
HAL Id: hal-02554798
https://hal.science/hal-02554798v1

Submitted on 26 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AutoIoT: a Framework based on User-driven MDE for
Generating IoT Applications

Thiago Nepomuceno, Tiago Carneiro, Paulo Henrique Maia, Muhammad
Adnan, Thalyson Nepomuceno, Alexander Martin

To cite this version:
Thiago Nepomuceno, Tiago Carneiro, Paulo Henrique Maia, Muhammad Adnan, Thalyson Nepomu-
ceno, et al.. AutoIoT: a Framework based on User-driven MDE for Generating IoT Applications. SAC
’20: The 35th ACM/SIGAPP Symposium on Applied Computing, Mar 2020, Brno, Czech Republic.
pp.719-728, �10.1145/3341105.3373873�. �hal-02554798�

https://hal.science/hal-02554798v1
https://hal.archives-ouvertes.fr


AutoIoT: a Framework based on User-driven MDE for
Generating IoT Applications

Thiago Nepomuceno
Fraunhofer Center for Applied

Research on Supply Chain Services
Germany

thiago.nepomuceno@scs.fhg.de

Tiago Carneiro
INRIA Lille - Nord Europe

France
tiago.carneiro-pessoa@inria.fr

Paulo Henrique Maia
State University of Ceará

Brazil
pauloh.maia@uece.br

Muhammad Adnan
Fraunhofer Center for Applied

Research on Supply Chain Services
Germany

adnanmd@scs.fhg.de

Thalyson Nepomuceno
Federal Institute of Ceará

Brazil
thalyson.silva@ifce.edu.br

Alexander Martin
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Germany

alexander.martin@fau.de

ABSTRACT
Developing an Internet of Things (IoT) system requires knowledge
in many different technologies like embedded programming, web
technologies, and data science. Model-Driven Engineering (MDE)
techniques have been used as a concrete alternative to boost IoT
application development. However, the current MDE-to-IoT solu-
tions require expertise from the end-users in MDE concepts and
sometimes even in specific tools, such as the Eclipse Modelling
Framework, which may hinder their adoption in a broader context.
To tackle this problem, this work proposes AutoIoT, a framework
for creating IoT applications based on a user-driven MDE approach.
The proposed framework allows users to model their IoT systems
using a simple JSON file and, through internal model-to-model and
model-to-text transformations, generates a ready-to-use IoT server-
side application. The proposed approach was evaluated through
an experiment, in which 54 developers used AutoIoT to create a
server-side application for a real-world IoT scenario and answered
a post-study questionnaire. The experiment reports the efficacy of
AutoIoT and user satisfaction of more than 80% through 6 out of 7
evaluated criteria.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators; •
Software and its engineering→ Software prototyping;

KEYWORDS
Code Generation, User-driven, MDE, IoT application

ACM Reference Format:
Thiago Nepomuceno, Tiago Carneiro, Paulo Henrique Maia, Muhammad
Adnan, Thalyson Nepomuceno, and Alexander Martin. 2020. AutoIoT: a
Framework based on User-driven MDE for Generating IoT Applications. In
Proceedings of . ACM, New York, NY, USA, 10 pages.

, ,
©

1 INTRODUCTION
Over the past years, the interest in the Internet of Things (IoT)
technologies has grown both in industry and academia due to its
wide range of applications, including smart homes, smart healthcare,
smart grids, smart cities, and smart factories [16]. IoT projects
usually share some essential features, such as sending and receiving
data to/from devices, analyzing and visualizing data, and providing
a user management system [2].

A complete IoT system is composed of four different layers [10]:
device layer, gateway, a server-side application, and data analysis.
The usual data flow in an IoT system starts when a device sends it’s
sensor data using low-level communication protocols (e.g., sock-
ets) to a gateway. Then, the gateway transforms the binary data
received into a more human readable format (e.g., JSON) and sends
it to the server-side application, which is responsible for collecting
and storing the data in a database. Additionally, the server applica-
tion can also provide features like a virtual representation of the
devices, a Graphical User Interface (GUI) to visualize the data, a
user management system, and ways to share collected data with
third-party systems (e.g., via an API or a message queue). Finally,
the data analysis subsystem accesses the data stored and produces
useful insights to help the users of the IoT system to understand
their data and to take decisions accordingly.

