimizes the system within a time segment
but will consider long-term benefits. However, an assumption was made in [8]. They assume that
IoT devices are computationally powerful enough to train their own DRL agents independently.
However, 10T devices will not grow so powerful in the near future, and their computing resources
can support lightweight neural networks at most.

At present, due to people pay more attention to data security and privacy, the protection of data
and privacy has become an important issue that must be considered [38]. For example, the General
Data Protection Regulation [28] implemented in the European Union is aimed at data security and
privacy, and it gives users the right to delete or withdraw personal data. Therefore, the traditional
way of transferring data to a data center for centralized analysis will face a privacy barrier in the
future. In summary, how to protect data security and privacy while using large amounts of data
will become an important challenge in the future.

Thus, we propose a distributed training scheme based on Federated Learning (FL) [5, 26] to al-
leviate the training burden on each device. Unlike the traditional distributed training in the data
center with an excellent networking environment, this training is restrained by wireless commu-
nication and networking and shall be performed in an efficient manner of communication. In this
vein, observation data sensed by each IoT device are not required to be transmitted frequently
between it and the edge node. Observation data on a specific IoT device are used for local training,
and only updated parameters of the DRL agent are uploaded to the edge node for further model
aggregation.

Therefore, in this work, we use FL to conduct the training process of DRL agents for jointly
allocating communication and computation resources. Specifically, our main contributions lie in
three aspects.

e First, we studied a problem of computation offloading optimization in edge computing-supported
IoT. On one hand, the computational tasks can be performed locally, while some energy
needs to be allocated to the task processing components in the IoT device. On the other
hand, it can also be performed by transmitting tasks to the edge nodes, while requiring
some energy to be allocated to the data transmission components in the IoT device. Com-
pared to local execution, this can be done with the richer computing resources of the edge
nodes, but it also causes additional transmission delays due to data transmission. Moreover,
we further analyzed the complexity of the problem and proved that the problem is NP-hard.

e Second, we designed an algorithm to make decisions about computation offloading and en-
ergy allocation, seeking to maximize the expected long-term utility. This algorithm can be
trained based on federated learning, so data collected by each IoT device only needs to be
stored locally for analysis. This approach avoids a lot of data transmission and achieves good
data privacy protection.

e Finally, we simulate to evaluate the proposed algorithm and study the influence of various
system parameters. Experimental results corroborate its effectiveness comparing to the cen-
tralized training method.
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2 BACKGROUND

In this section, we introduce the background of this study. Since the technology that this research
relies on mainly involves deep reinforcement learning, federated learning and edge computing,
the principles and related research of these technologies are briefly introduced.

2.1 Deep Reinforcement Learning

Since reinforcement learning (RL) techniques are usually applied to small data spaces, it is difficult
to perform data processing through RL when data with high dimensions. However, Deep rein-
forcement learning (DRL) solves this problem by combining the high-dimensional input of deep
learning with RL.

RL usually attempts to make action decisions a according to the environment state s, and the
action proceeds to the environment to obtain the action reward r, and continuously adjusts and
improves according to r [35]. While deep learning is a method of characterizing and learning
data through a multi-layer neural network and learning the characteristic information of the data
through the neural network. DRL combines deep learning and RL which not only retains the per-
ception of deep learning but also can make decisions for RL, so it has better performance.

DRL has been well applied in many fields such as natural language processing [32], image recog-
nition [30], and so on. Among them, AlphaGo [34], which defeated the human professional chess
player in go and showed excellent decision-making ability. Besides, some researchers use DRL to
play Atari. They train the model by using the joystick moving direction as the action space of DRL
and using the score in the game as a reward. In the game, DRL surpassed the traditional method
in six of the games, even in the performance of three games beyond the human level. Besides,
various DRL libraries such as TensorFlow [12], Caffe [18] and Keras [4] are also emerging, which
facilitates the application of DRL.

N
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weights U argmaxQ current (s', @) Q target (s',a)
W

O Update weights O
CurrentNet TargetNet

Environment ﬁ TT
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Fig. 2. Diagram of DDQN.

7

As shown in Fig. 2, Double Deep Q-Learning (DDQN) [36] is an excellent DRL algorithm. To
solve the problem of the curse of dimensionality in reinforcement learning, DDQN uses a neural
network to approximate some states that have not appeared before:

Q(s,a) = f(s,a,w). (1)
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The training process of the neural network is an optimization problem, so the loss function is
defined as:

L=(r+yQ target (3/, arg max Q current (s",a) | = Q current (s, a))z . (2)

In addition, since the training of the neural network is supervised, the training data must satisfy
the independent and identical distribution, otherwise, the network will be trapped in the local
minimum. Therefore, a replay buffer 8 is constructed to store the data sample D; = (s, az, I, St+1)
at each time step t, and randomly extract a mini-batch of samples during training.

2.2 Federated Learning

The traditional large-scale neural network training needs to concentrate data in one device, which
puts great challenges on traffic load and data privacy. In this regard, Google has proposed Federated
learning [13]. It allows multiple end devices to train on local data, and then only needs to upload
updates to the cloud.

Server Edge Node 'i

W] w2

Local

10T Devices 1 IOT Devices 2 10T Devices n

Fig. 3. The training process of federated learning.

The way of federated learning works is shown in Fig. 3. First, the end devices download the
sharing model from the cloud, and then train the model according to the local data and transfer the
update to the cloud with encrypted transmissions. Finally, the cloud integrates the sharing model
according to the update from multiple end devices. Since user data is always stored locally on the
end device throughout the process, large amounts of data can be avoided from being transmitted
to the cloud, thereby reducing the pressure on data transmission and protecting data privacy.

