
Supporting On-Stack Replacement in Unstructured
Languages by Loop Reconstruction and Extraction∗

Raphael Mosaner

Johannes Kepler University Linz

Austria

raphael.mosaner@jku.at

David Leopoldseder

Johannes Kepler University Linz

Austria

david.leopoldseder@jku.at

Manuel Rigger

ETH Zürich

Switzerland

manuel.rigger@inf.ethz.ch

Roland Schatz

Oracle Labs

Austria

roland.schatz@oracle.com

Hanspeter Mössenböck

Johannes Kepler University Linz

Austria

hanspeter.moessenboeck@jku.at

Abstract
On-stack replacement (OSR) is a common technique em-

ployed by dynamic compilers to reduce program warm-up

time. OSR allows switching from interpreted to compiled

code during the execution of this code. The main targets are

long running loops, which need to be represented explicitly,

with dedicated information about condition and body, to be

optimized at run time. Bytecode interpreters, however, repre-

sent control flow implicitly via unstructured jumps and thus

do not exhibit the required high-level loop representation. To

enable OSR also for jump-based—often called unstructured—

languages, we propose the partial reconstruction of loops in

order to explicitly represent them in a bytecode interpreter.

Besides an outline of the general idea, we implemented our

approach in Sulong, a bytecode interpreter for LLVM bit-

code, which allows the execution of C/C++. We conducted

an evaluation with a set of C benchmarks, which showed

speed-ups in warm-up of up to 9x for certain benchmarks.

This facilitates execution of programs with long-running

loops in rarely called functions, which would yield signifi-

cant slowdown without OSR. While shown with a prototype

implementation, the overall idea of our approach is general-

izable for all bytecode interpreters.

CCS Concepts • Software and its engineering → Just-
in-time compilers;Dynamic compilers;Virtualmachines.

Keywords On-stack Replacement, Truffle, Sulong

ACM Reference Format:
Raphael Mosaner, David Leopoldseder, Manuel Rigger, Roland

Schatz, and Hanspeter Mössenböck. 2019. Supporting On-Stack

∗
This research project is partially funded by Oracle Labs.

MPLR ’19, October 21–22, 2019, Athens, Greece
© 2019 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published in

Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’19), October 21–22, 2019,
Athens, Greece, https://doi.org/10.1145/3357390.3361030.

Replacement in Unstructured Languages by Loop Reconstruction

and Extraction. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Managed Programming Languages and Run-
times (MPLR ’19), October 21–22, 2019, Athens, Greece. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3357390.3361030

1 Introduction
On-stack replacement [9] is a technique employed by dy-

namic compilers for reducing program warm-up time [1].

Based on Barrett’s work [1], we define program warm-up

as the time it takes a dynamic compiler to identify and com-

pile the hot parts of a program to reach a steady state of

peak performance. OSR usually works by detecting hot but

not yet compiled code and performing a switch from the

interpreted to the compiled version of this code while it is

being executed. This is most useful for long-running loops,

which can take up most of the execution time and should

be compiled as soon as possible. However, method-based

compilation systems do not directly support OSR, because

methods are the most fine-grained compilation units. For

instance, a computation intensive loop in a main-function
would never be compiled, as themain-function is only called

once and thus never considered hot. To make OSR work

in such systems, it would be possible to extract loops into

separate functions which can be independently compiled

by a method-based compiler even when it lacks support

for OSR. While for structured languages, loop bodies could

be extracted to separate functions to allow for their quick

compilation, unstructured languages lack high-level loop

information. To tackle this issue and support OSR for un-

structured languages in method-based compilation systems

we propose an approach in which we (1) reconstruct loop

information from unstructured, basic block-based program

representations and (2) explicitly represent loops as separate

functions to enable OSR.

We implemented our approach in Sulong [21, 22], an in-

terpreter for LLVM IR, which suffers from long warm-up

time [22]. LLVM IR is an unstructured language that does

ar
X

iv
:1

90
9.

08
81

5v
1

 [
cs

.P
L

]
 1

9
Se

p
20

19

https://doi.org/10.1145/3357390.3361030
https://doi.org/10.1145/3357390.3361030

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

not explicitly represent loops. Sulong is used in the multi-

lingual GraalVM [7, 18, 25] to implement native function

interfaces of dynamic languages such as TruffleRuby [2]. All

these language implementations are based on a common lan-

guage implementation framework, called Truffle [31]. It uses

dynamic-compilation based on profiling information gath-

ered during interpretation of abstract syntax trees (ASTs)

for efficient execution of the implemented language. Truffle

does not directly support OSR. However, it provides language

implementers with a framework to enable loop-level OSR

which requires extracting loops to form separate compilation

units as outlined above. We demonstrate that reconstructing

loops and extracting them to separate units gives significant

speed-ups. Specifically, our evaluation with a set of well-

known benchmarks shows significant reductions by up to

9x in program warm-up given that OSR is applicable. Note

that our approach can be used by other Truffle bytecode-

based implementations lacking high-level loop information,

including GraalSqueak [19], Truffle Java [11] and Truffle

CIL. Furthermore, it is applicable in any compiler with a

background system which provides means for establishing

mappings between extracted control flow.

In summary, this paper contributes the following:

• a novel multi-tier approach for employing OSR for

unstructured languages

– detection of loops from unstructured control flow

– reconstruction of high-level loops

– extraction of loops into separate functions to model

loop-level OSR using method-based compilation

• a prototype implementation in Sulong,

• extensive experiments suggesting significant improve-

ments in warm-up performance.

2 Background
This section provides the necessary background informa-

tion to understand our approach for supporting OSR in

Truffle-based implementations of unstructured languages.

We first give an overview of the Truffle language implemen-

tation framework and its OSR mechanism for structured lan-

guages. We then discuss bytecode-interpreter-based Truffle

languages and the problems they cause for OSR. We imple-

mented a prototype of our approach in Sulong, an interpreter

for LLVM IR. Thus, we also give background information

about Sulong and LLVM.

2.1 Truffle and Graal
The Truffle language implementation framework [32] pro-

vides language implementers with means for creating effi-

cient Abstract Syntax Tree (AST) interpreters. In an AST

interpreter, each operation is implemented by a node that

computes its value by potentially evaluating its children,

to then return this value to its parent. Truffle uses the dy-

namic Graal compiler [32] to efficiently compile frequently-

executed functions to machine code. When invoked, it recur-

sively inlines all node execution methods of the AST (which

is a form of partial evaluation [10]), to then further optimize

it.

To achieve optimal performance, language implementers

have to use various constructs of the Truffle framework.