In some cases, an IoT system does not need all four layers. Ex-
amples include (i) when devices are powerful enough to support
internet protocols a gateway is not needed; (ii) in prototypes or
simpler systems the data analysis layer is not required; and (iii) in
some cases, even the server-side application is not needed, since
devices can communicate directly between them autonomously.

Developing a complete IoT system requires expertise in many
different technologies like embedded programming, web technolo-
gies, and data science. Given the complexity of the task, some tools
and platforms have been created to support developers. The better
well-known solutions are the platforms created by big companies
like Google1, Amazon2, and Microsoft3. However, costs associated

1https://cloud.google.com/iot-core/
2https://aws.amazon.com/iot/
3https://azure.microsoft.com/en-us/services/iot-hub/



, , T. Nepomuceno et al.

with the provided services, as well as the vendor lock-in, may hin-
der the adoption of such solutions for some smaller or more specific
IoT projects.

Alternatively, Model-Driven Engineering (MDE) has been gain-
ing attention from both academia and industry in recent years as a
concrete solution to ease the development of IoT systems through
automatic code generation to different hardware devices [12] and
server-side application platforms [3, 6, 11, 13]. Nonetheless, most
of those approaches to build IoT applications present at least one of
the following drawbacks: (i) they are based on a strong modeling
phase with complex meta-models that are designed to cover a wide
range of different scenarios, hence requiring time and modeling
expertise; (ii) they generate only boilerplate code of the application,
demanding developers to write most of the application logic by
hand; and (iii) they require expertise in tools that are standard in
the MDE community, but not well known in the industry, like the
Eclipse Modeling Framework (EMF) suite.

According to a definition given by Abrahão et. al. [1], those
work are considered as technology-driven approaches, in which
the primary goal is to improve existing MDE techniques, usually
making them more general in order to cover a broader range of
use cases, and not to improve the usability or to ease the adoption
by a general target audience. Most of those works require their
audience to became MDE experts, learning theory and techniques
commonly used in the MDE field. On the other hand, in a user-
driven approach [1], the user knowledge and necessities guide the
development of the new MDE approach. This way, such approach
should provide tools that help to bridge the gap between what its
users already know and what is expected from them to know to
use the new tools/methods, making the adoption easier.

Previous work have already followed the premise behind user-
driven MDE approaches. GenApp [15], for example, is a tool for
building entirely functioning science gateways and standalone GUI
applications from collections of definition files and libraries of code
fragments, and Json-GUI [5] is an AngularJS front-end module that
dynamically allows data scientists and web form users to generate
form-based web interfaces. However, to the best of our knowledge,
we have not found anywork that applies the concepts of user-driven
MDE for the design and development of IoT applications. This kind
of approach would benefit not only experienced IoT developers to
boost the application creation by reducing development time, but
also introducing new ways to build IoT systems to developers and
practitioners by decreasing the technology learning curve.

In this realm, this work proposes a framework, called AutoIoT,
for generating IoT server-side applications that relies on a user-
driven MDE approach. This way, AutoIoT allows users to model
their IoT system using a simple JSON file and through internal
model-to-model transformation and code generation techniques, to
create automatically the IoT server-side application. Furthermore,
IoT developers that have some expertise in MDE can extend Au-
toIoT by creating specific components, called Specialized Builders,
that are responsible for generating the source code of specific IoT
applications. The proposed framework is evaluated with users with
different backgrounds whomodeled and developed a real IoT server-
side application. The results indicate that the users were able to
create the application correctly and in a short time with no or little
knowledge in MDE.

The remainder of this document is organized as follows: Section 2
presents the most related work. Section 3 introduces the AutoIoT
Framework, describing the user-driven process and implementation
details. Next, Section 4 details the evaluation of AutoIoT in an
industrial use case and its findings and Section 5 briefly discuss how
to use AutoIoT in more complex use cases. Finally, the conclusions
are outlined in Section 6.

