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ABSTRACT

With the explosive growth of the e-commerce industry, detecting
online transaction fraud in real-world applications has become
increasingly important to the development of e-commerce plat-
forms. The sequential behavior history of users provides useful
information in differentiating fraudulent payments from regular
ones. Recently, some approaches have been proposed to solve this
sequence-based fraud detection problem. However, these methods
usually suffer from two problems: the prediction results are difficult
to explain and the exploitation of the internal information of behav-
iors is insufficient. To tackle the above two problems, we propose a
Hierarchical Explainable Network (HEN) to model users’ behavior
sequences, which could not only improve the performance of fraud
detection but also make the inference process interpretable.

Meanwhile, as e-commerce business expands to new domains,
e.g., new countries or new markets, one major problem for modeling
user behavior in fraud detection systems is the limitation of data
collection, e.g., very few data/labels available. Thus, in this paper,
we further propose a transfer framework to tackle the cross-domain
fraud detection problem, which aims to transfer knowledge from
existing domains (source domains) with enough and mature data
to improve the performance in the new domain (target domain).
Our proposed method is a general transfer framework that could
not only be applied upon HEN but also various existing models in
the Embedding & MLP paradigm.

By utilizing data from a world-leading cross-border e-commerce
platform, we conduct extensive experiments in detecting card-
stolen transaction frauds in different countries to demonstrate the
superior performance of HEN. Besides, based on 90 transfer task ex-
periments, we also demonstrate that our transfer framework could
not only contribute to the cross-domain fraud detection task with
HEN, but also be universal and expandable for various existing
models. Moreover, HEN and the transfer framework form three-
level attention which greatly increases the explainability of the
detection results.

*Fuzhen Zhuang and Bowen Song are corresponding authors.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °20, April 20-24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380172

CCS CONCEPTS

« Security and privacy — Economics of security and privacy;
« Computing methodologies — Supervised learning by clas-
sification.

KEYWORDS

Fraud Detection, Transfer, Hierarchical, Explainable

ACM Reference Format:

Yongchun Zhu®?3, Dongbo Xi'*?3, Bowen Song®, Fuzhen Zhuang'?, and Shuai
Chen?®, Xi Gu® and Qing He®2. 2020. Modeling Users’ Behavior Sequences
with Hierarchical Explainable Network for Cross-domain Fraud Detection.
In Proceedings of The Web Conference 2020 (WWW °20), April 20-24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3366423.3380172

1 INTRODUCTION

With the rapid growth of information technologies, e-commerce
has become prevalent nowadays. A large online e-commerce web-
site serves millions of users with numerous products and services
everyday, providing them a convenient, fast, and reliable manner
of shopping, service acquisition, reviewing, comment feedback,
etc. Unfortunately, the problem of online transaction fraud has be-
come increasingly prominent, putting the finance of e-commerce
at risk [6]. Online fraud activities have caused a loss in billions of
dollars 1.
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Figure 1: The sequence-based fraud detection task which ex-
ploits the historical behavior sequence to help the predic-
tion of the target payment event. We have 6 classes of events
(e.g., sign up, sign in, payment, etc) and the target event is a
payment event.

Detection of real-time online fraud is critical to the development
of e-commerce platforms. To solve the fraud detection problem,
many approaches have been proposed [2, 3, 5, 8, 24, 39]. However,
these approaches did not consider the sequential behavior history
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of users, which has been utilized in many studies [16, 37] to improve
the performance of the fraud detection system. Such sequence pre-
diction task exploits the users’ historical behavior sequences to
help differentiate fraudulent payments from regular ones, as shown
in Figure 1. For the sequence prediction task, some effective mod-
els have been proposed to capture the sequential information in
user’s behavior history, such as Markov Chains based methods [40],
convolutional neural networks based methods [30], and recurrent
neural networks based methods [16, 37]. These methods utilize
sequential information to further improve performance. However,
(1) The prediction results are difficult to explain for these methods.
(2) They focus more on the sequential information of the behaviors,
but fail to thoroughly exploit the internal information of each be-
havior, e.g., only the first-order information of fields’ embeddings
is used to represent events [16, 37, 40].

In order to tackle the above two problems, we propose a Hi-
erarchical Explainable Network (HEN) to model users’ behavior
sequences, which could not only improve the performance of fraud
detection but also help answer this “why”. HEN contains two-level
extractors: 1) Field-level extractor extracts the representations of
behavior events that contain both first- and second-order informa-
tion from the embedding of fields, and it learns to choose infor-
mative fields, e.g., the card-related fields would be more important
than the time-related fields. 2) Event-level extractor extracts the
representations of users’ historical behavior sequences from the
representations of behavior events and could score the event im-
portance. Besides, the wide layer of HEN could help to identify the
specific value of fields with high-risk/low-risk, which could be used
as whitelist/blacklist.

In this paper, the fraud detection dataset is collected from one
of the world-leading cross-border e-commerce companies. As its
e-commerce business expands to new domains, e.g., new countries
or new markets, one major problem for modeling users’ behavior
in fraud detection systems is the limitation of data collection, e.g.,
very few data/labels available.

Hence, we introduce cross-domain fraud detection, which aims
to transfer knowledge from existing domains (source domains)
with enough and mature data to improve the performance in the
new domain (target domain). The main challenges of the cross-
domain fraud detection problem are elaborated as follows: (1) In
our problem, the source and target domains share some knowledge
but also have some specific characteristics, e.g., the IP address of
different countries are different, while the card type is shared. (2)
For the prediction of different samples, the weight of the shared
and specific knowledge would be different. (3) Due to the domain-
specific knowledge, the distributions of source and target samples
can differ in many ways.

