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Abstract—We identify optimal strategies for maximising influ-
ence within a social network in competitive settings under budget
constraints. While existing work has focussed on simple threshold
models, we consider more realistic settings, where (i) states are
dynamic, i.e., nodes oscillate between influenced and uninfluenced
states, and (ii) continuous amounts of resources (e.g., incentives
or effort) can be expended on the nodes.

We propose a mathematical model using voting dynamics to
characterise optimal strategies in a prototypical star topology
against known and unknown adversarial strategies. In cases
where the adversarial strategy is unknown, we characterise the
Nash Equilibrium. To generalise the work further, we introduce
a fixed cost incurred to gain access to nodes, together with the
dynamic cost proportional to the influence exerted on the nodes,
constrained by the same budget. We observe that, as the cost
changes, the system interpolates between the historic discrete
and the current continuous case.

Index Terms—influence maximisation, voting dynamics, game
theory, star graphs

I. INTRODUCTION

Individual opinions and behaviours are largely affected by
peer influence [6]. The propagation of such influence, through
societies, predominantly depend on the exchange of informa-
tion between individuals through their social connections [7].
This inherent connectivity in social networks, can be exploited
to fuel several agendas, where societies are externally manipu-
lated through information control, to dominate aggregate social
behaviours or steer public opinions, with both positive [25] and
negative [14] intent. However, as an external agent trying to
influence a social network, the most challenging task, which is

the crux of what is known as the Influence Maximisation (IM)
problem [3], is to determine the most optimal distribution of
resources that maximises the influence spread.

Traditionally, solutions to this NP-hard problem have been
offered using approximation algorithms on simple influence
models, that guarantee theoretical convergence. The Indepen-
dent Cascade (IC) model [3] is one such prime example, where
influence is introduced with a single injection, which then,
in subsequent time steps, cascades throughout the rest of the
network. Despite its popularity in IM study, the IC model has
its own set of limitations.

Firstly, the IC model only allows a single opportunity
to each node, to influence its neighbours. This restricts the
scope of its application to many real-world scenarios, where
nodes experience external influence from multiple sources
and neighbours, at different points in time. Secondly, cascade
models assume that nodes in the network are static in nature,
i.e. once influenced, they cannot revert back to their original
state. While this aptly represents opinions and decisions with
long-term commitments, such as buying a car, the irrevoca-
ble nature of the nodes makes them equally unsuitable for
scenarios where individual choices (or opinions) are transient
and free of commitments, such as decisions to intermittently
switch between mobile networks for various reasons like cost,
affordability and so on [15].

Dynamic models of influence propagation on the other
hand, allow nodes in the network to switch from one state
to another, thus remedying the drawbacks of static models.
Examples include the Voter Model, Majority-Rule Model and
the Naming Game [16]. Here, we choose voting dynamics
[13] to represent influence propagation in our model. Despite
the simplicity of its approach, the voter model has gained
substantial popularity in IM study. The most important ad-
vantage offered by this model, is that the influence flow
equations can be solved analytically for any network, however
large. Such analytical solutions are important in their own
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right, as they provide benchmarks for computational tools and
help understand results in more complex settings. However,
analytical solutions typically require an analysis of simplified
network structures, such as complete graphs, line graphs,
cycles or star graphs. Here, for our work, we deliberately focus
on star networks.

Star networks, are not only largely prevalent in social
networks, such as in social media (e.g., Twitter) [10] and
within organisations [8], but is also an archetypal example
of leader-follower structures in social networks. The bimodal
degree distribution of star networks creates a trade-off between
the roles of low-degree follower nodes and high degree leader
nodes, in the influence spread process.

Here, under competitive settings, we determine conditions
under which external influence shifts from the hub to the
periphery and vice-versa. Contrary to previous IM work [9]
[4], which consistently argue the importance of hub nodes over
peripheral nodes in the IM process, in this paper, we identify
conditions within star networks, where influence is exclusively
exerted on the periphery, and not on the hub node. We discuss
these results at length, in the latter sections of the paper.

In our given problem, we focus on competitive IM (also
interchangeably used with adversarial IM in the rest of the
paper), in which two or more contenders compete to maximise
their influence within a population. Over the years, competitive
IM has attracted considerable attention. A motivating factor
is its commercial value in many real-world scenarios, such
as viral marketing, where firms compete with one another in
oligopolistic markets to maximise the consumption of their
own products [1], or in politics, where parties compete with
one another to increase their own influence in the population,
to win elections [11].

