
Code generation for generally mapped finite elements

ROBERT C. KIRBY, Baylor University, USA

LAWRENCE MITCHELL, Durham University, UK

Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building
on recent theoretical work, we describe how to implement very general finite element transformations in FInAT and hence into the
Firedrake finite element system. Numerical results evaluate the new elements, comparing them to existing methods for classical
problems. For a second order model problem, we find that new elements give smooth solutions at a mild increase in cost over
standard Lagrange elements. For fourth-order problems, however, the newly-enabled methods significantly outperform interior penalty
formulations. We also give some advanced use cases, solving the nonlinear Cahn-Hilliard equation and some biharmonic eigenvalue
problems (including Chladni plates) using C1 discretizations.

1 INTRODUCTION

The FIAT1 project [Kirby 2004] has provided a new generation of finite element codes such as FEniCS [Logg et al. 2012]
and Firedrake [Rathgeber et al. 2016] with a diverse set of finite element basis functions. Internally, FIAT represents
the nodal bases for finite elements in terms of orthogonal polynomials and dense linear algebra, and it is capable of
tabulating reference basis functions and their derivatives at any desired points. Wrapped behind a high-level declarative
interface, many elements generally regarded as difficult to implement can be rapidly deployed in a flexible, performant
environment. In the case of FEniCS and Firedrake, FIAT’s usage is hidden behind a form compiler [Homolya et al. 2018;
Kirby and Logg 2006] that translates UFL [Alnæs et al. 2014], a domain-specific language for variational forms, into
efficient lower-level code for constructing matrices and vectors. As an example of how this works, we refer to the code
listing in Fig. 1.� �

from firedrake import *
mesh = UnitSquareMesh (10, 10)
V = FunctionSpace(mesh , "CG", 3)
u = TrialFunction(V)
v = TestFunction(V)
f = ...
a = (dot(grad(v), grad(u)) + v * u) * dx
L = f * v * dx
u0 = Function(V)
solve(a == L, u0)� �

Fig. 1. Sample code listing for a model problem in Firedrake using cubic Lagrange basis functions.

However, time and usage have revealed certain limitations of FIAT. Its Python implementation makes it most suitable
to “run once” in a given simulation, tabulating basis functions at reference element quadrature points and then letting
the rest of the finite element code map these to each cell in the mesh. Moreover, the dense tables of arrays that FIAT
produces make it difficult to exploit tensor-product or other structure that might lead to more efficient algorithms. As a
third issue, it is difficult for FIAT to communicate how bases should be mapped, leaving clients to handle their own
pullbacks. This works naturally when reference and physical elements are equivalent under affine or Piola pullback,
1The FInite element Automatic Tabulator

Authors’ addresses: Robert C. Kirby, Baylor University, Department of Mathematics, One Bear Place, Waco, TX, USA, robert_kirby@baylor.edu; Lawrence
Mitchell, Durham University, Department of Computer Science, Lower Mountjoy, Durham, DH1 3LE, UK, lawrence.mitchell@durham.ac.uk.

1

ar
X

iv
:1

80
8.

05
51

3v
2

 [
cs

.M
S]

 6
 S

ep
 2

01
9

2 Robert C. Kirby and Lawrence Mitchell

but implementing elements (see Fig. 2) such as Hermite [Ciarlet and Raviart 1972], Morley [Morley 1971], Bell [Bell
1969], and Argyris [Argyris et al. 1968] that require more complex transformations [Domínguez and Sayas 2008; Kirby
2018] easily leads to a proliferation of special cases. It also requires encoding basis tabulation and transformation
in completely different code components. Just as the dense tabulation historically limited the ability of FEniCS and
Firedrake to employ sum-factorization and other fast algorithms, lack of general transformations has limited their
ability to address higher-order PDEs and other applications benefitting from smooth approximations.

Recent work on FInAT [Homolya et al. 2017] has addressed many of these issues. Unlike FIAT, FInAT is not a tabulator.
Instead, it constructs abstract syntax using GEM [Homolya et al. 2018] for basis function tabulation. By emitting GEM,
which is the tensor-based intermediate representation of the tsfc form compiler, FInAT provides symbolic, as well as
numerical, tabulations. For example, as well as including syntax for table lookup from FIAT-generated values, FInAT also
provides a kind of element calculus by which one may construct vector- or tensor-valued elements; use tensor-products
of lower-dimensional bases to build structured bases on quadrilaterals, prisms, or hexahedra; or indicate that basis
evaluation at particular points satisfies a Kronecker delta property. In Homolya et al. [2017], we describe these features
of FInAT and extensions of tsfc to make use of them in generating efficient code. Our goal is for FInAT to become a
“single source of truth” for finite element bases. This includes not only basis function evaluation, like FIAT, but also
structural and algorithmic considerations as well as reference element transformations.

In this work, we present further developments in FInAT to enable the transformations of Argyris and other such
elements described in Kirby [2018]. In particular, we equip FInAT with abstract syntax to provide basis transformations.
FInAT’s routines for basis evaluation now assume that the caller will provide an object capable of providing (abstract
syntax for) the required geometric quantities such as Jacobians, normals, and tangents required by the mapping.
By extending tsfc to provide these, we have been able to deploy these extensions within Firedrake, making the
utilization of such bases (nearly) seamless from the user perspective. Essentially, we enable users to replace the line
V = FunctionSpace(mesh, "CG", 3) in Fig. 1 with V = FunctionSpace(mesh, "Hermite", 3) or any of the other
elements such as those depicted in Fig. 2.

Although our examples are two-dimensional, our work extends in principle (and code infrastructure supports)
tetrahedral elements as well. The code already has Hermite tetrahedra [Ciarlet and Raviart 1972], and implementing
Morley-like elements [Wang and Xu 2013] would be straightforward. Three-dimensional C1 analogs of the Argyris
triangle, however, require very high polynomial degree. This high degree and the associated high cost of direct methods
limits their practical use. An alternative is to use numerical approaches such as isogeometric analysis [Hughes et al.
2005] or maximum-entropy methods [Arroyo and Ortiz 2006] which naturally offer high order continuity, potentially at
reduced cost. Of these methods, simplicial splines [Lai and Schumaker 2007] are of future interest. Such splines would
require additional infrastructure in FInAT to reason about macro elements, but would bring Firedrake and other FInAT
clients a step closer to the flexibility to change order and continuity available on (patches of) mapped logically uniform
meshes in isogeometric analysis.

Among existing high-level PDE codes like FEniCS, Firedrake, deal.II [Bangerth et al. 2007], Sundance [Long 2003],
and Feel++ [Prud’Homme et al. 2012] we have only found a general support for the kinds of elements we consider here
in GetFEM++ [Fournié et al. 2010; Perduta 2013], which implements the Morley, and Argyris elements on triangles, and
the Hermite element on triangles and tetrahedra. Except for FEniCS and Firedrake, these codes are all C++ libraries
with varying degrees of abstraction in the problem description. While there is no impediment in such libraries to
implementing the transformation theory described in Kirby [2018], we believe UFL affords a more succinct user interface,

Code generation for generally mapped finite elements 3

(a) Cubic Lagrange (b) Cubic Hermite (c) Morley (d) Quintic Argyris (e) Bell

Fig. 2. Some famous triangular elements. Solid dots represent point value degrees of freedom, smaller circles represent gradients, and
larger circles represent the collection of second derivatives. The arrows indicate directional derivatives evaluated at the tail of the
arrow.

and code generation more opportunities for optimization [Homolya et al. 2017; Kirby et al. 2005, 2006; Luporini et al.
2017],

In the rest of the paper, we first review the theory developed in Kirby [2018] in section 2. In section 3 we describe
the modifications to FInAT and the rest of the Firedrake code stack that are necessary to implement and automate
the generalized mappings for these new elements. Strongly-enforced boundary conditions are the one limitation we
face when implementing these elements. In section 3.2, we describe some of the mathematical issues that have to date
prevented a general approach, so (like GetFEM++) we defer to weak enforcement of essential boundary conditions
through Nitsche’s method [Nitsche 1971]. To test our implementation and the practical use of these elements, we
present a series of numerical experiments in section 4. These include an attempt to quantify the practical effect in terms
of the cost of our general transformations.