Due to these challenges, modeling users’ behavior sequences
with a single structure, as shown in most previous cross-domain
works [9, 20, 28, 38], could not meet the demand of our fraud de-
tection task, because it only learns shared representations with-
out paying attention to domain-specific knowledge. To tackle the
cross-domain fraud detection problem, we propose three important
aspects: (1) The network should be divided into two parts to cap-
ture domain-shared and domain-specific knowledge, respectively.
(2) Domain attention is useful to automatically learn the weights
of domain-shared and domain-specific representations for each
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sample. (3) Existing marginal [9, 20, 28] and conditional [21, 38]
alignment methods are not suitable for the cross-domain fraud
detection tasks which suffer extremely unbalanced categories prob-
lem. To this end, we propose Class-aware Euclidean Distance which
considers both intra- and inter-class information. Along this line,
we propose a general transfer framework that can be applied upon
various existing models in the Embedding & MLP paradigm.

The main contributions of this work are summarized into three
folds:

e To solve the sequence-based fraud detection problem, we
propose hierarchical explainable network (HEN) to model
users’ behavior sequences, which could not only improve
the performance of fraud detection but also give reasonable
explanations for the prediction results.

o For cross-domain fraud detection, we propose a general trans-
fer framework that can be applied upon various existing
models in the Embedding & MLP paradigm.

e We perform experiments on real-world datasets of four coun-
tries to demonstrate the effectiveness of HEN. In addition, we
demonstrate our transfer framework is general for various
existing models on 90 transfer tasks. Finally, we conduct case
study to prove the explainability of HEN and the transfer
framework.

2 RELATED WORK

In this section, we will introduce the related work from three as-
pects: Fraud Detection, Sequence Prediction, Transfer Learning.

Fraud Detection: Researchers have investigated in fraud detec-
tion problems for a long time. Early explorations of fraud detec-
tion focus on rule-based methods. Quinlan [25] and Cohen [5]
introduced assertion statement of IF {conditions} and THEN {a con-
sequent} to recognize fraud records. Association rules have been
applied to detect credit card fraud [3]. Rosset et al. [27] presented a
two-stage rules-based fraud detection system to detect telephone
fraud.

However, fraudulent behaviors change over time, which greatly
deteriorates the effectiveness of rules summarized by expert expe-
rience. Recently, with millions of transaction data available, more
and more data-driven and learning-based methods are applied for
the fraud detection problem. SVM-based ensemble strategy was
utilized for detecting telecommunication subscription fraud and
credit fraud [34]. Some fraud detection works focused on using
graphs for spotting frauds [31, 32]. Convolutional neural network
(CNN) has been applied for credit card fraud detection [8]. Some
works used recurrent neural networks for sequence-based fraud
detection [16, 37, 40]. In this paper, we also focus on sequence-
based fraud detection, and compare our HEN with the RNN based
methods in experiments.

Sequence Prediction: Sequence prediction [15, 18] is a kind of
prediction problem which exploits the users’ historical behavior
sequences to help prediction. He et al. [11] combined similarity-
based models with high-order Markov chains to make personalized
sequential recommendations. Tang et al. [30] proposed to apply
the convolutional neural network (CNN) on the embedding se-
quence, where the short-term contexts can be captured by the
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convolutional operations. Some works [16, 37, 40] exploited recur-
rent neural networks for sequence-based fraud detection. Zhou et
al. [41] exploited an attention module for sequence recommenda-
tion. Besides, a method called Multi-temporal-range Mixture Model
(M3) [29] has been proposed to apply a dense layer to extract behav-
ior representation from the embedding of fields, and then employ
a mixture of models to deal with both short-term and long-term
dependencies. Nevertheless, these studies focus on the sequential
information without effectively exploiting the internal information
of each behavior. In addition, most of these methods ignore the im-
portance of explainability while our HEN is able to give reasonable
explanations for the prediction results.

Transfer Learning: Transfer learning aims to leverage knowl-
edge from a source domain to improve the learning performance
or minimize the number of labeled examples required in a target
domain [23, 46]. Some transfer methods have been widely adopted
for many problems, such as pre-training a model on a large dataset
and then fine-tuning on the target task [13]. However, the improve-
ment of such general transfer methods is limited. Recently, transfer
learning on computer vision and natural language process has at-
tracted the attention of amounts of researchers [9, 20, 28, 35, 45].
These approaches largely improve performance, but most of them
have not been used for practical industrial problems. There are
some transfer approaches for practical industrial problems, such as
cross-domain recommendation [14], adaptively handwritten Chi-
nese character recognition [44], passenger demand forecasting [1].
However, to the best of our knowledge, this is the first work to
propose cross-domain fraud detection.

3 HIERARCHICAL EXPLAINABLE NETWORK

3.1 Problem Statement

Given a user’s behavior event sequence E = [eq, ez, - - , eT]|, where
T is the the length of the sequence. Each behavior event e has n
fields, such as IP_address, Event_category, Issuer, etc. The behavior
event is denoted as e; = [x{,xé, co,xt],(1 £t < T), where xl.[
denotes the value of the i-th field. The task is to predict whether the
target payment event er is fraud (y = 1 denotes e is fraud) with
the user’s historical behavior event sequence [eq, e, - -+ ,er—1] and
available information of the target event er. In such setting, the
task can be formulated as a binary prediction task.