Graal, when used as a standard Java compiler, is capable of

performing OSR on loop-level. Truffle, however, provides

an interface that needs to be implemented by guest lan-

guage nodes to support OSR for structured languages. This

RepeatingNode interface assumes that the interpreted lan-

guage has a concept of high-level loops in order to enable

OSR.

Listing 1 shows a typical implementation of a

RepeatingNode. The executeRepeating() method

executes only a single loop iteration and returns either

true if the loop is to be executed again or false if it was

the loop’s last iteration. The Truffle framework wraps the

RepeatingNode with a LoopNode that executes the loop. Its

implementation is transparent to the language implementer.

Since each loop iteration is performed individually, the

LoopNode can trigger compilation after any loop iteration

and switch from interpreted to compiled execution. Cur-

rently, Truffle uses a constant iteration threshold before

OSR-compiling a loop. Note that this technique is generally

applicable to compilation systems for adding OSR support.

class LLVMRepeatingNode implements Repeat ingNode {
public boolean e x e cu t eRepea t i ng (Frame frame) {

if ((boolean) cond i t i onNode . e x e cu t e (frame)) {
try {

bodyNode . e x e cu t e (frame) ;
} catch (B r eakExcep t i on e) {

return false ;
} catch (Con t inueExcep t i on e) {

return true ;
}
return true ;

}
return false ;

}
}

Listing 1. A typical implementation of a RepeatingNode
for structured languages. Both conditionNode(loop
condition) and bodyNode(loopBody) are child nodes of the

RepeatingNode. Execution of the body can be interrupted by
break- or continue-statements, which throw an exception.

2.2 Sulong and LLVM IR
Sulong [21, 22] is a bytecode interpreter for LLVM IR built

on top of Truffle. LLVM IR is the intermediate representation

of the LLVM compilation framework [16], which provides

front ends for various languages such as C/C++ and Fortran,

allowing Sulong to execute these languages via LLVM IR. Un-

like structured languages, LLVM IR has no notion of loops;

Supporting OSR in Unstructured Languages MPLR ’19, October 21–22, 2019, Athens, Greece

instead, it uses basic blocks [29], which consist of sequential

instructions that end with a terminating instruction transfer-

ring control flow to another basic block. Since these termi-

nating instructions are conditional or unconditional jumps,

LLVM IR is considered a unstructured language [5]. Fur-

thermore, it can exhibit irreducible control flow [8], where

loops have more than one header (for example by having a

jump from outside into the loop). This prevents loops from

being representable by a single AST node without further

processing them, to handle the irreducibility.

Figure 1c shows the LLVM IR of the main function from

Figure 1a with basic block 1 forming the loop. The control-

flow graph of basic blocks can be inferred from Figure 1d.

Basic block 0 is the function start which unconditionally

jumps to basic block 1, which is the loop header. This block

is then terminated with a conditional branch instruction that

either transfers control back to itself or exits the loop by

jumping to basic block 2, which has only the ret instruction
for returning from the function. In this simple example, the

loop consists of only one block, which holds both, condition

and body.

Sulong’s execution mode is different from classical AST-

based Truffle language implementations, such as TruffleRuby

or GraalPython. It uses a BlockDispatchNode that dis-

patches the control flow between the individual LLVM IR

BasicBlockNodes [21], whereas the high-level control flow

is unknown to Sulong (see Figure 1d). This makes Sulong’s

structure similar to a bytecode interpreter (see Listing 2). For

each basic block, Sulong builds a conventional AST with a

BasicBlockNode as its root. The BasicBlockNode executes

all its instructions sequentially. The last instruction of the

basic block returns an index that is used to fetch the next

basic block to be executed. To return from a function, -1 is
returned as a special value. GraalSqueak [19] for example, is

implemented in a similar way.

2.3 Partial Evaluation of Bytecode Interpreters
Truffle optimizes functions at run time by partially evalu-

ating their ASTs. Partial evaluation (PE) recursively inlines

the execution code of children AST nodes into their parent

node until one final compilation unit is derived. However,

Sulong represents loops with its bytecode-interpreter-like

basic block dispatch node (see Listing 2). In the case of loops,

the standard version of PE would infinitely inline successor

blocks of already inlined blocks. Thus, the partial evaluation

had to be adapted [21] to support bytecode interpreters as

described below.

Sulong’s basic block dispatch loop is treated in a special

way by Graal. As for AST-based Truffle interpreters, Graal

starts to partially evaluate the interpreter, starting with the

first basic block. The basic blocks and the indices of their

possible successor blocks are constant during run time. Thus,

Graal can continue to recursively inline all successor blocks.

In contrast to AST-based approaches, however, Graal keeps

track of paths that have already been expanded before, which

it can determine based on their index in the constant basic

block array. If it detects an already partially evaluated block,

Graal connects the path from the currently processed block

with the previously expanded successor block. Effectively,

it reconstructs guest-language-level loops. The merging of

already expanded basic blocks also effectively limits loop

expansion to the number of original blocks in the LLVM IR

program. Even though bytecode might exhibit irreducible

control flow, Graal does not support it. Reducible control flow

yields easier optimization properties and faster algorithms.

Thus, when encountering irreducible control flow, Graal,

wraps the irreducible blocks in a dispatch loop during partial

evaluation, as it is also done in Sulong.

int b l o ck I nde x = 0
while (b l o c k I nde x != −1) {

b l o c k I nde x = b a s i c B l o c k s [b l o c k I nde x] . e x e cu t e () ;
}

Listing 2. Block Dispatch Loop; compacted for brevity

2.4 Problem of OSR for Bytecode Interpreter
Languages

The difference between conventional AST- and bytecode-

interpreted languages also manifests itself in howOSR can be

applied. In order to switch from an interpreted to a compiled

loop, a mapping between the frame state of the interpreter

and the compiled code must be established to continue exe-

cution in the same state after the transition [9]. The frame

state describes all dynamic information of the current pro-

gram execution including local variables and the program

counter. Figure 1a depicts a source program with structured

control flow, which is translated into a Truffle AST as shown

in Figure 1b. The RepeatingNode wraps one loop iteration

and is turned into a CallTarget, which is equivalent to cre-

ating a special function for executing the loop body. Thus,

when OSR is triggered, the mapping of the program state

between interpreted and compiled loop is trivial, as only the

frame state at the loop’s CallTarget invocation has to be

mapped to the state at the beginning of the compiled loop.

Hence, the frame state between two loop iterations is used

as a parameter for the loop CallTarget, which suffices to

continue execution in the compiled loop.