2 OVERVIEW OF TRANSFORMATION THEORY

Let K̂ be a reference domain with vertices {v̂i }di=0 and let K be a typical element with vertices {vi }di=0. We let the affine
mapping F : K → K̂ be as shown in Fig. 3. Given any function ϕ̂ defined on K̂ , we define its pullback by

ϕ = F ∗(ϕ̂) = ϕ̂ ◦ F . (2.1)

To evaluate the new function ϕ at a point x that is the image of some x̂ under F , we have

ϕ(x) = ϕ̂(x̂). (2.2)

Similarly, if J is the Jacobian matrix of the mapping F , we can differentiate ϕ by the chain rule

∇ϕ = JT ∇̂ϕ̂, (2.3)

where ∇ denotes differentiation with respect to the coordinate system on K and ∇̂ to that on K̂ .
We shall also need the push forward of linear functionals, which is defined simply by composition with the pullback.

If P is a set of functions mapping K into R (or some other vector space), then

F∗(n) = n ◦ F ∗ ∀n ∈ P . (2.4)

Lagrange finite elements in simplicial domains form affine-equivalent families. One can find the Lagrange basis
on K̂ and then obtain the Lagrange basis on any other domain K by means of the affine pullback. From eq. (2.2) and
eq. (2.3), it is straightforward to tabulate the basis functions and their derivatives at reference domain quadrature points
and map the results to any cell in the mesh. A similar property holds for vector-valued Raviart-Thomas [Raviart and

4 Robert C. Kirby and Lawrence Mitchell

v̂0 v̂1

v̂2

v0

v1

v2
F : K → K̂

K̂

K

Fig. 3. Affine mapping to a reference cell K̂ from a typical cell K .

Thomas 1977] and Nédélec elements [Nédélec 1980], which can be defined on a reference domain and mapped via
Piola transforms. However, other elements, such as scalar-valued elements with derivative degrees of freedom, do not
typically satisfy affine equivalence, and this complicates the use of a reference element.

The cubic Hermite triangle [Ciarlet and Raviart 1972] provides a simple example. The ten degrees of freedom
parametrizing a Hermite triangle are the function values and gradients at the vertices and the function value at the
barycenter. We will specify the gradient in terms of the partial derivatives in the local Cartesian coordinate directions
as shown in Fig. 4. Now, let ψ̂ (x̂) be the reference Hermite polynomial having unit horizontal derivative at v̂0, with all

(a) Reference Hermite element (b) Physical Hermite element

Fig. 4. Reference and physical cubic Hermite elements with gradient degrees of freedom expressed in terms of local Cartesian
directional derivatives.

other degrees of freedom vanishing. The chain rule tells us that

∇ψ (v0) = JT ∇̂ψ̂ (v̂0), (2.5)

which is not equal to
[1
0
]
except in very special geometry. It is clear thatψ (vi) = 0 and that the gradient vanishes at

the other two vertices.
As we show in Kirby [2018], we can take a simple linear combination of the pullbacks of the Hermite basis functions

on K̂ to obtain the Hermite basis functions on K . Let {ψ3i }2i=0 be the basis functions taking unit value at vertex vi ,
{ψ3i+1}2i=0 having unit x-derivative at vi , {ψ3i+2}2i=0 having unit y-derivative at vi , and ψ9 having unit value at the

Code generation for generally mapped finite elements 5

barycenter and the corresponding numbering of {ψ̂i }9i=0 on K̂ . Then, our theory gives that



ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8

ψ9



=



1 0 0 0 0 0 0 0 0 0
0 ∂x̂

∂x
∂x̂
∂y 0 0 0 0 0 0 0

0 ∂ŷ
∂x

∂ŷ
∂y 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 ∂x̂

∂x
∂x̂
∂y 0 0 0 0

0 0 0 0 ∂ŷ
∂x

∂ŷ
∂y 0 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 ∂x̂

∂x
∂x̂
∂y 0

0 0 0 0 0 0 0 ∂ŷ
∂x

∂ŷ
∂y 0

0 0 0 0 0 0 0 0 0 1





F ∗(ψ̂0)
F ∗(ψ̂1)
F ∗(ψ̂2)
F ∗(ψ̂3)
F ∗(ψ̂4)
F ∗(ψ̂5)
F ∗(ψ̂6)
F ∗(ψ̂7)
F ∗(ψ̂8)
F ∗(ψ̂9)



. (2.6)

Note that the gradient basis-functions are mapped in pairs, while the pull-back in fact maps the basis functions for
point values correctly.

More generally, if F ∗ maps not just Hermite but some other finite element function space on K̂ onto that on K , then
there exists a matrixM such that

ψi =
N∑
j=1

Mi jF
∗(ψ̂j). (2.7)

It is frequently much easier to construct V = MT , which relates the push-forward of the physical finite element nodes
to the reference element nodes.

While the assumption behind eq. (2.7) applies to Morley and Argyris elements, the corresponding M is more
complicated because they do not form affine-interpolation equivalent families of elements. Equivalently [Brenner and
Scott 2008], the spans of the reference nodes and pushed-forward physical nodes do not coincide. To see why this
presents difficulty, consider Fig. 5, which shows the physical nodes pushed forward to the reference element. Since
there is only a single directional derivative on each edge, pairs of basis function corresponding to a gradient (in some
coordinates) cannot be adjusted by the Jacobian like in the Hermite case.

F∗

Fig. 5. Pushing forward the Morley derivative nodes in physical space does not produce the reference derivative nodes.

In Kirby [2018], we develop a three-step mapping technique that generalizes the approach in Domínguez and Sayas
[2008]. First, one extends the reference and physical nodal sets with additional nodes such that their spans do coincide.
The transformation between these sets can be constructed in a method similar to Hermite. Second, the action of the
new nodes on the finite element space must be constructed in terms of the given ones. This can typically be done with
interpolation theory. Finally, one extracts the nodes of the mapped finite element as a subset of the enriched set. Each

6 Robert C. Kirby and Lawrence Mitchell

stage can be expressed as a matrix, and we have that

V = EVCD. (2.8)

Here, D, which has more rows than columns, maps the finite element nodes to the extended nodes. The square matrix
VC relates the push-forward of the extended nodes in physical space to the extended reference nodes. E has a single
nonzero per row, selecting out the subset of extended reference nodes belonging to the reference finite element.

In the case of the Morley element, we extend the vertex values and normal derivatives at edge midpoints with the
tangential derivatives at the same, as shown in Fig. 6. The tangential derivative of a quadratic at the edge midpoint

Fig. 6. Extended nodal sets for Morley reference (left) and typical (right) element are formed by including tangential derivatives along
with normal derivatives at each edge midpoint.

can actually be computed by differencing the associated vertex values, so the D matrix is relatively easy to construct.
The matrix VC is similar to Hermite, although it is slightly more involved since it transforms gradients in normal and
tangential rather than Cartesian coordinates. Let ni and ti denote the normal and tangent to edge i of K and n̂i and t̂i
those for K̂ . Then, we put Gi = [ni ti]T with an analagous definition for Ĝi and hence define

Bi = Ĝi J
−TGT

i . (2.9)

The matrix VC is logically block-diagonal with unit values corresponding to the vertex degrees of freedom and Bi for
the derivative nodes on edge i . Putting this together, we have

MT = V =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 −B0
01

ℓ0

B0
01
ℓ0

B000 0 0
−B1

01
ℓ1

0 B1
01
ℓ1

0 B100 0
−B2

01
ℓ2

B2
01
ℓ2

0 0 0 B200


. (2.10)

Owing to the higher degree and second-order derivatives, the Argyris triangle (Fig. 2d) transformation is more
complicated, but follows the same kind of process. The Bell element (Fig. 2e), however, requires an extension of this
theory. It is billed as a “reduced” or “simplified” element because it lacks the Argyris element’s normal derivatives
at edge midpoints. However, these are removed by constraining the function space to have cubic normal derivatives
rather than the quartic ones typical to a quintic polynomial. This means that the affine pullback does not preserve the
function space. We deal with this by constructing and mapping a full quintic finite element, a subset of whose basis
functions are the Bell basis functions. We refer the reader to Kirby [2018] for further details.

Code generation for generally mapped finite elements 7

We address one further wrinkle in Kirby [2018]. In particular, global basis functions with a unit derivative value may
differ in size considerably from those corresponding to a unit point value. The resulting scale separation between basis
functions leads to a considerable increase in the condition number that degrades as h ↘ 0. To compensate for this,
we can adjustM by composing with another linear transform that scales the derivative basis functions by a suitable,
locally-defined, function of the mesh spacing h.

3 INCORPORATING TRANSFORMATIONS IN THE FIREDRAKE STACK

Making these elements work seamlessly from the end user perspective requires careful modification of several compo-
nents of Firedrake. Throughout this process, we have been driven by two main design goals. First, we seek to provide all
information related to basis function evaluation through FInAT (internally using FIAT for reference element tabulation
as needed). Second, we seek to avoid making FInAT dependent on other Firedrake components so that it may be used
by projects besides Firedrake. To address these two concerns we have developed an abstract interface, which a form
compiler must implement, that allows FInAT to request expressions for the evaluation of geometric information on
physical cells.