2 RELATEDWORK
Previous work have already used MDE technologies to ease the
development of IoT server-side applications. We describe some of
these approaches as follows.

Brambilla, Umuhoza, and Acerbis [3] propose a model-driven
approach to design IoT Graphical User Interfaces (GUI). The work
defines both specific components and design patterns using a visual
modeling language for IoT applications and discusses the impor-
tance of having good GUI to improve the acceptance of the IoT
system and to model the user interactions with the GUI. The paper
discusses the back-end software and how it stores and retrieves in-
formation from a database, but it is not clear whether the proposed
approach also generates those components or not. The approach
requires users to have expertise in MDE and Interaction Flow Mod-
eling Language (IFML).

ThingML (Internet of Things Modeling Language) [11] is an
MDE approach that aims to cover a considerable amount of IoT
use cases. It is already in a more advanced stage of development
when compared with other MDE-to-IoT solutions and is especially
attractive to teams with MDE experts. According to the authors, the
main contribution of the project is a code generation framework
and an associated methodology to give practitioners full control
of the code by letting them easily customize compilers for their
needs. To accomplish this, expertise in MDE and Domain Specific
Language (DSL) is required.

Pramudianto et al. [13, 14] proposes IoTLink, which aims to
hide many of the required expertise to develop an IoT server-side
application behind a Flow-Based Programming interface. It targets
inexperienced developers entering the IoT development, allowing
them to create a ready-to-use application in minutes. While IoTLink
makes an important step and is aware of the limited expertise of
developers, it still requires developers to learn new skills to get
started with the tool, like Flow-Based Programming and the Eclipse
Modeling Framework. Additionally, the resulting system lacks some
essential features usually requested in an IoT application, like a
GUI.

All aforementioned work require some level of MDE expertise
to create IoT applications, which may hinder their adoption. In
contrast, AutoIoT has been designed based on a user-driven MDE
approach and uses only technologies that its target audience al-
ready knows, like JSON representation and a general programming
language4. This way, IoT and Web developers with no or little
knowledge in MDE techniques can design and generate ready-to-
use IoT server-side applications, thus reducing development effort
and the technology learning curve.

4Currently the AutoIoT framework is available only in Python, but ports to other
programming languages are planned



AutoIoT: a Framework based on User-driven MDE for Generating IoT Applications , ,

Figure 1: The hardware device and its sensors are attached
to a container. The device includes a temperature, position
(GPS) and filling status sensors. This picture shows a proto-
type of the smart container where all sensors are visible, not
the final product.

Finally, AutoIoT does not intend to replace more complete MDE-
to-IoT approaches (e.g., ThingML), since these approaches are de-
signed to cover a broader range of IoT use cases. Instead, it proposes
a solution that allows developers to get some of the benefits of MDE
without the need of learning new technologies.

3 AUTOIOT FRAMEWORK
This section presents the proposed framework for generating IoT
server-side applications. Initially, a simple motivating example that
will be used throughout this section is presented and, subsequently,
the user-driven MDE process is described. After that, one type of a
Specialized Builder component is detailed. Finally, implementation
issues about the framework are presented.

This work focuses on how AutoIoT can be used to create a proto-
type for the motivating example, but all the concepts presented can
be expanded to cover a more complex IoT use case, as discussed in
Section 5.

3.1 Motivating example
The use case presented in this section consists of smart containers
that send information about location, temperature, and filling status
(whether the container is empty or not). In this scenario, the IoT
device is a hardware module attached to each container, as shown in
Figure 1, that sends sensor data to a base station using a proprietary
communication protocol calledMIOTY, it is similar to LoRa protocol
and has a range of 15 kilometers. Then, the base station, which is
connected to the Internet and works as a gateway, transmits data
to the server-side application through the MQTT protocol. In turn,
the server-side application is also in the Internet, hosted on a cloud
server. The data sent by the base station is codified in JSON format
and contains the location of the box (GPS), temperature, and filling
status.

The server software in this scenario needs to (i) create a virtual
representation of the container. Additionally, it (ii) receives and
processes messages from the base station (using MQTT protocol),
and links received data to the correspondent virtual device. Fur-
thermore, it also needs (iii) to store sensor data in a database and
(iv) to provide a GUI for easing the user interaction with the system

and visualization of data, both historical (from the database) and
real-time data. Finally, the system should (v) provide an API that
allows project partners (third-party systems) to access the stored
data.