Competitive IM was first proposed as extensions [1] [2] to
the IC model [3]. This spurred a fairly large body of work
that studied competitive IM using different models and under
various social conditions [17] [18] [19]. In dynamics models
it has been studied using zealotry [9] [12]. Zealots are agents
with extremist opinions (often termed as stubborn agents),
which do not change their states, and further, unidirectionally
influence other agents in its social neighbourhood to adopt the
opinion they endorse.

Despite the rich available background in IM literature, we
find that most historic work in this field is characterised by
the use of discrete models where nodes are either influenced
or not. In contrast, our work here considers a continuous
distribution of influence on the network where a broad spec-
trum of nodes are targeted with varying amounts of influence.
Moreover, work in competitive IM largely studies networks
that have already been seeded by a competitor. This requires
prior knowledge of adversarial strategies which may not al-
ways be readily available. In cases where adversarial strategies
are unknown, game-theory provides a viable approach to
determine the optimal solution to the IM problem.

While there is an abundance of work in game-theoretic IM
using static models [23] [24], dynamic models have received
limited attention in this aspect. Exceptions are [20] [21] [22],

of which, we find that work in [22] bears closest resemblance
to our model. The authors study competitive IM using a
game-theoretic approach in [22], while assuming that influence
spread follows voting dynamics. They however, inject external
influence in the network in a single time-step, which starkly
contrasts the continuous nature of our influence distribution.

In the following sections of the paper, we study competitive
IM in star networks, under various known and unknown adver-
sarial conditions, using the dynamic voter model characterised
by continuous allocation of resources. We find that, in case
of known adversarial strategies, the best response strategy,
when competing influence on the network exceeds available
budget, is to target nodes avoided by the adversary with more
influence. As available budget increases, more influence is
expended on nodes targeted by the adversary. Where adver-
sarial strategy is unknown, we show that the pure-strategy
Nash Equilibrium is when both competitors target all nodes
equally. We also observe that the optimal strategies change
when a fixed cost c is incurred to gain access to nodes in the
network. As c increases, the system interpolates between the
continuous and discrete models. Where the adversary targets
the hub, we find that with increase in cost c, the optimal
strategy switches between targeting all nodes, to targeting
only the hub node very abruptly. In all other cases of known
adversarial strategies, we observe a less abrupt shift in the
optimal strategy.

II. SPREAD DYNAMICS

We represent social networks as graphs G(V,E) of vertices
(V) and edges (E), where vertices (V) indicate social agents
and edges (E), the relationships between them. The strength
of these connections are given by the weight adjacency matrix
W of the graph G, where the ijth entry wij , gives the strength
of the influence, an agent j has on i. Here, agents i, j ∈ V
and diagonal elements wii = 0 for all agents ∀i ∈ V .

We assume that two external influencers, A and B compete
to maximise their influence in the network. In the marketing
context, this could be firms competing to maximise the con-
sumption of their products. We consider a stochastic binary
model where only two states A and B are available to the
agents in the network. The state σi ∈ {A,B} of an agent
i ∈ V , indicates its affiliation to one of the two competing
influences. Here at the beginning of the influence spreading
process (t = 0), every agent i, in the network is assumed to
inherently have an initial state σi ∈ {A,B}. This state changes
dynamically over time as influence flows through the network.

Influence propagation in this model follows voting dynamics
[13], where at each update event, a node i is selected at random
(with probability 1

|V | ), which then either adopts the state of a
randomly (with probability 1

deg(i) ) chosen neighbour j or that
of an external influencer A or B, when directly influenced.

As per the stated problem, the objective of each influencer
(A and B) is to maximise the number of nodes in the network
that adopt their endorsed opinion, at steady-state (after which,
fractions of opinions in the network no longer change with
time). The probabilistic state of a node i is given by uA,i.