In the practical application of federated learning, there are still some problems. On the one
hand, sample data will be distributed in a large number of end devices in an extremely uneven
manner. On the other hand, the transmission speed of end devices is slow, especially data uploading
speed can limit overall performance. To solve these problems, Google developed an algorithm
federated averaging to reduce the network requirements when training deep neural networks [26],
and also compress updates by using random rotation and quantization to reduce the amount of
data transferred [24]. In addition, a federate optimization algorithm was designed to optimize the
high-dimensional sparse convex model [23].
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2.3 Edge Computing

Edge computing provides network, computing, application, and storage services to close users
through distributed edge nodes. Therefore, tasks can be performed on EN to avoid sending data to
the cloud. In 2014, the European Telecommunications Standards Institute standardized the concept
of edge computing [9], which also marked the standardization of edge computing technology.

The end devices in edge computing are diverse, such as connected vehicle [14], smart cam-
eras [3], etc. and they are producers of data and tasks with data pre-processing and data trans-
mission functions [1]. However, when an end device needs to handle a task with a very large
computational resource, it is often difficult to rely on the computing capability of the device itself
to meet the demand. Therefore, it can be solved by edge computing using the computing resources
of the edge node. The edge node is geographically close to the end device and can provide high-
quality network connection and computing services. Compared with the end device, the edge node
has a more powerful computing capacity to process the task, and the edge node responds faster
to the end device than the cloud. Therefore, by using edge nodes to perform some computational
tasks, the response speed of the task can be improved while ensuring accuracy. In addition, the
edge node also has a caching function [39], which can shorten the response time of re-access by
caching objects with high access heat.

3 SYSTEM MODEL

Next, we will introduce the system model used in this study. First, the overall architecture of the
edge computing-supported [oT system is presented and the relevant parameters involved in the
system are introduced. After that, we introduce the changing ways of the related parameters and
show the derivation process of the parameters.

3.1 Overview
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Fig. 4. Edge computing-supported loT system.
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As shown in Fig. 4, IoT devices, denoted as D = {1,---, D}, are located in the service area of a
set N = {1,---, N} of Edge Nodes (ENSs). It is worth noting that the concept of time slices is used
to divide the time into several epochs of § (in seconds) indexed by i. The functions of transmission
and calculation are supported by EN and the geographical location, task processing capability and
data transmission capability of each EN are different. For IoT devices, there will be a task queue
with a maximum length of ¢!, to temporarily store tasks and these tasks will be executed in
the order of first-in-first-out (FIFO). The IoT device will generate tasks according to the Bernoulli
distribution and define a! as the task arrival indicator. a! = 1 indicates that the epoch i has a task
generation, otherwise it indicates that no task is generated. When the task queue has reached the
upper limit, the task queue will not store the newly generated task, which will cause the task to
directly fail. In addition, the collection method of energy units is similar to that discussed in [2]
and the 10T devices can collect energy units from the outside. In modeling, the IoT device has an
energy queue with a maximum length of g, to store energy units, which will acquire the energy
unit according to the Poisson distribution.

The calculation task generated by IoT devices is modeled as (y, v), where p(in bits) and v respec-
tively represent the transmission data size required for offloading a task and the needed number of
CPU cycles for processing the task. Moreover, there are two ways to accomplish these calculation
tasks, one is performed locally on the IoT device, and the other is offloading to an EN with channel
bandwidth W Hz to perform. However, as shown in Fig. 5, the delay caused by data transmission
can be avoided if the task is executed locally. For another, if the task is executed at EN, the task
can be performed with the richer computing resources of EN. Both methods have their advantages
and disadvantages and they need to be weighed according to the specific state.

Richer computing
resources

Q=% Q-

Task IoT Device Task IoT Device

No transmission
delay

Fig. 5. Task execution method

3.2 Description of System Model

3.2.1 System model architecture. Since the execution mode of the task in the system model in-
cludes local execution and offloading to EN, the dynamic running process of the system is as
shown in Fig. 6 .

The IoT device needs to make a joint action (c;, ¢;) during the epoch i, where ¢; represents the
task offloading decision, and its specific definition is

0, if local execution,
ci = (3)
n e N, if offload to EN n.

Besides, e; represents the number of energy units allocated and affects the CPU frequency and
data transmission rate of IoT devices. Moreover, e; cannot exceed the number of energy units in
the energy queue, and if e; = 0, the task will not be executed and will still be saved in the task
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Fig. 6. Schematic diagram of the dynamic system model.

queue, and only e; > 0, the task will be executed. In addition, IoT devices also have a task queue
that will not be able to save newly created tasks when the task queue is full.

3.22 Local execution. When the task is executed locally, the time consumption satisfies the fol-
lowing constraints

di" = ei/pi*c, (4)
where p7*¢ is the power of the IoT device to perform a task. Meanwhile, as in [11], p{*¢ can be
written as

pre=c g )

where 7 is a constant that depends on the average switched capacitance and { is the average
activity factor which usually close to 3. Besides, the time consumption also satisfies the following
constraints
" =v/f;. (6)
From the above, we can get the time consumption d;* for local execution by solving equation
(4), (5) and (6), which can be written as

=y )

3.2.3 Executed at EN. If the IoT device decides to offload the task to EN, then the relevant data of
the task needs to be transferred to EN. Therefore, an association between the IoT device and the
EN is required. If the required association is different from the previous, a handover will occur and
cause additional delays. Let s; denote the association between IoT device and EN at the beginning
of epoch i, which can be written as

si—1, if executed locally in the previous epoch (ci—1 = 0),

si= ®)
ci—1, if offload to EN in the previous epoch (c;—; #0).
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Moreover, the handover delay resulting from altering EN association should be considered. We
assume that there will be o seconds delay when handoff occurs, so the handover delay h; can be
represented as

L 0, if no altering EN association (c; = s;), ©)
i =
o, if altering EN association (¢; # s;).