However, in bytecode interpreter languages, like LLVM

IR, there is no concept of loops because not all bytecodes

are directly derived from structured languages. Figure 1c

shows the structure of basic blocks derived after compil-

ing the main function from Figure 1a to LLVM IR. The

BlockDispatchNode, which is the AST root node for func-

tions in Sulong, stores the array of basic blocks without any

knowledge of the high-level control flow. This is visualized

in Figure 1d. Therefore, even with the compiled versions of

the two programs (structured C program and LLVM IR code)

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

int main (int argc , char ∗ ∗ a rgv) {
int i = 0 ;
do {
p r o c e s sReque s t () ;
i ++ ;
} while (i < 1 0 0 0 000) ;

return 0 ;
}

(a) Source level function

LoopNode

Repeating
Node

Condition
Node BodyNode

call target

Function
Node

Return
Node

Statement
Node

(b) Truffle AST of program with high-level loop

define i32 @main (i32 %argc , i8 ∗ ∗ %argv) #0 {

br label %1 (b a s i c b l o ck 0)

; <label >:1 (basic block 1)
% i . 0 = phi i32 [0 , %0] , [%2 , %1]

call void @processReques t ()

%2 = add nsw i32 % i . 0 , 1

%3 = icmp slt i32 %2 , 1000000

br i1 %3 , label %1 , label %4

; <label >:4 (basic block 2)
ret i32 0

}

(c) Function in LLVM IR

B
lockD

ispatchN
ode

BasicBlock
Node 0

0
1

4

BasicBlock
Node 1

BasicBlock
Node 4

Lo
op

(d) Bytecode interpreter block dispatch; control flow is depicted

as a dashed line

Figure 1. Test program: Source code; LLVM IR, Truffle AST and basic block interpreter.

being identical after partial evaluation, the interpreted loop

cannot be mapped to the compiled loop, preventing Truf-

fle’s OSR mechanism to be applied for bytecode interpreter

languages.

3 OSR for Bytecode-based Truffle
Interpreters

In this section, we present our approach to enable OSR

for bytecode-based Truffle interpreters. The idea is general

enough to be applicable to any bytecode-based language. For

this paper we use our prototype implementation in Sulong as

an example. To re-use Truffle’s built-in mechanism for OSR,

we reconstruct loops from the potentially unstructured con-

trol flow and create new nodes for representing high-level

loops according to the Truffle interface.

Below we list all necessary steps to support OSR in Sulong:

1. The language implementation’s parser needs to detect

loops in the function before executing it the first time.

2. After the loops are identified, the parser also needs

to determine loop relations to handle nested loops

separately.

3. Then, the Truffle implementation needs to create

LoopNodes, and integrate them in the block dispatch

loop such that execution of the next BasicBlockNode
after a LoopNode works seamlessly.

4. Finally, during execution, the LoopNode needs to com-

municate the successor of the loop to the enclosing

loop or function.

We expect language implementations for other unstructured

languages to use the same steps to implement support for

OSR. The remainder of this section describes each step in

detail.

3.1 Loop Detection
When parsing the basic blocks of the LLVM IR, we initially

build a control-flow graph (CFG) by identifying predecessors

and successors of all blocks, which is needed for the loop

detection algorithm. Our loop-detection algorithm is based

on Graal’s depth-first algorithm [30] for detecting loops in

bytecode is shown in Algorithm 1.

We now discuss Algorithm 1 in detail. It takes basic block

b as parameter for the next depth-first step. A block can be

marked as visited, which means that it was already seen by

the algorithm. When a block is marked active, the algorithm
has started but not finished processing it and the block is

still further up in the current recursive traversal.

The algorithm checks whether b is already visited (line 1)

and if it is still marked as active (line 2). If both conditions

hold, b must have been reached via a backedge and thus a

loop with header b is detected. A new loop is created (done

by function makeLoop in line 3) with b as header. This loop
is denoted mainLoop of b. The algorithm always returns the

Supporting OSR in Unstructured Languages MPLR ’19, October 21–22, 2019, Athens, Greece

Algorithm 1: findLoops detects loops in a CFG of basic

blocks

Input: The basic block b where to start a depth-first

loop detection

Output: A set of loops found in the graph

1 if b.visited then
2 if b.active then
3 makeLoop(b) // new loop with header b

// b.isLoopHeader = true

4 return b.loops // loops which contain b

5 else if b.isLoopHeader then
6 return setSubtraction(b.loops, b.mainLoop)

// return all loops except the loop

// which is associated to the header

7 else
8 return b.loops // loops which contain b

9

10 b .visited ← true , b .active ← true

11

12 foreach block s ∈ b .successors do
13 b .loops .add(f indLoops(s)) // add loops

// propagated from successors

14 foreach loop l ∈ b .loops do
15 l .add(b) // add b to containing loops

16

17 b .active ← f alse

18

19 if b.isLoopHeader then
20 return setSubtraction(b.loops, b.mainLoop)

// return all loops except the loop

// which is associated to the header

21 else
22 return b.loops // loops which contain b

set of loops which contain b’s predecessor in the traversal

which we denote as back-propagation (lines 4, 6, 8, 20 and

22). There are three different cases:

• b is visited and active and thus is detected to be a

loop header (line 4): Then, all of b’s loops contain b’s
predecessor in the recursive traversal (source of the

backedge). This includes the newly created loop.

• b is visited but not active anymore and is marked as

loop header (line 5): This means that b is not reached
via a backedge. Therefore all of b’s loops except its
mainLoop contain b’s predecessor in this traversal. In

the algorithm we remove the mainLoop from b’s loops
using a set subtraction (lines 6 and 20).

• b is visited but not active anymore and no loop header

(line 7): Therefore, all of b’s loops contain b’s prede-
cessor in this traversal (lines 8 and 22).

In case a block b is not yet visited, it is marked both visited

and active (line 10) and the algorithm is called recursively for

each successor (lines 12 and 13). The back-propagated loops

are added to b’s loops (line 13) and vice versa (lines 14 and

15). After the recursive traversal of all successors is finished,

b is set to inactive (line 17) and depending on its loop header

flag the set of loops which contain b’s predecessor is returned
(line 20 or 22). Eventually, the first block of the function is

processed and at that point the set of loops has to be empty to

ensure that the context of all loops has been closed correctly.

If this set is not empty, there is a path into some loop which

does not pass the initially identified header yielding multiple

loop entries and thus, irreducibility.

We believe that irreducible control flow in unstructured

languages is rare; in fact, we did not encounter it in the

benchmarks used in the evaluation (see Section 4.1). Thus,

we omit the handling of irreducible control flow and bail out

(i.e., we execute the function without trying to reconstruct

its loops) for functions that contain it.