3.2 Look-up Embedding

Look-up embedding has been widely adopted to learn dense repre-
sentations from raw data for prediction [12, 30]. In practice, we have
two types of fields, categorical fields that have a limited number of
distinct values (such as Issuer, Event_category) and numerical fields
which are continuous values (such as Balance_amount). For the
two types of fields, the methods of look-up embedding are different.
We formulate the embedding matrix or the look-up table of the i-th
field as:

1

© R™*k  the i-th field is categorical field
! Rk the i-th field is numerical field

where k denotes the dimension of the embedding vectors, and
m denotes the number of distinct values in a categorical field
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{1,2,---, m}. Then, we obtain the embedding vector of xl.t by:

P d; [xlt] the i-th field is categorical field
. = N
! xl.t X ®; the i-th field is numerical field

@)
where ©; [xit ] denotes the xl.t -th row of @;.

3.3 Field-level Extractor

The field-level extractor aims to extract the event representations
from the embedding vectors of fields. However, some existing meth-
ods [29, 37, 40] only use a simple dense layer and the embedding
concatenation as the field-level extractor, which could not effec-
tively extract the internal information of each behavior event. In
addition, the results of the above methods are hard to interpret. We
aim to design a novel field-level extractor that could not only ex-
tract the internal information of each behavior event more effective
but also score the importance of different fields.

Recent studies [12, 19, 26, 36] find that the high-order feature
interaction is very useful. Inspired by the success of factorization
machines [26] which captures the second-order feature interac-
tion, we design a novel field-level extractor that captures both the
first- and second-order feature interaction, and the event repre-
sentations could be fed into the event-level extractor and MLP to
capture higher-order feature interaction. The field-level extractor
is formulated as:

n n
et:waUf+Z Z U:-‘ij», (3

n
i=1 i=1 j=i+1

e; € R¥ denotes the event embedding of the ¢-th event e;, and vlf
denotes the i-th field embedding of the ¢-th event. © represents
Hadamard product. wf is the attention weight for uf which is com-
puted as:
exp (a,)
Wi @
Zj:l exp (axj)

where a; , is a learnable parameter for the embedding of xl.t of the

i-th field. In other words, for each value of each categorical field
and each numerical field, the model learns a learnable parameter.
Note that for all values xl.t of a numerical field, the ai, is the same

i

parameter (not related to the values of xl.t )- Due to all pairwise
interactions need to be computed, the complexity of straight for-
ward computation of Equation 3 is in O(kn?). Actually, it can be
reformulated to linear runtime O(kn) [26]:

n 2 n
1
e; = E witvf+§ —Z(uf)z . (5)
i=1 i

i=1
Our field-level extractor is able to choose informative fields.
w! = [w{, -+, wh] indicates the attention distribution of field em-
beddings that could explain which field embedding is more impor-

tant to represent event embedding.

t
Y;
1

n

3.4 Event-level Extractor

The event-level extractor aims to extract the sequence embedding
from the historical event embedding vectors [ey, - - - ,er_1]. Some
existing approaches [11, 30, 37, 40] use such as Markov chains, CNN,
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Figure 2: The structure of hierarchical explainable network.
RNN as the event-level extractor. These methods only capture the where ¢;(-) € R(i € {1,---,n}) indicates the mapping function

sequential information, however, they suffer from the problem of
lacking explainability. With the attention mechanism, we design
an explainable event-level extractor as:

T-1
s= ) ufiler), ©)
t=1

where u; is the attention weight which is formulated as:

P fz(eti,/f:«x(et) > = Tejp(ut)A ’ @
k )y j=1 €XP (”j)
where < -,- > denotes the inner product. fi(-), f2(-) and f3(-)
represent the feed-forward networks to project the input event
vector e; to one new vector representation. Actually, there are lots
of ways to design fi(-), f2(-) and f3(-). In this paper, we use one
simple dense layer as fi(-), f2(:) and f3(-).

With the attention mechanism, our event-level extractor is able
to score the event importance, and from the score, we could find
which event is more important to represent the sequence embed-
ding. To analyze the score of fraud samples, we could find some
high-risk behavior sequences.

3.5 Prediction and Learning

We concatenate the sequence embedding s and the target event
embedding er as [s, er]. And then, we feed [s, er] into a multi-layer
perceptron (MLP) to get the final prediction 7:

9 = Sigmoid (MLP([s,eT]) +l(er)), (8)
where [(-) is the linear part just like the “wide” part in Wide &

Deep [4] to capture the first-order information:

n

ler) = ) ei(x]) +co, ©

i=1

of the i-th field which could denote the importance of the feature.
Actually, ¢;(+) is a look-up embedding layer as Section 3.2 with the
dimension k = 1. With the fraud sample e, it is easy to understand
that the value of ¢; (xl.T) should be big. Hence, the wide layer of HEN
could help to identify specific value of fields with high-risk/low-risk,
which could be used as whitelist/blacklist. For example, the i-th
categorical field has two distinct values x1, x2, and ¢; (x1) > ¢;(x2)
indicates xj is higher-risk than x;.