To facilitate these callbacks between the element library on the one hand, and the form compiler on the other, they
need to agree on a common language for exchanging information. Where FIAT communicated with the form compiler
through numerical arrays, FInAT communicates with the form compiler by exchanging GEM expressions [Homolya
et al. 2018]. GEM is the intermediate language used in both tsfc and FInAT to describe tensor algebra. It is the natural
choice for the exchange of geometric information, since any form compiler using FInAT must already understand GEM.
Since it is a fairly basic language describing array indexing and arithmetic, it should be possible to convert from GEM
to other representations such as pymbolic (https://mathema.tician.de/software/pymbolic/) or sympy [Joyner et al. 2012].
Our new elements then overload the basis_evaluation method to call FIAT for reference values and then provide
abstract syntax for constructing and applyingM to those values.

By isolating the transformations at the level of basis functions in this way, we required almost no changes in the
rest of the Firedrake code base. In UFL, we made trivial changes to “register” the new elements: adding them to a
list of available elements in the language. In tsfc, we bind the UFL elements to concrete FInAT classes and provide
the necessary implementation of geometric mapping information. Most of the expressions are readily obtainable by
translation of appropriate UFL, which has symbolic objects representing Jacobians, facet normals, and so forth. The
mesh cell size at vertices, used for scaling of derivative basis functions, presents certain difficulties. The form compiler
only makes reference to a single element, but the transformation theory requires a characteristic mesh size that is
available at vertices and agreed upon by all cells sharing a given vertex. We therefore provide the mesh cell size as a
normal coefficient field, and require that Firedrake provide it when assembling the local element tensor. This marginally
changes the interface between tsfc and Firedrake: element kernels may now have one extra argument. However, this
is handled internally and unbeknownst to the user.

3.1 Inserting the transformation matrix

Given the ability to construct the transformation M , it can be inserted into a finite element code in (at least) two
distinct places. For one, the transformation can be applied to reference values at each quadrature point before the local
integration is carried out on each cell. Alternatively, one could compute a local vector or matrix with the untransformed
basis values and post-multiply by the resulting transformations as needed. Similarly, one can either evaluate members of

https://mathema.tician.de/software/pymbolic/

8 Robert C. Kirby and Lawrence Mitchell

the function space by transforming the basis functions or by using the associative property to transform the expansion
coefficients and then using the unmodified basis functions.

In the first, case, suppose that a bilinear form over some Ω ⊂ R2 requires both basis values and gradients. If we have
a basis with Nf members and a quadrature rule with Nq points, then transforming all the basis values and gradients will
require 3 Nq matrix-vector products withM . Forming a load vector or matrix action will also require similar additional
effort.

On the other hand, suppose that one forms an element matrix with untransformed basis functions and applies the
transformation afterward. Essentially, one must compute the congruence transform

A = MÃMT , (3.1)

where Ã is the ‘wrong’ element matrix. Beyond computing Ã, one must act on each row of Ã withM and then on each
column of the result. This amounts to 2Nf matrix-vector products withM . Unless Nq <

2
3Nf , using eq. (3.1) will be

moderately less expensive. At any rate, as we point out in Kirby [2018], either are relatively small additional costs
compared to the overall cost of forming the element matrix.

Although the cost of matrix formation is not significantly different with these two approaches, the difference is
somewhat more substantial with load vectors or matrix actions. Considering the matrix action via eq. (3.1):

Au = MÃMTu, (3.2)

where u is vector of degrees of freedom on an element, this can be factorized so that it requires only two applications of
M by using the associative property in the correct way, reusing a kernel for computing the mapping u 7→ Ãu.

In our implementation, we have opted simply to map the basis functions at each quadrature point. This required
somewhat less invasive modifications to the form compiler and, as we see in section 4.2, does not seem to create any
significant performance penalties. Future work could include additional refactoring of tsfc to support and compare
either mode and select based on the particular use case or user-specified settings.

3.2 Boundary conditions

Strongly enforcing boundary conditions with most of these elements appears to be rather difficult. Instead, we use
Nitsche-type penalty methods for essential boundary conditions. Similar techniques are used in GetFEM++ and have
also been adopted in spline-based finite elements [Embar et al. 2010] for similar reasons. Fortunately, expressing the
additional terms in the variational problem in UFL is not difficult. Here, we briefly demonstrate some of the issues in
strongly constraining boundary values.

With Lagrange elements, (approximately) setting u |∂Ω = д for some continuous function д by interpolation is
relatively straightforward, fixing u to agree with д at the boundary nodes. With Hermite elements, for example, this
becomes more difficult. Since д lives only on ∂Ω, one would have to provide a differentiable extension of д into Ω and,
moreover, a code interface to obtaining the derivatives of д to enforce boundary conditions.

Further difficulties for Hermite elements are apparent, even just considering the simpler case of the homogeneous
condition u |∂Ω = 0. On a line segment, a cubic polynomial vanishes iff its endpoint values and derivatives do. So, on a
triangle containing a boundary edge, we must constrain the correct values and tangential derivatives on the boundary
vertices to force u = 0 on the edge.

On one hand, consider a portion of a domain with a vertical boundary, as shown in Fig. 7a. To enforce u = 0 on the
boundary segments connecting vertices 0 to 1 and 1 to 2, one can set the nodal values of u at vertices 0, 1, and 2 to

Code generation for generally mapped finite elements 9

zero. Then, if one also sets the y derivative of u at these points to zero, u will vanish along both of these segments.
This amounts to six constraints. In the more general case of colinear edges that are not aligned with a coordinate axis,
one still has six constraints. However, these set linear combinations of the gradient components rather than particular
degrees of freedom.

On the other hand, consider the case in Fig. 7b, where the boundary is not straight. Clearly, we must set u = 0
at vertices 0, 1, and 2. Moreover, we need to set the tangential derivatives in the directions running along the edges
at vertices 0 and 1. Setting these tangential derivatives requires constraining a linear combination of the gradient
components. We must set derivatives in two distinct directions at vertex 1 to force u = 0 along both of the edges.
This, then, forces the entire gradient of u to vanish at vertex 1. Two immediate problems arise. First, the homogeneous
Dirichlet condition on the boundary cannot be enforced without imposing an additional homogeneous Neumann
condition at the vertices. Also, the number of constraints changes as soon as the boundary is not straight as we now
require seven constraints: three function values, a linear combinations of derivatives at two vertices, and the full gradient
at a third. As an additional technical problem, interpolation of inhomogeneous boundary conditions in spaces with
derivative degrees of freedom requires higher regularity of the data.

0

1

2

3

4

(a) Setting u = 0 on the solid boundary requires set-
ting vertex values and y− derivatives at nodes 0, 1,
and 2 to be zero. No x− derivatives are modified in
this case.

0

1

2

3

4

(b) Setting u = 0 on the solid boundary requires set-
ting vertex values at nodes 0, 1, and 2 to be zero as
well as the entire gradient at vertex 1 and linear com-
binations of the directional derivatives at vertices 0
and 2.

Fig. 7. Enforcing homogeneous Dirichlet boundary conditions with Hermite elements.

4 EXAMPLES

In this section, we turn to demonstrating and evaluating the new capabilities of Firedrake. In the first three subsections,
we explore various computational aspects of these newly-enabled elements for some model problems. We consider
the accuracy and computational costs of various discretizations of the Poisson and biharmonic problems. In particular,
we can give per-element FLOP estimates for the generated code for various discretizations and also compare run time
to build and solve the global sparse finite element matrices. Later, we also present some more advanced examples of
usage. All timing results were obtained a on single core of an Intel E5-2640v3 (Haswell) processor. The measured single
core STREAM triad [McCalpin 1995] bandwidth is 13GB/s, and the peak floating point performance of a single core is
41.6Gflop/s.

Dealing with high-order polynomials can lead to difficulties with linear solvers, especially for fourth-order problems
such as the biharmonic equation. We do not explore optimal preconditioners or other aspects of iterative methods [Bram-
ble and Zhang 1995; Brenner 1989; Xu 1996], instead using sparse LU factorization provided by PaStiX [Hénon et al.
2002], accessed through the PETSc library [Balay et al. 2018, 1997]. In all examples where we study the convergence,

10 Robert C. Kirby and Lawrence Mitchell

we have also included one iteration of iterative refinement, which adds only a small extra cost, to improve the roundoff
error that can become rather large at high degree or on fine meshes.

