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Abstract

Quantum computers are becoming more mainstream. As more program-
mers are starting to look at writing quantum programs, they face an inevitable
task of debugging their code. How should the programs for quantum com-
puters be debugged?

In this paper, we discuss existing debugging tactics, used in developing
programs for classic computers, and show which ones can be readily adopted.
We also highlight quantum-computer-specific debugging issues and list novel
techniques that are needed to address these issues. The practitioners can read-
ily apply some of these tactics to their process of writing quantum programs,
while researchers can learn about opportunities for future work.

1 Introduction

Quantum Computers (QC) are specialized devices that will be able to solve some
problems faster than Classic Computers (CC) [3, 9]. This is known as a ‘quantum
advantage’.

The QC field is still in its infancy: the largest machines built to date are of
the order of tens of qubits [1, 22], which is not sufficient for commercially viable
applications. However, the power of the QC increases. We do not know when the
quantum advantage will be reached: predictions of experts vary from months [17],
to 3-5 years [20], to 7+ years [27]. This implies that QC may become practical
within a decade.

The programming languages for QC are mainly low-level, operating at the level
of QC register (e.g., OpenQASM [7]). However, higher-level languages are being
developed (e.g., Scaffold [19]).
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It is argued [26] that for the foreseeable future, the QC will be used in a System
of Systems, where the majority of software features will be implemented on a
CC, while the features involving quantum algorithms will be ‘outsourced’ to QC
components.

To enable usage of the QC, libraries with pre-packaged quantum algorithms
start to appear. For example, Qiskit Aqua [2] (an open source library written in
Python) implements quantum algorithms for various domains, such as artificial in-
telligence, chemistry, and finance. Such a library enables a programmer to treat
QC as a black-box and leverage quantum algorithms without having a deep under-
standing of the QC field.

Of course, the libraries themselves have to be developed by programmers with
the expertise in the QC field. These programmers, inevitably, inject defects in their
code (uniting CC and QC programming worlds). After that, the code has to be
debugged. In this paper, we explore how existing debugging tactics can be applied
to QC programs and which novel approaches have to be created.

2 Debugging Tactics

Debugging is a process of removing an error, once this error has been exposed [31].
While we hope that one day debugging will become an orderly and automated pro-
cess (e.g., by automatically mapping bug reports to code where the defect resides,
and then issuing a patch for this code [33]), currently it is an art more than a sci-
ence [31].

The high-level tactics [28, Chapter 8] for debugging a software had not changed
significantly over the last 40 years (when the first edition of the seminal work [28]
was published), although integrated development environments and various au-
tomation tools have streamlined a lot of mundane tasks [36, 25]. The three com-
mon tactics [28, 31] are backtracking, cause elimination, and brute force, discussed
below.

Backtracking debugging centers around examining the execution tree from the
point of the error until a perpetrating code block is found. The analysis techniques
for a code listing (such as code reviews and inspections) of a CC program can be
readily applied to a QC program [26]. Thus, these tactics are transferable. Anec-
dotally, based on discussions with practitioners, code reviews and inspections are
the most popular debugging techniques of quantum programs nowadays.

Cause elimination debugging formulates a hypothesis (using inductive or de-
ductive reasoning), specifying a root cause for a bug under study. Then, data are
devised, and experiments are conducted to refute or prove this hypothesis. This
approach can be applied to QC. Given the probabilistic nature of the QC pro-
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grams [29, 26], we will have to execute the program multiple times to obtain a
distribution of the results and assess the accuracy of the answer. Thus, we may be
able to extend the techniques used for testing probabilistic programs running on
CC, such as [10, 11], to the QC domain.

Brute force debugging — centred around the analysis of runtime traces, mem-
ory dumps, and output statements — focuses on runtime data analysis. Of the
three tactics, this is the most common one [31]. Some of the analyses of the run-
time artifacts can be automated; however, a lot of the brute force debugging is still
performed manually [31]. Can we transfer these tactics?

If we treat a QC program as a black-box, then the short answer is ‘yes’. As
mentioned in Section 1, if a QC program will be used as part of a System of Sys-
tems, then we can trace the input (passed from a CC component to the QC com-
ponent) and the output (from the QC component to the CC component). The input
and output data can be recorded in a log, and these data can be compared against
the expected values.