For binary prediction tasks, we need to minimize the negative
log-likelihood:

10 = -+ (E%]E;ylogw (1-ylog1-9). (10

where N is the number of samples, y is the label of sample e, § is
the parameters set and D is the dataset. The overall structure of
HEN is shown in Figure 2.

4 GENERAL TRANSFER FRAMEWORK

4.1 Definition of Cross-domain Fraud
Detection

In cross-domain fraud detection problem, we are given a source

domain D¢ = {(E}"°, yf”)}fil of N*7¢ labeled samples (E;™

has the same definition as Section 3.1 and y;" denotes the la-

bel of e3¢ in E{"°). Similarly, we have a target domain D9t =
N9 tgt

((EM" yt9ty) Merain | (B! )y Ntest Note that N'9 < N*7€ which

is also called semi-supervised transfer problem [33]. The transfer

task aims to improve the model performance on the unlabeled test

tgt N
set {(E;%")},fest with the help of D*"¢.
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Figure 3: The structure of the general transfer framework

for cross-domain fraud detection.

4.2 The Strategy of Embedding

We find that some fields of different domains have unshared values,
such as IP_address, City, while some fields share the same values,
such as Event_category, Card_type. In addition, we conduct experi-
ments to train a model on D*, and the performance of the model on
tgt

{(Ef )}Z’fys’ is unsatisfying. The main reason for the unsatisfying
performance is that models trained on source samples could not
learn the embedding of the unshared fields. Hence, we consider to
share the embedding of the fields’ shared values and learn the em-
bedding of the unshared values respectively (named domain-shared
embedding layer as shown in Figure 3).

With more samples, the domain-shared embedding layer could
learn the shared embedding better. However, it has some negative
influence. For example, even though the Issuer bank information is
shared by both domains, the Issuer distribution of the fraudsters
may differ a lot in the two domains. Since the source samples are
much more than the target samples, the domain-shared embedding
would more focus on Issuerl which would lose the domain-specific
information. Hence, we also design a source- and target-specific
embedding layer to capture the domain-specific information.

4.3 Shared and Specific behavior sequence
extractor

The behavior sequence extractor aims to extract the sequence fea-
ture from the embedding of fields for prediction. It is easy to con-
sider sharing the behavior sequence extractor for all domain-shared,
source- and target-specific embedding. However, there are two bot-
tlenecks with single shared behavior sequence extractor: (1) The
distributions of the domain-shared, source- and target-specific em-
bedding are completely different, which may affect the performance
of the network. (2) The shared behavior sequence extractor could
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not capture all sequential information of both domains, and it misses
some domain-specific sequential information.

Hence, we propose domain-shared and domain-specific behavior
sequence extractors as shown in Figure 3. There are three main
advantages of the structure: (1) The domain-shared behavior se-
quence extractor focuses on common sequential information. (2)
The target-specific extractor can make up for the disadvantages
of the domain-shared extractor which ignores the target-specific
knowledge, and it could capture sufficient target-specific sequential
information. (3) The source-specific extractor could capture suffi-
cient source-specific sequential information. Here, we formulate

the representations extracted by domain-shared, target-specific and

tgt _src

source-specific extractors as zgp e Zspes Zspes

respectively.

4.4 Domain Attention

The shared behavior sequence extractor could extract sequence
representations that contain domain-shared sequential information.
In addition, the domain-specific behavior sequence extractor could
extract more specific sequential information which could make up
for the disadvantages of the domain-shared extractor. By combining
the two representations zspgpe, Zspe, it could contain more useful
knowledge. The simplest methods to combine the two representa-
tions are such as average and concatenation. However, for different
samples, the weights of the shared and specific knowledge would
be different. Meanwhile, they could not explain from which part
the knowledge is more important for target prediction. Hence, we
also propose a domain attention mechanism to combine the two
representations:

2 = bgharegl (Zghare) + bgpegl (ZgPE)’ (1
where o € {tgt, src} denotes the domain of the representations z,
and b° is the attention weight which is formulated as:

< 0 0 > ()
Z;Z _ 92<Zp)’ 93(Zp) , b; _ _ exp (bp) _ , (12)
Vk exp (B9, ) +exp (b2,,)
where p € {share, spe}, g1(-), g2(+) and g3(-) are the feed-forward
networks to project the input representations z to new representa-
tions. Domain attention module is capable of learning the impor-
tance of domain-shared and domain-specific representations.

4.5 Aligning Distributions

Note that the distributions of representations z°"¢ and z*9* are dif-
ferent. We could feed them into a source MLP and a target MLP,
respectively. However, we find the performance is unsatisfying,
and the reason would be the limitation of target samples which
lead to the target MLP overfitting. Thus we consider aligning the
distributions of representations z°"¢ and z'9’, and feeding them
into the same MLP to avoid overfitting. Most existing transfer ap-
proaches [9, 20, 28, 33, 38] aim to align the marginal and conditional
distributions. However, in our scenario, the class distribution is ex-
tremely unbalanced that the number of non-fraud samples is about
100 times more than fraud samples. Hence, aligning the marginal
and conditional distributions would lead to unsatisfying perfor-
mance. For our scene, we propose Class-aware Euclidean Distance
which explicitly takes the class information into account and mea-
sures the intra-class and inter-class discrepancy across domains.

src tgt
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First, we formulate Euclidean Distance between two classes as:

01 02 2
) N, . Ne;
o o o
AD, D) = |lor D 7~ Q50| (1)
€1 i=1 2 i=1

where c; and ¢y denote the class label (fraud and non-fraud), and
N;’;, N, 02 . represent the numbers of samples of classes ¢y, c2 in 01 and
02 domams respectively. The d(Dg!, D;?) denotes the Euclidean
Distance between the embeddings of class ¢1 in 01 domain and class
¢2 in 02 domain. Note that 01 and 0, could denote the same domain.
Then, we formulate Class-aware Euclidean Distance as:

Seefor) d(DF¢, D)

A(Dsrc)z)tgt) — o >
201 e{src,tgt} Zoze{src,tgt} d(DCZOs Dc:l

5

(14)
where the numerator represents the sum of intra-class distance and
the denominator denotes the sum of inter-class distance. Existing
transfer methods that align marginal distributions ignore the class
information [20, 28, 33]. The transfer methods which match con-
ditional distributions consider the intra-class information without
considering the inter-class information [38]. By minimizing the left
part of Equation (14), the intra-class domain discrepancy is min-
imized to compact the feature representations of samples within
a class, whereas the inter-class domain discrepancy is maximized
to push the representations of each other further away from the
decision boundary. Hence, Class-aware Euclidean Distance could
achieve better performance in our scene.

4.6 Apply The General Transfer Framework
upon Various Models

The general transfer framework as shown in Figure 3 could be
applied upon various existing models in the Embedding & MLP
paradigm. The most important thing to apply the transfer frame-
work is to define the behavior sequence extractor. For our HEN,
the behavior sequence extractor contains a field-level extractor and
an event-level extractor as shown in Figure 2. For neural factoriza-
tion machines (NFM) [12], we use the FM module as the behavior
sequence extractor. For wide & deep [4], we use a dense layer as
the behavior sequence extractor. For all models, we feed the out-
put of the behavior sequence extractor into an MLP to get the
final prediction. Other details are easy to understand as shown in
Figure 3.

The training mainly follows the back-propagation algorithm.
The target loss is formulated as:

L=Ls+ ALy, (15)

where A is a trade-off parameter, L.j; denotes the classification
loss and L, denotes the domain adaptation loss. In this paper,
we choose the Class-aware Euclidean Distance in Equation (14)
as Ly,. Ljs can choose most classification loss, such as negative
log-likelihood, Least Square loss, Pair-wise loss. In this paper, we
adopt negative log-likelihood for training as Equation (10).
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Table 1: The statistics of datasets. #pos and #neg mean

the number of fraud and non-fraud samples. #pos ratio =
#pos

Fpos+ineg #fields and #events mean the number of fields and

events, respectively. #avglen represents the average length

of historical event sequences.

Dataset #pos #neg #posratio #fields #events #avglen

C1 10K 1.93M 5.2%o 56 3.57TM 4.94
C2 42K 1.48M 2.8%0 56 3.91M 4.73
C3 15K 1.37M  10.8%. 56 428M  14.97
C4 57K 174K 31.7%. 56 353K 4.91

I
l l

Figure 4: Supervised classification SPAUCppr<14 on four
countries.
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5 EXPERIMENT
5.1 Datasets

The fraud detection dataset 2 is collected from one of the world-
leading cross-border e-commerce company, which utilizes the risk
management system to detect the transaction frauds. The dataset
contains the card transaction samples from four countries (C1, C2,
C3, C4), across a timespan of 10 weeks in 2019. For samples in each
country, we utilize users’ historical behavior sequences of the last
month. The task is to detect whether the current payment event
is a card-stolen case, with knowing users’ historical sequential
information. The fraud labels are collected from the chargeback
reports from card issuer banks (e.g., the card issuer receives claims
on unauthorized charges from the cardholders and report related
transaction frauds to the merchants) and label propagation (e.g.,
the device and card information are also utilized to mark similar
transactions). The details of the dataset are listed in Table 1.

%In order to comply with the data protection regulation in each country, multiple
approaches have been taken in the data processing step, which include but are not
limited to: personally identifiable information (PII) encrypted with salted MD5, data
abstraction, data sampling, etc. By doing so, no original data could be restored and the
statistics in this manuscript does not represent any the real business status. Meanwhile
the dataset is generated only for research purpose in our study and will be destroyed
after the experiments.
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Figure 5: Supervised classification SPAUCFpr<14 on C4 with
different split of the dataset C4.

5.2 Base Models

To show the effectiveness of HEN, we choose 4 prediction models
as baselines.

e W & D [4]: In real industrial applications, Wide & Deep
model has been widely accepted. It consists of two parts:
i) wide model, which handles the manually designed cross-
field features, ii) deep model, which automatically extracts
nonlinear relations among features.

o NFM [12]: It is a recent state-of-the-art simple and efficient
neural factorization machine model. It feeds dense embed-
ding into FM, and the output of FM is fed to MLP for captur-
ing higher-order feature interactions.

e LSTM4FD [37, 40]: Some work has applied LSTM for the
sequence-based fraud detection tasks, and we called these
methods as LSTM4FD.

e M3R [29]: It is a most recent hierarchical sequence-based
model (M3R and M3C) which deals with both short-term and
long-term dependencies with mixture models. We choose
the better hierarchical model M3R as the baseline.

Note that our transfer framework is a general framework that can
be applied upon various existing models in the Embedding & MLP
paradigm. To show the compatibility of our transfer framework, we
apply our transfer framework upon both non-hierarchical models
(W & D, NFM) and hierarchical models (LSTM4FD, M3R, HEN). For
W & D, we add a dense layer as the behavior sequence extractor
before MLP. For NFM, we use the FM as the extractor before MLP.
For hierarchical models, we use the combination of event-level and
field-level extractor as the behavior sequence extractor.