When using Lagrange elements for Poisson’s equation (or more generally, conforming discretizations of second-order
elliptic operators), static condensation is also a reasonable technique to perform before sparse factorization. This is
implemented through SLATE [Gibson et al. 2018], a domain-specific language for expressing localized linear algebra
on finite element tensors. While the experiments in Gibson et al. [2018] demonstrate its effectiveness for hybridizing
mixed and HDG-type methods, here we use its facilities for static condensation for continuous Galerkin methods. Since
SLATE interfaces with the rest of Firedrake as a preconditioner acting on the implicit matrices described in Kirby and
Mitchell [2018], we are able to factor either the original or condensed global matrix by a change of solver options.
Except for Hermite, our newly-enabled elements have no internal degrees of freedom, so static condensation gives
no assistance in these cases. Similarly, it does not work for interior penalty biharmonic discretizations since internal
degrees of freedom couple across cell boundaries through jump terms on the derivatives.

Because scalable solvers are quite difficult and somewhat distinct from the innovations in code generation required for
this work, we have focused on single-process performance. These new developments in no way clash with Firedrake’s
existing parallel abilities, but absent effective preconditioners one may be limited to sparse direct parallel solvers such
as PaStiX or MUMPS [Amestoy et al. 2000].

4.1 Convergence on model problems

As a first example, we demonstrate that we obtain theoretically-predicted convergence rates for some model problems
on the unit square, labelled Ω. Our coarsest mesh is shown in Fig. 8, which has internal vertices of a regular 8 × 8 mesh
sinusoidally perturbed to introduce geometric nonuniformity.

Fig. 8. Coarsest mesh for convergence studies.

First, we validate our new elements for Poisson’s equation

− ∆u = f , (4.1)

subject to Dirichlet boundary conditions u = 0 on ∂Ω. One multiplies by a test function and integrates by parts in
the typical way to obtain a variational formulation. In line with our observation in section 3.2, we will enforce the
boundary condition through a consistent modification of the bilinear form, as introduced by Nitsche [1971].

ah (u,v) =
∫
Ω
∇u · ∇v dx −

∫
∂Ω

(∇u · n)v ds −
∫
∂Ω

u(∇v · n) ds + α
h

∫
∂Ω

uv ds . (4.2)

Here, α is a positive constant large enough to render the bilinear form coercive in a perturbed H1 norm, and h is the
characteristic mesh size. For Vh ⊂ H1 consisting of one of the finite element spaces under consideration, we solve the

Code generation for generally mapped finite elements 11

discrete variational problem

ah (uh ,vh) = (f ,vh) ≡
∫
Ω
f vh dx (4.3)

although additional terms would appear on the right-hand side with inhomogeneous Dirichlet boundary conditions.
Implementing this in Firedrake requires straightforward modifications of the listing in Fig. 1.

Fig. 9a plots the L2 error versus mesh refinement on uniform refinements of the mesh in Fig. 8. P3 appears slightly
more accurate, but of the same order, as cubic Hermite. Since P3 is a strictly larger space than Hermite, its H1 best
approximation result (which affects the L2 estimates through Aubin-Nitsche duality) should also be slightly better. The
same comparison holds for P4 and Bell, while we do not observe the same effect for P5 and Argyris elements.

23 24 25 26 27
10−14

10−11

10−8

10−5
h−4

h−5

h−6

N

∥u
−
u
h
∥ L

2

P3 P4 P5

Hermite Bell Argyris

(a) L2 error in solving Poisson’s equation on a perturbed N ×N
mesh.

23 24 25 26 27
10−14

10−11

10−8

10−5

10−2 h−2

h−4

h−5

h−6

N

∥u
−
u
h
∥ L

2

P2 P3 P4 P5

Morley Bell Argyris

(b) L2 error in solving biharmonic equation on a perturbedN×N
mesh.

Fig. 9. L2 errors solving prototypical second- and fourth-order PDEs using various higher-order finite elements.

While some situations could call for smooth approximations of second order equations, many of our new elements
come into their own for the plate-bending biharmonic equation

∆2u = f (4.4)

on Ω. In our examples, we consider clamped boundary conditions u = ∂u
∂n = 0 on ∂Ω. Following Brenner and Scott

[2008], we employ the bilinear form

a(u,v) =
∫
Ω
∆u∆v − (1 − ν)

(
2uxxvyy + 2uyyvxx − 4uxyvxy

)
dx , (4.5)

where 0 ≤ ν ≤ 1
2 is the Poisson ratio for the plate. The terms multiplied by (1−ν)may separately be integrated by parts

to give uxxyyv times zero plus terms for incorporating strongly-supported boundary conditions. Subject to clamped
boundary conditions, or on any subspace ofH2 not containing linear polynomials over Ω, the bilinear form a is coercive.
Argyris and Bell elements give conforming, optimal-order approximations. Morley elements give a suitable, albeit
suboptimal, nonconforming method.

12 Robert C. Kirby and Lawrence Mitchell

As an alternative to discretizing the H2 bilinear form with Morley, Bell, or Argyris elements, it is possible to adapt
interior penalty techniques for C0 elements [Engel et al. 2002; Wells et al. 2004]. This allows use of Pk elements for
k ≥ 2 by means of penalizing jumps in derivatives. These methods do not require the extra terms scaled by (1 − ν) in
eq. (4.5), instead using the bilinear form

ah (u,v) =
∑
K ∈T

∫
K
∆u∆v dx +

∑
E∈Eint

h

(∫
E

α

hE
[[∇u]][[∇v]] ds −

∫
E
{∆u}[[∇v]] ds −

∫
E
[[∇u]]{∆v} ds

)
. (4.6)

Here,K are the cells in a triangulation T and Eint
h are the interior edges. The operators [[·]] and {·} are the standard jump

and average operators used in discontinuous Galerkin methods. This method is known to give optimal convergence
rates in L2 for k > 2 (but only second order for quadratics), and requires only Lagrange or other standardH1-conforming
elements. In particular, it is frequently used with Lagrange elements. Although we will not include an exhaustive
comparison, it is also worth mentioning other alternatives such as the Reissner-Mindlin formulation. This leads to a
system of singularly-perturbedH1 equations [Durán and Liberman 1992; Hale et al. 2018] and allows direct enforcement
of Dirichlet boundary conditions for rotations at the cost of a mixed system. An alternative approach, using a mixed
formulation is given by Li [Li 2018] using generalized Regge-type elements.

Fig. 9b plots the error versus mesh refinement on uniform refinements of the mesh in Fig. 8 for the two biharmonic
models. Unlike the Poisson equation, we are not directly comparing the same discretization with different elements, but
an H2 discretization (nonconforming for Morley) versus an interior penalty method. Still, we see that P2 with interior
penalty gives slightly lower error than Morley elements, and P4 is slightly more accurate than Bell until the finest
meshes. On the other hand, Argyris is more accurate than P5 on all the meshes, for which we observe suboptimal
convergence rates, even after iterative refinement.

4.2 Cost of forming element matrices

While our newly-enabled elements provide effective solutions, we must also consider the computational cost associated
with using them. Clearly, when the element transformation M , I, extra work is required to perform element-level
integrals as compared to Lagrange and other affine-equivalent elements. Here, we document the additional FLOPs
required and the effect on time to assemble matrices for the problems considered above. Fig. 10a shows the tsfc-reported
FLOP counts for building the element stiffness matrix for the Laplacian using Lagrange elements of degrees 3 through 5
as well as Hermite, Bell, and Argyris elements. These numbers include constructing the element Jacobian from the
physical coordinates, transforming basis function gradients usingM and the chain rule, and the loop over quadrature
points and pairs of basis functions. They do not include any interaction with the global sparse matrix. In addition, we
report the per-element cost of performing static condensation for Lagrange elements with a separate bar above that of
forming the element matrices.

We notice that forming the element integral with Hermite elements requires slightly more operations than with P3

Lagrange elements. Since the transformation eq. (2.6) requires only modifying some of the basis functions with the
(already-computed) Jacobian, the actual up-tick in operation count is very small. On the other hand, the gap between
P5 Lagrange and Argyris is a bit larger. Two factors contribute to this. First, the Argyris transformation requires the
evaluation of several geometric quantities (tangents, normals, edge lengths, Hessians) not otherwise required. Second,
there are relatively more nonzeros in M for Argyris than Hermite. Comparing Bell elements to P4 shows them to be
quite a bit more expensive for the same order of approximation. Bell elements have nearly as many degrees of freedom
as Argyris, require a complicated transformation matrixM , and also require a more accurate quadrature rule owing to

Code generation for generally mapped finite elements 13

P3 P4 P5 Hermite Bell Argyris

0

0.5

1

1.5

·105

FL
O
Ps

Integration
Condensation

(a) Laplace operator of eq. (4.2). Stacked above Pk elements are
the additional FLOPs required to form the local Schur comple-
ment in static condensation

P2 P3 P4 P5 Morley Bell Argyris

0

0.5

1

1.5

·105

FL
O
Ps

Cell
Edge

(b) Biharmonic operator. The last three entries relate to the
bilinear form in eq. (4.5) and include no edge terms, while the
Pk entries are from the DG form eq. (4.6). The per-cell cost of
the edge integrals seems to drive the overall FLOP count for
interior penalty methods.

