
ar
X

iv
:1

90
7.

10
93

7v
2

 [
cs

.D
S]

 1
0

M
ay

 2
02

0

Polylogarithmic-Time Deterministic Network Decomposition

and Distributed Derandomization

Václav Rozhoň
ETH Zurich

rozhonv@student.ethz.ch

Mohsen Ghaffari
ETH Zurich

ghaffari@inf.ethz.ch

Abstract

We present a simple polylogarithmic-time deterministic distributed algorithm for network
decomposition. This improves on a celebrated 2O(

√

logn)-time algorithm of Panconesi and Srini-
vasan [STOC’92] and settles a central and long-standing question in distributed graph algo-
rithms. It also leads to the first polylogarithmic-time deterministic distributed algorithms
for numerous other problems, hence resolving several well-known and decades-old open prob-
lems, including Linial’s question about the deterministic complexity of maximal independent
set [FOCS’87; SICOMP’92]—which had been called the most outstanding problem in the area.

The main implication is a more general distributed derandomization theorem: Put together
with the results of Ghaffari, Kuhn, and Maus [STOC’17] and Ghaffari, Harris, and Kuhn
[FOCS’18], our network decomposition implies that

P-RLOCAL = P-LOCAL.

That is, for any problem whose solution can be checked deterministically in polylogarithmic-
time, any polylogarithmic-time randomized algorithm can be derandomized to a polylogarithmic-
time deterministic algorithm. Informally, for the standard first-order interpretation of efficiency
as polylogarithmic-time, distributed algorithms do not need randomness for efficiency.

By known connections, our result leads also to substantially faster randomized distributed al-
gorithms for a number of well-studied problems including (∆+1)-coloring, maximal independent
set, and Lovász Local Lemma, as well as massively parallel algorithms for (∆ + 1)-coloring.

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 853109).

http://arxiv.org/abs/1907.10937v2

1 Introduction

We present a polylogarithmic-time deterministic distributed algorithm for network decomposition.
This leads to substantially faster deterministic and randomized algorithms for many well-studied
problems in distributed graph algorithms, as well as a general and efficient distributed derandom-
ization theorem. These resolve several central open problems in the area.

1.1 Background and State of the Art

Model: We work with the standard model of distributed computing called LOCAL [Lin87,Lin92]:
The communication network is abstracted as an n-node graph G = (V,E), with one processor on
each node v ∈ V which has a unique Θ(log n)-bit identifier. Communication happens in synchronous
rounds, where per round each node can send one message, of potentially unbounded size, to each
neighbor. In the CONGEST variant of the model [Pel00], each message can have O(log n) bits. At
the beginning, each processor knows only its neighbors, and some estimates of global parameters,
e.g., a polynomial upper bound on n. At the end, each processor should know its own part of the
output, e.g., its color in the vertex coloring problem.

State of the art: Prior to this work, the state of the art in distributed graph algorithms exhibited
a significant (often nearly-exponential) gap between randomized and deterministic distributed al-
gorithms. This gap constituted one of the foundational and long-standing questions in distributed
algorithms. A well-known special case is an open question of Linial [Lin87,Lin92] about the maximal
independent set (MIS) problem:

“can it [MIS] always be found [deterministically] in polylogarithmic time?”

This has been described as “probably the most outstanding open problem in the area” [BE13,
Open Problem 11.2]. Prior to our work, the best known deterministic algorithm had a round
complexity of 2O(

√
logn), by Panconesi and Srinivasan [PS92]. This should be contrasted with the

beautiful O(log n)-time randomized algorithms of Luby [Lub86] and Alon, Babai, and Itai [ABI86].
There is an abundance of similar open questions about obtaining polylogarithmic-time determin-

istic algorithms for other graph problems that admit polylogarithmic-time randomized algorithms;
this includes (∆ + 1)-coloring, Lovász Local Lemma, defective colorings, hypergraph matching,
sparse neighborhood covers, etc. Indeed, in the Conclusion and Open Problems chapter of their
2013 book, Barenboim and Elkin [BE13, Chapter 11] write:

“Perhaps the most fundamental open problem in this field is to understand the
power and limitations of randomization.”

They then continue to ask for a general derandomization technique:

Open Problem 11.1 Develop a general derandomization technique for the
distributed message-passing model.

This generic open problem is followed by 16 concrete open problems, 7 of which ask for polylogarithmic-
time (sometimes just called efficient) deterministic algorithms for various graphs problems that are
known to admit efficient randomized algorithms. We note that a few of these concrete open prob-
lems were well-known, and they had been mentioned throughout the literature since the 1990s.

1

1.2 Our Contribution

In this paper, we answer all the concrete questions mentioned above by providing the first polylogarithmic-
time deterministic algorithms for them. In fact, we show a more general distributed derandomiza-
tion theorem, which proves the following:

Theorem 1.1 (LOCAL Derandomization Theorem). We have

P-LOCAL = P-RLOCAL.

Here, P-LOCAL denotes the family of locally checkable problems1 that can be solved by deterministic
algorithms in poly(log n) rounds of the LOCAL model in n-node graphs and P-RLOCAL denotes the
family of locally checkable problems that can be solved by randomized algorithms in poly(log n)
rounds of the LOCAL model, with success probability 1− 1/n.

Informally, if we follow the standard of viewing a poly(log n)-round algorithm as efficient2 (see
e.g. [BE13,Lin92,PS92]), Theorem 1.1 tells us that distributed algorithms in the LOCAL model do
not need randomness for efficiency. This holds for any locally checkable problem, i.e., any problem
for which the solution can be checked efficiently deterministically3.

At the heart of our derandomization result, and as the main novelty of this paper, we provide
the first poly(log n)-round deterministic algorithm for network decomposition:

Theorem 1.2 (Network Decomposition Algorithm). There is a deterministic distributed algo-
rithm that in any n-node network G = (V,E), in poly(log n) rounds of the LOCAL model, partitions
the vertices into O(log n) disjoint color classes V1, . . . , VO(logn), such that in the subgraph G[Vi]
induced by the vertices of each color i, each connected component has diameter O(log n).

We prove Theorem 1.2 in Section 2. We note that prior to our work, the best known deter-

ministic network decomposition had a round complexity of 2O(
√
logn), due to a celebrated work of

Panconesi and Srinivasan [PS92]. This itself was an improvement on a 2O(
√
logn log logn)-round dis-

tributed algorithm, presented by Awerbuch et al. [AGLP89], in their pioneering work that defined
network decomposition and showed its applications for distributed algorithms.

Our derandomization result, stated in Theorem 1.1, follows by putting our new network de-
composition, as stated in Theorem 1.2, together with the derandomization framework developed
by Ghaffari, Harris, and Kuhn [GHK18] and Ghaffari, Kuhn, and Maus [GKM17].

Implications: Through known connections, this derandomization leads to better deterministic
and randomized distributed algorithms for a long list of well-studied problems. A sampling of the
end-results includes (I) poly(log n)-round deterministic algorithms for maximal independent set,
∆ + 1 coloring, the Lovász Local Lemma, and defective coloring, as well as (II) a poly(log log n)-
time randomized ∆ + 1 coloring [CLP18], a poly(log log n)-time randomized algorithm for Lovász

1To make our derandomization theorem stronger and more widely applicable, we use a relaxed version of local
checkability: we call a problem locally checkable if its solution can be checked deterministically in poly(logn) rounds,
such that if the solution is incorrect, at least one node knows. Thus, each constraint of the problem spans a
neighborhood of at most poly(logn) rounds. Notice that this readily includes problems such as MIS, coloring, etc.
For a precise definition of locally checkable problems (but bounded to constant radius), we refer to [NS95].

2This is similar to viewing a centralized algorithm with poly(n) time complexity or a parallel (PRAM model)
algorithm with poly(log n) time complexity as efficient.

3We remark that the vast majority of the problems studied in the LOCAL model throughout the literature are
locally checkable. Moreover, such a restriction to locally checkable problems is necessary and the statement cannot
hold for arbitrary problems, for trivial reasons: e.g., marking arbitrary Θ(

√
n) nodes can be done in zero rounds by

randomized algorithms but can be shown to require Ω(
√
n) rounds for any deterministic algorithm [GHK18].

2

Local Lemma in constant degree graphs [GHK18], and an automatic complexity speed-up theorem
from o(log n) to poly(log log n) in constant-degree graphs, for any problem whose solution can be
checked in O(1) rounds [CP17]. We discuss the implications in Section 3.

1.3 An Overview of Our Network Decomposition Method

Our network decomposition algorithm is surprisingly simple. Next, we briefly recall the previous
methods [PS92,AGLP89] and then give a quick outline of our construction:

A recap on the previous constructions: In the paper that introduced the concept of network de-
composition, Awerbuch et al. [AGLP89] provide a deterministic algorithm that computes a network
decomposition with clusters of diameter 2O(

√
logn log logn), which are colored with 2O(

√
logn log logn)

colors, in 2O(
√
logn log logn) rounds. In a nutshell, their algorithm is based on a hierarchical clustering.

We start with each node being its own cluster. Over time, iteratively, we merge clusters together,
in a manner that each final cluster has 2O(

√
logn log logn) neighboring clusters, and thus the clusters

can be easily colored with 2O(
√
logn log logn) colors. Per iteration, we locally group clusters that

have a “high” degree — more than 2O(
√
logn log logn) neighboring clusters — around some selected

clusters (chosen using a ruling set algorithm). Then, in each group, we merge all the clusters into
one cluster. The center clusters are chosen using a ruling set procedure that ensures that the center
clusters are somewhat far apart (concretely, at least 3 hops, in the cluster graph that connects any
two clusters that have adjacent nodes), while any high-degree cluster has a center within a small
distance (concretely, O(log n) hops, in the cluster graph). Due the separation and the high degrees,
each merge is formed by grouping together at least 2Θ(

√
logn log logn) clusters. Hence, we finish in

O(
√

log n/ log log n) iterations. Per iteration, each cluster has diameter at most O(log n) times
the diameter of the previous clusters, and thus within O(

√

log n/ log log n) iteration, each cluster

diameter grows to be at most 2O(
√
logn log logn). The algorithm of Panconesi and Srinivasan [PS92]

follows the same outline but replaces the ruling set procedure with a maximal independent set
procedure (of a constant power of the cluster graph), computed by a clever and careful recursive
idea. This replaces the O(log n) growth factor in the diameter per iteration with O(1). Then,
re-optimizing the parameters to take advantage of this change improves the bounds to give a net-
work decomposition with clusters of diameter 2O(

√
logn), which are colored with 2O(

√
logn) colors,

in 2O(
√
logn) rounds.

In Appendix A, we provide a new method for constructing a network decomposition, which
also achieves such a round complexity of 2O(

√
logn log logn). We then also discuss how both of these

twp approaches, which appear to be fundamentally different, cannot go below the complexity of
2O(

√
logn), even on a particular simple and well-structured graph.

Our construction, in a nutshell: The main part of our result is to obtain a network de-
composition with clusters of diameter poly(log n), which are colored with poly(log n) colors, in
poly(log n) rounds. We provide a surprisingly simple algorithm for this. We can later transform
this construction to improve the first two parameters to O(log n). Similar to the previously out-
lined methods, our algorithm also forms the clusters iteratively. However, unlike the hierarchical
clusterings of [AGLP89,PS92]—where per iteration each new cluster is formed by merging a few
of the nearby clusters of the previous iterations—during our construction, we release some clusters
and allow each of their individual nodes to make an independent decision on which adjacent cluster
to join; some of these nodes can also remain in their initial cluster, or die. Throughout the process,
we ensure that at most a constant fraction of vertices die. Thus, via O(log n) repetition, each time
by resurrecting the dead vertices and repeating the process on them, we can cluster all vertices.
The decision of joining a neighboring cluster or dying is done in a manner that balances a few

3

desirable properties, as we outline next.
The clustering process has b phases, where b = O(log n) denotes the number of bits in the

identifiers. We start with a trivial clustering where each (remaining) vertex is one cluster, on its
own. Each cluster is identified with the node identifier of its center vertex. We ensure that by
the end of the ith phase, each two neighboring clusters have identifiers that agree in the i least
significant bits. In the (i + 1)th phase, clusters are categorized into red or blue clusters, based on
the (i + 1)th least significant bit (while all clusters of each connected component agree on the i
least significant bits, by the construction’s induction). Then, we release red clusters: their vertices
might join one of the neighboring blue clusters, die, or remain in this red cluster if they have no
neighboring blue cluster. On the other hand, each blue cluster retains all of its vertices and can
also grow by accepting some of neighboring red vertices. This growth happens step by step, and
hop by hop. Per step, each red node arbitrarily chooses a neighboring blue cluster to join, and each
blue cluster checks the number of directly neighboring red vertices that want to join it. If they are
at least a 1/(2b) fraction of the size of this blue cluster, they are accepted to join and they become
blue. In this case, the cluster grows considerably in size, but also at most one hop in radius. But
we cannot have more than O(b log n) such growth steps; beyond that the cluster would have more
than n vertices. On the other hand, if the fraction is less than a 1/(2b) fraction of the size of the
blue cluster, all those red vertices die, and this blue cluster stops its growth for this iteration. This
way, at the end of the steps of this phase, no edge remains between a blue and a red cluster, and
at most a 1/(2b) fraction of all vertices die during the phase.