In addition, it is necessary to model the rate of transfer between the IoT device and EN when
data transfer occurs. We denote g as the channel gain of the IoT device u between the IoT device
and an EN n € N, which is assumed static and independently taken from a finite state space Gn.
Let L. denote all sets of IoT devices that use the same channel as the target IoT device u;. When a
radio link is established for them, the achievable data rate can be calculated as

n tr
9u, " Pu,

ri=W-log,(1+
’ P\ Suer gt bl - b, Pl

, (10)

where p! represent the transmit power of the IoT device u and p!’ satisfies
pu = ei/di’ < Phray (11)
Thus, the time consumption on data transmission can be expressed as
d=ulr;. (12)

According to the proof in [8], given the association s; € N and the allocated energy units
e; > 0 at a epoch i, the transmitting rate should remain a constant for achieving the minimum
transmission time, which is preferred in practical. Therefore, the minimum transmission time can
be solved by equations of (10), (11) and (12) as

Ci

9 "€ ) = H
A Yyer gh P —gh, - WedE

After the task is offloaded to an EN, the task will be completed by this edge node. While the
execution delay d° of a task in EN is much less than the transmission delay d}", so d° is set to a
small constant. In addition, the payment ¢; of occupying the EN is set to avoid excessive use of
EN resources in actual operation. With defining 7 € R, as the price per unit of time, the payment
expression can be written as

log, (1 + (13)

¢ = 7 - (min {h; +d" +d, 6} — hy) . (14)

3.24 Update system model parameters. Through the above modeling of different treatments of
tasks, the task execution delay can be summarized as follows:

am, if local execution (e; > 0 and ¢; = 0),
di=9y h+ d/* +d*®, if offload to EN to execute (¢; > 0 and ¢; € N), (15)
0, if not executed (e; = 0).

In addition, it is also considered that not all tasks can be executed immediately after they are
generated, so let p; denote the queuing delay in the task queue at epoch i, which can be described
as

pi =q; — 1yg>oy - (16)
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In each epoch, we need to pay attention to the dynamic changes of the task queue and energy
queue of the IoT device. In the details, the change in the length g7 of the energy queue can be
described as

Gy = min {qf = ei +af, Gy} (17)
where af € N, is the number of energy units acquired by the IoT device in epoch i. For task
queues, we need to consider the generation and completion of tasks for each epoch. Similarly, let

a} denote the number of tasks generated in epoch i. Then dynamics of the task queue length can
be calculated as

q5+1 = min {qE - 1{0<di55} + ag > qinax} . (18)
However, newly generated tasks cannot be stored and fail directly when the task queue is full.
So let 1; denote the number of computation task drop in an epoch i, which can be described as

ni = max {qt - 1{0<dis5} + at’ - qinaxi 0} . (19)

In order to express this model more clearly, the values and definitions of the parameters are
shown in table 1.

4 POLICY TRAINING COORDINATED BY FEDERATED LEARNING

In this section, we first explain the optimization problem to be solved and formulate the problem.
In addition, we further analyze the complexity of the problem and prove that the optimization
problem is NP-hard. After that, we analyze the merits of federated learning in edge computing and
propose an algorithm of federated learning-based policy training. Finally, we carry out a theoretical
analysis of the proposed algorithm.

4.1 Problem Formulation

Based on the system model described in Sec. 3.1 and Sec. 3.2, we will discuss the optimization
problem next. First we define X; to represent the network environment of the IoT device during
the epoch i.

Xi = (g5 4i>51.9:) € X

def t e (20)
= {01, G} X {0, 1+, G} XN X {XneNGn} >

where g; = (g7 : n € N). The IoT device will make the offloading decision and determine the

number of energy units allocated during the initial period of epoch i, i.e.,

(coe) € T EHOPUNI X {01+, qo) - (21)

The policy for making the above actions is defined as ® and the expected long-term utility is

defined as
I

U(X,®) = Eg | lim = Zu (X;, @ (X)) |X: = X]| | (22)
oo I

where X represents the initial network environment and u(-) represents the short-term utility in
the epoch i, which is determined by the task execution delay d; , the number of task drop 7;, the
task queuing delay p; and the payment ¢;. Besides, it is worth mentioning that this optimization
policy can be personalized according to the target. For instance, if low delay is the most important
indicator in a system, the weighting of the task execution delay d; and task queuing delay p; can
be adjusted to change the proportion of delay in the whole utility.
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Table 1. The values and definitions of main parameters

Parameters Definitions Values
D The set of IoT devices. /
N The set of Edge Nodes. /
w Channel bandwidth. 6.0 X 10°Hz
S Duration of each epoch. 5.0 x 1073
al Task arrival indicator. /
i The transmission data size required for offloading a task. 3.0 X 10*bit
v The needed number of CPU cycles for processing a task. 8.375 x 10°cycle
ci Task offload decision. /
e; The number of energy units allocated. /
T A constant about the average switched capacitance. 1.0 X 1072
fi Allocated CPU frequency of the IoT device. /
Jax The maximum CPU frequency of the IoT device. 2.0 X 10°Hz
dr Time consumption for the local task execution. /
ri The achievable data rate of IoT device. /
P The maximum transmit power. 2W
Y The maximum transmit power at epoch i. /
dy The time for transmitting task data. /
5 The energy queue length insider the IoT device at epoch i. /
d° The delay of server-side execution. 1.0 x 10™%s
Qax The maximum length of the local task queue. 4
Gorax The maximum length of the local energy queue. 4
dy The time for transmitting task data. /
o Delay of one handover. 2.0 X 1073
h; The handover delay resulting from altering EN association. /
qt Task queue length at epoch i. /
ni The number of computation task drop at epoch i. /
Pi Queuing delay during the epoch i. /
@i The penalty of a computation task fails. /
i The payment of occupying the EN. /