Fig. 10. Per-element FLOP counts for assembling Laplace and biharmonic operators using various elements.

the presence of quintic terms. Fig. 10a shows that the per-element cost is indeed closer to (but less than) the Argyris
element than it is to P4. Beyond this, static condensation adds a small per-element cost to Pk elements, making P3 and
Hermite roughly comparable as well as P5 and Argyris.

We now turn to the biharmonic operator. Although the bilinear form eq. (4.5) has a more complex cell integral and
requires the transformationM , the cost of the edge terms in the bilinear form eq. (4.6) is quite large. Since there are
about 1.5 times as many edges as triangles in our meshes, we report the FLOP count of the kernel to perform the
element integral plus 1.5 times the per-facet FLOP count. Observing Fig. 10b, the H2 methods have considerably lower
per-element operation counts.

4.3 Building and solving global systems

Per-element FLOP counts are not the only factor affecting the overall cost of assembling linear systems. In fact, the
concentration of degrees of freedom at vertices for Hermite, Bell, and Argyris elements leads to overall smaller systems
with markedly different costs of assembly and sparsity patterns than Lagrange elements.

Fig. 11a gives the time to build the discrete Poisson system on the meshes considered in our convergence study
above. We observe that Hermite and P3, and Argyris and P5 elements require very similar assembly time, with Bell
somewhat higher than P4. By sharing vertex degrees of freedom between many elements, we may be achieving slightly
better insertion patterns when summing element matrices into the global system for H2 elements. We speculate that
this, combined with the overall smaller system size help offset the higher per-element FLOP counts. Fig. 11b shows a
clear win for H2 elements. With fewer global degrees of freedom and less expensive element-level computation, we see
a much lower cost to assemble than for the interior penalty method with Pk elements.

As a further illustration, we present the global sparsity pattern on an coarse 8× 8 mesh for each of our discretizations
for Poisson and the biharmonic operator in Figs. 12 and 13. For Poisson, we compare Pk elements with their smaller and

14 Robert C. Kirby and Lawrence Mitchell

23 24 25 26 27

10−3

10−2

10−1

100

N

Ti
m
e
(s
)

P3

P4

P5

Hermite
Bell
Argyris

(a) Laplace assembly time. We see that the higher FLOP counts
for C1 elements (c.f. Fig. 10a) only have a noticeable effect on
assembly time for Bell elements (relative to P 4).

23 24 25 26 27

10−3

10−2

10−1

100

N

Ti
m
e
(s
)

P2 P3

P4 P5

Morley Bell
Argyris

(b) Biharmonic assembly time. The lower FLOP counts for C1

discretisations translate into significantly lower assembly times
relative to the appropriate C0 interior penalty scheme.

Fig. 11. Time to assemble the Laplace and biharmonic operators on a perturbed N × N mesh. The timings include preallocation of
the matrix sparsity (which is amortizable over solves), as well as building element tensors, and matrix insertion.

slightly denser statically condensed counterparts in the first row. The H2 element with comparable accuracy appears in
below each pair of Pk patterns, demonstrating the smaller, but denser system in each case. For the biharmonic operator,
edge terms in the interior penalty formulation prevent static condensation for Pk elements, and H2 elements have
few, if any, interior degrees of freedom to eliminate, so we just consider the global stiffness matrix. We see that the
H2 elements in fact give smaller and sparser systems than Pk elements, owing to the absence of edge terms. Since the
sparsity pattern is driven by the elements and mesh connectivity rather than bilinear forms, we note that these trends
in sparsity patterns are rather generic for second- and fourth-order scalar problems, respectively.

(a) P 3 (b) Condensed P 3 (c) P 4 (d) Condensed P 4 (e) P 5 (f) Condensed P 5

(g) Hermite (h) Bell (i) Argyris

Fig. 12. Sparsity patterns of the discrete Laplacian on a regular 8 × 8 mesh using H 1 elements (top row) and H 2 elements (bottom
row).

Code generation for generally mapped finite elements 15

(a) P 2 (b) Morley (c) P 4 (d) Bell (e) P 5 (f) Argyris

Fig. 13. Sparsity patterns of the discrete biharmonic operator on a regular 8 × 8 mesh for interior penalty discretizations (a, c, e) and
using H 2 discretizations (b, d, f).

Having considered the cost of assembling the matrices and the resulting sparsity patterns, we now present timings
for solving the systems with sparse LU factorization provided by PaStiX, plus iterative refinement. These times are
shown in Fig. 14a. For this solver, it appears that Hermite and Bell systems are actually cheaper to solve than any of
the Pk systems, and Argyris appears to have a comparable cost to P4 rather than P5. We note that these observations
only on one sparse direct solver with “out-of-the-box” options and leave open the possibility that reordering or other
options for this or other sparse factorizations could lead to different rankings among the solvers. We also consider the

23 24 25 26 27
10−3

10−2

10−1

100

101

N

Ti
m
e
(s
)

(a) Time to factor and solve the sparse linear system for the
discrete Laplacian on N × N mesh, including one iteration of
iterative refinement.

23 24 25 26 27
10−3

10−2

10−1

100

101

N

Ti
m
e
(s
)

P3 P4 P5 Condensed P3 Condensed P4 Condensed P5
Hermite Bell Argyris

(b) Total solver time for Poisson’s equation on N × N mesh.
This includes element integration (and condensation), sparse
matrix preallocation and assembly, and factorization.

Fig. 14. Time to solution for the Poisson equation using different discretisations. We see that static condensation does not gain us
anything for small problems, due to the overhead involved in forming the condensed system.

effects of static condensation. In this case, the full global stiffness matrix is never formed. In Fig. 14b, we compare the
overall solver time for statically condensed systems to the combined times of building and solving the uncondensed
systems. It appears that condensation improves the total run-time for Pk elements on the finer meshes, and we would
expect this trend to continue under additional mesh refinement. In addition to the visualized sparsity patterns, we
have also computed the average number of nonzeros per row and condition number on a coarse (8 × 8) mesh for the

16 Robert C. Kirby and Lawrence Mitchell

Poisson operator, shown in Table 1a. Notice how the conditioning of the H2 elements is significantly worse. In contrast,
when applied to the biharmonic operator, the picture is reversed (Table 1b). The H2 discretizations have both better
conditioning (Bell apart) and lower numbers of nonzeros per row than an interior penalty discretization using H1

elements.

Element Total DoFs Nonzeros/row κ

P3 625 16.1 4.49 · 102
P3c 497 15.3 2.77 · 102

Hermite 371 18.6 3.13 · 103

P4 1,089 22.5 1.29 · 103
P4c 705 20.0 6.36 · 102

Bell 486 36.8 1.56 · 107

P5 1,681 29.8 3.98 · 103
P5c 913 24.7 2.99 · 103

Argyris 694 41.0 9.58 · 106

(a) Laplace operator, Pkc denotes statically condensed Pk .

Element Total DoFs Nonzeros/row κ

P2 289 21.6 9.23 · 103
Morley 289 10.6 4.82 · 102

P4 1,089 54.8 3.87 · 105
Bell 486 36.8 1.19 · 106

P5 1,681 77.0 2.53 · 106
Argyris 694 41.0 6.27 · 105

(b) Biharmonic operator.

Table 1. Sparsity and conditioning information for H 1- and H 2-conforming discretizations of the Laplace and biharmonic operators
on a coarse 8 × 8 mesh.

For the biharmonic operator, we have seen several factors (lower local FLOP count, smaller system, lower bandwidth)
that should contribute to making sparse direct methods far more efficient for the H2 discretizations than for interior
penalty methods. Fig. 15a confirms this hypothesis, with solution of the Argyris element typically being cheaper than
even the P3 interior penalty method, not to mention P5.