At the end of b phases, one for each bit in the identifiers, at most a b/(2b) = 1/2 fraction of
the vertices died, while each connected component of living vertices agrees on all the b bits of the
cluster identifier, i.e., is just one cluster. Since each cluster grows by at most one hop per each step
of each phase, the cluster radii remain in poly(log n).

1.4 Other Related Work

We obtained the results in this paper after the second-named author learned about the statement
of the main result of Kowalski and Krysta [KK19], which claims to provide a poly(log n) round
algorithm for the splitting problem4. Due to results of Ghaffari et al. [GKM17], this statement
would imply an alternative proof for P-LOCAL = P-RLOCAL. Hence, that would be effectively
equivalent to the main result in our paper (modulo aspects such as the exact polynomial in the
round complexity, message size, local computational complexity, simplicity, etc). However, two
remarks are in order: (1) The proof in [KK19] has a fundamental flaw5. As of the time of preparing
this version of our paper (i.e., May 12, 2020), we are not aware of any fix to that proof. (2) The
methods in the two papers are completely different, in terms of both the general approach and the
proof ingredients.

4Concretely, the second-named author received a request from the Program Committee of SODA 2020 to write
a review on [KK19]. That review request was declined due to the conflict of interest.

5Here is a brief explanation: In page 11 of [KK19] (the version from 31 July 2019), the inequality Pr[A2|A1] ≤
2−c′αδ is incorrect. The provided argument says that this is derived by using the same arguments as done for Pr[A1]
in Lemma 2. However, that argument cannot be applied in the second phase and further on. For the second phase,
we have hyperedges left each with potentially only αδ vertices that are left uncolored. Notice that this is much lower
than the δ vertices that was assumed when proving Lemma 2. Hence, recalling that an edge is called biased if it has at
most αδ red edges or at most αδ blue edges, the probability of an edge being biased in the new coloring (i.e., second
phase) is effectively 1. If we change the definition of biased edges and allow the bias to go down by a constant factor
per phase, this issue would be resolved superficially but then we can continue the argument for only O(log log n)
phases, as after that the hyperedges that initially had poly(log n) vertices might have no uncolored vertex left.

4

2 The Network Decomposition Algorithm

In this section, we present a network decomposition algorithm that proves Theorem 1.2. We first
describe in Section 2.1 an O(log7 n)-round deterministic distributed algorithm in the LOCAL model
that computes a weak-diameter network decomposition for n-node graphs, with cluster weak-
diameter O(log3 n) and O(log n) colors. This algorithm can also be adapted to work in O(log8 n)
rounds of the CONGESTmodel. Then, in Section 2.3, we explain how the former can be transformed
to an O(log8 n)-time deterministic algorithm in the LOCAL model for strong-diameter network de-
composition, with cluster strong-diameter O(log n) and O(log n) colors. The distinction between
weak-diameter and strong diameter is clarified in Section 2.1.

As a side remark, we note that all these constructions assume that nodes have unique O(log n)-
bit identifiers. As we will explain later in Remark 2.10), in the LOCAL model, these constructions
can be turned into poly(log n)-round algorithms for the more general setting with identifiers from
[1, S], as long as log∗ S = O(log n).

2.1 Weak-Diameter Network Decomposition

Recall that for Theorem 1.2, we wish to construct a decomposition of the underlying graph in
O(log n) color classes such that for each color class, each of its connected components has O(log n)
diameter. Our initial algorithm will, however, provide only a weaker property, as we describe
next. We will work with clusters of vertices, defined simply as a subset of vertices, such that
any two vertices of a cluster are “close” in G, although the subgraph induced by the vertices of
the cluster may have large diameter and may be even disconnected. This motivates the notion of
weak-diameter and the corresponding relaxation of network decomposition:

Definition 2.1. Given a graph G and its subgraph H, we say that the weak-diameter of H is at
most d if G contains a path of length at most d between any pair of vertices in H.

Definition 2.2. Given a graph G, we define a weak-diameter network decomposition of G with c
colors and weak-diameter d to be a coloring of the vertices with c colors such that for each color
i ∈ [1, c], the subgraph Gi induced by the vertices of color i is partitioned into non-adjacent disjoint
clusters, each of weak-diameter at most d in graph G.

Next we state the main technical contribution of this paper, which is a deterministic distributed
algorithm that constructs a weak-diameter decomposition in poly(log(n)) rounds in the LOCAL

model. With the known connection that transforms it to a strong-diameter decomposition algo-
rithm, as we will later describe in Section 2.3, this implies Theorem 1.2.

Before stating the result, we recall another useful notion of Steiner trees. A Steiner trees is a
tree with nodes labelled as terminal and nonterminal ; the aim is to connect terminal nodes possibly
via some nonterminal nodes. Here we use this notion to control the weak-diameter of each cluster.

Theorem 2.3. Consider an arbitrary n-node network graph G where each node has a unique
b = O(log n)-bit identifier. There is a deterministic distributed algorithm that computes a network
decomposition G with O(log n) colors and weak-diameter O(log3 n), in O(log7 n) rounds of the
LOCAL model.

Moreover, for each color and each cluster C of vertices with this color, we have a Steiner tree
TC with radius O(log3 n) in G, for which the set of terminal nodes is equal to C. Furthermore, each
edge in G is in O(log2 n) of these Steiner trees.

5

The last part of the statement ensures that our algorithm can also be implemented and used in
the more restrictive CONGEST model, as we will later discuss in Remark 2.11.

In the following lemma, we describe the process for constructing the clusters of one color of
the network decomposition (e.g., the first color), in a way that it clusters at least half of the
vertices. This last weakening of the guarantee is similar to the randomized network decomposition
algorithm of [LS93]. Since after each application of this lemma only half of the vertices remain, by
log n repetitions, we get a decomposition of all vertices, with log n colors.

Lemma 2.4. Consider an arbitrary n-node network graph G = (V,E) where each node has a
unique b = O(log n)-bit identifier, as well as a set S ⊆ V of living vertices. There is a deterministic
distributed algorithm that, in O(log6 n) rounds in the LOCAL model, finds a subset S′ ⊆ S of living
vertices, where |S′| ≥ |S|/2, such that the subgraph G[S′] induced by set S′ is partitioned into
non-adjacent disjoint clusters, each of weak-diameter O(log3 n) in graph G.

Moreover, for each such cluster C, we have a Steiner tree TC with radius O(log3 n) in G where
all nodes of C are exactly the terminal nodes of TC. Furthermore, each edge in G is in O(log n) of
these Steiner trees.

We obtain Theorem 2.3 by c = log n iterations of applying Lemma 2.4, starting from S = V .
For each iteration j ∈ [1, log n], the set S′ are exactly nodes of color j in the network decomposition,
and we then continue to the next iteration by setting S ← S \ S′.

Construction outline for one color of the decomposition: We now describe the construction
outline of Lemma 2.4. The construction has b = O(log n) phases, corresponding to the number
of bits in the identifiers. Initially, we think of all nodes of S as living. During this construction,
some living nodes die. We use S′

i to denote the set of living vertices at the beginning of phase
i ∈ [0, b− 1]. Slightly abusing the notation, we let S′

b denote the set of living vertices at the end of
phase b− 1 and define S′ to be the final set of living nodes, i.e., S′ := S′

b.
Moreover, we label each living node v with a b-bit string ℓ(v), and we use these labels to define

the clusters. At the beginning of the first phase, ℓ(v) is simply the unique identifier of node v.
This label can change over time. For each b-bit label L ∈ {0, 1}b, we define the corresponding
cluster S′

i(L) ⊆ S′
i in phase i to be the set of all living vertices v ∈ S′

i such that ℓ(v) = L. We will
maintain one Steiner tree TL for each cluster S′

i(L) where all nodes S′
i(L) are the terminal nodes

of TL. Initially, each cluster consists of only one vertex and this is also the only (terminal) node of
its respective Steiner tree.

Construction invariants: The construction is such that, for each phase i ∈ [0, b−1], we maintain
the following invariants:

(I) For each i-bit string Y , the set S′
i(Y) ⊆ S′

i of all living nodes whose label ends in suffix Y
has no edge to other living nodes S′

i \S′
i(Y). In other words, the set S′

i(Y) is a union of some
connected components of the subgraph G[S′

i] induced by living nodes S′
i.

(II) For each label L and the corresponding cluster S′
i(L), the related Steiner tree TL has radius

at most iR, where R = O(log2 n). We emphasize that in the subgraph induced by living
vertices a cluster can be disconnected.

(III) We have |S′
i+1| ≥ |S′

i|(1− 1/2b).

These invariants, together with Observation 2.9 about the overlaps of the Steiner trees, prove
Lemma 2.4. In particular, from the first invariant we conclude that at the end of b phases, different
clusters are non-adjacent. From the second invariant we conclude that each cluster has a Steiner

6

tree with radius bR = O(log3 n). Finally, from the third invariant we conclude that for the final
set of living nodes S′ = S′

b, we have |S′| ≥ (1− 1/2b)b|S| ≥ |S|/2.

Outline of one phase of construction: We now outline the construction of one phase and
describe its goal (see also Figure 1). Let us think about some fixed phase i. We focus on one
specific i-bit suffix Y and the respective set S′

i(Y). Let us categorize the nodes in S′
i(Y) into two

groups of blue and red, based on whether the (i + 1)th least significant bit of their label is 0 or 1.
Hence, all blue nodes have labels of the form (∗ . . . ∗ 0Y) and all red nodes have labels of the form
(∗ . . . ∗1Y), where ∗ can be an arbitrary bit. During this phase, we make some small number of the
red vertices die and we change the labels of some of the other red vertices to blue labels (and then
the node is also colored blue). All blue nodes remain living and keep their label. The eventual goal
is that, at the end of the phase, among the living nodes, there is no edge from a blue node to a red
node. Hence, each connected component of the living nodes consists either entirely of blue nodes or
entirely of red nodes. Therefore, the length of the common suffix in each connected component is
incremented, which leads to invariant (I) for the next phase. The construction ensures that we kill
at most |S′

i(Y)|/2b red vertices of set S′
i(Y), during this phase. We next describe this construction.

Steps of one phase: Each phase consists of R = 10b log n = O(log2 n) steps, each of which will
be implemented in O(log3 n) rounds. Hence, the overall round complexity of one phase is O(log5 n)
and over all the O(log n) phases, the round complexity of the whole construction of Lemma 2.4 is
O(log6 n) as advertised in its statement. Each step of the phase works as follows: each red node
sends a request to an arbitrary neighboring blue cluster, if there is one, to join that blue cluster
(by adopting the label). For each blue cluster A, we have two possibilities:

(1) If the number of adjacent red nodes that requested to join A is less than or equal to |A|/2b,
then A does not accept any of them and all these requesting red nodes die (because of their
request being denied by A). In that case, cluster A stops for this whole phase and does not
participate in any of the remaining steps of this phase.

(2) Otherwise — i.e., if the number of adjacent red nodes that requested to join A is strictly
greater than |A|/2b — then A accepts all these requests and each of these red nodes change
their label to the blue label that is common among all nodes of A. In this case, we also grow
the Steiner tree of cluster A by one hop to include all these newly joined nodes.

We note that each step can be performed in O(log3 n) rounds, because each blue cluster has a
Steiner tree of depth O(log3 n) and therefore can gather the number of vertices in the cluster, as
well as the number of red vertices that would like to join this cluster. We also emphasize that in
each step, each red node acts alone, independent of other nodes in the same red cluster. Hence, red
clusters may shrink, disconnect, or even get dissolved over time. Once a red node adopts a blue
label (or if a node had a blue label at the beginning), it will maintain that label throughout the
phase. Therefore, blue clusters can only grow, and have more and more red nodes join them. We
also emphasize that we can have blue clusters adjacent to each other, and red clusters adjacent to
each other – the objective is to have no edge connecting a red cluster to a blue cluster.