5.3 Experimental Set-Up

5.3.1 Dataset splits. The dataset contains the card transaction sam-
ples from four countries across the same time span of 10 weeks in
2019. Then, for each country, we sort all users’ prediction events ac-
cording to timestamp order, taking the first 5 weeks as the training
set, the following 2 weeks as the validation set and the remaining 3
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weeks as the test set. To demonstrate the effectiveness of HEN, we
run standard supervised prediction experiments on the dataset of
four countries.

The e-commerce of the company expands to C4 recently, and it
is easy to find that the size of the C4 dataset is much smaller than
the other three countries. Hence, we use C4 as the target domain
and the other three countries (C1, C2, C3) as source domains. To
prove our transfer framework is widely applicable, we use [0.5, 1,
2,3, 4, 5] weeks of the training set of each country as new training
sets (six divisions) with the validation and test sets unchanged. For
transfer experiments, we use the same divisions of source and target
training sets to train the model and then evaluate the performance
on the target domain.

5.3.2  Evaluation metric. In binary prediction tasks, AUC (Area
Under ROC) is a widely used metric [7]. However, in our real
card-stolen fraud detection scenario, we should increase the re-
call rate, while avoid disturbing the normal users as few as possible.
In other words, the task is improving the True Positive Rate (TPR)
on the basis of low False Positive Rate (FPR). In our scenario, we
should pay attention to partial AUC (AUCFpR<maxfpr) Which de-
notes the area of the head of the ROC curve when the FPR < maxfpr.
While the maxfpr is very low, AUCEpR <maxfpr has a small range
of variation which makes it difficult to compare the performance
of the model. Therefore, we adopt the standardized partial AUC
(SPAUCFPRSmaxfpr) [22]:

1 AUCFPRSmaxfpr — minarea
SPAUCFPRSmaxfpr =7

maxarea — minarea

where maxarea = maxfpr, (16)

. 1 2
minarea = - X maxfpr-.

It is easy to understand the range of SPAUCFpR <maxfpr is 0.5 to
1 (we assume the prediction by models is better than stochastic
prediction). In practice, we require FPR to be less than 1%. Hence,
in this paper, we use SPAUCppr <14, for all experiments.

5.3.3 Implementation Details. For a fair comparison, we use the
same setting for all methods. The MLP in these models use the
same structure with two dense layers (hidden units 64), and the
LSTM in both LSTM4FD and M3R is the Bi-LSTM [10] with a single
layer. The dimensionality of embedding vectors of each input field
is fixed to 16 for all our experiments. In addition, we set: learning
rate of 0.005, maximum number of events T = 10, dropout (keep
probability 0.8). Besides, there is a clear class imbalance in the
dataset as shown in Table 1, so we upsample the positive sample to
5 times. For non-hierarchical models, we combine all the features of
user’s events (history events and the current payment event) as the
input. Following [9, 20], instead of fixing the adaptation factor 4,
we gradually change it from 0 to 1 by a progressive schedule: 19 =
Wilw) — 1, and 0 denotes the training step. We do not perform
any datasets-specific tuning except early stopping on validation sets.
Training is done through stochastic gradient descent over shuffled
mini-batches with the Adam [17] update rule. For each task, we
report the SPAUCEPR <maxfpr and 95% confidence intervals on ten
random trials.
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Figure 6: The results (SPAUCFpR <17) of the transfer experiments on 3 (source countries) X 5 (models) X 6 (divisions) = 90 tasks.

5.4 Results

5.4.1 Standard supervised prediction tasks. We demonstrate the
effectiveness of our HEN on standard supervised prediction tasks
of two parts. (1) We run experiments on the four countries with 5
weeks of data as training sets, and the results are shown in Figure 4.
(2) We conduct experiments on the C4 with training sets of six
different divisions, and the results are shown in Figure 5 (the results
are the baseline of transfer tasks). The experimental results further
reveal several insightful observations.

o With different countries or different divisions, HEN outper-
forms all compared methods which demonstrates the effec-
tiveness of HEN. The improvement mainly comes from the
hierarchical structure and higher-order feature interactions.

e Hierarchical models could achieve better performance on
sequence-based fraud detection tasks. For the models with
higher-order feature interactions, HEN which is a hierarchi-
cal model outperforms the non-hierarchical models NFM.
For the models only considering the first-order feature, hier-
archical LSTM4FD and M3R outperform non-hierarchical W
& D on most tasks.

o Considering higher-order feature interactions could improve
the performance. Comparing non-hierarchical models W &
D and NFM, NFM which considers higher-order feature in-
teractions achieves a better result. The comparison results
among HEN and LSTM4FD, M3R could draw the same con-
clusion.

o On the tasks of C1, C2, C3, M3R achieves better results except
for HEN. However, on most tasks of C4, the performance of
M3R is worse than NFM, LSTM4FD. We conjecture that the

field-level of M3R is a dense layer that would be overfitting
on small datasets.