4.4 Some advanced examples

4.4.1 The Cahn-Hilliard equation. In this section, we demonstrate the use of these elements on further problems.
First, we consider the two-dimensional Cahn-Hilliard equation, a model of phase separation in binary fluids. Here, the
chemical concentration c satisfies the fourth-order time-dependent equation

∂c

∂t
− ∇ ·M

(
∇
(
d f

dc
− λ∇2c

))
= 0 in Ω. (4.7)

f is some typically non-convex function (in our case, we take f (c) = 100c2(1 − c)2, and λ andM are scalar parameters
controlling rates. Although M = M(c) (the so-called degenerate mobility case) is possible, we have considered just
constantM in our examples. The system is closed with the boundary conditions

M

(
∇
(
d f

dc
− λ∇2c

))
· n = 0 on ∂Ω, (4.8)

Mλ∇c · n = 0 on ∂Ω. (4.9)

The Cahn-Hilliard equation is often re-rewritten into a system of two second-order equations [Barrett and Blowey
1999]. This eliminates the need for a C1 discretization, but it also increases the number of unknowns and introduces a
saddle point into the linear system. Alternatively, one maintains a primal form via an interior penalty method [Wells

Code generation for generally mapped finite elements 17

23 24 25 26 27
10−3

10−2

10−1

100

101

102

N

Ti
m
e
(s
)

(a) Time to factor and solve the sparse linear system for the dis-
crete biharmonic operator on perturbed N ×N mesh, including
one iteration of iterative refinement.

23 24 25 26 27
10−3

10−2

10−1

100

101

102

N

Ti
m
e
(s
)

P2 P3 P4 P5 Morley Bell Argyris

(b) Total solver time for the biharmonic equation on N ×N mesh.
This includes element integration, sparse matrix preallocation
and assembly, and factorization.

Fig. 15. Time to solution for the biharmonic equation. We see that the smaller, sparser H 2 discretizations give a significant advantage
over the equivalent H 1 interior penalty scheme.

et al. 2006], although we have seen above that this leads to larger and less favorable linear systems for fourth-order
operators.

In our simulations, we use a 16 × 16 mesh, but with higher-order elements, this leads to reasonable resolution. In our
example, we use Bell elements, but it is simple to change to Argyris or the lower-order nonconforming Morley element
– one merely changes the requested element in the FunctionSpace constructor. The complete code for simulating
this problem, with the exception of output routines, is shown in Fig. 16. Using Crank-Nicolson time stepping with
∆t = 5 × 10−6, we obtain the final state depicted in Fig. 17b. We remark that visualization for higher-order polynomials
is performed by interpolating the solution onto piecewise linears on a refined mesh.

4.4.2 Chladni plates. As a final example, we consider the Chladni plate problem, which dates back to the eighteenth
century. Chladni, a musician and physicist, discovered beautiful patterns appearing when a metal plate covered with
dust or sand was excited with a violin bow. These patterns, now called Chladni figures, changed dramatically as a
function of pitch. After work by Germain [1821, 1826], Kirchoff [1850] showed Chaldni’s patterns were in fact eigenpairs
of the biharmonic operator under free boundary conditions and was able to give a solution on circular plates where
symmetries offer simplification. Realizing this connection and effectively computing the figures in other geometries
were historically different matters, and it was not until 1909 when Ritz [1909] was able to give the first computation of
Chladni figures for square plates. For many more details, a beautiful historical overview of the computation of Chladni
figures is given by Gander and Wanner [2012].

To compute the Chladni figures, we use Firedrake to assemble the discrete biharmonic eq. (4.5) and mass matrices
using Argyris elements on a 64× 64 mesh of the square domain Ω = [−1, 1]2. These are then fed into SLEPc [Hernandez
et al. 2005]. The eigenpairs of the generalized eigenproblem are then constructed via a shift-and-invert strategy (the

18 Robert C. Kirby and Lawrence Mitchell� �
from firedrake import *
import numpy
mesh = UnitSquareMesh (16, 16)
Set parameters
lmbda = 1e-2
delta_t = 5e-6
theta = 0.5
M = 1
beta = 250
Pick function space
V = FunctionSpace(mesh , "Bell", 5)
c = Function(V)
c0 = Function(V)
Initial conditions
c0.vector ()[::6] = 0.63 + 0.2*(0.5 - numpy.random.random(c0.vector (). local_size () // 6))
c.assign(c0)

c_theta = theta*c + (1 - theta)*c0
dfdc = 200*(c_theta *(1 - c_theta)**2 - c_theta **2*(1 - c_theta))
n = FacetNormal(mesh)
h = CellSize(mesh)
Nonlinear residual
v = TestFunction(V)
F = (inner(c - c0, v)*dx +

delta_t *(inner(M*grad(dfdc), grad(v))*dx +
inner(M*lmbda*div(grad(c_theta)), div(grad(v)))*dx -
inner(M*lmbda*div(grad(c_theta)), dot(grad(v), n))*ds -
inner(M*lmbda*dot(grad(c_theta), n), div(grad(v)))*ds +
inner((beta/h)*M*lmbda*dot(grad(c_theta), n), dot(grad(v), n))*ds))

problem = NonlinearVariationalProblem(F, c)
solver = NonlinearVariationalSolver(problem , solver_parameters ={"ksp_type": "preonly",

"pc_type": "lu"})
t = 0
T = 0.0025
while t < T:

solver.solve()
c0.assign(c)
t += delta_t� �

Fig. 16. Code for solving the Cahn-Hilliard equation with Bell elements.

0.0

0.2

0.4

0.6

0.8

1.0

(a) Initial condition, consisting of small perturbations
of the concentration around c = 0.63.

0.0

0.2

0.4

0.6

0.8

1.0

(b) Final values of the concentration at time t = 0.25,
demonstrating phase separation.

Fig. 17. Snapshots of the concentration field for the Cahn-Hilliard simulation, using the code of Fig. 16.

options are -eps_nev 30 -eps_tol 1e-11 -eps_target 10 -st_type sinvert). We plot the zero contours of a
number of eigenmodes in Fig. 18.

While our extensions now enable succinct solution of a challenging classical problem, Firedrake also enables
us to perform similar analysis in more complex geometric settings beyond the scope of analytic techniques. For
example, consider the guitar-shaped domain illustrated in Fig. 19. We again compute eigenmodes of the plate-bending

Code generation for generally mapped finite elements 19

Fig. 18. Several Chladni figures computed with Argyris elements on a 64 × 64 mesh. These are a subset of those computed in Gander
and Wanner [2012]. The empty top-left figures correspond to the null modes of the operator under free boundary conditions. Figures
for repeated eigenvalues may differ from those presented in other works since there is not a unique orthonormal basis for the
eigenspace.

operator eq. (4.5) on this domain using Morley triangles on a mesh of 17277 vertices and 34536 elements, generated
with gmsh [Geuzaine and Remacle 2009]. In this case, we only leave the boundary free on the sound hole, and use
clamped conditions on the exterior. We remark that studying eigenvalue computation with Morley elements is well-
established [Rannacher 1979] but still receiving research attention [Gallistl 2014; Zhang et al. 2018]. The additional
Nitsche terms are more involved than in the case of eq. (4.2), and the full bilinear form is

ah (u,v) =
∫
Ω
∆u∆v − (1 − ν)

(
2uxxvyy + 2uyyvxx − 4uxyvxy

)
dx

+
β1
h2

∫
∂Ω

uv ds +
β2
h

∫
∂Ω

∆u∆v ds

+

∫
∂Ω

((∆u)n − 2(1 − ν)untt)v ds +
∫
∂Ω

u ((∆v)n − 2(1 − ν)vntt) ds

+

∫
∂Ω

(∆u − 2(1 − ν)ut t)vn ds +
∫
∂Ω

un (∆v − 2(1 − ν)vt t) ds,

(4.10)

where h is again a suitable measure of the mesh cell size, β1 and β2 are positive constants, and •n := (∇•) · n, where
n is the outward pointing unit normal on a facet, similarly for •t , only using the tangent to the facet, obtained by a
counter-clockwise rotation of n. The first twenty-eight eigenmodes of the operator eq. (4.10) are shown Fig. 19. Of
course, this is a very crude approximation of the actual eigenmodes supported by the top plate of a guitar. To guide the
design of an instrument we would, at the very least, need to incorporate the anisotropic properties of wood into the
model, as well as thinking about structural supports such as bass bars and ribbing. Some of these modelling issues are
discussed, in the context of violins, in Gough [2007], and a simple multiphysics guitar model in Tapia [2002]. Here,
however, we leave more involved simulations as future work.

20 Robert C. Kirby and Lawrence Mitchell

Fig. 19. The first twenty-eight eigenmodes, arranged in order of increasing frequency, of the biharmonic operator eq. (4.10) with
clamped boundary conditions on the exterior boundary of the domain, and free conditions on the sound hole. Contour lines are
equally spaced, with negative contours dashed and the zero-contour slightly thicker.