But what if we would like to analyze a QC program at runtime using a white-
box approach, e.g., to capture the execution trace of a QC program or perform
interactive debugging of the code executed on the QC? In such a case, the short
answer is ‘it depends’. Let us elaborate on this answer below.

3 Debugging Quantum Programs

A quantum program executed on a modern gate-based QC leverages a register of
qubits for performing quantum operations and a register of classic bits for record-
ing the measurements of qubits’ states and conditionally applying quantum oper-
ators [7]. Thus, a typical QC program mixes traditional instructions (to alter the
state of bits and apply conditional statements) and quantum instructions (to alter
the state of qubits and to measure qubit value).

At any point of execution, the state of a CC is given by a vector of bits taking
the values of 0 and 1. A register of m bits can represent 2m states. The state of
a QC is, however, given by a vector of qubits and bits. A qubit is a two-state
system and, thus, is an element of the space �2, where � is the set of complex
numbers. The quantum state of a qubit |b〉, can be captured as a superposition
(linear combination) of the orthonormal basis states |0〉 and |1〉, where |·〉 denotes
a vector in a vector space using the bra-ket notation [21]. In the computational
basis (i.e. a combination of the |0〉 and |1〉 states), a qubit is written as a normalized
vector |b〉 = α|0〉 + β|1〉, where |α|2 + |β|2 = 1.

A vector of qubits resides in a Hilbert space, which is an euclidean complex
vector space (see [34] for details). An n-qubits state is an element of �2n

. A
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register of n-qubits is denoted by one of the equivalent notations |b1, . . . , bn〉, or
|b1〉|b2〉 · · · |bn〉, or |b1〉⊗ |b2〉⊗ · · · ⊗ |bn〉, where ⊗ denotes the tensor product of two
vectors.

As mentioned above, a general quantum program consists of blocks of code
each containing classical and quantum instructions. Quantum operations can be
divided into two kinds: unitary and non-unitary. Unitary operations are reversible
and preserve the norm of the operands. Non-unitary operations are not reversible
and have probabilistic implementations.

The classical parts of a quantum program can be debugged using traditional
methods. The quantum parts, however, can not be treated in the same way be-
cause of the properties of a QC — such as superposition, entanglement, and no-
cloning — which are governed by the laws of quantum mechanics. The purpose
of debugging a program is to present the user with human readable, i.e., classical,
information about the runtime state of the system. Extracting classical information
from a quantum state is done using measurement which is usually a non-unitary
operation and results in collapse of the state, and hence an unintended behavior of
the program. We shall describe, in the following, different scenarios in a QC to
which classical debugging techniques cannot be applied, and discuss some poten-
tial solutions.

3.1 Superposition

Let |ψ〉 be the state of an n-qubit register. We can uniquely write |ψ〉, in the com-
putational basis, as

|ψ〉 =
∑

x∈{0,1}n
αx|x〉,

where αx ∈ � and
∑

x∈{0,1}n |αx|
2 = 1. We say that |ψ〉 is a superposition of the basis

states {|x〉}x∈{0,1}n . By the measurement postulate of quantum mechanics, measuring
the state |ψ〉 in the computational basis results in an outcome x ∈ {0, 1}n with
probability |αx|

2, and the state of the system after the measurement is |x〉. For
example, consider the initial state |010〉 (which is set by applying NOT to qubit 2),
and perform the following steps: first apply a Hadamard transform1 to each qubit
(creating superposition), then a controlled-not (CNOT)2 to qubits 2 and 3, and
finally measure qubit 3. If the measured qubit is 0 (which happens with probability
1/2), then the state collapses to 1

2 (|00〉 − |01〉 + |10〉 − |11〉). An implementation of
this example in OpenQASM 2.0 is shown in Figure 1.

1The Hadamard transform on one qubit is given by |b〉 7→ 1
√

2
(|0〉 + (−1)b|1〉). A description of

transforms and associated quantum gates are given in [21].
2The CNOT transform is defined on two qubits and is given by |a, b〉 7→ |a, a⊕ b〉, where ⊕ is xor.