Let us observe how the Steiner trees of the clusters evolve: For each blue cluster, the corre-
sponding Steiner tree only grows. To have a similar property about the Steiner trees of red clusters,
we do the following: Although for a red cluster, a terminal red node might become blue, we keep
it in this tree as a nonterminal node. We note that although the Steiner tree of a red cluster is not
used in the current phase, it may be used in the next phases.

Analysis: We next provide some simple observations about this construction in one phase, which
allow us to argue that the construction maintains invariants (I) to (III), described above.

7

S1(1)

S1(0)

S1(1)

S1(0)

S1(11)

S1(10)

S1(01)

S1(00)

0001
0011 1011

0010
0110

0100

1100 1010

1000

1011 1011

0010 0010

0001 0001

1100

1000

1100

0100 0100

Figure 1: In this illustration, we consider the second phase of the algorithm, in a simple example graph. The
three figures show the configuration in the beginning of three steps of this phase from left to right. Note
that, at the beginning of this phase, the clusters are already separated according to their least significant
bit (as a result of the first phase). When the second phase starts—i.e., in the left figure—the second least
significant bit determines whether each cluster is blue or red. Adjacent red nodes are proposing to blue
nodes (dark arrows) to join their clusters and blue clusters decide either to relabel them so that they join
this cluster or to make them die (crossed red vertices). In the end, blue and red clusters are separated. Note
that nothing will happen in the third phase, since the only two adjacent clusters share the same bit on the
third least significant bit. Their boundary will be resolved only in the last phase.

Observation 2.5. Any blue cluster stops after at most 4b log n steps.

Proof. In each step that a cluster A does not stop, its size grows by a factor of at least (1 + 1/2b),
as it accepts at least |A|/2b requests from neighboring red nodes. Hence, after 4b log n steps of
growth, the size would exceed (1 + 1/2b)4b logn > n, which is not possible. Therefore, cluster A
stops after at most 4b log n steps.

Observation 2.6. Once a blue cluster A stops, it has no edge to a red node and it will never have
one, during this phase. This implies invariant (I).

Proof. By the observation above, cluster A stops after at most 4b log n steps. Consider the step in
which cluster A stops. In that step, each neighboring red node (if there is one) either requested to
join A or some other blue cluster. In the former case, that red node dies. In the latter case, the
node adopts a blue label or dies. In either case, the node is not a living red node anymore (and it
will never become one). From this point onward, this blue cluster A never grows or shrinks.

Observation 2.7. In each step, the radius of the Steiner tree of each blue cluster grows by at most
1, while the radius of the Steiner tree of each red cluster does not grow. This implies invariant (II).

Observation 2.8. The total number of red vertices in S′
i(Y) that die during this phase is at most

|S′
i(Y)|/(2b). This implies invariant (III).

Proof. From Observation 2.6, it follows that each blue cluster A stops exactly once, and if it had
|A| vertices at that point, it makes at most |A|/(2b) red vertices die. Hence, in total over the whole

8

phase, the number of red vertices that die is at most a 1/(2b) fraction of the number of nodes in
blue clusters that stop, and thus at most |S′

i(Y)|/(2b).

The above completes the description of our algorithm in the LOCAL model. As we will later
remark about its applications in the CONGEST model, we finish the proof of Lemma 2.4 by adding
the following observation about the overlaps of the constructed Steiner trees.

Observation 2.9. Eeach edge is used in O(log n) Steiner trees.

Proof. Each edge can be in the Steiner tree of a cluster only if that cluster at some point included
one of the two endpoints of this edge. Throughout the construction, each node changes its label
at most b = O(log n) times, i.e., at most once per label bit. Hence, each edge is used in O(log n)
Steiner trees.

Below, just to help with the intuition, we discuss an idealized global view of the process in one
phase. We then state some remarks about extensions of the result to the CONGEST model and the
settings with larger identifiers.

An intuitive global view of one (ideal) phase: We next describe a different global view for
an idealized version of the process in one phase. We hope that this view helps in understanding
the process; concretely, the above process can be seen as a localized version of the idealized global
view, where some decisions are performed locally (thus, the colors of nodes might differ in the two
processes, but the growth of blue nodes and the number of red nodes that die, when the growth
stops, behave similarly).

The process described above for one phase intends to make sure that there is no edge between
red and blue living nodes, while the number of (red) nodes that die is kept small. For that, we grow
the blue clusters locally (i.e., relabeling some red nodes to adopt blue labels, while keeping each
blue label for the entire phase), each by O(log2 n) hops, while making some red nodes die in the
meantime. The process also guarantees that only a 1/2b fraction of nodes die. If we were to ignore
the exact labels of the blue nodes and red nodes, and we would just remember whether a node
is red or blue, the quantitative aspects of this process — namely the number of steps of growth
and the number of red nodes that die — would resemble a simpler global ball carving argument:
we would start from the initial “ball” of all blue nodes being together, and would grow this “ball”
hop by hop, as long as in each step we grow by at least a (1 + 1/2b) factor. In the first step that
there is no such rapid growth — which will happen within 4b log n steps — we would carve all the
neighboring red nodes and call them dead. That would be at most a 1/2b fraction of the blue nodes
(and hence all nodes). Once these boundary nodes are dead, there is no edge between living red
and blue nodes.

Remark about the length of identifiers: For the construction in the LOCAL model, the re-
quirement on the size of the identifiers of each node can be substantially weakened; this is important
for applications when we use the algorithm in the shattering framework, e.g., [Gha16,BEPS16].

Remark 2.10. In the construction provided above, we assumed that the nodes of the n-node graph
have O(log n)-bit unique identifiers. This construction can be extended to an O(log∗ S ·log6 n)-round
algorithm in the LOCAL model for the setting where the identifiers are from [1, S].

Proof. Let T (n) := O(log7 n) be the complexity of the algorithm in n-node graphs with (3 log n)-bit
labels. We compute an O(n2) coloring of GT (n)—the graph on the same set of vertices as G but
where we connect every two vertices v and u that have distance at most T (n) in G—using the
coloring algorithm of Linial [Lin92], in T (n) · log∗(S) = O(log7 n) · log∗(S) rounds. We recall that

9

Linial’s algorithm provides a O(∆2)-coloring of any graph with maximum degree at most ∆ where
nodes have identifiers from [1, S] in O(log∗ S) rounds of the LOCAL model. Once we compute a
coloring of GT (n) with O(n2) colors, we can then adopt these colors as “unique” identifiers with no
more than (3 log n)-bits. Since each node sees unique identifiers in its (T (n))-hop neighborhood,
the LOCAL algorithm works as if nodes had unique identifiers.

2.2 Construction in the CONGEST Model and Extension to Graph Powers

Although we formulated the algorithm in the LOCALmodel of computation, it can be easily observed
that it also runs in the more restrictive CONGEST model.

Remark 2.11. The whole network decomposition construction described in Lemma 2.4 can be
performed in O(log8 n) rounds of the CONGEST model.

Proof. Recall from above that in the construction of clusters of one color, each edge is used in
O(log n) Steiner trees. Moreover, whenever we add an edge to a particular Steiner tree, we can
think of it as being oriented from a newly added node towards a node that was already in the
tree. This gives a natural orientation of its edges that points to its root, which is the vertex whose
original identifier is equal to the label of the cluster, and that was initially the only member of this
cluster.

The construction only uses convergecast and broadcast along these rooted trees (to decide
whether the cluster should continue growing or it should stop). Hence, by using every O(log n)
rounds of CONGEST model as one big-round, we can perform the construction of one color in
O(log6 n) big-rounds, i.e., O(log7 n) rounds of the CONGEST model. Over all the O(log n) colors,
this leads to a round complexity of O(log8 n) rounds of the CONGEST model.

In the CONGEST model it is particularly helpful that Lemma 2.4 gives us the underlying Steiner
tree for each cluster, with the property that each appears in only O(log n) trees per color. These
Steiner trees can later be used for simultaneous broadcast or convergecast in the clusters.

Extending the CONGEST-model construction to graph powers: When solving a dis-
tributed problem for an underlying graph G, it is often helpful to simulate its power Gk and run
certain algorithm on this simulated graph (for example, this will be the case in Theorem 2.14 as
well as all the applications in Section 3.3.5). Obtaining a network decomposition for Gk is straight-
forward in the LOCAL model, where each node can start by collecting its k-hop neighbourhood
and then simulate each step of an algorithm for Gk with additional slowdown proportional to k.
However, this cannot be done easily in the CONGEST model6. That being said, our algorithm
can be adapted to provide a weak-diameter network decomposition for Gk in the CONGEST model
without the need of an explicit construction of Gk.

A weak-diameter decomposition of Gk with c color classes of weak-diameter d can be also
interpreted as a weak-diameter decomposition of G with c color classes of weak-diameter k · d,
where any two clusters of the same color class are at least k + 1 hops apart.

Theorem 2.12. There is an algorithm in the CONGEST model that, given a value k that is known
to all nodes, in O(k log8 n ·min(k, log2 n)) communication rounds outputs a weak-diameter network
decomposition of Gk with O(log n) color classes, each one with O(k · log3 n) weak-diameter in G.

6Even the task of collecting 2-hop neighbourhood of a given node u cannot be generally solved in poly(log n)
rounds, since the number of vertices in the 2-hop neighbourhood of u can be much larger than the number of
connections of u to its neighbours that can be used to collect information.

10

Moreover, for each color and each cluster C of vertices with this color, we have a Steiner tree
TC with radius O(k · log3 n) in G, for which the set of terminal nodes is equal to C. Furthermore,
each edge in G is in O(log2 n ·min(k, log2 n)) of these Steiner trees.

The proof idea is to run the algorithm from Lemma 2.4, with one change: vertices that will
propose in one step will not be just red vertices bordering with a blue vertex, but all red vertices in
a k-hop neighbourhood of some blue vertex. This idea by itself readily gives us a poly(log n) round
algorithm for k = poly(log n). As we will show, with some more work, we can also get an algorithm
with the same round complexity as the algorithm from Remark 2.11 whenever k is constant. Below,
we provide a concrete proof sketch. The full proof is deferred to Appendix B.

Proof sketch of Theorem 2.12. Consider the algorithm from Theorem 2.3 with the following change.
We generalize each step — red nodes with a blue neighbour are proposing to an arbitrary blue
neighbour— so that all the nodes with at least one blue neighbour in the their k-hop neighbourhood
are proposing. We can mark all such red nodes in k rounds by running a breadth first search (BFS)
from all blue nodes simultaneously. This can be implemented in such a way that each edge is used
in at most one round, hence it can be done in k rounds of the CONGEST model. Note that running
BFS also naturally outputs an oriented forest with blue nodes as the roots. This forest will also
contain dead nodes. Now it is simple to implement proposals of red nodes to blue clusters: each red
node in a forest will propose to its root and, if accepted by the respective blue cluster, the whole
path to the root (that potentially also contain dead nodes) is added to the corresponding Steiner
tree.

It is easy to see that this adaptation of our algorithm returns a network decomposition of Gk.
Before we analyze the running time, let us add an additional optimization to ensure that each

edge will be added to at most k Steiner trees during one phase (it is added to at most one Steiner
tree during one phase in the original algorithm): During a phase and in between steps, a dead node
v that was used in a BFS tree rooted at r will change to a different BFS tree only if the blue root r′

of the new BFS tree is closer to the node v than its current root r. This property will hold in our
implementation of the algorithm because of the following two properties: (A) we break symmetry
during BFS in the same manner in all the steps (e.g., toward the one with smaller ID) and (B)
even blue clusters that stopped growing are running BFS in every step, to make sure that a dead
node changes a BFS tree only when a closer blue cluster appeared. With this optimization, each
edge is used by at most O(min(k, log2(n))) different Steiner trees in a phase and, hence, by at most
O(log2(n) ·min(k, log2(n))) Steiner trees in total.

We are now ready to bound the running time. The algorithm constructs O(log n) color classes
and each one is constructed in O(log n) phases with each phase containing O(log2 n) steps. For
each step, we need to run breadth first search for O(k) steps and broadcast information to root
via Steiner trees of depth O(k log3 n), which dominates the O(k) steps of the breadth first search.
Moreover, each edge is used by O(log n ·min(k+ log2 n)) of the Steiner trees. This implies a round
complexity O(k log8 n ·min(k + log2 n)).