Figure 2 shows two examples of loop detection applica-

tions, one with a simple, reducible loop and the other with

a slightly changed, yet irreducible control flow (having two

loop entry points). In the reducible example, in Step 3 the

backedge points to an active block which is marked as loop

header and triggers back-propagation of the newly created

loop ID. After Step 4 the left most block is processed and

then in Step 5 backtracking arrives at the start block. Note,

that some intermediate steps in the irreducible example are

omitted as up to Step 3 everything is identical to the example

with reducible control flow. In Step 3, the second entry to the

loop (bypassing the header) is processed and the loop ID is

thus propagated upwards to the start block. The irreducible

loop is detected, because the function start block, which can

never be part of a loop in LLVM IR, got a loop ID assigned.

3.2 Identifying Loop Relations
We want to support OSR not only for the outermost loops,

but also for all inner ones. To achieve this, we need to model

a loop nesting based on which we build a loop hierarchy

in our node structure later on. Since the loop detection is

unaware of the nesting level, we have to manually determine

a contains-relationship between the loops. This is done by

recursively checking if a loop contains the header of another

loop, which is then added to its set of inner loops. We use the

depth-first approach to additionally have the loops sorted,

that is, an outer loop is processed after its contained inner

loops. Hence, when creating LoopNodes we can use the es-

tablished order to have all inner loops resolved by the time

a dependent outer loop is created.

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

active visited currently
processed

current path successor

a) Reducible Loop

b) Irreducible Loop

1)
// before loop

for(...) {

…

}

// after loop

if(...) goto L1;

for(...) {

L1: …

}

// after loop

2)

loop 0
header

3)

loop 0
header

loop 0

4)

loop 0
header

loop 0

5)

1)

loop 0
header

2)

loop 0
header

loop 0

3) loop 0

loop 0
header

loop 0

4) irreducible

(...)(...)

Figure 2. Visualization of two Loop Detection applications. Subfigure a) shows the detection of a reducible loop while subfigure
b) shows an irreducible loop being detected as such, denoted by a loop ID set for the first block

Currently, we do not identify loop relations for irreducible

loops. While they could be partially supported by adapting

our approach (see Section 3.6), it is still necessary to deter-

mine which loop is an inner loop and which is an outer

loop. If this distinction is impossible, we are not able to es-

tablish the node hierarchy because inner loops have to be

processed before the outer loop is created. Thus, we check

for a bi-directional contains-relationships and bail out for

such constructs.

3.3 Node Creation and Integration
To use Truffle’s OSR mechanism, we create nodes for iden-

tified loops and embed their execution within the dispatch

loops of basic blocks. This includes implementing the Truffle

LoopNode interface for modeling loops, adopting the block

dispatch to also support high-level loop structures and pro-

viding a way for executing the loop.

The function parser creates LoopNodes together with

all other Truffle nodes when parsing a method. After

the control flow analysis, it wraps the BasicBlockNodes
forming a loop into a LoopDispatchNode, which mod-

els the loop body and is responsible for executing the

loop. The LoopDispatchNode is then used to create

RepeatingNodes and LoopNodes conforming to the Truf-

fle interface. Each LoopNode replaces the BasicBlockNode
which denotes the header of the very same loop in the array

of BasicBlockNodes. Thus, already created LoopNodes can

be found in the body of outer loops. To establish this node

nesting, the function parser has to process loops iteratively

from inside out, so that outer loops are created after their

inner loops. However, the parser automatically ensures this

by processing the loops according to the established order as

described in Section 3.2. Finally, the function node is created

by using the array of BasicBlocks and LoopNodes which

are not already nested in another loop. This leads to a semi-

hierarchical node structure, in comparison to the initially

flat BasicBlockNode array. Figure 3 depicts this internal

structure based on the function in Figure 1a.

BlockDispatchNode

0 1 4

1

BasicBlockNode1

Lo
op

BasicBlockNode0 BasicBlockNode4LoopNode

Figure 3. Node hierarchy; compacted for brevity (no

RepeatingNode and LoopDispatchNode modeled)

3.4 Loop Execution
There are two ways to execute implicit unstructured LLVM

IR loops as explicit loops in Sulong. Either by a full recon-

struction the loop structure (body and condition nodes are

not distinguished during loop detection), or by wrapping

a block dispatch logic for the loop into the LoopNode. The
latter approach can be justified by taking a look at it from

the compiler’s perspective. In that sense, an OSR loop is

a special call target which is optimized after several calls

(i.e., iterations). Therefore, the new LoopDispatchNode is

closely related to a BlockDispatchNode for functions, yet

with some differences. First, less terminating instructions

have to be handled, because a return block, for example, can

never be part of a loop as there is no path back to the loop

header. Second, no function arguments have to be handled.

Those two points make a LoopDispatchNode simpler than

Supporting OSR in Unstructured Languages MPLR ’19, October 21–22, 2019, Athens, Greece

its counterpart for functions. However, a LoopDispatchNode
has to return after each loop iteration or if the loop is exited.

This check for ending an iteration is more costly than for

ending a function. Rather than dispatching to the next block

until no successor is available (successor = -1; end of func-

tion), the loop dispatch has to both check if the successor is

the loop header which indicates that the iteration has ended

or if the loop is exited by dispatching to one of its successors.

However, Graal optimizes this additional checks away.

While a simple loop condition is mapped to only one

LLVM block and can thus be used directly as a condition for

executing one loop iteration, more complex boolean condi-

tions also consist of multiple blocks. Therefore, a wrapper

node would be needed, including another dispatch solely

for loop conditions. In order to maintain simplicity and due

to the fact that it should be transparent whether a loop is

exited because the condition failed or because another exit

path was taken (e.g. return, break, goto, ...), the condition
is pulled into the loop body. In addition to having solved the

problem of handling multi-condition loops, the distinction

between condition and body nodes is made superfluous.

3.5 Successor Determination
The final task is to continue function execution at the cor-

rect successor block after a loop is executed. However, in

contrast to structured control flow, our reconstructed loops

can have arbitrary successors reached by jumps from within

the loop. Therefore, when entering a loop, it is not known in

advance where to continue the execution after the LoopNode
is evaluated. While the LoopDispatchNode could return the

successor at run time, the enclosing RepeatingNode has its

predefined interface (see Listing 1) hindering passing the

successor to the caller as return value. However, we can use

the run time stack for storing the successor value in a pre-

defined, constant frame slot LoopDispatchNode. While this

process might seem costly, performance of tight loops is only

affected in interpreted mode, due to frame virtualization in

compiled programs.