3.2 The User-driven MDE Process
The MDE process proposed by this work, as shown in Figure 2, is
composed of three main phases: modeling the IoT Scenario, gener-
ating server-side application code, and extending the source code.
The first two phases are mandatory, while the last one is optional.
Each phase is detailed as follow.

3.2.1 Modeling the IoT Scenario. The process starts with the de-
veloper modeling the IoT scenario, which is defined according to
the meta-model depicted by Figure 3. The meta-model defines an
IoT project and its components, i.e., devices, sensors and the data
sent by them, besides the system communication with devices or
third-party applications through communication protocols (MQTT,
HTTP, and WebSockets) and the connection to a database. Addi-
tionally, it can also describe the data visualization using dashboards
and components, such as tables, charts, and maps.

The meta-model has been created based on our experience on
developing several IoT projects for both research and industry
in Fraunhofer SCS. It can not be considered complete and does
not intend to cover all IoT use cases. Its main goal is to provide
all information needed by the current Specialized Builders, and
when new Builders are created, the meta-model will be updated
accordingly.

Figure 3 depicts components represented by either dotted or
continuous lines. A valid model that conforms to the proposed
meta-model only needs to define the continuous-line components.
The dotted-line ones are optional and will be generated by using a
model-to-model transformation (M2M). This way, the code attribute
in Topic, Endpoint, WebSockets and Dashboard does not need to be
defined by the developer in the application model. Only a descrip-
tion of the system is required, removing the need for defining any
business logic in the modeling phase.

Tomodel the IoT scenario, users can write the JSON file manually
or use a Web GUI that will generate such a file. Independently of
the chosen method, the final result of the modeling phase is always
a JSON file containing the model representing the system, and that
is in accordance with the meta-model presented in Figure 3.

Considering the example of the smart container, a model used
as input to AutoIoT can be seen in Listing 1. In this example, the
developer only gives information about the continuous-line com-
ponents: the project, database, MQTT broker configuration, and
the device and its sensor. The device’s fields in line 19 represents
attributes of the device itself and are not supposed to change very
often. The same happens for the sensor’s fields in line 26. However,
in addition to fields, sensors can have data_fields that represents
the data that is regularly sent by this kind of sensor to the server
application.

The JSON file is the only artifact created by the user during the
modeling phase and the only expertise required is knowing the
JSON syntax (if the file is written manually, without the GUI). Devel-
opers extensively use JSON to exchange data between systems and



, , T. Nepomuceno et al.

Generate the application 
code using a Specialized

Builder

Developer

M2M
Transformation

Need to extend 
the generated system?

M2T
Transformation

Model the
IoT Scenario

No

Yes

IoT Server-side
Application

Extend the source
code of the

generated system

Figure 2: The developer starts the process by creating the model that represents the IoT scenario. It can be done using a GUI,
programming library or a simple JSON file. The defined model is the input for a Specialized Builder that, through M2M and
M2T transformation, generates the IoT server-side application source code. Optionally, the developer can also extend the
generated application to fulfill further requirements.