This is further defined as the probability with which a node
i adopts the state σi = A. At equilibrium, the fraction of the
total nodes in any one particular state, say σi = A, is given
by uA,avg =

∑N
i uA,i

N . When represented as a non-cooperative
game, each player here is driven by the intent to increase their
individual pay-off s uA,avg =

∑N
i uA,i

N and uB,avg =
∑N

i uB,i

N .
For any arbitrary network of N nodes, the rate at which an

influencer A spreads its influence in the network, is given by:

duA,i
dt

= (1− uA,i).pri(A)− uA,i.pri(B). (1)

such that

pri(A) =

∑
j

wjiuA,j + pA,i∑
j

wji + pA,i + pB,i
,

pri(B) =

∑
j

wji(1− uA,j) + pB,i∑
j

wji + pA,i + pB,i
,

where pri(A) is the probability with which a node i adopts
state A and pri(B) the probability with which it adopts state
B. Note that, the amounts of influence pA,i and pB,i, exerted
on any node i here is continuous and proportional to the
amount of resource expended on it. Hence, we use resource
and influence inter-changeably throughout the course of the
paper.

When the system reaches steady-state, although individual
states are still dynamic and change with time, the total number
nodes in any one particular state in the network, no longer
change with time and therefore duA,i

dt = 0, gives us[
L+ diag(pA + pB)

]
uA = pA. (2)

Here L, the Laplacian of the network is given by the N-by-N
matrix, where each element Lij = δij

∑
k wki− (1− δij)wji,

and δij is the kronecker delta.
While each element of vector uA represents the probability

uA,i with which a node i in the network adopts opinion A. The
sum of its elements divided by to total number of nodes in
the network (N), uA,avg = 1

N

∑N
i=1 uA,i, denotes the fraction

of total nodes in the network that are in state A (i.e. σi = A).
Vector pA indicates the distribution of resources a, over

the network, for an adversary A, such that
∑N
i=1 pA,i = a.

Here, the elements of each distribution vector pA and pB are
non-negative, and

∑N
i=1 pB,i = b.

The objective of this problem is now simply to determine
the best possible allocation of resources pA, given a fixed
a, that maximises average opinion uA,avg in the network. In
the following sections, we explore this problem for multiple
adversarial settings in star networks. In principle, this method
can be extended to other simple networks as well, such as,
complete graphs, line graphs, cycles and even small scale-
free networks, for which L can be expressed analytically. For
arbitrary weighted graphs, the optimisation problem can be
solved numerically using 2, given a fixed budget, a and b.

III. KNOWN ADVERSARIAL STRATEGIES

In the following sections, we study the competitive IM
problem for various known adversarial strategies, with the aim
of identifying the best response in each case. We do so in star
networks of N nodes, which comprise of two kinds of nodes,
distinguishable by their topological positions, i) peripheral
(follower) nodes, and ii) a hub (leader) node.

As stated before, adversaries A and B are each assumed to
have a certain amount of resources a and b at their disposal,
which they allocate to nodes in the network with the intent of
influencing them. The best response strategy is the optimal
split of resources between the hub and the periphery that
results in maximum influence spread in the network. For
ease of exposition, we determine optimal strategies only with
respect to A, against a fixed adversary B. We parameterise
A’s strategy space using α and kA, where α is the amount
of resource expended on each peripheral node and kA is the
number of peripheral nodes targeted by A.

On examining Eq. 2, we find some general cases to explore,
where adversarial influence can either be i) constant, or ii)
proportional to the degree of the node. We study these cases
in the following sections.

A. Adversary targets uniformly
Lemma III.1. The best response strategy against an adversary
targeting all nodes in the network uniformly, is also to target
all nodes equally.

Proof. We first determine the Laplacian (L) of the star graph
with N nodes. This entity does not change as long as the graph
structure remains the same. We also define an arbitrary N-
dimensional vector pA that represents the resource allocation
strategy adopted by A. The elements of pA are given by

pA,i =


a− kAα, for i = 0

α, for 1 ≤ i ≤ kA
0, for kA + 1 ≤ i ≤ n

Without loss of generality, here we index the hub node as
i = 0, targeted peripheral nodes as 1 ≤ i ≤ kA and the
remaining peripheral nodes as kA+1 ≤ i ≤ n. These notations
are maintained throughout the rest of the paper.