2.3 Strong-Diameter Network Decomposition

We now explain that by a known method, first presented by Awerbuch et al. [ABCP96], in the
LOCALmodel, we can transform the algorithm of Theorem 2.3 for weak-diameter network decompo-
sition to an algorithm for strong-diameter network decomposition, which thus proves Theorem 1.2.
Since this is a known connection, we provide only a sketch of the proof.

Definition 2.13. Given a graph G = (V,E), we define a network decomposition of G with c colors
and strong-diameter d to be a partitioning of the vertices into c disjoint color classes V1, . . . , Vc,

11

such that in the subgraph G[Vi] induced by the vertices of each color i, each connected component
has diameter at most d. Each of these connected component of the subgraph G[Vi] is called a cluster.

The following theorem statement is a rephrased and formalized version of Theorem 1.2:

Theorem 2.14. Consider an arbitrary n-node network graph where each node has a unique b =
O(log n)-bit identifier. There is a deterministic distributed algorithm that computes a network
decomposition of this graph with O(log n) colors and strong-diameter O(log n), in O(log8 n) rounds
in the LOCAL model.

Proof Sketch. We first recall the standard sequential algorithm for building a network decomposi-
tion with log n colors and strong-diameter O(log n) per cluster, and then we explain how the weak-
diameter network decomposition algorithm of Theorem 2.3 helps us build such a strong-diameter
decomposition in a distributed manner.

The standard sequential algorithm algorithm for building a network decomposition with log n
colors and strong-diameter O(log n) per cluster works as follows. We describe the process for
determining the nodes of the first color. The other colors are obtained similarly, by applying the
same construction repeatedly for log n times, each to the graph induced by the remaining nodes.
For the first color, starting with an arbitrary node v, we do a sequential ball carving. That is, we
grow a ball around this vertex, hop by hop. A ball of radius r is simply all nodes that are within
distance r of node v. We increment the radius r of this ball gradually, one by one, as long as the
number of the nodes outside the ball that are adjacent to the ball is at least equal to the number
of nodes in the ball. Once this growth condition is not satisfied, which will happen before r ≤ log n
as otherwise the ball has more than n nodes, we consider all nodes in the ball as one cluster (in
the first color) of the decomposition, and we consider all nodes outside but adjacent to it as dead.
All dead nodes are removed from the construction of the first color of the network decomposition.
Then, repeatedly, if any node remains that is not dead but also not clustered, we continue a similar
sequential ball carving process starting from that node, among nodes that are not dead. This gives
the clusters of the first color of the decomposition. Then, we bring all the dead nodes back to life
and repeat this process among them, getting the clusters of the second color, and so on. Since each
time we cluster at least 1/2 of the vertices, we finish after at most log n repetitions, i.e., at most
log n colors.

We now explain how Theorem 2.3 allows us to get an efficient distributed simulation of this
sequential construction, thus proving Theorem 2.14. Let G′ := G10 logn, i.e., the graph on the
same set of vertices as G but where we connect every two vertices v and u that have distance at
most 10 log n in G. We apply the algorithm of Theorem 2.3 to obtain a weak-diameter network
decomposition of G′, in O(log8 n) rounds of communication on G. The resulting network decom-
position is a coloring of vertices with q = O(log n) colors where the clusters in each color have
weak-diameter O(log3 n) in G′, and thus weak-diameter O(log4 n) in G. We next use this helper
network decomposition to build our output strong-diameter network decomposition with O(log n)
colors and O(log n) diameter.

We describe the process for determining the nodes of the first color in the output network de-
composition. The other colors are obtained similarly, by applying the same construction repeatedly
for O(log n) times, each to the graph induced by the remaining nodes.

To determine the nodes of the first color of the output decomposition, we process the colors
of the helper network decomposition one by one, in q stages. Let us fix one stage (and thus one
color of the helper network decomposition, and its clusters). For each cluster, we elect a leader
for it and we gather the topology of the subgraph of all remaining nodes within log n hops of the
nodes of this cluster. Notice that since the cluster has weak-diameter O(log4 n), this can be done

12

in O(log4 n) rounds. Moreover, the topologies gathered by different clusters are disjoint. This is
because different clusters of this color of the helper decomposition have distance at least 10 log n,
since otherwise G′ would contain an edge connecting the two clusters.

Each cluster C will perform a sequential ball carving process, on the topology that it has
gathered, as follows: We start from an arbitrary node v of color i ∈ [1, q] in cluster C, and grow
a ball around it, hop by hop, in the subgraph induced by the remaining nodes. A ball is simply
all remaining nodes that are within a certain distance of node v, in the subgraph induced by the
remaining nodes. We grow the radius of this ball gradually, as long as the number of the nodes
outside the ball that are adjacent to the ball is at least equal to the number of nodes in the ball.
Once this growth condition is not satisfied, we consider all nodes in the ball as one cluster of the
output decomposition, and we consider all nodes outside but adjacent to it as dead. All dead nodes
are removed from the construction of this color of the output network decomposition. Then, if
any node v′ of cluster C remains unclustered (for the output decomposition), we start a similar
ball growing process from v′, but only on the graph induced by the remaining nodes. We continue
similarly until all nodes of cluster C are clustered for the output decomposition.

In each step of growing a ball, the number of nodes grows by a 2 factor. Hence, any ball can
grow by at most log n hops. This implies that the ball growing processes from cluster C will never
reach the ball growing processes from any other cluster C′ of color i of the helper decomposition.
Furthermore, each time that we stop a ball’s growth, the number of nodes on the boundary of
it that die is less than the number of nodes inside the ball (which get clustered for the output
network decomposition). Hence, after going through all the q stages, at least 1/2 of living nodes
get clustered, and at most 1/2 of living nodes die.

Then, we bring all dead nodes back to life and proceed to build the next color of the output
network decomposition, only on the subgraph induced by these remaining nodes. As per repetition
the number of remaining nodes reduces by a 2 factor, we finish in log n repetitions.

3 Implications and Applications

As mentioned before, despite its simplicity, our efficient deterministic network decomposition has
far-reaching implications, leading to a general efficient distributed derandomization theorem and
better deterministic and randomized distributed algorithms for a range of problems, as well as
some improvements in massively parallel computation (aka, the MapReduce algorithms). We next
overview these implications. We start in Section 3.1 with the well-studied problems of maximal
independent set and coloring, which were among the most well-known open problems in distributed
graph algorithms and get settled immediately by our network decomposition. This also serves
as a warm up for the standard method of using network decomposition. Then, in Section 3.2,
we present our general derandomization result for the LOCAL model, thus proving Theorem 1.1.
Finally, in Section 3.3, we overview a list of other well-studied problems for which we get substantial
(deterministic or randomized) improvements.

3.1 Maximal Independent Set and Coloring

3.1.1 MIS

The Maximal Independent Set (MIS) problem is one of the central problems in the study of dis-
tributed graph algorithms. As mentioned before, there have been well-known O(log n)-round ran-
domized algorithm for this problem since the 1980s [Lub86,ABI86] but obtaining a deterministic
algorithm for it had remained open.

13

Deterministic MIS: We next explain how the efficient network decomposition of Theorem 2.3
directly gives a poly(log n)-round deterministic MIS algorithm. This already answers Linial’s long-
standing open question and settles Open Problem 11.2 in the book of Barenboim and Elkin [BE13].
Weaker forms of this problem appear as Open Problems 11.5 and 11.8 in the same book [BE13]
and they are now resolved. The method is fairly standard and thus we provide a proof sketch. It
also allows us to recall the usual method of using network decomposition to solve problems such as
maximal independent set and coloring [AGLP89].

Corollary 3.1. There is a deterministic distributed algorithm, in the LOCAL model, that computes
a maximal independent set in poly(log n) rounds.

Proof. First, we compute a network decomposition with O(log n) colors and clusters of diameter
O(log3 n), in O(log7 n) rounds, using Theorem 2.3. Then, we process the clusters color by color.
In each color i, the center node of each cluster aggregates at the center the topology of the cluster
as well as the information of which nodes adjacent to the cluster have already been added to the
maximal independent set, when processing the previous colors 1 to i−1. Since the cluster diameter
is O(log3 n), this information can be gathered in O(log3 n) rounds. Then, the center simulates a
greedy process of adding the vertices of this cluster to the MIS, one by one, for any node that
does not already have a neighbor in the MIS. Since any two cluster of the same color are non-
adjacent, the computations of different clusters can happen simultaneously. Processing each color
takes O(log3 n) rounds, which means that we finish processing all the O(log n) colors in O(log4 n)
rounds. Together with the O(log7 n) rounds used for computing the network decomposition, this
is a deterministic maximal independent set algorithm that runs in O(log7 n) rounds.

We note that, due to a very recent breakthrough of Balliu et al. [BBH+19], any deterministic
algorithm for MIS needs a round complexity of Ω(log n/ log log n).

Randomized MIS: Plugging the above deterministic MIS algorithm into the shattering framework
of the algorithm of [Gha16] improves also the randomized complexity of MIS:

Corollary 3.2. There is a randomized distributed algorithm, in the LOCAL model, that computes a
maximal independent set in O(log∆)+poly(log log n) rounds, with probability at least 1−1/poly(n).

We note that due to a celebrated lower bound of Kuhn, Moscibroda and Wattenhofer [KMW16],
any (randomized) algorithm for MIS needs a round complexity of Ω(log∆

log log∆), which means the ∆
dependency in the above algorithm is nearly optimal. Moreover, regarding the dependency on n,
due to another result of Balliu et al. [BBH+19], any randomized algorithm for MIS needs a round
complexity of Ω(log logn

log log logn), on some graphs with ∆ = Ω(log logn
log log logn). Thus, one cannot hope for an

algorithm with round complexity O(log∆) + o(log logn
log log logn), or even o(∆) + o(log logn

log log logn).

MIS with small messages: The algorithm described in the proof of Theorem 3.1 works in the
LOCAL model, where message sizes are unbounded. We can also obtain an algorithm for the
CONGEST model, where message sizes are bounded to O(log n):

Corollary 3.3. There is a deterministic distributed algorithm, in the CONGEST model, that com-
putes a maximal independent set in poly(log n) rounds.

Proof Sketch. The method outline is similar to the LOCAL model algorithm, with two exceptions:
(1) we use the CONGEST-model variant of our network decomposition, which runs in O(log8 n)
rounds, (2) when processing each cluster, we use a CONGEST-model MIS algorithm of Censor-
Hillel, Parter, and Shwartzman [CHPS17], instead of the naive topology gathering step. Concretely,

14

Censor-Hillel et al. give an O(D log2 n)-round MIS algorithm in the CONGEST model, D denotes
the graph diameter. When processing the colors of network decomposition, for each cluster of the
color, we can run the algorithm of Censor-Hillel et al. on the cluster (ignoring nodes that already
have a neighbor in the MIS). Recall from Lemma 2.4 that per color, each edge of the graph is used
by the Steiner trees of O(log n) clusters. Hence, we can run the algorithm of Censor-Hillel et al. for
all the clusters of the same color, in parallel, in O(log3 n · log2 n · log n) = O(log6 n) rounds. Over
all the O(log n) colors, this MIS computation runs in O(log7 n) rounds of the CONGEST model,
besides the initial O(log8 n) rounds spent for computing a network decomposition.

3.1.2 Coloring

Deterministic coloring: One can apply the standard method for using network decomposition,
as done above when proving Theorem 3.1, to also obtain an O(log7 n) round algorithm for ∆ + 1
vertex coloring, where ∆ denotes the maximum degree, or its generalization to list-coloring. This
efficient coloring resolves Open Problem 11.3 in the book of Barenboim and Elkin [BE13] and gives
an alternative, and more systematic, solution for Open Problem 11.4, which asked for an efficient
deterministic (2∆ − 1)-edge coloring (that problem was settled first in [FGK17]).

Corollary 3.4. There is a deterministic distributed algorithm, in the LOCAL model, that computes
a (∆+1) vertex coloring, where ∆ denotes the maximum degree in the graph, in poly(log n) rounds.
The algorithm can also be generalized to list-coloring where each vertex v should choose its color
from a list Lv of colors, where |Lv| ≥ deg(v) + 1.

Randomized coloring: Moreover, plugging this deterministic list-coloring algorithm of Theorem 3.4
into the randomized coloring algorithm of Chang, Li, and Pettie [CLP18] improves the randomized
complexity of ∆ + 1 coloring from 2O(

√
log logn) to poly(log log n):

Corollary 3.5. There is a randomized distributed algorithm, in the LOCAL model, that computes
a (∆ + 1) vertex coloring, where ∆ denotes the maximum degree in the graph, in poly(log log n)
rounds, with probability at least 1− 1/poly(n).