In order to generate code that can be easily optimized

by Graal, the block dispatch loop (see Listing 2) and all

block successors have to be constant (see Section 2.3). Thus,

when reading the loop successor from a run-time-written

frame slot, the interpreter loop cannot be unrolled. We solve

this issue by storing the set of constant successors in each

LoopNode and use a lookup loop for finding the constant

successor with the same value as in the frame slot. Then, the

constant value is used to determine the successor block. As

the compiler can determine the set of possible successors for

each loop, it can unroll the dispatch loop accordingly. This

approach is visualized in Figure 4, where the value in the

frame slot is shown to be used as a lookup into the set of

constant successors.

LoopNode
5 8 9 LoopDispatch

Node
successor constants

stack frame

...

LoopSuccessor = 5

5 8 9

1.) write successor
to frame2.) compare to

successor constants

Figure 4. Successor Determination. The successor discov-

ered at run time is written to a stack frame and used as a

lookup into the set of constant successors.

3.6 Irreducible Control Flow
Graal can not handle irreducible control flow (ICF), but rather

uses a dispatch loop for such patterns. A similar idea is used

for our approach implemented in Truffle based languages,

which is a way to have irreducible control flow reduced to

one AST node. However, support for ICF could be added as

outlined below. Irreducible loops are characterized by hav-

ing multiple entries. Thus, a loop cannot be collapsed to one

black box block, as the entry point might differ from exe-

cution to execution. There are approaches for transforming

irreducible into reducible control flow, which mostly center

around code duplication [8].

We initially experimented with the Tarjan algorithm [27]

for detecting strongly connected components in order to find

such irreducible loops. However, due to additional complex-

ity for resolving nested loops, code growth for duplicated

nodes and the fact that ICF was never encountered in our

benchmarks this approach was discarded in favor of bailing

out in case of ICF.

4 Evaluation
We evaluated our approach which we prototyped in Sulong

with a set of C benchmarks to investigate improvements in

warm-up and impacts on peak performance.

Hypothesis We hypothesize that enabling OSR reduces the

program warm-up significantly while not influencing the

peak performance.

4.1 Setup
Benchmarks We primarily selected benchmarks from the

Computer Language Benchmarks Game (CLBG)1. They are

micro-benchmarks and do not reflect the behavior of real-

world applications. However, their small size and their

structure—benchmarks like fannkuch have long-running and

computation-intensive loops—makes them suitable to study

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

0.85

0.95

1.05

1.15

bin
ary

tre
es

fan
nk

uc
hre

du
x

fas
ta

kn
uc

leo
tid

e

man
de

lbr
ot

nb
od

y

pid
igit

s

reg
ex

dn
a

rev
co

mp

sp
ec

tra
lno

rm

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

NoOSR OSR

Figure 5. Normalized execution times after reaching peak performance of Sulong with and without OSR; lower is better.

0.9

1.0

1.1

1.2

bz
ip2

de
lta

blu
e

gz
ip

mete
or

og
ge

nc

ric
ha

rds

whe
tst

on
e

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

NoOSR OSR

Figure 6. Normalized execution times after reaching peak performance of Sulong with and without OSR; lower is better.

the benefits of OSR. The problem sizes were chosen to allow

for multiple benchmark runs. In addition, we used other pop-

ular benchmarks like whetstone2, deltablue3 and richards4.
Furthermore, we evaluated our approach with three larger

applications, bzip2, gzip and oggenc, which are part of the

Large single compilation-unit C programs5, to better investi-

gate the impact on real world programs.

Harness We used a configurable harness for evaluating the

warm-up behavior and peak performance of the benchmarks

and conducted ten out-of-process benchmark executions

with at least 50 in-process iterations. We analyzed warm-

up behavior by analyzing the first ten in-process iterations

2www.netlib.org/benchmark/whetstone.c
3https://constraints.cs.washington.edu/deltablue/
4https://www.cl.cam.ac.uk/~mr10/Bench.html
5http://people.csail.mit.edu/smcc/projects/single-file-programs/

of the respective benchmark. We verified that within these

ten iterations, execution of the benchmarks reached peak

performance. For peak performance, we evaluated only the

last ten in-process iterations of each benchmark.

Environment Our benchmarking machines are equipped

with Intel Xeon CPU E5-2699 processors with 72 cores at

2.30GHz each along with 256GB of RAM. For compiling the

benchmarks to LLVM IR we used the LLVM front end Clang

3.8 at optimization level 03. Sulong is executed on top of

GraalVM, including the default Truffle OSR threshold of 100

000 iterations. We compare Sulong with the implemented

OSR approach against its version without any OSR related

changes.

www.netlib.org/benchmark/whetstone.c
https://constraints.cs.washington.edu/deltablue/
https://www.cl.cam.ac.uk/~mr10/Bench.html
http://people.csail.mit.edu/smcc/projects/single-file-programs/

Supporting OSR in Unstructured Languages MPLR ’19, October 21–22, 2019, Athens, Greece

1.0

1.5

2.0

2.5

bin
ary

tre
es

bz
ip2

de
lta

blu
e

fan
nk

uc
hre

du
x

fas
ta

gz
ip

kn
uc

leo
tid

e

man
de

lbr
ot

mete
or

nb
od

y

og
ge

nc

pid
igit

s

reg
ex

dn
a

ric
ha

rds

sp
ec

tra
lno

rm

whe
tst

on
e

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

native NoOSR OSR

Figure 7. Normalized execution times after reaching peak performance of Sulong without OSR-related changes compared to

native benchmark execution. Lower is better.

4.2 Results
Native Execution In order to show that Sulong is a ma-

ture execution system, we compared its performance against

state of the art compiled native executables. Figure 7 gives a

peak performance comparison of the benchmarks executed

natively and using Sulong with and without OSR related

changes. Warm-up is of course not present in the native

executions and thus omitted to be shown. Although no con-

tribution proposed in this paper is visible in these benchmark

runs, we want to provide a context for the peak performance

deviations imposed by our approach. Most benchmarks are,

when executed on Sulong, slower by factors up to 2.8x with

revcomp being about 6x slower. Thus, revcomp is not visual-

ized to keep the plot readable. Table 1 contains a condensed

depiction of the performance data including the median and

the standard error for each benchmark.