Here, vector pB is defined using prior knowledge of adver-
sarial strategy. In this case, where adversary targets all nodes
uniformly, it is given by, pB,i = b

n+1 , ∀i ∈ 0, 1...n.
Replacing L, pA and pB in Eq. 2, we obtain a system of N

non-linear equations, which we solve to get an expression for
the average opinion in the network uA,avg , as a function of
kA and α, given by uA,avg=f(kA, α). This allows us to differ-
entiate the expression uA,avg wrt to the independent variables
kA and α. We further equate them to 0, i.e. ∂uA,avg

∂kA
= 0 and

∂uA,avg

∂α = 0, and consequently solve them to determine the
values k∗A and α∗, for which uA,avg is maximum. We find that
in the case where the adversary targets all nodes uniformly,
the best response strategy given by the optimal values k∗A = n
and α∗ = a

n+1 , i.e. to distribute the available budget over all
nodes equally.



Note, that this strategy is independent of the total amount
of influence b exerted by the adversary on the network, which
is a surprising result in a competitive network, as one would
expect the response strategy to be affected by change in the
strength of adversarial influence. We further observe, that in
a star network, where all nodes experience equal amounts of
adversarial influence, the degree of the node or its topological
position has no bearing on its role in the influence spread
process.

The following sections study cases where adversarial influ-
ence in the network is proportional to the degree of the node.

B. Adversary targets hub

Lemma III.2. The best response strategy to an adversary only
targeting the hub node is to target all n peripheral nodes,
each with α∗ = a+b√

a+b+(n+1)2+(n+1)
and the hub node with

the remaining [a− nα∗], for a ≥ b.

Proof. Here pB is an N-vector where pB,0 = b and all
other elements pB,i = 0, ∀i ∈ 1..n. The Laplacian L of
the network remains unchanged and pA is defined as before.
Using similar methods of differentiation as in the earlier
section, we determine the best response strategy as k∗A = n
and α∗ = a+b√

a+b+(n+1)2+(n+1)
.

We observe,
1) Contrary to the case where adversary B targets all nodes

uniformly, the best response strategy here, is no longer
independent of the strength of the influence b exerted by
the adversary on the network.

2) Similar to results obtained in the previous section, the
best response strategy here too, is to target all peripheral
nodes, k∗A = n for a ≥ b. However, it is important to note
that while the optimal strategy against an adversary tar-
geting all nodes uniformly, is to target all nodes equally.
Here we see a disparity in the best response strategy,
between the amounts of influence given to the hub and
the periphery. Furthermore, we note that the distribution
of resources between the hub and the periphery strictly
depends on the strength of adversarial influence on the
network.

3) When adversarial influence b is:
i) less than or equal to a — the best response strat-

egy suggests an uneven split of resources between
the hub and the periphery, where the hub receives
more influence than peripheral nodes, as α∗ =

a+b√
a+b+(n+1)2+(n+1)

< a
n+1 . Unlike in the earlier case,

where all nodes receive the same amounts of influence
given by α∗ = a

n+1 , here we see that the degree
of a node plays an important role in deciding the
significance of the node in the influence spread process.

ii) exceeds a — the best response strategy is to only
target the periphery and distribute the resources equally
over all peripheral nodes. Note that in this case, no
resource is expended on the hub. This emerges as

an interesting observation, which suggests that as the
adversary increases its influence on the hub node,
such that b > a, no competing influence should be
exerted on the hub node itself, or the nodes targeted
by the adversary. Instead, all the resources should be
expended on the periphery, or nodes avoided by the
adversary. This starkly contrasts previous work that
emphasise the importance of hub nodes in the IM
process [4] [9].

Fig. 1 further provides an illustration of how the optimal
strategy switches between (i) targeting the hub, (ii) targeting
the periphery, and (iii) targeting all nodes equally, as resources
a and b change. For example, we see that for low values of b
and high values of a, the optimal strategy is to target the hub
node with nearly all resources.

C. Adversary targets periphery

Lemma III.3. In the case where an adversary B targets only
the peripheral nodes, the optimal response strategy is to target

all peripheral nodes with α∗ =
a+(n+1)−

√
a+b+(n+1)2

n and
the hub node with the residual [a− nα∗].

Proof. Here, as B only targets the peripheral nodes, the
resulting N-vector pB is given by pB,0 = 0 and all other
elements pB,i = b

n , i = 1..n. From Eq. 2, we get a system of
N non-linear equations, solving which, as before, we get an
expression for uA,avg = f(kA, α). This can now be differen-
tiated to determine the optimal solutions for kA and α, which

emerge as k∗A = n and α∗ =
a+(n+1)−

√
a+b+(n+1)2

n .