Proof Sketch. Following the shattering framework [BEPS16], the randomized phase of the algo-
rithm of [CLP18] works in O(log∗ ∆) rounds, and colors almost all nodes, except for some small
components of nodes that remain uncolored. The guarantee is that, with probability at least
1− 1/poly(n), each remaining component has poly(log n) vertices. After that, for the determinis-
tic phase, we can invoke the deterministic list-coloring algorithm of Theorem 3.4 on each of these
components separately, all in parallel. Since each component has poly(log n) vertices, this would
run in poly(log(poly(log n))) = poly(log log n) rounds, and would complete the partial coloring to
a coloring for all vertices.

As another coloring result, by using Theorem 3.4 along with the method of [BE11], one can
obtain an arboricity-dependent coloring:

Corollary 3.6. There is a deterministic distributed algorithm that computes a (2+ o(1))a-coloring
of any graph with arboricity at most a, in poly(log n) rounds of the LOCAL model.

Massively Parallel Computation (MPC) of coloring: we also get a nearly-exponential im-
provement for massively parallel (aka, MapReduce) algorithms [KSV10] for ∆ + 1 coloring. It is
beyond the scope of this paper to explain the exact setting and review the related literature. For
those, and particularly for the coloring problem, we refer the readers to [KSV10,CFG+19,GKU19].

15

We just briefly state that in the MPC model (with strongly sublinear memory per machine), the
n-node graph is partitioned among a number of machines, each with memory nα for a constant
α < 1, and per round each machine can send nα bits to the other machines.

We obtain our improvement by plugging in the LOCAL-model deterministic list-coloring algo-
rithm of Theorem 3.4 into the algorithm of [CFG+19]. This gives a randomized MPC ∆+1 coloring
algorithm, with strongly sublinear memory per machine, with round complexity of O(log log log n),
which improves on the previous bound of O(

√
log log n).

Corollary 3.7. There is a randomized MPC algorithm, in the regime where each machine has
memory nα for any constant α < 1, that computes a ∆ + 1 coloring of any n-node graph with
maximum degree at most ∆ in O(log log log n) rounds, with high probability.

We also note that due to a conditional hardness result of [GKU19], conditioned on a standard
hardness assumption of Ω(log n)-complexity for connectivity, improving this O(log log log n)-round
randomized MPC coloring algorithm would imply a deterministic logo(1) n-round deterministic dis-
tributed algorithm for ∆+ 1 coloring, in the LOCAL model, which would be a major improvement
on the state of the art (Theorem 3.4).

3.2 Derandomization via Network Decomposition

We now explain how our network decomposition, when put together with the approach of [GHK18,
GKM17], leads to an efficient derandomization method for the LOCAL model. We note that this
result can be viewed as answering Open Problem 11.1 in the book of Barenboim and Elkin [BE13],
which asked for developing “a general derandomization technique for the distributed message pass-
ing model” and was followed by several locally checkable problems that admit poly(log n)-round
randomized algorithms but no known poly(log n)-round deterministic algorithm.

Theorem 1.1 (LOCAL Derandomization Theorem) We have

P-LOCAL = P-RLOCAL.

Here, P-LOCAL denotes the family of locally checkable problems that can be solved by deterministic
algorithms in poly(log n) rounds of the LOCAL model in n-node graphs and P-RLOCAL denotes the
family of locally checkable problems that can be solved by randomized algorithms in poly(log n)
rounds of the LOCAL model, with success probability 1− 1/n.

Proof Sketch. A formal and precise description of this procedure can be found in [GHK18]. To
keep this article self-contained and accessible to a broad audience, we provide a less formal sketch
here, and without going through the language of the SLOCAL model of [GKM17].

Consider any locally checkable problem P that can be checked in t(n) rounds by a deterministic
LOCAL-model algorithm, and a randomized LOCAL-model algorithm A for P that runs in exactly
r(n) rounds and produces correct outputs with probability at least 1−1/poly(n). Thus, composing
these, we have an algorithm B that runs in R = r(n) + t(n) rounds and computes the outputs for
P, as well as a correctness indicator flag fv for each node v such that if a constraint of P involving
node v is not satisfied, then fv = 1. In other words, if for all nodes v ∈ V the indicator flags
fv = 0, the output is a valid solution for the problem. Moreover, the expected number of flags
that equal to 1 is at most 1/poly(n). We derandomize this algorithm B by working through the
network decomposition, and fixing the randomness of different nodes, via a method of conditional
expectation for the function

∑

v fv.
We first take a network decomposition of G2R+1 where each two nodes are connected if their

distance is at most 2R+ 1. This can be computed deterministically in R poly(log n) rounds of the

16

LOCAL model, using Theorem 2.3. We get a decomposition into clusters of radius O(R log3 n),
colored with O(log n) colors, such that any two clusters of the same color are more than 2R + 1
hops apart.

Then, similar to the standard method explained in the proof of Theorem 3.1, we work through
the colors of the network decomposition, one by one. Per color i, each cluster gathers the topology
from 2R-hop neighborhood of the cluster in the cluster center (this topology also includes the
information of how randomness has been fixed, when processing previous colors), in O(R log3 n)
rounds. Then, each cluster center fixes the randomness of its vertices one by one, in a sequential
manner, ensuring that the expectation of

∑

v fv conditioned on the fixed randomness does not
increase. Notice that since B is an R round algorithm, the randomness of each node u influences
only fv for nodes v that are within distance R of node u. Hence, the cluster center can compute
the change in the expected value of

∑

v fv when fixing the randomness of each node u in its cluster,
and can fix the randomness in a way that does not increase the conditional expectation. Moreover,
clusters of the same color can work in parallel as they are more than 2R + 1 hops apart and
hence they do not influence the same indicator flag fv for any node v. Once each cluster center
fixes the randomness of the node’s of its cluster, it reports these values back to the nodes, in
O(R log3 n) rounds. Then, we proceed to the next color and repeat a similar procedure. Once we
finish processing all the O(log n) colors, all the randomness is fixed, and still the expected value
of

∑

v fv is at most 1/poly(n) ≪ 1. Since
∑

v fv has to be a non-negative integer value, we must
have

∑

v fv = 0, which means all fv = 0 and thus all the constraints are satisfied. Overall, we now
have a deterministic algorithm that runs in R · poly(log n) rounds. Hence, any locally checkable
problem whose solution can be checked deterministically in t(n) = poly(log n) rounds and admits
a randomized algorithm that runs in r(n) = poly(log n) rounds also has a deterministic algorithm
that runs in (r(n) + t(n)) · poly(log n) = poly(log n) rounds.

3.3 Other Implications (Deterministic & Randomized)

Here, we mention some of the other implications. This list is not exhaustive; these are just some
of the prominent instances that came to our mind. A more thorough job is needed to re-examine
all the related literature and list all the consequences. Moreover, in the interest of brevity and
due to the large number of the implications, here we just provide a brief and sometimes informal
explanation of each problem; the precise setup can be found in the references that we mention.

3.3.1 Lovász Local Lemma and the Sublogarithmic Complexity Lanscape

The Lovász Local Lemma has turned out to have a fundamental role in several distributed prob-
lems, and perhaps most remarkably, in the complexity of the locally checkable problems that have
sublogarithmic complexity. We next review the LLL problem and outline the new result.

Lovász Local Lemma: Consider a probabilistic setting of events defined on a set of random
variables. There is one node for each bad event, and p denotes the maximum probability among
these bad events. Moreover, each two bad events that share a variable are connected via an edge,
and we use d to denote the maximum degree of this graph. The Lovász Local Lemma proves that
if epd ≤ 1, then there is an assignment to the variables that avoids all the bad events. In the
distributed version of this problem, the question is to efficiently compute such as assignment that
avoids all the bad events, where the LOCAL-model graph is the same as the dependency graph
among the events. See [CPS17,CP17,FG17,GHK18].

Improved deterministic LLL: By running the O(log2 n)-round randomized distributed LLL
algorithm of Moser and Tardos [MT10] through the derandomization method of Theorem 1.1, we

17

get a poly(log n) round deterministic distributed algorithm for Lovász Local Lemma:

Corollary 3.8. There is a deterministic distributed algorithm that solves the Lovász Local Lemma
problem in poly(log n) rounds, so long as the maximum probability among the bad events p and the
maximum dependency degree among them d satisfy epd ≤ 1− δ, for any constant δ > 0 or even a
slightly sub-constant δ > 1/poly(log n).

Improved randomized LLL: By plugging this deterministic Lovász Local Lemma algorithm
into the frameworks of [FG17, GKM17], we get a randomized LLL algorithm with complexity
poly(log log n) in constant-degree graphs.

Corollary 3.9. There is a randomized distributed algorithm that solves the Lovász Local Lemma
problem in O(d2)+poly(log log n) rounds, so long as the maximum probability among the bad events
p and the maximum dependency degree among them d satisfy Cpd8 ≤ 1, for some constant C > 1.

This poly(log log n) round complexity for constant-degree graphs almost settles a conjecture of
Chang and Pettie [CP17]; their conjecture postulates the existence of an O(log log n) time algorithm.

Complexity of LCLs in the sublogarithmic landscape: Due to a beautiful result of Chang
and Pettie [CP17], this improved LLL has a remarkable complexity-theoretic consequence:

Corollary 3.10. Any locally-checkable problem that admits an o(log n) round randomized dis-
tributed algorithm in constant-degree graphs also admits a poly(log log n) round randomized algo-
rithm.

That is, for any problem whose solution can be checked deterministically in O(1) rounds, in
bounded degree graphs, the randomized complexity is either Ω(log n) and above, or poly(log log n)
and below. As soon as we can prove some LCL problem to admit an o(log n)-round algorithm, we
immediately get a poly(log log n) round algorithm.

3.3.2 Packing/Covering Integer Linear Programs

Covering and packing integer Linear Programs are LPs in the standard form where all the coef-
ficients are non-negative; the former is a minimization problem and the latter is a maximization
problem. A wide range of optimization problem can be formulated in this manner.

A general result of Ghaffari, Kuhn, and Maus [GKM17, Section 7] shows that for any covering or
packing integer linear program, there is a poly(log n/ε) round randomized algorithm in the LOCAL
model for computing a 1 + ε (integral) approximation. The concrete distributed formulation of
these LPs is that we have a bipartite graph where each node on the left shows one of the variables
and each node on the right shows one of the constraints, and a constrain node is connected to the
variable nodes that it includes. Cf. [GKM17] for details. We note that one can imagine a number
of other natural formulations of the optimization problem as a graph, but in the LOCAL model,
these usually can simulate each other with a constant round complexity overhead.

By plugging our network decomposition into the framework of [GKM17], we can derandomize
their result and get a deterministic variant:

Corollary 3.11. For any covering or packing integer linear program, there deterministic algorithm
in the LOCAL model that computes a 1 + ε approximation in poly(log n/ε) rounds.

We note that the conference version of [GKM17] describes the method explicitly only for the
maximum independent set problem, but the same technique extends to other covering or packing

18

integer linear programs, as outlined in [GKM17]. A full description will appear in the journal
version of [GKM17]. As some concrete examples, this implies poly(log n/ε)-round deterministic
LOCAL-model algorithms for 1+ε approximation of maximum independent set (as a sample packing
problem) and for 1+ ε approximation of minimum dominating set (as a sample covering problem).
It should be remarked that the LOCAL model does not bound the time for local computation in
one node and these two particular results take advantage of that.

3.3.3 Defective and Frugal Colorings

Defective coloring: The defective coloring problem is a variant of the standard proper coloring
problem, which has turned out to be important in the study of distributed graph algorithms. In
an f -defective coloring, we allow each node to have up to f neighbors in its own color — in return
for this relaxation, we hope for a smaller number of colors. Open Problem 11.7 in the book of
Barenboim and Elkin asks for “an efficient distributed algorithm for computing a O(∆/p)-defective
O(p)-coloring”.

We note that an iterative-improvement algorithm of Lovász [Lov66]—which starts with an
arbitrary coloring and changes node colors one by one, so long as that improves the node’s defect—
ensures the existence of such a defective coloring in all graphs. Kuhn [Kuh09] showed that a ∆/p-
defective O(p2) coloring can be computed in O(log∗ n) rounds. Chung, Pettie, and Su [CPS17] gave
a randomized algorithm that in O(log n) rounds computes an O(∆/p)-defective O(p) coloring. By
running their randomized algorithm through our derandomization result (Theorem 1.1), we get an
efficient deterministic variant which settles Open Problem 11.7:

Corollary 3.12. There is a deterministic distributed algorithm in the LOCAL model that, for any
p, computes an O(∆/p)-defective O(p) coloring in poly(log n) rounds.