Project
+ name : EString

+ description : EString

+ app_port : EInteger

Device
+ name : EString

+ description : EString

Sensor
+ name : EString

Field
+ name : EString

+ type : EEnum

MQTT
+ hostname : EString

+ port : EInteger

+ username : EString

+ password : EString

Dashboard

+ name : EString

+ route : EString

+ code : EString

+ generated_from_device : EString

Database
+ hostname : EString

+ port : EInteger

+ database_name : EString

+ username : EString

+ password : EString

Topic
+ topic : EString

+ code : EString

Component

+ name : EString

+ type : EString

+ width : EInteger

+ heigth : EInteger

+ visual_code : EString

+ system_code : EString

Parameter

+ name : EString

+ value : EEnum

Communication
Protocol

HTTP API

Endpoint

+ path : EString

+ type : EEnum

+ code : EString

*

*

*

*

*

*

*

*

component

*

*

devices

project

SensorField

project

database

project

communication_protocols

project

dashboards

mqtt

topics

SensorDataField

sensor

sensor

sensor_fields

sensor_data_fields

device

sensors

device

fields
DeviceFieldWebSocket

+ name : EString

+ namespace : EString

+ on_connect_code : EInteger

+ on_disconnect_code : EString

+ background_thread_code : EString

http_api

endpoints *

dashboard

components

parameters

Figure 3: The meta-model that defines an IoT project and its components. Components represented by continuous line are
obligatory and need to be present in the model created based on this meta-model. Components represented by dotted line are
optional and will be generated using amodel-to-model transformation (M2M) (explained in Section 3.2).

most of the General Programming Languages have native support
to JSON.

After the modeling is completed, AutoIoT loads the content of
the model file using a function. The first step is to validate and
transform the JSON file into Python objects using the Pydantic5
library. After that, the framework finally delivers these objects to
the appropriated Builder that will generate the application code.

5https://github.com/samuelcolvin/pydantic

3.2.2 Generating server-side application code. After the modeling
phase is finished, the created model is used as input to a Special-
ized Builder that starts an M2M transformation. Then, the extended
model goes to an M2T transformation phase that generates the
source code of an IoT server-side application. The type of applica-
tion generated depends on the Builder used. This work implements
the Prototype Builder (PB), a Specialized Builder that produces an
IoT system to manage IoT devices. The PB, the M2M, and the M2T
transformations are detailed in Section 3.3.



AutoIoT: a Framework based on User-driven MDE for Generating IoT Applications , ,

1 {
2 "project": {
3 "name": "Container Management Project",
4 "description": "The Container Management Project.",
5 "app_port": 5000
6 },
7 "database": {
8 "type": "sqlite",
9 "hostname": "localhost"
10 },
11 "mqtt": {
12 "hostname": "iot.eclipse.org",
13 "port": 1883
14 },
15 "devices": [
16 {
17 "name": "Container",
18 "description": "An IoT device that sends temperature, position

and filing status.",↪→

19 "fields": {
20 "name": "String",
21 "barcode": "String"
22 },
23 "sensors": [
24 {
25 "name": "MainSensor",
26 "fields": {
27 "send_interval": "String"
28 },
29 "data_fields": {
30 "temperature": "Float",
31 "filing_status": "Integer",
32 "position": "Point"
33 }
34 }
35 ]
36 }
37 ]
38 }

Listing 1: Example of a model represented in JSON format

Listing 2 presents a small example of the AutoIoT Framework
being used to load a project.json file and shows how to generate the
IoT server-side application using a Specialized Builder.

The build method is responsible for applying the M2M and M2T
transformation to the model created by the load_project method.
In turn, the parameters of the build method are the chosen Spe-
cialized Builder, the output folder and a dictionary with additional
configuration. In this example the Prototype Builder is used, and
the Docker6 deployment is set to false.

3.2.3 Extending the generated code. After the source code gener-
ation, the developer has the choice to extend it to fulfill further
requirements of the project or use the generated application as is.
The generated application is already ready-to-use, and it can be
executed locally or deployed on a cloud server.

3.3 Prototype Builder
AutoIoT provides an implemented Specialized Builder called Proto-
type Builder (PB). It has been chosen as the first Specialized Builder
due to its wide use as a server-side application in several IoT
projects, since every project usually needs a prototype and most
IoT scenarios need to communicate with and manage IoT devices.

6Docker is a tool designed to make easier to deploy, run and maintain applications by
using containers technology.

from autoiot import AutoIoT 1
from autoiot.builders import PrototypeBuilder 2

3
autoiot = AutoIoT() 4
autoiot.load_project('project.json') 5
autoiot.build(PrototypeBuilder, 'output/project', {'docker': False}) 6

Listing 2: Using AutoIoT to load amodel file and generate an
IoT server-side application

The PB generates a Flask application7 written in Python, HTML,
CSS, and Javascript. The generated server-side application commu-
nicates with IoT devices and third-party system through MQTT,
Rest API, and WebSockets. Moreover, the generated application
manages IoT devices (creates, edits and deletes them), stores and
visualizes sensor data sent by them. Additionally, it also provides a
user management feature that controls access to the stored data.