Here too, we observe a non-uniform distribution of re-
sources between the hub and the periphery. Further, akin
to results discussed in Sec III-B, where the best response
strategy is to spend more resources on the periphery as
adversarial influence on the hub increases. Here, we observe
that as influence b increases on the network, the value of
α∗ decreases. Therefore, suggesting that as B increases its
influence on the periphery, A should devote a greater fraction
of its resources on the hub i.e. nodes not targeted by the
adversary.

In summary, from this section we conclude and corroborate
that, as adversarial influence increases on targeted nodes, the
optimal strategy suggests less allocation of resources to these
nodes and more to nodes avoided by the adversary.

However, as earlier explained, in certain situations, prior
knowledge of adversarial strategy can be an unrealistic as-
sumption. Therefore, to address this limitation, we study
cases where adversarial strategies are unknown using a game-
theoretic approach. Here, we identify the Nash Equilibrium
(NE) (pure or mixed) and further argue its eligibility as the
optimal strategy.

IV. GAME-THEORETIC APPROACH

We define the current problem in the scope of a non-
cooperative game, where each competitor attempts to max-
imise their pay-off s by maximising influence in the network,



Fig. 1: Heatmaps showing the % gain in uA,avg , when A plays the optimal strategy given in Lemma III-B, in comparison to
(i) targeting the hub node, (ii) targeting the periphery and (iii) targeting all nodes uniformly, against adversary B who targets
the hub node, for different values of available resources a and b, on a star network of n = 100 nodes.

against an adversary striving to do the same. Note that,
although both players are aware of the adversarial strategy
space, neither of them have any knowledge about the specific
strategy played by the adversary in the current game. Hence,
under such circumstances, we are motivated to characterise the
NE, which we argue is the overall best response strategy. Using
game-theoretic terms, the NE in a non-cooperative game with
two players is given by the equilibrium strategy from which
neither player has the incentive to unilaterally defect.

In the current adversarial IM problem, an NE is charac-
terised in the form of strategies, defined by {k∗A, α∗} and
{k∗B , β∗} for both adversaries, A and B.

Here, given the continuous nature of influence distribution,
we define the mixed strategy space using {kA, α} and {kB , β},
and we measure the pay-off s for each player in terms of their
average opinions uA,avg and uB,avg in the network.

Theorem IV.1. In a star network of n peripheral nodes, the
pure strategy NE is at

[ (
a

n+1 , n
)
,
(

b
n+1 , n

) ]
.

Proof. We define arbitrary vectors for both pA and pB where
kA peripheral nodes are targeted with α and kB nodes are
targeted with β by adversary B. The remaining resource in
each case is expended on the hub such that pA,0 = (a−k∗Aα∗)
and pB,0 = (b− k∗Bβ∗).

The average opinions uA,avg and uB,avg in the system are
now a result of the individual opinion states of the hub and
peripheral nodes of which,

i) kAkB
n are targeted both by A and B,

ii)
(
kA − kAkB

n

)
are targeted only by A,

iii)
(
kB − kAkB

n

)
are targeted only by B and

iv) n−
(
kA + kB − kAkB

n

)
which are targeted by neither.

We derive both uA,avg and uB,avg , each from a set of N
non-linear equations using L, pA and pB in Eq. 2. These
expressions in uA,avg = f(kA, α) and uB,avg = f(kB , β),
are then differentiated and solved simultaneously to determine
{k∗A, α∗} and {k∗B , β∗}, which serves as the pure-strategy NE.

We prove the uniqueness of the equilibrium by first showing
that uA,avg a monotonically increasing in kA, i.e. ∂uA,avg

∂kA
> 0.

Similar can be proven for uB,avg and kB . Now, eliminating all
dominated strategies (where kA < n and kB < n), we solve
for α and β simultaneously. Here we obtain two solutions,

of which only one satisfies the boundary conditions, and is
characterised as the pure-strategy NE.

Finally, in conclusion, we state that the equilibrium strategy
against unknown adversarial strategies is always to target all
nodes equally.

V. COST ANALYSIS

We recognise that targeting all nodes may not always be
the most feasible strategy. Here, we take a more practical
approach and in the process also generalise the model further,
by introducing a fixed cost c, which we assume is incurred
while gaining access to each target node. This cost c in
addition to the cost of influence α is constrained by the budget
a.