Peak-performance Impact While OSR should conceptu-

ally not impact a program’s peak performance, our exper-

iments disproved this initial hypothesis. Figure 5 and Fig-

ure 6 show deviations with up to 13% overhead (median) for

fannkuch down to 23% speed-up (median) for nbody. Only
for three benchmarks (fannkuch, knucleotide and bzip2) the
peak performance is significantly worse (median at least 5%

worse). Three benchmarks (deltablue, nbody and richards)
show significantly higher peak performance (median at least

5% better). The majority of our benchmarks, that are 11 out of

17, differ only slightly from the non-OSR version of Sulong,

however with a tendency to increased peak performance. We

found that due to the changes in the Truffle node structure,

optimizations are applied differently by the Graal compiler,

resulting in the observed deviations. It is difficult to attribute

the peak performance changes to individual optimizations,

Table 1. Overview of peak performance for benchmarks

normalized to their native execution and the standard error

(SE). Lower is better.

native no OSR OSR

median SE median SE median SE

binarytrees 1.0 2.449e-04 2.134 4.914e-03 2.099 4.832e-03

bzip2 1.0 4.645e-04 1.417 6.567e-04 1.568 4.435e-03

deltablue 1.0 9.799e-04 2.237 6.649e-03 1.976 2.379e-03

fannkuchredux 1.0 3.272e-04 0.997 8.543e-05 1.126 2.459e-04

fasta 1.0 1.354e-04 1.254 2.618e-03 1.212 5.316e-04

gzip 1.0 5.093e-04 1.460 9.248e-04 1.389 1.745e-03

knucleotide 1.0 9.804e-04 1.251 1.340e-03 1.350 9.148e-04

mandelbrot 1.0 3.973e-05 1.570 8.501e-04 1.510 6.628e-04

meteor 1.0 1.512e-03 2.673 2.196e-03 2.618 3.150e-03

nbody 1.0 1.187e-05 1.556 3.897e-03 1.205 6.787e-04

oggenc 1.0 2.314e-04 2.631 1.943e-03 2.531 1.446e-03

pidigits 1.0 8.932e-05 1.336 7.600e-04 1.331 5.900e-04

regexdna 1.0 2.610e-03 1.037 3.110e-03 1.014 2.335e-03

revcomp 1.0 6.581e-04 6.090 4.951e-03 6.143 1.219e-02

richards 1.0 7.472e-05 2.525 5.535e-03 2.360 2.816e-03

spectralnorm 1.0 1.559e-05 1.001 6.512e-06 1.001 9.955e-06

whetstone 1.0 8.373e-05 2.190 5.841e-04 2.216 3.595e-04

as multiple overlapping compilation paradigms produce the

measured results.

Program Warm-up We identified two categories of be-

haviors in the investigated benchmarks regarding program

warm-up, which can be seen in Figure 8 and Figure 9. Firstly,

for applications with long-running loops, which trigger OSR,

speed-ups by factors of 1.5x (knucleotide) up to 9x (whetstone)
are encountered for the first one to four iterations. This can

be seen for benchmarks fannkuch, fasta, knucleotide,mandel-
brot, nbody and revcomp (reverse-complement) in the CLBG

suite in Figure 8 and also for gzip, meteor and whetstone in
Figure 9. The warm-up of bzip2 shown in Figure 9 behaves

differently as the second iteration shows a peak in execution

time, which is linked to a de-optimization issue tied to this

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

binarytrees
fannkuchredux

fasta
knucleotide

m
andelbrot

nbody
pidigits

regexdna
revcom

p
spectralnorm

0 1 2 3 4 5 6 7 8 9

5e+06
6e+06
7e+06
8e+06
9e+06

4.0e+06

8.0e+06

1.2e+07

1.6e+07

0e+00
1e+06
2e+06
3e+06
4e+06
5e+06

2.5e+06

5.0e+06

7.5e+06

1.0e+07

2500000
5000000
7500000

10000000
12500000

2e+06
3e+06
4e+06
5e+06
6e+06
7e+06

2500000

3000000

3500000

4000000

2750000

3000000

3250000

3500000

0e+00

3e+07

6e+07

9e+07

1000000

1500000

2000000

2500000

Iteration

Ti
m

e(
µs

)
NoOSR OSR

Figure 8. Warm-up of Sulong with and without OSR; the x-axis shows the sequence number in the series of consecutive

in-process benchmark executions, while the y-axis shows the execution time of a benchmark execution. Lower is better.

Supporting OSR in Unstructured Languages MPLR ’19, October 21–22, 2019, Athens, Greece

bzip2
deltablue

gzip
m

eteor
oggenc

richards
w

hetstone

0 1 2 3 4 5 6 7 8 9

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

0.0e+00

3.0e+06

6.0e+06

9.0e+06

1.2e+07

0e+00

1e+07

2e+07

3e+07

5.0e+06
1.0e+07
1.5e+07
2.0e+07
2.5e+07

1.5e+07
2.0e+07
2.5e+07
3.0e+07
3.5e+07

5000000

7500000

10000000

12500000

0.0e+00

2.5e+07

5.0e+07

7.5e+07

Iteration

Ti
m

e(
µs

)
NoOSR OSR

Figure 9. Warm-up of Sulong with and without OSR; the x-axis shows the sequence number in the series of consecutive

in-process benchmark executions, while the y-axis shows the execution time of a benchmark execution. Lower is better.

benchmark. Secondly, there are benchmarks where the pro-

gram warm-up is not affected by OSR at all. This is either

the case in the absence of loops or if loops do not reach the

iteration threshold for OSR compilation. Minor deviations

in warm-up result from the changes in the node structure.

4.3 Discussion
The results suggest that our OSR approach can significantly

reduce warm-up time. The actual improvement is highly

dependent on the problem size of the benchmark, because

for larger problem sizes, loops are often running longer in

interpreted mode. For example, in fannkuch, the problem

size is the length of a permutation array, which determines

the number of loop iterations needed to cover all possible

permutations. With a problem size of 11, fannkuch did not

finish within a day without OSR, but in less than 30 min-

utes with our approach enabled. For evaluation feasibility

fannkuch’s problem size was reduced to 9. The evaluation

also demonstrated that peak performance is affected by our

approach. Due to changes in the Truffle node structure, a

different program is produced which explains the deviations.

Some benchmarks show peak performance regressions, oth-

ers speed up, however with a tendency to the latter.

5 Related Work
To the best of our knowledge, we have presented the first

approach for providing OSR in a Truffle implementation

for an unstructured language. Below, we consider the wider

context of related work.

OSR On-stack replacement was first researched by Höl-

zle and Ungar [14] as a strategy to switch between differ-

ent versions of an executed method in the context of (re-

)compilation and dynamic de-optimization [13] to support

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

debugging of optimized code. OSR is supported by most of

the popular method-based dynamic compilers. For example,

the HotSpotVM [15], which is one of the most popular VMs

for Java bytecode, supports OSR by incrementing counters

at loop backedges that trigger compilation when a counter

overflows. When compilation finishes, the next executed

backedge will transition to the compiled version of the loop.