4.2 Complexity Analysis

Here, we can first consider a special case of this problem. Suppose that at epoch t, there are
N’ (¢! = N’ > 0) tasks in the task queue and M'(¢S,, = M’ > 0) energy units in the en-
ergy queue. Besides, no energy unit and task are generated after epoch t. In addition, each task
is executed on the local device and executed at the maximum CPU frequency fy,,. Therefore, the
energy unit e; required to perform task k and the utility u; obtained by completing task k will
be two certain values. Furthermore, d]’c € {0, 1} is defined as the task execution indicator, that is,
d]’C = 0 means that the task k is not executed, and d]’c = 1 means that the task k is executed. In this
case, the problem is changed to:

max Z dy - uy , (23)

ke N’
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subject to
Z d,’c'e,;SM'. (24)
ke N
For this situation, we can regard the energy units M’ as the capacity of a knapsack, N’ tasks as
the items, and the energy unit e; required for each task and the utility u; obtained by completing
a task are regarded as the weight and value of items respectively. Then the special case can be
regarded as 0/1 knapsack problem. Since [20] has proven that the 0/1 knapsack problem is NP-hard.
Therefore, the special case is also NP-hard. According to [10], since the problem in the special case
is NP-hard, the problem is also NP-hard in non-special case.

4.3 Reasons for Using Federated Learning in Edge Computing

In the above, we have introduced the computation offloading problem. Fortunately, DRL can deal
with this kind of problem well, thus we use Double Deep Q Learning (DDQN) [27, 36] to maximize
the long-term utility. In addition, we also use the FL in our policy, and then we will explain why
FL is used.

Although DRL can make decisions efficiently, it consumes a lot of computing resources. There-
fore, how to provide the computing resources needs to be considered. On one hand, if the DRL
agent is trained on the EN, it will bring about three disadvantages: 1) it will cause a large amount
of data to be transmitted between the IoT device and EN, thereby increasing the transmission pres-
sure of the wireless channel; 2) the transmitted data may contain private information, which is not
conducive to the privacy protection of the data; 3) although the privacy information in the data
can be removed in some ways, this will destroy the integrity of the data and affect the training
effect.

On the other hand, if the DRL agent is trained on the IoT device individually, two deficiencies
remain: 1) this will take too long to train each DRL agent from the beginning; 2) if each DRL agent
will be trained independently, it will cause more energy consumption.

Therefore, the DRL will be trained in a distributed manner as shown in Fig. 7. However, due to
network limitations and the challenge of protecting data privacy, most distributed deep learning
technologies [26] are not feasible. For the above reasons, FL is introduced into the proposed policy
for distributed training DRL agents.

4.4 Federated Learning-based DRL Training about Computation Offloading

Because each IoT device needs to make decisions based on its own network environment in com-
putation offloading and it will also have an impact on the network environment. Therefore, we
need EN to coordinate various IoT devices to optimize the overall network environment.

As shown in Algorithm 1, some IoT devices will be randomly selected during each iteration to
perform the following operations: 1) download DRL agent parameters from EN and load them; 2)
training DRL agent with the data obtained by itself; 3) upload update parameters to EN for model
aggregation. In the envisioned IoT system, the IoT device needs to train the DRL agent based on the
local data acquired by itself, including the number of unfinished tasks, the remaining energy units,
and their own network connection status, etc. Therefore, the IoT device does not need to upload
these local data, just upload the update parameters to the EN for aggregation, and then download
the aggregated model parameters from EN. In addition, some IoT devices with insufficient training
data can share the training of the DRL agent.

4.5 Theoretical Analysis of Federated Learning-based Policy

Recalling the federal learning-based policy training above, for each agent running on the IoT de-
vice, the network state X; = (qf q5, sis g,-) € X will be obtained first, then the action pair (c;, e;)will
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Fig. 7. Federated Learning-based DRL Training.

Algorithm 1: Federated Learning-based Policy Training

=Y

Initialization:

2 Init the set of ENs N, the set of IoT devics D;
3 Init {0,, 04, Cqln € N, d € D}
4 Iteration:

fort=1,2,...T do

10

11

12

13 €

5

6 Randomly select m IoT devices D! € D;
7 for eachd € D' do
8

9

Gets weights 9,2_1 of the associated EN;

Update local weights 67" < 6;7';

Get local data Z)(;;

Get weights and training times (6%, C',) < Train(0,™", D);
Upload 92 and ij to EN;

nd

14 for eache € N do

15

Receive updates from D C D;

16 0y, = Yaept (Ch/Zacpr C) - 04
17 end
18 end
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be selected according to the policy ®, after that, a new network state X;,; and a reward r; will be
generated. The process can be described as a Markov decision process.

The more important it is to be closer to the current reward when calculating reward feedback.
Therefore, the method of discounted future reward is adopted

Ri=ri+yre +Vroa+. .. +y" 'ry=ri+yRi , (25)
where y = 0.9 is the discount factor. After that, the basic form of the bellman equation can be
obtained by combining equation(25)

0(Xp) =E[re +yo (Xpn) |Xi = Xi] (26)

Similar, Q-function is introduced to describe the value of different actions in a certain state.
Therefore, Q(X”, (¢/,e’)) defined to represent the value of the action pair (c/, e/) when it is in
state X7.