Frugal coloring: A k-frugal coloring is a coloring where each color appears at most k times
in the neighborhood of each node (independent of the color of that node itself, which is what
makes this definition different from defective coloring). We are not aware of any deterministic
distributed algorithm for frugal coloring (with good parameters), but there are some efficient ran-
domized algorithms: Chung, Pettie, and Su [CPS17] show a randomized algorithm that computes
an O(log2∆/ log log∆)-frugal ∆ + 1 coloring in O(log n) rounds of the LOCAL model, and a β-
frugal O(∆1+1/β)-coloring in O(log n log2 ∆) rounds of the LOCAL model. By derandomizing these
algorithms, we get

Corollary 3.13. There are deterministic distributed algorithm that in poly(log n) rounds of the
LOCAL model compute

(I) a O(log2∆/ log log∆)-frugal ∆+ 1 coloring, and

(II) β-frugal O(∆1+1/β)-coloring.

3.3.4 Forest Decomposition and Low Out-degree Orientation

Consider a graph with arboricity at most a, that is, a graph where edges can be decomposed into
a forests. Due to a result of Barenboim and Elkin [BE10], there is a deterministic distributed
algorithm that decomposes any graph of arboricity a into 2a forests, in O(log n) rounds. In Open
Problem 11.10 of their book [BE13], Barenboim and Elkin ask for an “efficient distributed algorithm
for computing a decomposition of graph with arboricity a into less than 2a forests”. A result
of [GS17] provides a randomized poly(log n) round algorithm that decomposes the graph into
(1 + o(1))a forests, when a = Ω(log n), and into (1 + o(1))a pseudo-forests when a = o(log n).

19

Recall that a pseudo-forest is an undirected graph where each connected component has at most
one cycle. In both cases, the decomposition provides an orientation of the edges where each node
has out-degree at most (1 + o(1))a. To the best of our knowledge, in all distributed applications
of the aforementioned forest decomposition, a decomposition into pseudo-forests (or alternatively,
just the orientation with the bounded out-degree) would also suffice. Plugging this randomized
algorithm into our derandomization result (Theorem 1.1), we get an algorithm that almost settles
Open Problem 11.10 of [BE13]:

Corollary 3.14. There is a deterministic poly(log n) round algorithm in the LOCAL model that,
for any graph with arboricity at most a, computes an orientation with maximum outdegree at most
(1+ o(1))a. Moreover, the algorithm decomposes the graph into (1+ o(1))a forests, if a = Ω(log n),
and into (1 + o(1))a pseudo-forests if a = o(log n).

3.3.5 Derandomizations in the CONGEST Model: Neighborhood Cover, Spanners, and
Dominating Set

We have already mentioned that our network decomposition algorithm extends to the CONGEST

model, and even has the nice property that each edge is in poly(log n) many Steiner trees. We
used these to derive our CONGEST model efficient deterministic MIS algorithm, in Theorem 3.3.
But there is one more generality of our network decomposition, which opens the road for other
applications: the algorithm readily extents to powers Gk of the graph G, where we connect any two
nodes within distance G. As stated in Theorem 2.12, in poly(log n) rounds of the CONGEST model,
we can compute a decomposition into clusters, each with a Steiner tree of depth poly(log n), colored
with poly(log n) colors so that any two clusters wihin distance k have different colors. Moreover,
each edge is used in poly(log n) Steiner trees. This can be directly plugged into some of the recent
work on derandomization in the CONGEST model, for particular graph problems, to improve the
related round complexities. We overview these next.

Sparse neighbohood covers: One prominent corollary is that we get an efficient deterministic
algorithm in the CONGEST model for the sparse neighborhood cover problem — one of the central
and versatile algorithmic tools in the study of locality-sensitive distributed graph algorithms [Pel00,
AGLP89]. This corollary follows from using our improved network decomposition in the method
provided by Ghaffari and Kuhn [GK18].

Corollary 3.15. There is a deterministic distributed algorithm that for any radius r ≥ 1, computes
an poly(log n)-sparse neighborhood cover of the r-neighborhoods of the graph, with clusters of radius
r poly(log n)), in r poly(log n) rounds of the CONGEST model. In other words, this gives a clustering
of the graph into overlapping clusters of radius r poly(log n) such that for each node, its r-hop
neighborhood is entirely contained in at least one of the clusters and moreover, each node is in at
most poly(log n) clusters.

We note that the above neighborhood cover also settles a question of Elkin [Elk06], giving a
deterministic variant of his minimum spanning tree algorithm with the same round complexity up
to logarithmic factors.

Spanner: Another example is the first efficient deterministic distributed algorithm, in the CONGEST
model, for constructing spanners with almost optimal parameters. This follows from plugging our
network decomposition into the algorithms of [GK18]:

Corollary 3.16. There is a deterministic distributed algorithm that in poly(log n) rounds of the
CONGEST model, computes a spanner with stretch 2k − 1 and size O(kn1+1/k log n).

20

Dominating set and set cover: As another example, by putting together our CONGEST-model
network decomposition with the work of Deurer et al. [DKM19], we get the first efficient determinis-
tic CONGESTmodel approximation of minimum dominating set. Moreover, as outlined in [DKM19],
this can also be extended to an approximation of set cover. These lead to the following corollary:

Corollary 3.17. There are poly(log n)-round deterministic distributed algorithms in the CONGEST
model that compute: (I) a (1 + o(1)) log ∆ approximation of minimum dominating set, where ∆
denotes the maximum degree, and (II) a (1 + o(1)) log ∆ approximation of the minimum set cover
problem, where ∆ denotes the maximum set size.

Acknowledgment

We are grateful to Christoph Grunau for several discussions about verifying the ideas and working
intensively with us throughout the writing process. We also thank Sebastian Brandt, Keren Censor-
Hillel, Yi-Jun Chang, Davin Choo, Michael Elkin, Fabian Kuhn, Merav Parter, Julian Portmann,
and Hsin-Hao Su for proofreading an earlier version of this write-up and helpful comments. We are
also grateful to the reviewers of STOC 2020 for their helpful comments.

The first author also thanks Michael Elkin and Jukka Suomela for very inspiring discussions
about network decomposition.

References

[ABCP96] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Fast network de-
compositions and covers. J. of Parallel and Distributed Computing, 39(2):105–114, 1996.

[ABI86] Noga Alon, Laszlo Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[AGLP89] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Network
decomposition and locality in distributed computation. In Proc. 30th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 364–369, 1989.

[BBH+19] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and
Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets.
In Proc. Foundations of Computer Science (FOCS), 2019.

[BE10] Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in poly-
logarithmic time. In Proc. 29th Symp. on Principles of Distributed Computing (PODC),
pages 410–419, 2010.

[BE11] Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in poly-
logarithmic time. Journal of the ACM (JACM), 58(5):23, 2011.

[BE13] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and
Recent Developments. Morgan & Claypool Publishers, 2013.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63:20:1–20:45, 2016.

21

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆+ 1) coloring in congested clique, massively parallel computation, and
centralized local computation. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 471–480. ACM, 2019.

[CHPS17] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local
distributed algorithms under bandwidth restrictions. In 31st International Symposium
on Distributed Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[CLP18] Yi-Jun Chang, Wenzheng Li, and Seth. Pettie. An optimal distributed (∆+1)-coloring
algorithm? In Proc. 50th ACM Symp. on Theory of Computing (STOC), 2018.

[CP17] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. In
Proc. 58th IEEE Symp. on Foundations of Computer Science (FOCS), pages 156–167,
2017.

[CPS17] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász
local lemma and graph coloring. Distributed Computing, 30(4):261–280, 2017.

[DKM19] Janosch Deurer, Fabian Kuhn, and Yannic Maus. Deterministic distributed dominating
set approximation in the congest model. In Proc. Principles of Distributed Computing
(PODC), pages 94–103, 2019.

[Elk06] Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree.
Journal of Computer and System Sciences, 72(8):1282–1308, 2006.

[FG17] Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lovász
local lemma, and the complexity hierarchy. In Proc. 31st Symp. on Distributed Com-
puting (DISC), pages 18:1–18:16, 2017.

[FGK17] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-
coloring via hypergraph maximal matching. In Proc. 58th IEEE Symp. on Foundations
of Computer Science (FOCS), 2017.

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proc. 27th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 270–277, 2016.

[GHK18] Mohsen Ghaffari, David Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proc. Foundations of Computer Science (FOCS), pages 662–673, 2018.

[GK18] Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small
messages: Spanners and dominating set. In 32nd International Symposium on Dis-
tributed Computing (DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[GKM17] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proc. 49th ACM Symp. on Theory of Computing (STOC), pages
784–797, 2017.

[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for mas-
sively parallel computation from distributed lower bounds. In Proc. Foundations of
Computer Science (FOCS), 2019.

22

[GS17] Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and
orientations. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2505–2523. Society for Industrial and Applied Mathematics,
2017.

[KK19] Dariusz Kowalski and Piotr Krysta. Deterministic coloring algorithms in the local model.
arXiv preprint arXiv:1907.12857, 31 July 2019.

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. Journal of the ACM, 63(2), 2016.

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Proceedings of the twenty-first annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 938–948. SIAM, 2010.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and applications. In Pro-
ceedings of the twenty-first annual symposium on Parallelism in algorithms and archi-
tectures, pages 138–144. ACM, 2009.

[Lin87] Nathan Linial. Distributive graph algorithms – global solutions from local data. In
Proc. 28th IEEE Symp. on Foundations of Computer Science (FOCS), pages 331–335,
1987.

[Lin92] Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[Lov66] László Lovász. On decomposition of graphs. Studia Sci. Math. Hungar, 1(273):238,
1966.

[LS93] Nati Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15:1036–1053, 1986.

[MT10] Robin Moser and Gabor Tardos. A constructive proof of the general Lovász local lemma.
Journal of the ACM, 57(2):11, 2010.

[NS95] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[PS92] Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for
coloring and network decomposition problems. In Proc. 24th ACM Symp. on Theory of
Computing (STOC), pages 581–592, 1992.

A Comparison of previous work with Theorem 1.2

Recall that before our work, the state of the art deterministic algorithm for network decompo-

sition was the 2O(
√
logn)-round algorithm of Panconesi and Srinivasan [PS92]. This result itself

23

was a refinement of the approach of Awerbuch et al. [AGLP89], who obtained an 2O(
√
logn log logn)-

round algorithm for network decomposition. In this section, we first briefly recall this approach,
in Appendix A.2. Then, in Appendix A.3, we describe a new algorithm that also achieves this

2O(
√
logn log logn)round complexity. In some sense, the approaches of [PS92,AGLP89] and the algo-

rithm that we describe here can be viewed as two fundamentally different methods, both of which

seem to get stuck at the 2O(
√
logn log logn)round complexity. Finally, in Appendix A.4 then discuss

how these compare with the approach of Theorem 2.3 that achieves a poly(log n) round complexity.

A.1 Recap on Ruling sets

Both the approach of Awerbuch et al. [AGLP89] and of the new algorithm that we present here

would achieve round-complexity 2O(
√
logn), assuming we have an efficient algorithm for maximal

independent set (MIS). However, the only known way of computing MIS is via network decompo-
sition (cf. Theorem 3.1). Hence, instead, we will use a ruling set procedure. As we recall next,
ruling set is a certain weakening of MIS, and it can be computed deterministically in O(log n)
rounds [AGLP89] (for certain parameters).

Definition A.1. Given a graph G, an (α, β)-ruling set is a subset S ⊆ G such that

• for each two different vertices u, v ∈ S their distance in G is at least α,

• for each vertex u ∈ G there is a vertex v ∈ S such that the distance of u and v in G is at
most β.

To give an example, a maximal independent set is simply a (2, 1)-ruling set. For the sake of
completeness, we now show how to construct a (2, O(log n))-ruling set, as presented by Awerbuch
et al. [AGLP89]. In other words we find a set S such that no two of its vertices are neighbouring
and for each vertex v there is a vertex u ∈ S within its O(log n) distance.

Proposition A.2. There is a deterministic O(log n)-round complexity algorithm that computes a
(2, O(log n))-ruling set of any graph G = (V,E) in the LOCAL model, given that each vertex holds
a unique O(log n)-bit identifier.

Proof. We start with a set S0 = V of all vertices and gradually prune this set in O(log n) steps,
producing a chain V = S0 ⊇ S1 ⊇ · · · ⊇ SO(log(n)) =: S, where the final set S in the chain is the
desired (2, O(log n))-ruling set.