Here, |a〉, |b〉 are called the control and input qubits, respectively.
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(a) Circuit

1 OPENQASM 2.0;

2 include "qelib1.inc";

3

4 qreg q[3];

5 creg c[1];

6

7 x q[1];

8 h q[0];

9 h q[1];

10 h q[2];

11 cx q[1],q[2];

12 measure q[2] -> c[0];

(b) Assembly code

Figure 1: Example of measuring a superposition. In OpenQASM, NOT is denoted
by x, Hadamard — by h, and CNOT — by cx.

A natural feature of a debugger for quantum programs would be to check if
the state of a variable is in superposition. There are the following two scenarios:
when the input state is unknown (e.g., when it is generated as an output of another
quantum program) and when the input state is known. Let us elaborate on these
two cases.

3.1.1 Unknown input state.

If the input to the program is an unknown state |ψ〉, then there is no known general
algorithm that can efficiently decide if |ψ〉 is in a superposition. Not much can be
done here in terms of a general method for debugging, different approaches should
be considered for different problems.

For example, in the hidden subgroup problem [21, Chapter 7], if the group is
abelian, then it can be efficiently decided if the coset state of a subgroup is in su-
perposition. For non-abelian groups, however, the same problem is often hard. For
example, the best known algorithm for the following problem has subexponential
runtime [23]: let N be a positive integer, and let �N be the group of integers mod
N. For a random unknown x ∈ �N and fixed unknown d ∈ �N , decide whether a
given state is of the form |x〉 or 1√

2
(|x〉 + |x + d〉).

3.1.2 Known input state.

If a state is the result of applying a unitary operation to a known initial state, i.e.,
|ψ〉 = U |x〉 where x is known, then |ψ〉 can be regenerated by the debugger. For
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example, the state

|ψ〉 =
1
√

2n

∑
x∈{0,1}n

(−1)h(x)|x〉,

where h(x) is the Hamming weight3 of x, can be generated by applying the Hadamard
transform to the n-qubit register |11 . . . 1〉. In such cases, there are various meth-
ods (depending on the problem) to characterize the state |ψ〉. Often, one relies on
quantum state tomography, which is the process of reconstructing a quantum state
through a series of measurements [8, 6].

3.2 Entanglement

In a QC, a set of memory cells or registers is said to be in an entangled state if it is
impossible to classically specify the correlations among them. More precisely, let
X1, . . . , Xn be the state spaces of a set of quantum systems that represent n registers.
The state space of the composite of these systems, that represents an array, is given
by the tensor product X = X1 ⊗ · · · ⊗ Xn. A state |ψ〉 ∈ X that can be written in the
form |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉, where |ψ j〉 ∈ X j for j = 1, . . . , n, is called separable.
A state that is not separable is called entangled. When debugging a program that
operates on an entangled state, the following problems can be considered.

3.2.1 Checking for separability.

Given a state |ψ〉 ∈ X, deciding whether |ψ〉 is separable is an NP-hard problem
[13, 16]. This is called the separability problem in quantum information theory,
see [34, Chapter 6] for details. There are a variety of methods (see [24, 15]) for
separability/entanglement detection that can be implemented in practice, specially
for lower dimensions. For example, if the debugger can generate several copies of
|ψ〉, then one way to detect the nonlinear properties of |ψ〉 is via direct measure-
ment. For the sake of brevity, we do not provide technical details here; see [24]
for a numerical method for examining separability and [15] for other interesting
methods and their implementations.

3.2.2 Extracting classical information.

Measuring a subsystem of a larger composite system that is in an entangle state
will likely alter other subsystems. This prevents a debugger from presenting any
classical information about a variable (whose state is entangled) to the user without
disturbing its state.

3That is, the number of non-zero bits in x.

6



For example, consider the entangled state 1√
2
(|00〉 + |11〉) of two qubits. Mea-

suring any of the two qubits alters the result of the subsequent measurement on the
other qubit. More precisely, if the first qubit is measured, then state collapses to
|00〉 or |11〉 with probability |1/

√
2|2 = 1/2; the outcome of measuring the second

qubit is always 0 if the resulting state is |00〉, and it is always 1 if the resulting state
is |11〉. Such a state is called maximally entangled.