Q(X7* (71 &) = E [r + 10 (Xj, (c/, ej))] (27)

However, because the greedy method is used to calculate the Q-function, the calculation of the
Q-function may be too close to an earlier calculated local optimal Q-function, resulting in a large
deviation, also called the overestimation. To solve overestimation, DDQN decouples the selection
of actions and calculates the Q-function [36]. First, it will find the action pair (c¢™**, e™*) corre-
sponding to the maximum Q-function through Current Network, and then calculate Q-function
through Target Network. In addition, for the theoretical proof, the deviation caused by the use of
neural network approximation is neglected here, namely

QX' (€)= Q(X7, (¢, )+ (u (X}, @ (X)) +y - Q (X, (€™, ™)) = Q(X, (], e)))
(28)
where o = 0.005 is the learning rate and X’, ¢’ and e’ represent X/, ¢/ and e/ of the next cycle,
respectively. Based on the above reasoning, the convergence of the algorithm can be further ana-
lyzed, namely:

THEOREM 4.1. If the following conditions are met, each agent running on the IoT device in the Al-
gorithm 1 will converge to the optimal Q (X*, (¢, e*)) with probability one (w.p.1) when it is updated
according to equation (28).

1) The state and action spaces are finite;
2) T a = 00, 115 (@)* < oo;
3) Var{u (X;,® (X;))} is bounded.

Proor. In the proof, a result of stochastic approximation given in [17] is first used.
LEMMA 4.2. A random iterative process AT+ (x), which is defined as
N (x) = (1= o (x)) 27 (x) + f/ () ¥ (%) , (29)

converges to zero with probability one (w.p.1) if and only if the following conditions are satisfied.
1) The state space is finite;
2) ;i}’) o) = oo, Z;:é (azj)2 < oo, Z;:é Bl = o, Z;:a (ﬁf')2 < o0, and

E {ﬁj(x)|Aj} <E {aj (x)|Aj} uniformly w.p. 1;
3) ||E {‘I’j(x)|Aj}HW <p ‘|Aj||w, where o € (0,1)
4) Var {‘Pj(x)|Aj} <C (l + ||Aj||w)2, where C > 0 is a constant.
Note that AV = {Aj, AL il g ,ﬁj‘l}denotes the past at time slot j. || - || + W

denotes some weighted maximum norm.
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Subsequent proofs can be made around lemma 4.2, including the transformation of the form
into the equation (29) and the four conditions in the lemma 4.2.
a. Transformation equation form. First of all, we can rewrite equation (28) to the following

QX' (c,e)=(1—a) - Q(X/, (), e!)) +a - (u (Xj,CD (Xj)) +y- O (X, (™, emax))) . (30)

By subtracting the optimal Q (X*, (c*, e*)) from both sides of equation (30), it can rewrited to
the following form

N (X, (c,e)) = (1 - aj) N (X, (c,e)) + oyl (X, (c,e)) , (31)

where
A (X, (c,e)) = Q(X', (¢, €')) = Q (X7, (c*,€)) , (32)
¥ (X, (ce)) =u (Xj, @ (X)) +y - Q (X', (™, ™) = Q (X*,(c",€%))) . (33)

Therefore, equation (31) can be seen as equation (29) in lemma 4.2 with o/ (x) = 8/ (x) and then
the theorem 4.1 will be proved by proving that all four conditions of lemma 4.2 have been met.

b. Condition 1) in lemma 4.2. For condition 1) in lemma 4.2, it can be proved by condition 1)
in theorem 4.1.

c. Condition 2) in lemma 4.2. The condition 2) in lemma 4.2 also can be easily proved. Since
a and f in the equation (29) correspond to the learning rate @ € (0, 1) in the equation (31), the
condition is satisfied.

d. Condition 3) in lemma 4.2. To prove condition 3) in lemma 4.2, the concept of contraction
mapping is introduced and then prove that ¥/ (X, (c, e)) is a contraction mapping.

Definition 4.3. For amap H : y — y and any x1,x; € y, if there exists a constant § € (0,1)
satisfies the following equation, then the map H is a contraction mapping.

[[Hx; — Haxz|| < 6 [lx1 — xz] (34)

Combined with equation (27), the optimal Q (X*, (c*, e*)) can be expressed as

Q (X7, (c%,€")) = E [u (X., @ (X)) + AQ (X', (™, e™))] . (35)
Then further define the mapping H as
Hyx ey =E [u (X5, ® (X)) + Ag (X7, (c™,e™™))] . (36)

After that, combined with the properties of absolute value inequalities and the definition of
infinity norm, the following calculations can prove that H is a contraction mapping.

Hg, (x. ey = Hapxr e |l =E [Aq1 (X7, (™%, €M) = Aga (X', (™, e™))]
<E [A]q1 (X', (™, e™)) = g2 (X', (™, e™))]]

<E |Aargmax |q; (X', (c',€")) — q2 (X', (¢, €"))|

(c".e’)
=2llg1 (X', (¢ €) = q2 (X', (¢, €')) ||
According to equations (36) and (33), E {‘I’j (x)} can be expressed as
E{¥/ ()} = E{u (X;, @ (X)) +7 - Q (X', (™,¢™)) - Q (X", (¢", "))}
=Ho(x' (¢e)) = Q (X', (¢ €)) (38)
=Hox'(c.¢)) = Ho(x",(c".e))-

The last step in equation (38) is because Q (X’, (¢, ¢’)) is a constant. Finally, we can prove that
Condition (3) in Lemma 4.2 satisfies through Equation (39). In the calculation process of Equation
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(39), the first step can be derived based on Equation (38), the second step can be derived based on
Equation (34), and the last step can be derived based on Equation (32).