This is done as follows: in the i-th step, each vertex u ∈ Si−1 that has 1 at the i-th position of
its identifier checks whether it has a neighbour with identifier containing 0 at its i-th bit. If this is
the case, u decides to leave Si−1.

This process clearly finishes with a set SO(logn) without any neighbouring vertices. To see that
for each vertex v ∈ G we can find u ∈ S at distance O(log n), consider the previous process again
and for each vertex w that is removed from the ruling set at some iteration i, draw an oriented
edge towards its neighbour that made w disappear from Si−1. These edges form disjoint oriented
trees of depth O(log n) and with vertices of S being their roots. This implies that S is indeed
(2, O(log n))-ruling set.

A.2 Recap on the Approach of Awerbuch et al. [AGLP89]

Next, we sketch the 2O(
√
logn log logn)-round algorithm for network decomposition from Awerbuch

et al. [AGLP89]. We note that the algorithm of Panconesi and Srinivasan [PS92] is a improvement
and refinement of this approach; while the algorithms is different, the overall approach outline

24

is the same. In particular, both of these algorithms seem to fall short of reaching a poly(log n)
complexity, for the same reasons.

Proposition A.3. There is a deterministic 2O(
√
logn log logn)-round algorithm in the LOCAL model

that computes a network decomposition of the underlying graph G into O(log n) color classes, each
one with clusters of diameter at most O(log n).

Proof Sketch. It suffices to construct a decomposition with 2O(
√
logn log logn)color classes and clusters

of weak-diameter 2O(
√
logn log logn)7, since then we can reduce the diameter and the number of color

classes by known reduction [ABCP96]. See also Theorem 2.14 for such a transformation.
We show an iterative process with a parameter d that will have logd n iterations. The i-th

iteration has round complexity O(log n)i−1 · O(d2 + log∗ n). This process will construct network
decomposition with d logd n colors and with the diameter of each cluster being O(log n)logd n. We

optimize d by setting d = 2O(
√
logn log logn) which gives the advertised parameters.

Now we describe one phase of the process that works with a graph Gi = (Vi, Ei). Initially,
we set G0 := G. We shall ensure that one round of communication in Gi can be simulated in
O(log n)i−1 rounds of communication in G.

We split the vertex set Vi into the set Hi of vertices of degree at least d and Li of vertices
of degree smaller than d. To deal with low degree vertices, we construct their d2-coloring by the
algorithm of Linial [Lin87] in time O(log n)i−1 · O(d2 + log∗ n) – here the first term is the number
of rounds in G we need to simulate one round in Gi−1 and the second term is the complexity
of Linial’s algoirthm. Each constructed color class will constitute one class of the final network
decomposition.

Next, the nodes locally construct a graph G2
i where two vertices are connected if their distance

in Gi is at most 2. Now we use Proposition A.2 to find a (2, O(log n)) ruling set in G2
i restricted to

vertices of Hi. The ruling set procedure also gives us a decomposition of Hi into oriented trees of
depth O(log n), hence we get a decomposition of vertices of Hi into clusters of diameter O(log n) in
Gi. These clusters will be vertices of Gi+1 and there is an edge in E(Gi+1) for each pair of clusters
adjacent in Gi.

In the next round, the additional communication overhead of the algorithm on Gi+1 is only
O(log n) times higher than for Gi. More precisely, each vertex of Gi+1 corresponds to a set of
vertices of G that have weak-diameter at most O(log n)i+1. To finish the argument we need to
bound the number of iterations. This follows from the fact that each vertex in the ruling set found
in the i-th iteration has degree at least d in Gi. Moreover, the set of its neighbours is disjoint with
the neighbours of all other vertices in the ruling set due to its construction in graph G2

i . Hence,
the number of vertices in Gi+1 is at least (d+ 1) times smaller than the number of vertices of Gi.
Thus the number of iterations is bounded by logd n.

A.3 A New Network Decomposition with Complexity 2O(
√
logn log logn)

We now propose a new algorithm, which appears to be fundamentally different and it also achieves

the same 2O(
√
logn log logn)round complexity. In the next subsection, we will contrast these two

approaches with the poly(log n)-time algorithm described in Theorem 2.3.
Similarly to the case of Theorem 1.2, we only show how to find first O(log n) color classes of the

resulting decomposition that ensure that the overall number of uncolored vertices drop by a factor
of (1−2−O(

√
logn log logn). The result then follows after repeated application of Proposition A.4 and,

7I.e., any two vertices of a cluster have 2O(
√

log n log logn) distance in G.

25

finally, after reduction of the number of colour classes and their diameter using the transformations
of [ABCP96] (See also Theorem 2.14 for such a transformation).

The idea of the new algorithm is to simulate the sequential process of building network de-
composition from the proof of Theorem 2.14. In particular, each vertex u will consider a ball
B(u, r(u)) around itself of radius r(u). This is similar to the sequential ball carving process in
the proof of Theorem 2.14. The difference is that, here, instead of additively growing the radius
of the ball by one in each step, we will consider radii that are powers of a small value t (later
fixed to be t = O(log n)). We discuss this choice after the proof of Proposition A.4. The balls of
different vertices will possibly intersect considerably. The idea is then to output only a subfam-
ily I := {B(u1, r(u1)), B(u2, r(u2), . . . , B(uk, r(uk))} composed of balls that do not intersect nor
touch, pairwise. In the actual proof we follow this idea, though the resulting output is little bit
more complicated.

The main challenge here is to ensure that the family I covers a substantial part of the whole
graph. To this end, we need a stronger condition, which is effectively like thinking of a “wider bound-
ary” for each ball. Concretely, instead of requiring a lower bound on the ratio |B(u, r(u))|/|B(u, r(u)+
1)|— as we had in the sequential algorithm of Theorem 2.14 and our main distributed algorithm
from Theorem 1.2 — we require a lower bound on the ratio |B(u, r(u))|/|B(u,O(log n) · r(u)|. This
allows us to find such a good set I with the help of ruling sets. The above condition leads to an
optimization problem giving the same round complexity as in [AGLP89].

Proposition A.4. There is a deterministic LOCAL-model algorithm that, for any graph G = (V,E)

with n nodes, in 2O(
√
logn log logn)rounds, computes a S ⊆ V of vertices and a coloring of this set

with O(log n) colors such that (1) each each connected component of any color class of S has weak-

diameter 2O(
√
logn log logn), and (2) |S| ≥ |V |/2O(

√
logn log logn).

Proof. First fix t = O(log n) to be such that Proposition A.2 can give us (2, t/4)-ruling sets in

O(log n) rounds. Moreover, set ε = 2−
√

logn/ log logn. Each vertex u gradually grows a sequence
of balls B(u, ti) for i ≥ 0. It stops growing the ball around it at the first point when |B(u, ti)| ≥
ε · |B(u, ti+1)| and then sets r(u) := ti. Note that the maximum i the vertex needs to consider is
bounded by

log1/ε n =
log n

log 1/ε
=

√

log n log log n.

This is because, in each step, the vertex either finishes growing or the volume of its ball grows by
multiplicative factor of at least 1/ε. Therefore, the overall radius the vertex needs to consider and,
thus also the round complexity of this step, is bounded by

tlog(1/ε) = 2O(log logn)·
√

logn/ log logn = 2O(
√
logn log logn).

Next, we define log1/ε n+1 graphs G0, G1, . . . , Glog1/ε n, where each vertex u is in the vertex set

of Gi if and only if r(u) = ti. Two vertices u, v ∈ Gi are connected in Gi if their distance in G is at
most 3 · ti. This is to ensure that if there is not an edge between u and v in Gi, the corresponding
balls B(u, r(u)) and B(v, r(v)) neither overlap, nor are adjacent.

Now for each Gi we run the (2, t/4)-ruling set algorithm of Proposition A.2 on Gi in O(log n) ·
2O(

√
logn log logn) = 2O(

√
logn log logn) rounds. We call the output ruling set Ri and define the set S

of vertices we color as
S =

⋃

0≤i≤log1/ε n

⋃

u∈Ri

B(u, r(u)).

26

Moreover, each vertex v ∈ S is colored by the smallest index i such that v is in some ball B(u, r(u))
for a vertex u ∈ Ri.

Next, we argue that this output satisfies all the desired conditions. First, notice that the number
of color classes we output is log1/ε n =

√
log n log log n = O(log n). For each color class we output

a subset of balls with diameter 2O(
√
logn log logn) that were neither overlapping, nor adjacent due to

the construction of the ruling set and hence their subsets have still bounded weak-diameter and
they are neither overlapping, nor adjacent.

It remains to be seen that the number of vertices of S constitutes a substantial fraction of the ver-
tices of G. The crucial observation is that due to the property of our ruling sets, each v ∈ Gi has dis-
tance in G at most t/4 · 3ti < ti+1 to some u ∈ Ri. Hence, while S =

⋃

0≤i≤log1/ε n

⋃

u∈Ri
B(u, r(u))

is a union of O(log n) disjoint sets, the union
⋃

0≤i≤log1/ε n

⋃

u∈Ri
B(u, t · r(u)) already covers the

whole G. Finally, recall that each ball B(u, r(u)) already substitutes a substantial fraction of the
bigger ball B(u, t · r(u)). This enables us to finish off with the following simple double counting
argument.

|S| =

∣

∣

∣

∣

∣

∣

⋃

0≤i≤log1/ε n

⋃

u∈Ri

B(u, r(u))

∣

∣

∣

∣

∣

∣

≥ 1

log1/ε n

∑

0≤i≤log1/ε n

∣

∣

∣

∣

∣

∣

⋃

u∈Ri

B(u, r(u))

∣

∣

∣

∣

∣

∣

each vertex is overcounted at most log1/ε n times

=
1

log1/ε n

∑

0≤i≤log1/ε n

∑

u∈Ri

|B(u, r(u))| balls with centers from the same ruling set are disjoint

≥ ε

log1/ε n

∑

0≤i≤log1/ε n

∑

u∈Ri

|B(u, t · r(u))| |B(u, r(u))| ≥ ε|B(u, t · r(u))|

≥ ε

log1/ε n

∣

∣

∣

∣

∣

∣

⋃

0≤i≤log1/ε n

⋃

u∈Ri

B(u, t · r(u))

∣

∣

∣

∣

∣

∣

≥ ε

log1/ε n
· n this union covers the whole graph

= n/2O(
√
logn log logn).

Note that choosing the radius as a power of t, instead of additive increases similar to the
sequential ball carving process, is crucial in the above proof. This is because it is necessary to ensure
that not only the boundary of each ball B(u, r(u)) is small as in the sequential ball carving process,
but also the volume of the ball B(u, t · r(u)) is not much bigger than the volume of B(u, r(u)), as
the factor |B(u, r(u))|/|B(u, t · r(u))| is also the fraction of all vertices that we output in the end
output as the set S.

A.4 Contrasting the poly(log n)-round and 2O(
√
logn log logn)-round algorithms

In this subsection, we discuss the similarities in the above two approaches and describe why they
both fall short of reaching a poly(log n) round complexity. In particular, we discuss one particular

27

graph on which both of these approaches get stuck at a 2O(
√
logn) complexity. We note that the

discussions in this subsection are not written formally, and they instead try to provide an intuitive
explanation of the shortcoming of the two approaches, which is circumvented by the poly(log n)-
round algorithm of Theorem 2.3.

First, let us note the similarities between the algorithm from [AGLP89] and Proposition A.4.
Both algorithms use a ruling set computation just as a replacement for a maximal independent
set, which allows efficient computation. It is straightforward to observe that, if we could solve
the maximal independent set problem in poly(log n) rounds, then the complexity of both of these

approaches would improve from 2O(
√
logn log logn)to 2O(

√
logn). This is roughly because, in that

case, per iteration, we would lose an O(1) factor instead of an O(log n) = O(2log logn) factor. For
the approach of [AGLP89], the algorithm of [PS92] cleverly circumvents this issue via additional
insights (which recursively build the desired maximal independent set, at each point, using the
network decomposition that is constructed up to that point).