When c = 0 we obtain the optimal solutions enumerated in
Sec. III and IV. In all cases of known and unknown adversarial
strategies we observe that the optimal response is to target all
peripheral nodes. However, as c increases, it becomes more
expensive to target all nodes in the network as every additional
target node constrains the budget even further. As c increases
we observe our optimal solutions to resemble those in discrete
models [4] [9] . Therefore bridging the gap between traditional
discrete models and our continuous model.

In the following sections, we use the same case studies as in
Sec. III and IV, to compare and observe how optimal strategies
change when there is a cost of access c involved.

A. Adversary targets uniformly

Lemma V.1. The best response strategy against an ad-
versary targeting all nodes uniformly is to target k∗A =

−α(β+n+1)+(c−a)(β+1)
α(β+α) peripheral nodes, each with α∗ =√

c(β + 1), where c is a fixed cost paid to gain access to
each target node.

Proof. To prove this, we follow the same method used in
earlier analyses where L remains unchanged, and pB is the
same as in Sec. III-B, i.e., pB,i = b

n+1∀i ∈ 0..n. Note that,
here pB does not incorporate any cost c. This is because, any
cost incurred by B can be accounted for, simply by deducting



it from the available budget, to a lower budget. Here, pA,i is
defined as

pA,i =


a− kAα− c(kA + 1), for i = 0

α, for 1 ≤ i ≤ kA
0, for kA + 1 ≤ i ≤ n

Replacing the above variables in Eq. 2, we derive uA,avg =
f(kA, α), which when differentiated and solved simulta-
neously, gives two solutions for α∗, only one of which,
α∗ =

√
c(β + 1), is positive and hence feasible. This

α∗ yields two solutions for k∗A. While the solution k∗A =

−α(β+n+1)+(c−a)(β+1)
α(β+α) is chosen as the optimal value of

kA, the other solution k∗A = α(β+n+1)+(β+1)(a+2(n+1))
α(α+β+2) is

discarded, as it defies the budget constraint c.kA∗ ≤ a for
all values of c. For instance, kA∗ 6= 0 even for very large
values of c, i.e. c ≈ a. It is therefore rejected as a viable
solution, as kA∗ = 0 must be true for large values of c.

Here we observe that,

1) With change in the cost of accessing nodes c, our optimal
strategy interpolates between solutions obtained in the
discrete model [4] [9] and the continuous case (Sec.
III-B).
i) For small values of c ≈ 0 the optimal solu-

tion targets all peripheral nodes k∗A = n (as
shown in Sec. III-B). However, when c reaches
cn = −1

n

[(
η−ζ
2

) (
1 + 1

n

)
− a
]
, where η =√

(nβ + β + n+ 1)2 + 4an(β + 1) and ζ = (n +
1)(β + 1), the value of k∗A starts decreasing steadily
from k∗A = n.

ii) As cost c further increases from cn, the value of k∗A
decreases even more, until it reaches k∗A = 0 at cost
c0 = (1+β)a2

(β+n)(β+n+2)+1 . At this point, the best response
strategy no longer targets any peripheral nodes, resem-
bling results obtained in discrete models [4] [9].

B. Adversary targets hub

Lemma V.2. The best response strategy when the adversary
only targets the hub node, abruptly changes from targeting
all nodes to targeting only the hub, when cost of access
reaches a critical value cc = − 2χ(n+1)−ϕ

n+2 , where χ =
1

n+2 (
√

(a+ b+ n)(n+ 2) + 1 + (n + 1)2) and ϕ = (a +
b+ 2(n+ 1)2).

Proof. First, we substitute the terms L, pA and pB in Eq. 2.
Here pA and L, have the same values as in Sec V-A, while
pB is defined as in Sec III-B. We now use the same method
as before to derive uA,avg and then differentiate it wrt kA and
α, to determine their optimal values k∗A and α∗.