5.4.2 Transfer tasks. Our transfer framework is a general frame-
work that can be applied upon various existing models in the Em-
bedding & MLP paradigm. Thus we apply the transfer framework
on HEN, M3R, LSTM4FD, NFM, W & D. Besides, we use three coun-
ties (C1, C2, C3) as the source domains while the country C4 which
has much fewer samples as the target domain. In order to prove that
our transfer framework is applicable to different sizes of training
sets, we use the six divisions of training sets ({0.5, 1, 2, 3, 4, 5} weeks).
Note that the training sets of source and target domains should be
in the same time period, e.g., both C1 and C4 use 3 weeks training
samples as the training set. We conduct transfer experiments on 90
tasks (3 X 5 X 6 = 90, 3 source countries, 5 base models, 6 divisions).
The results of the transfer experiments are shown in Figure 6, and
the red lines are the baselines which only use the target training set
to train model, also shown in Figure 5. From the results, we have
the following findings:

e On most tasks, our transfer framework is effective to improve
the performance of the base models which also demonstrates
the transfer framework can be applied upon various existing
models in the Embedding & MLP paradigm.

e Comparing with C1 and C2 as source domains, the perfor-
mance of the transfer framework with C3 as the source do-
main is unsatisfying. The reason would be that C1 and C2
are more similar to the target country C4, while C3 is more
different from C4. As shown in Table 1, the average length
of the historical behavior sequences of C3 is 14.97, while the
other three countries are about 4.8.
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Table 2: Results (SPAUCppr<14) of ablation study on transfer tasks from dataset C1 to dataset C4 based with HEN.

Methods 3days 1week 2weeks 3weeks 4weeks 5weeks avg
target 0.8534+0.0173  0.8811%+0.0232  0.8971%£0.0111  0.9009+0.0117  0.9105%+0.0099  0.9050+0.0171  0.8913
source 0.5724+0.0230  0.5732%0.0272  0.5909+0.0576  0.5877+0.0334  0.5474+0.0393  0.5705+0.0419  0.5737

pretrain 0.8639+0.0047  0.8920+0.0066  0.8983+0.0115  0.9120+0.0051  0.9172%+0.0064  0.9191£0.0054  0.9004

domain-shared 0.8811+0.0110  0.8995+0.0119  0.9025+0.0153  0.9157+0.0109  0.9204+0.0068  0.9194+0.0067  0.9065
our structure 0.8801+0.0101  0.9071£0.0042  0.9038+0.0085  0.9152+0.0094  0.9226+0.0081  0.9233+0.0113  0.9087
Coral 0.8566+0.0156  0.8938+0.0096  0.9028+0.0112  0.9163+0.0128  0.9236+0.0080  0.9221+0.0081  0.9025
Adversarial 0.8763+0.0113  0.8963%0.0135  0.8951£0.0109  0.9116%+0.0099  0.9289+0.0053  0.9260+0.0069  0.9057
MMD 0.8744+0.0107  0.8964+0.0105  0.9049+0.0091  0.9185%0.0058  0.9249+0.0075  0.9213+0.0057  0.9067
CMMD 0.8797+0.0136  0.8897+0.0132  0.8963+0.0145  0.9121+0.0135  0.9219+0.0069  0.9146+0.0122  0.9024

ED 0.8767+0.0148  0.9010£0.0088  0.9180+0.0063  0.9186+0.0073  0.9258+0.0076 ~ 0.9251+0.0046  0.9109

CED 0.8866+0.0091  0.9076+0.0073  0.9140+0.0059  0.9220%+0.0070  0.9305+0.0076  0.9298+0.0059  0.9151

ours 0.9038+0.0052 0.9188+0.0052 0.9242+0.0063 0.9283+0.0039 0.9367+0.0041 0.9340+0.0059 0.9243

e On the tasks with C3 as source domain, the transfer frame-
work is effective for HEN, M3R, W & D, while it is unsatisfy-
ing for LSTM4FD, NFM. We think that the behavior extrac-
tors of HEN, M3R, W & D contain dense layers that have a
stronger fitting ability to fit the dissimilar source domain.

o The improvement on NFM is smaller than the other four base
models. The main reason would be that the user behavior
extractor of NFM is a non-parametric FM that is hard to fit the
various distributions of different domains. On the contrary,
the user behavior extractors of HEN, M3R, LSTM4FD, W &
D are more complex parametric layers that are easy to adapt
to the different distributions.

Overall, we observe that the transfer framework is able to improve
the performance of base models with different sizes of training sets,
which proves that the transfer framework is compatible with many
models in the Embedding & MLP paradigm.

5.5 Ablation Study

To demonstrate how each component contributes to the overall
performance, we now present an ablation test on our transfer frame-
work. To prove the effectiveness of the transfer framework, we not
only compare each component but also compare it with some base-
lines. We divide the ablation study into three parts: (1) Only use
samples of single domain: target (only use data of target domain),
source (only use data of source domain). (2) Considering the design
of structure: pretrain [13] (first train a model on source domain
and then fine-tune on target domain), domain-shared (combine
source and target dataset into single dataset, and share the common
embedding and network), our structure (the structure designed by
us contains domain-shared, domain-specific parts and the domain
attention without domain adaptation loss). (3) Based on our struc-
ture, compare different domain adaptation loss: Coral [28] (align
the second-order statistics of the source and target distributions),
Adversarial [9] (adversarial training), MMD [20, 42] (a kernel two-
sample test), CMMD [21, 35, 43] (conditional MMD), ED (Euclidean
Distance), CED [38] (Conditional Euclidean Distance), ours (use the
Class-aware Euclidean Distance to align the distributions, which
also denotes the overall transfer framework).