Moreover, both algorithms cannot bound the increase of the radii of growing clusters in an
additive manner. Instead, they both the increase in the radii by a multiplicative factor of O(log n)
(or O(1) should they have access to an efficient algorithm for maximal independent set). They have
to achieve as much as possible for one multiplicative increase and here their strategies differ: The
approach of Awerbuch et al. [AGLP89] uses iterations of contracting clusters, while the algorithm of
Proposition A.4 uses a sped up ball carving. More concretely, the algorithm of [AGLP89] decreases
the overall number of vertices by a factor of roughly 2O(

√
logn), via contractions, the algorithm from

Proposition A.4 multiplies volume of a given ball by the same factor, via growing the ball’s radius.
Despite this departure, it appears that both approaches fall short of reaching a poly(log n) round

complexity for similar reasons. In particular, next we discuss an example graph G that is “hard” for
both of these approaches; that is, both approaches achieves at best a 2O(

√
logn) round complexity

on this particular graph. This is a simple high-dimensional torus-like graph G, as follows: The
vertices of G are vectors of length

√
log n with coordinates from the set {0, 1, . . . , 2

√
logn− 1}. Two

vertices/vectors are connected via an edge if and only if the difference in each coordinate is at most
one modulo 2

√
logn. We will refer to the first parameter, i.e., the length of vectors which is set to√

log n, as the dimension, and to the second parameter, i.e., the maximum coordinate value which
is set to 2

√
logn, as the side length.

The vertex-transitive graph G has the following two properties. First, its diameter is Θ(2
√
logn).

Second, the graph has a “volume expansion” factor of Θ(2
√
logn) as we double the radius. That

is, for each vertex u ∈ V (G) and for any radius r ≤ Θ(2
√
logn), we have |B(u, 2r)|/|B(u, r)| =

(4r + 1)
√
logn/(2r + 1)

√
logn = Θ(2

√
logn). In fact, G optimizes the trade-off between these two

parameters, diameter and “volume expansion”.

The two 2O(
√
logn log logn)-round algorithms in fact optimize the same trade-off and we now

observe that the approaches used there cannot yield 2o(
√
lgn) running time. Let us first observe

it on the example of algorithm from Proposition A.4. There, we are growing a ball around each
vertex and doubling its diameter at every step. If we continue doubling the ball until it covers

the whole graph, its radius reaches the diameter of G and we will need O(2
√

log(n)) rounds. If we,
instead, stop growing the ball with any radius r, we will have |B(u,O(log n) · r)| ≥ |B(u, 2r)| =
Θ(2

√
logn) · |B(u, r)|. Hence, we can guarantee that only Θ(1/2

√
logn) fraction of vertices will be

colored in one phase of the algorithm.
Similarly, if we run the algorithm of Awerbuch et al. [AGLP89], we will either decide that all

vertices of G have small degree and color them in 2Θ(
√

log(n)) rounds, or we decide that they have
high degree. In the latter case, we compute a ruling set and use it to contract vertices and form
a new cluster graph. However, one can see that for an arbitrary ruling set — e.g., if the ruling

28

set is given by vertices with all coordinates equal 0 modulo 3 and vertices outside ruling sets join
the cluster of the unique adjacent vertex in the ruling set — the new cluster graph will again
be a

√

log(n)-dimensional torus, this time with coordinates from the set (up to rounding errors)

{0, 1, . . . , 2
√

log(n)/3}. That is, the new contracted graph will also be a torus-like graph with the
same structure described above and only with a constant factor smaller side length. Even after
we contract vertices for O(

√

log(n)) repetitions, we will still have a torus with dimension
√

log(n)

and side length 2Θ(
√

log(n)). But already at this point, simulating one round of communication on

this contracted graph takes 2Θ(
√

log(n)) communication rounds in the original graph. Hence, the

algorithm cannot achieve a round complexity 2o(
√

log(n)).
Our algorithm from Theorem 2.3 circumvents this issue by growing the clusters more care-

fully: crucially, we get only additive increase in diameter of each cluster per step, instead of a
multiplicative increase as in the examples above.

B CONGEST Network Decomposition for Power Graphs

Here, we present the formal proof of Theorem 2.12. This formal proof expands on the proof sketch
provided in Section 2.2 and provides addition low-level details.

Proof of Theorem 2.12. We adopt the algorithm from Lemma 2.4 and the notation used throughout
the proof; we also apply the lemma as in the proof of Theorem 2.3. The only change is that the
process we run in a given step of a given phase will involve all red nodes at distance k from some
blue node, instead of only red nodes neighbouring to blue nodes in the original algorithm. More
concretely, all the red nodes in k-hop distance of some blue node propose to some blue cluster.
This is done as follows.

We describe a process with k iterations that we run in a given step of a given phase. The
process can be thought of as a variant of a breadth first search (BFS) algorithm run from all blue
nodes at once.

In the first iteration, each blue node starts with a token with the label Y of its cluster S′(Y)
(we dropped the index i from the original notation S′

i(Y) since we already fixed a phase) and it
sends this token to all of its neighbours.

In the iterations 2 to k, the following happens. If at any point of the algorithm any node u
from G (here we consider even dead nodes that generally include also nodes of the host graph
that were already colored) receives for the first time some nonzero number t of tokens, say a set
{Y1, Y2, . . . , Yt} with the label Y1 being the smallest, it does the following.

• If u is a living blue node, it does not do anything.

• If u is a living red node, it adds itself as a new terminal node to the underlying Steiner tree
of the cluster S′(Y1) together with an oriented edge pointing towards some node v that sent
a token with Y1. The node then sends a token Y1 to all of its neighbours.

The node u will later propose to the blue cluster with the identifier Y1. To propose, the node
will broadcast via the Steiner tree of the cluster S′(Y1) that it just joined.

• If u is a dead node, after receiving tokens in the iteration i, u first checks whether in the
previous run it received tokens also in the iteration i, or later. If the latter is the case, it adds
itself as a new nonterminal node to the underlying Steiner tree of the cluster S′(Y1) together
with an oriented edge pointing towards some node v that sent a token with Y1. The node
then sends a token Y1 to all of its neighbours.

29

However, if, during the last BFS, u received some tokens during the same iteration i and
chose to forward a token Ylast, it will forward the same token also this time, not considering
the tokens it actually received.

We will see that it is not possible that u received tokens earlier than in the i-th iteration in
the previous run of BFS via standard argument about correctness of BFS.

If the node already received some tokens during this breadth first search algorithm, it does not
receive or send any more tokens.

After the breadth first search algorithm finishes, roots of all Steiner trees collect the number of
proposing red nodes and each root decides to either accept all proposing red vertices and recolor
them to blue, or it makes them die and stops growing with the same decision rule as in Lemma 2.4.
The Steiner trees, however, stay the same even if some of its vertices die, the red nodes that died
are just labeled as nonterminals. This finishes the description of one step of current phase.

Besides these changes, the algorithm (the number of phases, steps in each phase and decisions
of blue clusters whether to grow or not) stays the same.

Analysis: To argue about the correctness of the new version of the algorithm, we first check that
some basic properties of BFS.

Observation B.1. Throughout the course of the algorithm, the following holds:

1. The underlying Steiner trees of clusters are indeed trees oriented towards the root of the cluster
throughout the course of the algorithm.

2. In the i+ 1-th iteration tokens are sent exactly by vertices whose distance from the set of all
blue vertices is i.

3. If a node u sends a token Y in some iteration, it belongs to the Steiner tree of S′(Y) as either
terminal or nonterminal node.

4. If in some step j a dead node u added itself to the Steiner tree of cluster S′(Y) and later in
step j̃ > j it added itself to the Steiner tree of cluster S′(Ỹ), the distance of u to the set of
blue vertices was strictly smaller in step j̃ than in step j.

Proof. The first two bullet points follow from the standard analysis of BFS. For the third bullet
point, we recall that if a dead node u sends a token Ylast in some iteration, then node u is already
part of the Steiner tree of S′(Ylast) by induction.

The last bullet point follows from the fact that a dead node adds itself to a Steiner tree only if
it receives token in an earlier iteration than during the previous step, which by the second bullet
point means that the distance of u to the set of blue clusters decreased.

Now we can mostly replicate the proof of Lemma 2.4. We state equivalents of observations
from the proof of Lemma 2.4 and argue that they are satisfied if they differ substantially from
the arguments for Lemma 2.4. To argue about k-hop separation of the clusters, instead of the
invariants (I) and (II) from Lemma 2.4 we keep stronger invariants (I’) and (II’). We keep invariant
(III) the same.

(I’) For each i-bit string Y , the set S′
i(Y) ⊆ S′

i of all living nodes whose label ends in suffix Y
has no other living nodes S′

i \ S′
i(Y) in its k-hop neighbourhood.

In other words, the set S′
i(Y) is a union of some connected components of the subgraph G[S′

i]
induced by living nodes S′

i and in the k-hop neighbourhood in G around S′
i(Y) all nodes are

30

either dead or they do not belong to the set S (they were colored by previous application of
the algorithm).

(II’) For each label L and the corresponding cluster S′
i(L), the related Steiner tree TL has radius

at most i · k · R, where R = O(log2 n).

(III) We have |S′
i+1| ≥ |S′

i|(1− 1/2b).

Now we repeat the list of observations from the analysis of Lemma 2.4 and remark on them
whenever they differ from their counterparts.

Observation B.2. Any blue cluster stops after at most 4b log n steps.

Proof. The proof stays the same as in Observation 2.5.

Observation B.3. Once a blue cluster A stops growing, there is no red node in its k-hop neigh-
bourhood in G and there never will be one in this phase.

Proof. As in Lemma 2.4, consider the step in which cluster A stops. In that step, each red node
in its k-hop neighbourhood in G (if there is one) either requested to join A or some other blue
cluster. This is because even if a dead node u did not forward the token with the identifier of A,
it forwarded a token of a blue cluster A′ that is of the same distance to u or even closer.

Any red node v that requested to join some blue cluster either adopts a blue label or dies. In
either case, v is not a living red node anymore (and it will never become one). From this point
onward, this blue cluster A never grows or shrinks.

Observation B.4. In each step, the radius of the Steiner tree of each blue cluster grows by at most
k, while the radius of the Steiner tree of each red cluster does not grow. This implies invariant
(II’).

Observation B.5. The total number of red vertices in S′
i(Y) that die during this phase is at most

|S′
i(Y)|/(2b). This implies invariant (III).

Proof. The proof stays the same as in Observation 2.8.

Now we can bound the number of Steiner trees that use each particular edge.

Observation B.6. In construction of one color class of the decomposition, each edge is used in
O(log n ·min(k+log2 n)) Steiner trees. Thus, overall, each edge is used in O(log2 nmin(k+log2 n))
Steiner trees.

Proof. We run through O(log n) phases and in each phase we run O(log2 n) steps. First, note that
during each step, each edge uv will be used by at most one additional Steiner tree. This is because
the edge is added only in the case when either u sends a token to v, or the other way around.

We also claim that during all the steps of a given phase, one edge uv is used for a Steiner tree
at most k times. This follows from the last bullet point of Observation B.1.

Finally, we bound the running time. We have O(log n) color classes, each one is constructed in
O(log n) phases, where each phase has O(log2 n) steps. For each step, we need to run breadth first
search for O(k) steps and broadcast information to root via Steiner trees, which takes O(k log3 n ·
log nmin(k + log2 n)) where the first term is the diameter of the underlying Steiner tree that is
bounded by Observation B.4 and the second term is due to number of Steiner trees per edge that
was bounded by Observation B.6. This implies running time O(k log8 nmin(k + log2 n)).

31

	1 Introduction
	1.1 Background and State of the Art
	1.2 Our Contribution
	1.3 An Overview of Our Network Decomposition Method
	1.4 Other Related Work

	2 The Network Decomposition Algorithm
	2.1 Weak-Diameter Network Decomposition
	2.2 Construction in the CONGEST Model and Extension to Graph Powers
	2.3 Strong-Diameter Network Decomposition

	3 Implications and Applications
	3.1 Maximal Independent Set and Coloring
	3.1.1 MIS
	3.1.2 Coloring

	3.2 Derandomization via Network Decomposition
	3.3 Other Implications (Deterministic & Randomized)
	3.3.1 Lovász Local Lemma and the Sublogarithmic Complexity Lanscape
	3.3.2 Packing/Covering Integer Linear Programs
	3.3.3 Defective and Frugal Colorings
	3.3.4 Forest Decomposition and Low Out-degree Orientation
	3.3.5 Derandomizations in the CONGEST Model: Neighborhood Cover, Spanners, and Dominating Set

	A Comparison of previous work with thm:decomp-informal
	A.1 Recap on Ruling sets
	A.2 Recap on the Approach of Awerbuch et al. awerbuch89
	A.3 A New Network Decomposition with Complexity 2O(logn loglogn)
	A.4 Contrasting the poly(logn)-round and 2O(logn loglogn)-round algorithms

	B CONGEST Network Decomposition for Power Graphs