We first solve ∂uA,avg

∂α = 0, which gives us two solutions
for α∗ only one of which, is positive and is the acceptable
solution, α∗ =

√
φ+ρ+γ−(n+1)
k−n−1 where φ = (a + b − c + n +

1)(n + 1), ρ = ck(k − n), γ = k(a + b). Now replacing
α∗ in ∂uA,avg

∂kA
= 0 we solve for k∗A. This further gives us two

solutions, k∗A = (n+1) and k∗A = a+b−c+n+1
c−1 and we validate

both solutions for their feasibility in the region c ∈ [0, a).
So far, we have established that, for a certain value of c,

particularly when c ≈ 0, optimal value of k∗A should be k∗A ≈
n. However, given the budget constraint a, at very high values
of c0 (such that c ≈ a), k∗A must also reduce to k∗A = 0. Our
task here is to determine the values of cost c where k∗A = n ,
n ≥ k∗A ≥ 0 and k∗A = 0 are true.

First, we explore the solution k∗A = a+b−c+n+1
c−1 . We observe

that when c < 1, k∗A = a+b−c+n+1
c−1 yields a negative result,

which is not a viable solution in the region c ∈ [0, 1) as
k∗A ∈ Z+, and hence justifies its exclusion. We now proceed
to examine the other solutions at hand for k∗A.

Here, we would like to remind the reader that k∗A is bound
by 0 ≤ k∗A ≤ n. Therefore, solution k∗A = n + 1, is also not
feasible as an optimal strategy. In such a case, we argue the
boundary conditions k∗A = n and k∗A = 0 are the only viable
solutions, within ∀c ∈ [0, a).

Given, there are no solutions for k∗A ∈ (0, n), we conclude
that the cost value cn at which k∗A starts decreasing from k∗A =
n, and the value c0, at which k∗A = 0, both coincide at what
we define as the critical point cc.

Consequently, the region c ∈ [0, a) is split by the point
cc, into two sub-regions, 0 ≤ c < cc where k∗A = n and
cc ≤ c < a where k∗A = 0. To determine this critical
point cc, we take a look at the expressions for uA,avgk=n

when k∗A = n and uA,avgk=0
for k∗A = 0. We further argue

that, at point c = cc, uA,avgk=n
and uA,avgk=0

intersect, as
the optimal solution changes from k∗A = n to k∗A = 0.
Hence, equating uA,avgk=n

= uA,avgk=0
and solving for

c we obtain the critical point cc = − 2χ(n+1)−ϕ
n+2 where

χ = 1
n+2 (

√
(a+ b+ n)(n+ 2) + 1 + (n + 1)2) and ϕ =

(a+ b+ 2(n+ 1)2).
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Fig. 2: (a) Plot showing optimal solution for k∗A as cost c
varies, for different combinations of resources a and b, on a
star network of n = 100 nodes. (b) Shows how the critical
point cc increases as resource a increases for a fixed b = 100.

Results shown in this section are particularly exciting as
they present an all or none strategy for targeting the peripheral
nodes. This produces a typical case, where the system changes
from the continuous to discrete models as cost c changes. Fig.
2 further illustrates this abrupt switch from the continuous
model (k∗A = n) to the discrete case (k∗A = 0), when cost c
reaches cc. We also observe how this value cc increases as



the available resource a increases, keeping adversarial budget
constant.

C. Adversary targets periphery

Lemma V.3. The best response strategy against an adversary
targeting all peripheral nodes, with a cost of access c, is given
by a decreasing function in c. When c ≈ 0, k∗A = n, however,
as c increases, k∗A starts for values c ≥ cn and reaches k∗A = 0
at the value c = c0.

Proof. In this problem, pB is defined as pB,0 = 0 and pB,0 =
b
n ∀i, such that 1 ≤ i ≤ n. Keeping L and pA the same as
before, we derive the expression for uA,avg . We differentiate
uA,avg wrt kA and α and equate them both to 0. Upon solving
the equations simultaneously, we obtain solutions for k∗A and
α∗. For the sake of readability, we refrain from writing down
the lengthy expressions obtained for k∗A and α∗.

However, to give the reader an intuition of how the best
response strategy varies with change in cost c, we plot the
closed-form solution for k∗A against the cost of accessing nodes
c in Fig. 3, for multiple values of resources a and b. We
observe that as resources a and b increase, in a way that
fulfils the condition a = b, the respective cn and c0 values
also increase.

Fig. 3(a) explicitly shows how the cn and c0 values increase
as resources increase. However, as shown in Fig. 3 (b) it may
be worth noting that, cn and c0 do not increase in the same
proportion, further suggesting that any change in resources
has a greater impact on c0 than on cn. We argue that, as
resources increase, it takes longer (or higher cost c) to change
the optimal strategy from targeting some peripheral nodes, to
targeting only the hub node.
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Fig. 3: (a) Plot showing optimal solution for k∗A as cost c
varies, for different combinations of resources a and b, such
that a = b, on a star network of n = 100 nodes. (b) Shows
how cn and c0 increase wrt resources a and b.