Values in the interpreter frame are mapped to an OSR buffer,

from which the compiled code extracts the values. To sup-

port compilers in applying OSR for unstructured languages

we proposed reconstructing and extracting loops. D’Elia and

Demetrescu [3] conducted a case study on how to implement

function-level on-stack replacement for LLVM at arbitrary

points, by using glue code to facilitate a smooth transition

between the two versions of a function. In their recent work

they focused on a more abstract view on OSR in the context

of code transformation [4]. In [4] a more general way to

apply OSR is proposed by enabling transitions at any code

location.

Truffle Bytecode vs. AST Interpreters Niephaus et al.

[19] compared an AST-based with a bytecode-interpreter-

based Truffle implementation for Squeak/Smalltalk. For the

AST-based approach, they had to decompile the generated

bytecode to construct high-level Truffle AST nodes. They

also report significant performance gains when using Truf-

fle’s LoopNode interface, which required additions in the

decompilation process, to successfully reconstruct loop con-

dition and body. They observed a warm-up period for the

AST-based interpreter, but not for the bytecode interpreter

approach. However, they remarked that the results might

not be generalizable, since they evaluated their implemen-

tation with only two micro-benchmarks. We speculate that

the bytecode-based version of Squeak/Smalltalk, would also

benefit from enabling OSR like in Sulong.

Reconstruction of loops Loop reconstruction is a well re-

searched topic, which dates back into the 1970s with Tar-

jan [27, 28] formulating his interval analysis algorithm capa-

ble of identifying loops in reducible control flow graphs. The

algorithm creates a depth-first tree of the CFG and identifies

loops in a bottom up traversal from inside out, by collapsing

inner loops into single vertices [20]. This depth-first nature

is found in many loop reconstruction algorithms being de-

veloped over the years—including the one used in this paper.

Havlak refined Tarjan’s algorithm to work with irreducible

control flow too [12], however, in quadratic time [20]. But

Havlak’s algorithm is still used in more recent work [23]. Ra-

malingam then extended Havlak’s algorithm to identify both

reducible and irreducible loops in almost linear time [20].

Other algorithms build on the work of Tarjan and add sup-

port for irreducible control flow [24, 26], which slightly differ

in the returned irreducible loops [20]. For our work, as irre-

ducible control flow is not supported, the simple depth-first

reconstruction of reducible loops in combination with the

detection of irreducible loops is sufficient.

Reconstruction of high-level control flow Leopoldseder

et al. [17] described an approach to reconstruct high-level

language constructs from compiler IR. They compiled Java

bytecode to JavaScript by first translating it to Graal IR [6]

and then reconstructing high-level constructs. They faced

similar problems like we did, for example, the problem of

handling different successor blocks of loop exits. However,

their approach merged loop exits whereas we use the dynam-

ically identified loop successor as lookup for the constant

successors, known at compile time.

Zakai [33] introduced the Emscripten compiler, which

translates LLVM IR to JavaScript. In its architecture, a mod-

ule for reconstructing high-level JavaScript loops from LLVM

IR is presented, called The Relooper. They also point out that

due to extensive use of goto statements no meaningful high-

level structure might be re-established.

6 Conclusion and Future Work
OSR for loops in unstructured languages is problematic due

to the lack of high-level representations on which optimiza-

tions can be performed. In this paper, we have presented

an approach for enabling OSR in Truffle-based interpreters

for unstructured languages by partially reconstructing high-

level loops from basic blocks. Unlike traditional OSR, we

wrap loops into AST nodes to enable Truffle to extract the

LoopNodes into separate CallTargets, which are function

equivalents and can be OSR-compiled after each loop itera-

tion. We implemented this approach in Sulong, and demon-

strated that it can significantly reduce warm-up time. Our

approach is applicable to any other Truffle based bytecode

interpreter, but also other languages can implement similar

approaches building on our multi-tier system.

As part of future work, instead of bailing out on whole

functions when irreducible control flow is detected, reducible

loops could be handled correctly while irreducible loops are

not detected as loops at all. This would be useful for func-

tions with many loops where few isolated irreducible loops

would then not prevent OSR compilation for the others as

well. Alternatively, support for irreducible loops could be im-

plemented for Sulong as suggested in Section 3.6. For a more

detailed evaluation, the used benchmarks could be analyzed

and compared in terms of their code structure (number of

loops, call sites, etc.).

References
[1] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount,

and Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and

Cold. Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (Oct. 2017),
27 pages. https://doi.org/10.1145/3133876

[2] Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössen-

böck. 2016. Efficient and Thread-Safe Objects for Dynamically-Typed

Languages. In Proceedings of the 2016 ACM International Conference

https://doi.org/10.1145/3133876

Supporting OSR in Unstructured Languages MPLR ’19, October 21–22, 2019, Athens, Greece

on Object Oriented Programming Systems Languages & Applications
(OOPSLA’16). 642–659.

[3] Daniele Cono D’Elia and Camil Demetrescu. 2016. Flexible On-stack

Replacement in LLVM. In Proceedings of the 2016 International Sym-
posium on Code Generation and Optimization (CGO ’16). ACM, New

York, NY, USA, 250–260. https://doi.org/10.1145/2854038.2854061
[4] Daniele Cono D’Elia and Camil Demetrescu. 2018. On-stack Replace-

ment, Distilled. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM,

New York, NY, USA, 166–180. https://doi.org/10.1145/3192366.3192396
[5] Edsger W. Dijkstra. 1972. Structured Programming. Academic Press

Ltd., London, UK, UK, Chapter Chapter I: Notes on Structured Pro-

gramming, 1–82. http://dl.acm.org/citation.cfm?id=1243380.1243381
[6] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,

Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An

Extensible Declarative Intermediate Representation. In Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop.

[7] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-

mer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate

Representation for Speculative Optimizations in a Dynamic Compiler.

In Proceedings of the 7th ACM Workshop on Virtual Machines and In-
termediate Languages (VMIL ’13). ACM, New York, NY, USA, 1–10.

https://doi.org/10.1145/2542142.2542143
[8] Ana M. Erosa and Laurie J. Hendren. 1994. Taming Control Flow: A

Structured Approach to Eliminating Goto Statements. In ICCL. https:
//doi.org/10.1109/ICCL.1994.288377

[9] Stephen J. Fink and Feng Qian. 2003. Design, Implementation and

Evaluation of Adaptive Recompilation with On-stack Replacement. In

Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization (CGO ’03).
IEEE Computer Society, Washington, DC, USA, 241–252.