Table 3: The extracted high-risk (high weight) and low-risk
(low weight) features according to the learned weights of the
wide layer in Equation 8, the “Email_suffix” is suffix of the
user-bound Email, the “Card_bin” is the last six digits of the
card number, the “Issuer” is issuer name.

Email_suffix Card_bin Issuer
High- email1(123/131) card1(33/33)  issuer1(602/607)
Risk email2(27/27) card2(42/54)  issuer2(76/108)
email3(54/59) card3(77/78)  issuer3(77/90)
email4(0/382) card4(0/2365) issuer4(27/12491)
LQ“}: email5(0/298) card5(0/245)  issuer5(0/789)
Risk  omail6(0/471)  card6(0/5972)  issuer6(1/725)

We conduct experiments for ablation study with dataset C1 as
the source domain and dataset C4 as the target domain. Besides,
all experiments are based on HEN, and the results are shown in
Table 2. From the results, we can make interesting observations:

e The performance of ‘our structure’ is better than ‘target’,
which proves the domain-shared and domain-specific struc-
ture is useful. ‘ours’ outperforms ‘our structure’ that proves
the aligning distributions with Class-aware Euclidean Dis-
tance is effective. Hence, each component of the transfer
framework is useful and effective.

In the first part, the performance of ‘source’ is largely worse

than ‘target” which proves the domain shift between source

and target domains could seriously destroy the performance.

Thus it is necessary to use effective transfer methods.

e Comparing ‘our structure’ with ‘pretrain’ and ‘domain-shared’,
we could find ‘our structure’ is more effective. ‘pretrain’ and
‘domain-shared’ are simple and generally adopted transfer
methods. The results show ‘ours’ outperforms the general
transfer methods which demonstrate our transfer framework
is more suitable for cross-domain fraud detection.

o Comparing different domain adaptation loss, we could find
‘ours’ outperforms both marginal and conditional methods
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Figure 7: Case study: we present three-level attention. Note that we only analyze the abnormal point of history sequence. Each
column of field-level attention means a field, e.g., the card-related fields contain such as card_bin, card expiration time, issuer.

which prove the effectiveness of Class-aware Euclidean Dis-
tance in this scene. Besides, the performance of ‘Coral’, ‘Ad-
versarial’, ‘MMD’, ‘CMMD’ is worse than ‘our structure’
without domain adaptation loss, which reveals that the inap-
propriate aligning methods could lead to negative transfer.

Overall, we observe each component of the transfer framework
is effective, and the Class-aware Euclidean Distance is more suitable
than previous marginal and conditional aligning methods for our
scenario.

5.6 Case Study

5.6.1 Explanation of Wide Layer. Firstly, we extract some high-
risk and low-risk features according to the learned weights of the
wide layer in Equation (8). The corresponding features are listed in
Table 3. Since the email_suffix, card bin and issuer name need to be
kept private, we only use such as emaill, cardl, issuerl to denote
the ID and name. For each field, we select the three highest-risk
and lowest-risk samples with specific values and present the ratio
of each feature (black number / total number) which is helpful to
understand the reason for risks. From Table 3, we find the wide
layer could learn the blacklist and whitelist.

5.6.2 Three-level Attention. HEN with the general transfer frame-
work has three-level attention and each level has its own explana-
tion settings. Field-level attention could help us understand which
field is important for the target prediction. Event-level attention
could find the important events, and from the important events,
we could find the high-risk sequences. The domain-level attention
could show the importance of domain-shared and domain-specific
knowledge. We present one case with explanations of positive
(fraud) samples in Figure 7 on task (C1 — C4). To focus on showing
the capability of the three-level explanation, we only present the
case about the historical behavior sequences. In addition, we use 56
fields in our experiments, but only show the representative fields
in Figure 7.

The case in Figure 7 is a typical fraud case and the prediction of
the sample is 0.97. The five history events are 1 register event and 4
payment events. (left) The domain-shared attention is 0.56. Besides,
the domain-shared extractor more focuses on event1,2,4 and card-
related fields. Then we analyze the history events: after registration,

the fraudster immediately used a high-risk card_bin which had been
used to fraud 5 times. For the event4, the fraudster tried to change
the card expiration time to make the system recognize it as a new
card. (right) The target-specific attention is 0.44. The target-specific
extractor more focuses on event2-5 and item- and result-related
fields. Then we analyze the history events: the fraudster tried to buy
the same item 4 times. All of the four payment events triggered 3D
verification and failed. From the case, we could find domain-shared
and target-specific extractors would focus on different fields and
different behavior sequences.

6 CONCLUSION

In this paper, we studied the online transaction fraud detection prob-
lem from the perspective of modeling users’ behavior sequences.
Along this line, to effectively capture the sequential information
and explore the explainability for fraud detection, we proposed a
Hierarchical Explainable Network (HEN). HEN can extract both rep-
resentations of the target behavior events and users’ historical be-
havior sequences to significantly improve prediction performance.
Furthermore, to handle the real-world scenarios when there are
only limited labeled data in the target domain with hardly model
reused, we proposed a general transfer framework that can not only
be applied upon HEN but also various existing models in the Embed-
ding & MLP paradigm. Finally, we conducted extensive experiments
on real-world data sets collected from a world-leading cross-border
e-commerce platform to validate the effectiveness of our proposed
models, and the case study further approves the explainability of
our models.
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