[E{% (0}, = [Howx ey = Hoxw (e eleo
<SNQ (X', (c,e)) — Q(X™, (", el (39)
=5 ||a7 (X, (c.e)]|.,

e. Condition 4) in lemma 4.2. Next is the proof of the condition 4) in lemma 4.2. The following
calculation uses equation (33), equation (36) and the properties of variance.

Var {¥/ (X, (c.e)} =E {u (X}, @ (X)) +y - Q (X', (¢"™,e™)) = Q (X", (", €"))

—Ho(x,(ce)) +Q (X7, (¢, e*))}

=E {u (X}, ® (X)) +y - Q (X', (™™, ™)) — Ho(x',(ce')) }

=E {u (X5, @ (X)) +y - Q (X', (™, ™)) (40)
~E [ (X5, @ (X)) +y - Q (X, (™, ™)) |}

=Var {u (X}, @ (X;)) +y - Q (X', ("™, ™)) }

<C(1+ ||Aj (X, (c, e))||oo),

where C is a constant and the last step in the above calculation is because of u (X i, @ (X j))is

bounded and Q (X, (c™®, ™)) at most linearly.
O

The above proof process has proved that the four conditions in lemma 4.2 are satisfied, and
based on this, theorem 4.1 can be proved.

5 PERFORMANCE EVALUATION

In this section, we conduct some simulation experiments to explore the impact of various parame-
ters on FL-based DRL training and the performance of FL-based DRL training and centralized DRL
training.

5.1 Experiment Settings

To evaluate the capability of our proposed method, we simulate an edge computing system. The
channel gain of the network connection between the IoT device and EN is defined as 6 levels.
Besides, the settings for the DRL agent are shown in table 2.

Table 2. The settings for the DRL agent

Parameters Values
The number of full connected layers 2
The number of neurons 200
Activation function tanh
Discount factor 0.9
Replay memory capacity 5000
Update interval of the target Q network 250
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Fig. 8. Exploration effect.

5.2 Analysis of Exploration Probability

A strategy called € — greedy is used in DDQN, which is a similar approach to greedy strategy.
Since there is no corresponding Q value for the state-action pair that has not appeared and these
combinations will never be tried if the greedy strategy is used directly, so the concept of explo-
ration and utilization is integrated. On the one hand, we must seek to maximize the utility from
the information already known, and on the other hand, we must explore what is not known in the
environment. The € — greedy is to add exploration rates based on a greedy strategy. For each deci-
sion, there will be a probability to randomly select actions to explore, and there is a probability to
use a greedy strategy to maximize the utility. Therefore, we first explored the effect of exploration
probability on utility in the experiment.

We selected three values for exploration probability to test and one hundred times of exper-
iments are taken for collecting statics. In Fig. 8, solid lines and the shallow area around them
represent mean values and the standard deviation, respectively. It can be found that the average
value of utility is the highest when exploration probability = 0.01, and the standard deviation is
the smallest. When exploration probability = 0.6, the average value of utility will decrease slightly
and the standard deviation will increase. When exploration probability = 0.99, the average value of
utility will be greatly reduced and the range of standard deviation will be further increased. It can
be found that a higher exploration probability will have a negative impact on performance of IoT
devices. This is due to the fact that IoT devices in most cases choose to explore and do not fully uti-
lize the previous training results, resulting in poor performance. Based on the results, accordingly,
we choose the final exploration possibility as 0.01 in the following experiments.

5.3 Analysis of Task Generate Probability

When the IoT device is applied, the workload of some IoT devices is heavy, and some IoT devices
are relatively idle. Even for an IoT device, the workload will change greatly during different time
periods. Therefore, we further explore the effect of workload.

Under different probabilities of task generation, the performance of the proposed algorithm is
showed in Figure 9. When the task generates probability = 0.1, the IoT device can run at a higher

ACM Trans. Sensor Netw., Vol. X, No. XXX, Article 1. Publication date: September 2019.



1:18 Shihao Shen, et al.

15.5

29, | e
- i i
I . Bé e ' e
L [

14.5 ' v
2 @ [ ] ' - ®
® e®e
" [ ]
14.0
= Legend
5 @ e o1
13.5 L/ 8 ev0, i " 3 1 —
e © @ 00
2
13.0
125
@
12.0
-5 0 5 10 15 20 25 30

Training Period

Fig. 9. Utility varies with workload.

utility and the standard deviation of utility is also small, namely, the performance is very good and
stable. When the task generates probability = 0.5, the workload of the IoT device will be relatively
heavy. In the initial stage of training, the utility is lower and the standard deviation is large, that is,
the performance is poor and unstable. However, as the training progressed, the utility stabilized
at a higher level and the standard deviation is greatly reduced. When the task generate probability
= 0.9, the workload of the IoT device is extremely heavy and the overall utility value is very low.
It can be found that, when the exploration probability is higher, the performance of the proposed
algorithm will be worse and more unstable. In other words, a higher exploration probability will
have a negative impact on the performance. This may be due to the limitation of IoT devices’
performance, because a high exploration probability will produce a large number of tasks that
IoT devices cannot cope with, resulting in high queuing delay and a large number of task failures.
In addition, due to the limited energy of IoT devices, heavy tasks will result in low or no energy
allocated for each task, thus limiting the performance of IoT devices. However, after a period of
training, the IoT device’s utility value is improved and stabilized at a relatively high level, which
proves the effectiveness of the algorithm under a heavy workload.

To further explore the performance of our proposed algorithm under different workloads, we
selected four key parameters queuing delay, offload payment, task execution delay, and task drop
number for comparison. The performance of the algorithm presented under different workloads
is shown in Fig. 10. When the task generates probability = 0.1, the IoT device needs to handle
few tasks and is very good at all key parameters. When the task generates probability = 0.5, the
workload of the IoT device is increased, and various key parameters are beginning to increase.