A composite system, however, often has subsystems that are not entangled
with any other subsystem. In this case, we can measure that subsystem without
disturbing the whole state. For example, in the 3-qubit register

1
2

(|000〉 − |001〉 + |110〉 − |111〉) (1)

the last qubit is not entangled with the first two while the first and the second
qubits are entangled, see (2). The algorithms for separability detection (discussed
in Section 3.2.1) could be used to identify separable subsystems. Things would be
much simpler if the debugger could somehow estimate a given state with a state that
is generated by applying some operation to a basis state, i.e., classical information.
For example, the state in (1) can be generated as

(CNOT⊗H2)(H2 ⊗ I4)|001〉 =

=
1
√

2
(|00〉 + |11〉) ⊗

1
√

2
(|0〉 − |1〉),

(2)

where I4 and H2 are the identity and Hadamard gates, respectively. Therefore,
the state in (1) can be described by the debugger using the classical information
|001〉 and the names of the above operators. An implementation of the sequence of
operations in (2) is shown in Figure 2.

3.3 No-cloning

The most general method of obtaining information about a variable without dis-
turbing its state is to make a copy of the variable and work on the copy. In the
classical setting, this is often straightforward. In the quantum setting, however, the
situation is much more complicated. In fact, it is impossible to make a copy of a
given general unknown quantum state. More precisely, given an unknown state |ψ〉
and an arbitrary state |φ〉, it can be shown [21, Theorem 10.4.1] that there is no
unitary operator U that can perform the following:

|ψ〉 ⊗ |φ〉
U
7−→ |ψ〉 ⊗ |ψ〉.

In many practical scenarios, however, a debugger will only need to make an ap-
proximate copy of a state; a state that is “close enough” to the given state but
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H

X H

0 1

q[0]

q[1]

q[2]

c2

(a) Circuit

1 OPENQASM 2.0;

2 include "qelib1.inc";

3

4 qreg q[3];

5 creg c[2];

6

7 x q[2];

8 h q[0];

9 cx q[0], q[1];

10 h q[2];

11 measure q[0] -> c[0];

12 measure q[1] -> c[1];

(b) Assembly code

Figure 2: An implementation of state (2).

provides useful debugging information. For example, for a state |ψ〉 that encodes
a probability distribution [14], such as the Gaussian distribution, an approximate
clone would provide valuable information about the distribution. The possibility
of approximate cloning was first discussed in [4]. Much research has been done
on different cloning methods each optimizing particular aspects of a cloner that are
desired for different situations, see [32] for a survey.

3.4 Discussion

In Sections 3.1–3.3, we discussed various issues preventing the application of the
classic debugging techniques and identified some potential solutions.

As discussed in [26], if the input size and the amount of required qubits is
small, we can run a quantum program in a simulator (running on a CC). However,
the increase of the input size and the qubit register length may force us to run the
program on a QC.

If we can generate multiple approximate copies of the state [4], then we can
produce an empirical distribution of the qubit state and compare it against the ex-
pected distribution, to detect problems in the code. The generation of the multiple
approximate copies can be readily implemented for moderate inputs sizes using
universal cloning methods [35, 5, 12]. More efficient cloning can be achieved us-
ing state-dependent (i.e. non-universal) cloning methods [30, 32]. This would
address issues related to superposition with known input state (discussed in Sec-
tion 3.1.2), extraction of classical information (discussed in Section 3.2.2), and
no-cloning (discussed in Section 3.3). A compiler can automatically generate the
code for the approximate copying (akin to compilers for CC that can instrument the
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code to add debugging information), translating higher-level language into quan-
tum assembly [18]. The same principle of multiple approximate copies can be used
to generate runtime assertions [37].

For the case of unknown input states, discussed in Section 3.1.1, no general
solution exists and will require a programmer to make decisions on a case-by-case
basis.

Finally, separability checking, discussed in Section 3.2.1, demands the imple-
mentation of numerical methods that will require changes to the QC and, hopefully,
will be implemented in the future.

4 Conclusions

QC field is rapidly evolving, and the Software Engineering (SE) community should
start bringing SE practices into the QC world. In this paper, we focus on the anal-
ysis of debugging tactics, highlighting classic ones that are readily applicable and
showing that new ones have to be created. We believe that this work would be of
interest to practitioners, creating quantum programs, as well as researchers, devel-
oping the next generations of tooling for QC.
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