5 CONCLUSIONS AND FUTUREWORK

The key idea of FInAT, that an element library can provide structure and not just numerical values, has made significant
progress possible within the Firedrake code stack. While earlier work on FInAT focused on vector and tensor product
structure, our current work has enabled a wide range of useful finite elements previously inaccessible to automated
code generation systems. Our numerical results indicate that these elements are indeed viable for many interesting
problems. Automation now makes Argyris and other “difficult” finite elements of comparable cost to deploy as any
Lagrange elements.

In the future, we hope to extend this work in many directions. In particular, we need to extend the transformations
and hence code infrastructure to support embedded manifolds [Rognes et al. 2013]. Also, we believe that the extensions
we have developed in FInAT will provide a starting point to consider macro-element techniques for splines and other
more complex elements [Lai and Schumaker 2007].

CODE AVAILABILITY

For reproducibility, we cite archives of the exact software versions used to produce the results in this paper. All major
Firedrake components have been archived on Zenodo [zenodo/Firedrake-20190830.0 2019]. This record collates DOIs
for the components, as well as containing the data and scripts used to produce the results in this paper. An installation

Code generation for generally mapped finite elements 21

of Firedrake with components matching those used to produce the results can be obtained following the instructions at
www.firedrakeproject.org/download.html with

export PETSC_CONFIGURE_OPTIONS="--download-pastix --download-ptscotch"

python3 firedrake-install --doi 10.5281/zenodo.3381901 --slepc --install \

git+https://github.com/thomasgibson/scpc.git@3a1173ebb3610dcdf5090088294a542274bbb73a

A README file in the archived record contains more detailed information.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/L000407/1];
and the National Science Foundation, award number 1525697. Figs. 2 to 6 are adapted from Kirby [2018], licensed under
CC-BY-NC-ND.

REFERENCES
Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. 2014. Unified Form Language: a domain-specific language for

weak formulations of partial differential equations. ACM Trans. Math. Software 40, 2 (2014), 9:1–9:37. https://doi.org/10.1145/2566630 arXiv:1211.4047
Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. 2000. MUMPS: a general purpose distributed memory sparse solver. In

International Workshop on Applied Parallel Computing. Springer, 121–130.
J. H. Argyris, I. Fried, and D. W. Scharpf. 1968. The TUBA family of plate elements for the matrix displacement method. Aeronautical Journal 72 (1968),

701–709. https://doi.org/10.1017/S000192400008489X
Marino Arroyo and Michael Ortiz. 2006. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree

methods. International journal for numerical methods in engineering 65, 13 (2006), 2167–2202.
Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh

Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F. Smith,
Stefano Zampini, Hong Zhang, and Hong Zhang. 2018. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.9. Argonne National Laboratory.

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. 1997. Efficient management of parallelism in object oriented numerical
software libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen (Eds.). Birkhäuser Press, 163–202.
https://doi.org/10.1007/978-1-4612-1986-6_8

Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. 2007. deal.II – a General Purpose Object Oriented Finite Element Library. ACM Trans. Math.
Software 33, 4 (2007), 24/1–24/27. https://doi.org/10.1145/1268776.1268779

John Barrett and James Blowey. 1999. Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comp.
68, 226 (1999), 487–517. https://doi.org/10.1090/S0025-5718-99-01015-7

Kolbein Bell. 1969. A refined triangular plate bending finite element. Internat. J. Numer. Methods Engrg. 1, 1 (1969), 101–122. https://doi.org/10.1002/nme.
1620010108

James H. Bramble and Xuejun Zhang. 1995. Multigrid methods for the biharmonic problem discretized by conforming C1 finite elements on nonnested
meshes. Numerical Functional Analysis and Optimization 16, 7-8 (1995), 835–846. https://doi.org/10.1080/01630569508816649

Susanne C. Brenner. 1989. An optimal-order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal. 26, 5 (1989), 1124–1138.
https://doi.org/10.1137/0726062

Susanne C. Brenner and L. Ridgway Scott. 2008. The mathematical theory of finite element methods (third ed.). Texts in Applied Mathematics, Vol. 15.
Springer, New York.

Philippe G. Ciarlet and Pierre-Arnaud Raviart. 1972. General Lagrange and Hermite interpolation in Rn with applications to finite element methods.
Archive for Rational Mechanics and Analysis 46, 3 (1972), 177–199. https://doi.org/10.1007/BF00252458

Victor Domínguez and Francisco-Javier Sayas. 2008. Algorithm 884: A simple Matlab implementation of the Argyris element. ACM Trans. Math. Software
35, 2 (2008), 16. https://doi.org/10.1145/1377612.1377620

Ricardo Durán and Elsa Liberman. 1992. On mixed finite element methods for the Reissner-Mindlin plate model. Mathematics of computation 58, 198
(1992), 561–573.

Anand Embar, John Dolbow, and Isaac Harari. 2010. Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements.
Internat. J. Numer. Methods Engrg. 83, 7 (2010), 877–898. https://doi.org/10.1002/nme.2863

G. Engel, K. Garikipati, T. J. R Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor. 2002. Continuous/discontinuous finite element approximations of
fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity.
Computer Methods in Applied Mechanics and Engineering 191, 34 (2002), 3669–3750. https://doi.org/10.1016/S0045-7825(02)00286-4

www.firedrakeproject.org/download.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/2566630
http://arxiv.org/abs/1211.4047
https://doi.org/10.1017/S000192400008489X
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1090/S0025-5718-99-01015-7
https://doi.org/10.1002/nme.1620010108
https://doi.org/10.1002/nme.1620010108
https://doi.org/10.1080/01630569508816649
https://doi.org/10.1137/0726062
https://doi.org/10.1007/BF00252458
https://doi.org/10.1145/1377612.1377620
https://doi.org/10.1002/nme.2863
https://doi.org/10.1016/S0045-7825(02)00286-4

22 Robert C. Kirby and Lawrence Mitchell

Michel Fournié, Nicolas Renon, Yves Renard, and Daniel Ruiz. 2010. CFD parallel simulation using GetFEM++ and MUMPS. In European Conference on
Parallel Processing. Springer, 77–88. https://doi.org/10.1007/978-3-642-15291-7_9

Dietmar Gallistl. 2014. Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, 4 (2014), 1779–1811.
https://doi.org/10.1093/imanum/dru054

Martin J. Gander and Gerhard Wanner. 2012. From Euler, Ritz, and Galerkin to Modern Computing. SIAM Rev. 54, 4 (2012), 627–666. https://doi.org/10.
1137/100804036

Sophie Germain. 1821. Recherches sur la théorie des surfaces élastiques. V. Courcier.
Sophie Germain. 1826. Remarques sur la nature, les bornes et l’étendue de la question des surfaces élastiques, et équation générale de ces surfaces. V. Courcier.
Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities.

Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309–1331. https://doi.org/10.1002/nme.2579
Thomas H. Gibson, Lawrence Mitchell, David A. Ham, and Colin J Cotter. 2018. A domain-specific language for the hybridization and static condensation

of finite element methods. arXiv:1802.00303
C. Gough. 2007. The violin: Chladni patterns, plates, shells, and sounds. The European Physical Journal Special Topics 145, 1 (2007), 77–101. https:

//doi.org/10.1140/epjst/e2007-00149-0
Jack S. Hale, Matteo Brunetti, Stéphane P. A. Bordas, and Corrado Maurini. 2018. Simple and extensible plate and shell finite element models through

automatic code generation tools. Computers & Structures 209 (2018), 163–181.
P. Hénon, P. Ramet, and J. Roman. 2002. PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems. Parallel Comput.

28, 2 (2002), 301–321. https://doi.org/10.1016/S0167-8191(01)00141-7
Vicente Hernandez, Jose E. Roman, and Vicente Vidal. 2005. SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans.