ACM Trans. Sensor Netw., Vol. X, No. XXX, Article 1. Publication date: September 2019.



Computation Offloading with Multiple Agents in Edge Computing-supported loT 1:19

Relative value

offload_payment task_queuing_delay task_drop_numbertask_execution_delay

Fig. 10. Key parameters that vary with workload.

However, the increase of the task drop number is small, which means that the IoT device can make
most tasks complete normally under the current workload. When the task generate probability
= 0.9, the workload of the IoT device is further increased, which will make the key parameters
perform worse.

In summary, Fig. 9 and Fig. 10 show the performance of one IoT device with varying the work-
load on itself, which corroborates that our work can adapt to the workload variation and be con-
verged.

5.4 Analysis of Energy Generate Probability

Differences in the deployment conditions of IoT devices may cause them to face different proba-
bilities of energy generation. Therefore, in order to test the performance of the algorithm under
different energy generation, we conducted the following experiments.

Under different probabilities of energy generation, the performance of the proposed algorithm
is showed in Figure 11. When energy generation probability = 0.1, IoT devices obtain energy at a
very slow speed, resulting in energy shortage which leads to a lower utility level. When energy
generation probability = 0.5, the speed of obtaining the energy of IoT equipment increases ob-
viously. Besides, the utility is improved significantly overall and shows a tendency to gradually
increase and eventually stabilize. When energy activates probability = 0.9, the energy of the IoT
device is more abundant. The utility is further improved, and the standard deviation is reduced,
that is, the IoT device performs better and more stable. It can be found that the higher the energy
generate probability is, the more sufficient the energy of IoT equipment is, so higher power can
be used to perform tasks and the overall performance is better.

To more closely compare the performance of the proposed algorithm in different energy envi-
ronments, we selected some key parameters for comparison. The algorithm proposed in different
energy environments is shown in Fig. 12. When energy generation probability = 0.1, the queuing
delay, task drop number, and task execution delay is very high which may be due to insufficient
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energy, resulting in the task can not be completed in time. However, the offload payment at this
time is very low, which means that most tasks are executed locally rather than being transferred to
EN. When energy generation probability = 0.5, the IoT device has more energy available, and the
offload payment is further improved but other parameters are reduced. This indicates that more
tasks are transferred to EN and the task execution is faster. When energy generation probability
= 0.9, the energy of the IoT device is sufficient. In this case, more tasks are transferred to EN for
execution and the proposed algorithm performs better. Therefore, it can be seen that the higher
the energy generate probability is, the more tasks submitted to EN for running. That is to say,
compared with local execution of IoT devices, transferring tasks to EN will consume more energy
but obtain more powerful task processing capability.

Therefore, experiments show that the proposed algorithm can adapt to different energy to gen-
erate probability and perform convergence.

5.5 Analysis of the Number of loT Devices

When the FL-based DRL training is running, it will be trained using many IoT devices in the area.
However, the number of IoT devices used is difficult to determine, so the impact of the number of
different IoT devices will be explored next.

1

18 1
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Fig. 13. Performance under different numbers of loT devices.

The experiment selected different numbers of IoT devices for testing and collected their utilities
as a comparison. As shown in Fig. 13, all their utilities show an upward trend at the early stage
and remain stable at the later stage. However, the number of different IoT devices also has an
impact on their utilities. On the one hand, when the number of IoT devices is small, its utility
increases relatively slowly in the early days. On the other hand, for different IoT devices, all the
utility will be stable at the same level in the later stage, but the number of IoT devices will have
an impact on the standard deviation of the utility. When the number of IoT devices is small, the
standard deviation of the utility will be large, that is, more IoT devices will make the performance
more stable. We think that when the number of IoT devices is large, more environmental states
can be learned in the same training cycle, thus contributing to the training progress of IoT devices
in the early stage. Therefore, the more 10T devices in the early stage, the performance is better.
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However, after training convergence, the more IoT devices there are, the worse their performance
will be. This may be because different IoT devices face different environmental states, so their
model parameters are not applicable to all IoT devices, that is, aggregating model parameters of
IoT devices under different environmental states cannot produce optimal results.
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Fig. 14. Comparison of parameters before and after convergence for different number of loT devices.

To delve deeper into the impact of the number of different IoT devices, we conducted experi-
ments on more detailed parameters. As shown in Fig. 14, when comparing the convergence and
non-convergence of a certain IoT device, it can be found that offload payment increases slightly
after training convergence, but all other parameters decrease. The reason for this situation may be
the increased use of EN after training convergence. Therefore, it costs more to use EN while other
parameters are optimized. In addition, for the case of the number of different IoT devices, they are
at the same level after the training convergence.

In summary, the more IoT devices, the faster the convergence rate during training, that is, the
better the performance in the early stage. However, after training convergence, the performance
of different IoT devices is at the same level.

5.6 Analysis of Energy Consumption

For IoT devices, many devices use batteries as a power source, so they usually have some limita-
tions in terms of energy. Therefore, energy consumption is a parameter that needs to be considered.
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Fig. 15. Comparison of energy consumption.

As shown in Fig. 15, the energy consumption of both FL-based DRL training and centralized DRL
training is higher than the greedy strategy. The reason may be that more energy has to be used to
reduce the number of task drop and task execution delay. In addition, the average energy consump-
tion of FL-based DRL training is comparable to that of centralized DRL training, but the standard
deviation is relatively small.