VI. GAME THEORETIC APPROACH

So far we study how the optimal strategy varies with cost
of access to nodes c against known adversarial strategies. In
this section, we generalise the model further to determine
best response strategies against unknown adversarial strategies.
Given lack of prior knowledge of the adversarial strategy, we

define an arbitrary pB as in Sec. IV to conduct the study
further.

pB,i =


b− kBβ − c(kB + 1), for i=0
β, for 1 ≤ i ≤ kB

0, for kB+1 ≤ i ≤ n

As before, values for L and pA remain unchanged from
previous sections (Sec. V). We can now use Eq. 2 to derive
both uA,avg and uB,avg. Under the current conditions, this
yields a complex system that consists of high-order equations
that produce inconsistent and unreliable analytical solutions.

We therefore, use a computational method to characterise
NE in this setting. Competitors have resources a and b avail-
able to them from which they pay a fixed cost c to gain access
to the nodes, and a variable cost proportional to the influence
exerted on the nodes. Given the current settings, we attempt
to understand how the NE changes, with change in cost c.

We generate the pay-off matrix numerically by calculating
utilities {uA,avg, uB,avg} for all available strategies defined
by {(kA, α) , (kB , β)}. Here kA ∈ Z+ is bounded by 0 ≤
kA ≤ n and is incremented by step-size ∆ = 1 and α ∈
R+ is incremented by step-size ∆ = 0.01. Once this matrix
has been obtained, we use the Lemke-Howson algorithm [5]
to determine the pure or mixed-strategy NE for varying c,
discretised by ∆ = 0.02.

Fig. 4: Plot showing (a) the number of peripheral nodes tar-
geted, (b) the amount of influence expended on the periphery at
the NE for different values of c, on a star network of n = 100
nodes.

In Fig. 4, we observe how the NE changes as cost (c) value
changes. We also change the values of resources a and b, (i)
{a, b} = {100, 100} and an arbitrarily chosen, (ii) {a, b} =
{47, 71}, to see how it affects the NE. Fig. 4(a), shows how the
equilibrium strategy changes in terms of kANE

, as c increases,
while Fig. 4(b), shows how the amount of influence exerted
on the periphery changes with c. Note, we only plot one set
of equilibrium strategies for the case a = b, since both players
A and B have the same strategy at NE.

We further observe,
1) As cost c increases, the equilibrium strategy gradually

shifts from targeting all nodes, to targeting only the hub.
This result resembles earlier results, obtained in Sec. IV.
We also find that, beyond a point c0, the strategy NE is
always to target the hub node, with all available resources.
As resources a and b decrease, it decreases the value of
c0.



2) Irrespective of the resources available to each player, we
see that they both switch their strategy of targeting both
hub and peripheral nodes to just the hub node, at the same
point c0.

VII. CONCLUSION

In this paper, we explore the IM problem using a dynamic
model under competitive settings, where two adversaries com-
pete to spread their influence in the network. Here, nodes are
dynamic and are free to continually change their states. We
argue this dynamic role, helps us to look at a broader scope of
IM problems, in contrast to static models. We also assume that
influence is continuously distributed over the network, which
contrasts discrete influence in all previous work in this field,
adding novelty to our approach.

We consider that influence propagation in our model follows
voting dynamics. This allows us to use an analytical frame-
work to study IM in star networks (a prototypical example of
the leader-follower structure in social networks) and the role
of hub and periphery in best response strategies against both
known and unknown adversarial strategies. We observe that
as adversarial influence exerted on the network increases, the
optimal strategy is to shift resources from nodes targeted by
the adversary to those not targeted by the adversary.

Additionally, contrary to previous work [9] [4], our results
elicit the importance of peripheral nodes over hub nodes in
star networks. Therefore defying the common notion that high-
degree nodes are crucial in the IM process.

Lastly, we recognise, that our analytical approach restricts
us to simple network structures, such as the star graph. A
future direction for this work is to further extend this model to
larger networks using optimising algorithms such as Gradient
Ascent.
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