Math. Software 31, 3 (2005), 351–362. https://doi.org/10.1145/1089014.1089019
Miklós Homolya, Robert C. Kirby, and David A. Ham. 2017. Exposing and exploiting structure: optimal code generation for high-order finite element

methods. arXiv:1711.02473
Miklós Homolya, Lawrence Mitchell, Fabio Luporini, and David A. Ham. 2018. TSFC: a structure-preserving form compiler. SIAM Journal on Scientific

Computing 40, 3 (2018), C401–C428. https://doi.org/10.1137/17M1130642
Thomas J. R. Hughes, John A. Cottrell, and Yuri Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

Computer methods in applied mechanics and engineering 194, 39-41 (2005), 4135–4195.
David Joyner, Ondřej Čertík, Aaron Meurer, and Brian E. Granger. 2012. Open source computer algebra systems: SymPy. ACM Communications in

Computer Algebra 45, 3/4 (2012), 225–234. https://doi.org/10.1145/2110170.2110185
Robert C. Kirby. 2004. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions. ACM Trans. Math. Software 30, 4 (2004),

502–516. https://doi.org/10.1145/1039813.1039820
Robert C. Kirby. 2018. A general approach to transforming finite elements. SMAI Journal of Computational Mathematics 4 (2018), 197–224. https:

//doi.org/10.5802/smai-jcm.33
Robert C. Kirby, Matthew G. Knepley, Anders Logg, and L. Ridgway Scott. 2005. Optimizing the evaluation of finite element matrices. SIAM Journal on

Scientific Computing 27, 3 (2005), 741–758. https://doi.org/10.1137/040607824
Robert C. Kirby and Anders Logg. 2006. A compiler for variational forms. ACM Trans. Math. Software 32, 3 (2006), 417–444. https://doi.org/10.1145/

1163641.1163644 arXiv:1112.0402
Robert C. Kirby, Anders Logg, L. Ridgway Scott, and Andy R. Terrel. 2006. Topological optimization of the evaluation of finite element matrices. SIAM

Journal on Scientific Computing 28, 1 (2006), 224–240. https://doi.org/10.1137/050635547
Robert C. Kirby and Lawrence Mitchell. 2018. Solver composition across the PDE/linear algebra barrier. SIAM Journal on Scientific Computing 40, 1 (2018),

C76–C98. https://doi.org/10.1137/17M1133208
Gustav Kirchoff. 1850. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik 40 (1850),

51–88. https://doi.org/10.1515/crll.1850.40.51
Ming-Jun Lai and Larry L. Schumaker. 2007. Spline functions on triangulations. Encyclopedia of Mathematics and its Applications, Vol. 110. Cambridge

University Press, Cambridge.
Lizao Li. 2018. Regge finite elements with applications in solid mechanics and relativity. Ph.D. Dissertation. University of Minnesota.
Anders Logg, Kent-Andre Mardal, and Garth N. Wells (Eds.). 2012. Automated solution of differential equations by the finite element method: the FEniCS

book. Vol. 84. Springer. https://doi.org/10.1007/978-3-642-23099-8
Kevin R. Long. 2003. Sundance rapid prototyping tool for parallel PDE optimization. In Large-Scale PDE-Constrained Optimization, Lorenz T. Biegler,

Matthias Heinkenschloss, Omar Ghattas, and Bart van Bloemen Waanders (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 331–341. https:
//doi.org/10.1007/978-3-642-55508-4_20

Fabio Luporini, David A. Ham, and Paul H. J. Kelly. 2017. An algorithm for the optimization of finite element integration loops. ACM Trans. Math.
Software 44, 1 (2017), 3:1–3:26. https://doi.org/10.1145/3054944 arXiv:1604.05872

John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current High Performance Computers. IEEE Computer Society Technical Committee
on Computer Architecture Newsletter (1995), 19–25.

L. S. D. Morley. 1971. The constant-moment plate-bending element. The Journal of Strain Analysis for Engineering Design 6, 1 (1971), 20–24. https:
//doi.org/10.1243/03093247V061020

https://doi.org/10.1007/978-3-642-15291-7_9
https://doi.org/10.1093/imanum/dru054
https://doi.org/10.1137/100804036
https://doi.org/10.1137/100804036
https://doi.org/10.1002/nme.2579
http://arxiv.org/abs/1802.00303
https://doi.org/10.1140/epjst/e2007-00149-0
https://doi.org/10.1140/epjst/e2007-00149-0
https://doi.org/10.1016/S0167-8191(01)00141-7
https://doi.org/10.1145/1089014.1089019
http://arxiv.org/abs/1711.02473
https://doi.org/10.1137/17M1130642
https://doi.org/10.1145/2110170.2110185
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.5802/smai-jcm.33
https://doi.org/10.5802/smai-jcm.33
https://doi.org/10.1137/040607824
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/1163641.1163644
http://arxiv.org/abs/1112.0402
https://doi.org/10.1137/050635547
https://doi.org/10.1137/17M1133208
https://doi.org/10.1515/crll.1850.40.51
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-55508-4_20
https://doi.org/10.1007/978-3-642-55508-4_20
https://doi.org/10.1145/3054944
http://arxiv.org/abs/1604.05872
https://doi.org/10.1243/03093247V061020
https://doi.org/10.1243/03093247V061020

Code generation for generally mapped finite elements 23

Jean-Claude Nédélec. 1980. Mixed finite elements in R3 . Numer. Math. 35, 3 (1980), 315–341. https://doi.org/10.1007/BF01396415
Joachim Nitsche. 1971. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen

unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971), 9–15.
Anna Perduta. 2013. Enhancing MESH adaptation capabilities of GetFEM++ “FEM engine” with MAdLib library. Mechanics and Control 32, 4 (2013), 143.

https://doi.org/10.7494/mech.2013.32.4.143
Christophe Prud’Homme, Vincent Chabannes, Vincent Doyeux, Mourad Ismail, Abdoulaye Samake, and Gonçalo Pena. 2012. Feel++: A computational

framework for galerkin methods and advanced numerical methods. In ESAIM: Proceedings, Vol. 38. EDP Sciences, 429–455.
Rolf Rannacher. 1979. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 1 (1979), 23–42.

https://doi.org/10.1007/BF01396493
Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. McRae, Gheorghe-Teodor Bercea, Graham R. Markall,

and Paul H. J. Kelly. 2016. Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Software 43, 3 (2016),
24:1–24:27. https://doi.org/10.1145/2998441 arXiv:1501.01809

Pierre-Arnaud Raviart and Jean-Marie Thomas. 1977. A mixed finite element method for 2nd order elliptic problems. In Mathematical aspects of finite
element methods. 292–315. https://doi.org/10.1007/BFb0064470

Walter Ritz. 1909. Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern. Annalen der Physik 333, 4 (1909), 737–786.
https://doi.org/10.1002/andp.19093330403

Marie E. Rognes, David A. Ham, Colin J. Cotter, and Andrew T. T. McRae. 2013. Automating the solution of PDEs on the sphere and other manifolds in
FEniCS 1.2. Geoscientific Model Development 6, 6 (2013), 2099–2119. https://doi.org/10.5194/gmd-6-2099-2013

Eduardo Rodrigo Gonzalez Tapia. 2002. Simulating a Classical Acoustic Guitar, Finite Elements and Multiphysics Modelling. Ph.D. Dissertation. KTH Royal
Institute of Technology.

Ming Wang and Jinchao Xu. 2013. Minimal finite element spaces for 2mth-order partial differential equations in Rn . Math. Comp. 82, 281 (2013), 25–43.
Garth N. Wells, Krishna Garikipati, and Luisa Molari. 2004. A discontinuous Galerkin formulation for a strain gradient-dependent damage model.

Computer Methods in Applied Mechanics and Engineering 193, 33-35 (2004), 3633–3645. https://doi.org/10.1016/j.cma.2004.01.020
Garth N. Wells, Ellen Kuhl, and Krishna Garikipati. 2006. A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 2 (2006),

860–877. https://doi.org/10.1016/j.jcp.2006.03.010
Jinchao Xu. 1996. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56, 3 (1996), 215–235.

https://doi.org/10.1007/BF02238513
zenodo/Firedrake-20190830.0 2019. Software used in ’Code generation for generally mapped finite elements’. https://doi.org/10.5281/zenodo.3381901
Shuo Zhang, Yingxia Xi, and Xia Ji. 2018. A multi-level mixed element method for the eigenvalue problem of biharmonic equation. Journal of Scientific

Computing 75 (2018), 1415–1444. https://doi.org/10.1007/s10915-017-0592-7

https://doi.org/10.1007/BF01396415
https://doi.org/10.7494/mech.2013.32.4.143
https://doi.org/10.1007/BF01396493
https://doi.org/10.1145/2998441
http://arxiv.org/abs/1501.01809
https://doi.org/10.1007/BFb0064470
https://doi.org/10.1002/andp.19093330403
https://doi.org/10.5194/gmd-6-2099-2013
https://doi.org/10.1016/j.cma.2004.01.020
https://doi.org/10.1016/j.jcp.2006.03.010
https://doi.org/10.1007/BF02238513
https://doi.org/10.5281/zenodo.3381901
https://doi.org/10.1007/s10915-017-0592-7

	Abstract
	1 Introduction
	2 Overview of transformation theory
	3 Incorporating transformations in the Firedrake stack
	3.1 Inserting the transformation matrix
	3.2 Boundary conditions

	4 Examples
	4.1 Convergence on model problems
	4.2 Cost of forming element matrices
	4.3 Building and solving global systems
	4.4 Some advanced examples

	5 Conclusions and future work
	Acknowledgments
	References