In summary, our proposed algorithm may result in higher energy consumption, which may be
due to higher power for local execution or data transmission. In this case, although the energy
consumption may be at a high level, it is improved in terms of time delay, the number of task drop,
etc. In addition, it is worth mentioning that the energy consumption of FL-based DRL training and
centralized DRL training are at the same level.

5.7 Analysis of Key Parameters in the System Model

In order to deeply compare the characteristics of FL-based DRL training and centralized DRL train-
ing, some key parameters in the system model are selected for comparison and the first is the task
execution delay. Task execution delay is the time from when the task leaves the task queue to com-
pletion, including the time of establishing a connection, the time of transferring task data and the
time of executing the task. The task execution delay of the FL-based DRL training and centralized
DRL training is shown in Fig. 16.

It can be seen that the FL-based DRL training has a higher task execution delay than the cen-
tralized DRL training task execution delay, and both of them stay stable after falling in the early
stage. It is worth noting that the task execution delay of the FL-based DRL training has decreased
more in the early stage and reached a steady-state faster, that is, the L-based DRL training has a
faster convergence speed.

In addition, the queuing delay of FL-based DRL training and centralized DRL training is com-
pared. The queuing delay is the time it takes for a task to go from being placed in the task queue
to being taken out of the task queue. The queuing delay of FL-based DRL training and centralized
DRL training is shown in Fig. 17.

The queuing delay of the FL-based DRL training is generally lower than that of the centralized
DRL training, but the queuing delay of the FL-based DRL training is higher overall.
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Fig. 16. Comparison of task execution delay. Fig. 17. Comparison of queuing delay.

Next is the comparison of the number of task drop of FL-based DRL training and centralized DRL
training. The number of task drop refers to the number of tasks lost when the number of newly
generated tasks in the task queue reaches the upper limit. The number of task drop of FL-based
DRL training and centralized DRL training is shown in Fig. 18.

The number of task drop of FL-based DRL training is much higher than the centralized DRL train-
ing in the early stage, but the number of task drop of FL-based DRL training decreases rapidly and
ultimately stable not far from the centralized DRL trained. Overall, both of them have significantly
decreased in the early stage which indicates the effectiveness of the training, but the number of
task drop of FL-based DRL training will be higher than the centralized DRL training. This may be
due to the queuing delay and the task execution delay of the FL-based DRL training are higher
so that many tasks in the task queue cannot be completed in time. Therefore, the task queue in
FL-based DRL training is more easily full, which leads to the loss of tasks.
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Fig. 18. Comparison of the number of task drop. Fig. 19. Comparison of offload payment.
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Besides, due to the limited computing resources of EN, the offload payment of FL-based DRL
training and centralized DRL training is also recorded. Offload payment refers to the payment
required to use EN, and its value is positively related to the duration of the occupation. As shown
in Fig. 19, the offload payment of FL-based DRL training and centralized DRL training are relatively
stable overall, but FL-based DRL training takes up more time on EN.

This part of the experiment compares the centralized DRL training, FL-based DRL training and,
the greedy strategy in several key parameters in detail. One of the prominent characteristics is
that FL-based DRL training will transfer more tasks to the edge node for execution, resulting in
the change of key parameters.

5.8 Analysis of Computation Offloading Performance

Since centralized DRL training is the benchmark for our proposed policy, we developed a further
comparison with it.

Randomly soliciting three IoT devices for investigation, Fig. 20(a)-20(c) and Fig. 21(a) present the
performance of FL-enabled DRL training and centralized DRL training, respectively. Accordingly,
their training loss statics are correspondingly given in Fig. 20(d)-20(f) and Fig. 21(b).
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Fig. 20. Computation offloading performance with Federated Learning-based.

The performance evaluation was as follows by a comparison of experimental results. 1) Obvi-
ously, the standard deviation of the training of the centralized training is less than the FL-based
DRL training. This shows that the centralized training has better stability during training. In addi-
tion, as the training continues, the utility and standard deviations of FL-based DRL training con-
tinue to shrink, and eventually at the same level as centralized training. This experimental result
verifies that FL-based DRL training achieves the same level of performance as centralized training
and verifies its effectiveness. 2) Since it is assumed that the wireless channel in the centralized
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Fig. 21. Computation offloading performance with centralized DRL training training.

training can upload the training data to the EN without loss and does not cause the delay. In fact,
this is impossible and this further proves the effectiveness of FL-based DRL training. Under this
assumption, once trained for a period of time, FL-based DRL training can achieve the same level
of performance as centralized training. Therefore, in the actual situation, the centralized training
performance will be even better.

In addition, FL has two disadvantages. On the one hand, FL-based DRL training not only per-
forms poorly during training but also requires a longer time to converge. On the other hand, FL-
based DRL training is at the same level but relatively poor compared to centralized training. So
how to fine-grain the scheduling of data transmission for optimization can be considered in future
work.

6 CONCLUSIONS

In this paper, we investigate a computation offloading optimization problem. In more detail, each
IoT device can make decisions about offloading tasks and allocating energy to maximize the ex-
pected long-term utility. For this, we propose an offloading algorithm based on FL and DRL and
run in parallel across multiple IoT devices. On the one hand, DRL enables each IoT device to make
decisions independently according to its own dynamic environment. On the other hand, FL fur-
ther reduces the transmission consumption between IoT devices and EN and greatly enhances the
privacy protection of data. In addition, we also carried out the necessary theoretical analysis and
implemented a series of simulation experiments for this algorithm. The experimental results show
that the proposed algorithm is applicable to various environments and verify the effectiveness of
FL-based DRL. In the future, we will take a deep study in if there are model compression techniques
with respect to DRL, and how to schedule the FL-based DRL training in a fine-grained fashion.
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