[10] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process–

An Approach to a Compiler-Compiler. Higher-Order and Symbolic
Computation 12, 4 (01 Dec 1999), 381–391. https://doi.org/10.1023/A:
1010095604496

[11] Matthias Grimmer, Stefan Marr, Mario Kahlhofer, Christian Wim-

mer, Thomas Würthinger, and Hanspeter Mössenböck. 2017. Ap-

plying Optimizations for Dynamically-typed Languages to Java. In

Proceedings of the 14th International Conference on Managed Languages
and Runtimes (ManLang 2017). ACM, New York, NY, USA, 12–22.

https://doi.org/10.1145/3132190.3132202
[12] Paul Havlak. 1997. Nesting of Reducible and Irreducible Loops. ACM

Trans. Program. Lang. Syst. 19, 4 (July 1997), 557–567. https://doi.org/
10.1145/262004.262005

[13] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging

Optimized Code with Dynamic Deoptimization. In Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language Design and
Implementation (PLDI ’92). ACM, New York, NY, USA, 32–43. https:
//doi.org/10.1145/143095.143114

[14] Urs Hölzle and David Ungar. 1994. A Third-generation SELF Implemen-

tation: Reconciling Responsiveness with Performance. In Proceedings
of the Ninth Annual Conference on Object-oriented Programming Sys-
tems, Language, and Applications (OOPSLA ’94). ACM, New York, NY,

USA, 229–243. https://doi.org/10.1145/191080.191116
[15] HotSpot JVM 2019. Java VersionHistory (J2SE 1.3). http://en.wikipedia.

org/wiki/Java_version_history
[16] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer

Society, Washington, DC, USA, 75–.

[17] David Leopoldseder, Lukas Stadler, Christian Wimmer, and Hanspeter

Mössenböck. 2015. Java-to-JavaScript Translation via Structured Con-

trol Flow Reconstruction of Compiler IR. In Proceedings of the 11th

Symposium on Dynamic Languages (DLS 2015). ACM, New York, NY,

USA, 91–103. https://doi.org/10.1145/2816707.2816715
[18] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl,

Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-based

Duplication Simulation (DBDS): Code Duplication to Enable Compiler

Optimizations. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization (CGO 2018). ACM, New York, NY,

USA, 126–137. https://doi.org/10.1145/3168811
[19] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. Graal-

Squeak: A Fast Smalltalk Bytecode Interpreter Written in an AST

Interpreter Framework. In Proceedings of the 13th Workshop on Imple-
mentation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems (ICOOOLPS ’18). ACM.

[20] G. Ramalingam. 1999. Identifying Loops in Almost Linear Time. ACM
Trans. Program. Lang. Syst. 21, 2 (March 1999), 175–188. https://doi.
org/10.1145/316686.316687

[21] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas

Würthinger, and Hanspeter Mössenböck. 2016. Bringing Low-level

Languages to the JVM: Efficient Execution of LLVM IR on Truffle. In

Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL 2016). ACM, New York, NY, USA, 6–15.

https://doi.org/10.1145/2998415.2998416
[22] Manuel Rigger, Roland Schatz, René Mayrhofer, Matthias Grimmer,

and Hanspeter Mössenböck. 2018. Sulong, and Thanks for All the

Bugs: Finding Errors in C Programs by Abstracting from the Native

Execution Model. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 377–391.

https://doi.org/10.1145/3173162.3173174
[23] Yukinori Sato, Yasushi Inoguchi, and Tadao Nakamura. 2011. On-the-

fly Detection of Precise Loop Nests Across Procedures on a Dynamic

Binary Translation System. In Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF ’11). ACM, New York, NY, USA,

Article 25, 10 pages. https://doi.org/10.1145/2016604.2016634
[24] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. 1996. Iden-

tifying Loops Using DJ Graphs. ACM Trans. Program. Lang. Syst. 18, 6
(Nov. 1996), 649–658. https://doi.org/10.1145/236114.236115

[25] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.

Partial Escape Analysis and Scalar Replacement for Java. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO ’14). ACM, New York, NY, USA, Article 165,

10 pages. https://doi.org/10.1145/2544137.2544157
[26] Bjarne Steensgaard. 1993. Sequentializing Program Dependence

Graphs for Irreducible Programs.

[27] Robert Tarjan. 1971. Depth-first search and linear graph algorithms.

In 12th Annual Symposium on Switching and Automata Theory (swat
1971). 114–121. https://doi.org/10.1109/SWAT.1971.10

[28] Robert Tarjan. 1973. Testing Flow Graph Reducibility. In Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing (STOC ’73).
ACM, New York, NY, USA, 96–107. https://doi.org/10.1145/800125.
804040

[29] Linda Torczon and Keith Cooper. 2011. Engineering A Compiler (2nd
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[30] Christian Wimmer. 2004. Linear Scan Register Allocation for the Java

HotSpot™ Client Compiler. Institute for System Software, Johannes

Kepler University Linz. Master’s Thesis.

[31] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas

Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,

and Matthias Grimmer. 2017. Practical Partial Evaluation for High-

performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). ACM, New York, NY, USA, 662–676.

https://doi.org/10.1145/3062341.3062381

https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/3192366.3192396
http://dl.acm.org/citation.cfm?id=1243380.1243381
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1109/ICCL.1994.288377
https://doi.org/10.1109/ICCL.1994.288377
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/3132190.3132202
https://doi.org/10.1145/262004.262005
https://doi.org/10.1145/262004.262005
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/191080.191116
http://en.wikipedia.org/wiki/Java_version_history
http://en.wikipedia.org/wiki/Java_version_history
https://doi.org/10.1145/2816707.2816715
https://doi.org/10.1145/3168811
https://doi.org/10.1145/316686.316687
https://doi.org/10.1145/316686.316687
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/2016604.2016634
https://doi.org/10.1145/236114.236115
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1145/800125.804040
https://doi.org/10.1145/800125.804040
https://doi.org/10.1145/3062341.3062381

MPLR ’19, October 21–22, 2019, Athens, Greece R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Mössenböck

[32] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,

Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and

Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). ACM, New

York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581
[33] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In

Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications. 301–312.

https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background
	2.1 Truffle and Graal
	2.2 Sulong and LLVM IR
	2.3 Partial Evaluation of Bytecode Interpreters
	2.4 Problem of OSR for Bytecode Interpreter Languages

	3 OSR for Bytecode-based Truffle Interpreters
	3.1 Loop Detection
	3.2 Identifying Loop Relations
	3.3 Node Creation and Integration
	3.4 Loop Execution
	3.5 Successor Determination
	3.6 Irreducible Control Flow

	4 Evaluation
	4.1 Setup
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