Figure 4 outlines more Specialized Builders that are planned
for future work. Each Specialized Builder should follow the meta-
model proposed by this work. However, the set of components that
are mandatory (continuous line) or optional (dotted-line) can vary
from one Builder to another. Each Builder has to implement an
M2M transformation that extends the input model adding custom
components (dotted-line components) and an M2T transformation
that generates the final application source code.

To create the PB, the abstract class Builder is extended as shown
in Figure 4. The Builder class has a set of abstract methods that
need to be implemented by the Prototype Builder class. The most
important ones are extend, which performs the M2M transforma-
tion, and generate that is responsible for the M2T transformation

7http://flask.pocoo.org/

Prototype 
Builder

Device Twin
Builder

Flutter App
Builder

«abstract class»
Builder

Flutter App source code
that can be compiled to

Android or iOS

Specialized Builders

Prototype application to
manage different IoT

devices

A microservice that
provides a REST API and
create an abstraction of

IoT devices

Figure 4: A developer can create Specialized Builders extend-
ing the abstract class Builder provided by AutoIoT. Each
Builder receives the same model but produces different ap-
plications. The generated application can follows a mono-
lith architecture like the application generated by the Proto-
type Builder, a microservice architecture like one generated
by the Device Twin Builder or even create a complete mobile
application if the Flutter App Builder is used.



, , T. Nepomuceno et al.

(Section 3.3.1 and Section 3.3.2). Following the transformations
executed by the PB are detailed.

3.3.1 M2M Transformation. When the model defined by the user
is loaded by AutoIoT (line 5 of Listing 2) it is validated, processed
and stored in memory as a graph, whose nodes are components
of the model. The M2M transformation consists of visiting each
node of the graph and checking its type. Examples of types include
Project, MQTT, Database, Device and Sensor. For each type of com-
ponent, the transformation creates specific dotted-line components
and attaches them to the input model. For example, whenever the
transformation finds a Device component in the original model, it
creates a Topic, HTTP API,WebSocket and Dashboard components
and includes them in the original model.

3.3.2 M2T Transformation. Similar to the process described in the
M2M transformation (Section 3.3.1), in the M2T transformation the
PB also visits each node of the graph and checks its type. For each
different type, it triggers a different function that generates source
code for the application using the templating technique. The default
templating engine used by AutoIoT is Jinja8, commonly used inside
the Flask Framework to render HTML content.

Each triggered function receives as input a component defined
in the model and generates part of the IoT application source code.
For example, whenever the search finds a Device type component,
the found_device function is triggered. It receives the Device object
as input and generates a Python class that represents this type of
Device. Furthermore, the found_device function also generates a
controller class to feed the GUI with information from the database
concerning this type of device. Additionally, it also generates HTML
files that list the devices stored in the database and performs the
CRUD operations (Create, Read, Update and Delete). However, in
case the graph search finds a Dashboard instead of a Device, it trig-
gers a different function that generates HTML, CSS, and Javascript
files that compounds the GUI.

At the end of the M2T transformation process, the PB generates
the source code of a Flask project. This project is written in Python,
HTML, CSS, and Javascript, communicates with IoT devices, and
stores its sensor data in a database. The Flask project supports differ-
ent communication protocols (e.g., HTTP, Web Sockets and MQTT)
that allows third-party systems to communicate using various web
technologies. Furthermore, it provides a GUI that can be used to
manage the IoT devices, and visualizes sensor data using tables,
charts, and maps updated in real time. Finally, it also provides a user
management system to allows different levels of access to the stored
data. Figure 5 depicts a dashboard page of the system generated for
the smart container motivating example.

3.4 Implementation Details
AutoIoT Framework is implemented using Python 3 and uses the
Pydantic library to provide model (JSON file) validation and pro-
cessing.

The Jinja is the default template engine used for theM2T transfor-
mation (but other options can be used). It is the standard template
engine used by the Flask framework, which is used to render HTML

8http://jinja.pocoo.org/

pages. Since developers are already familiar with its syntax, they
can easily change the templates if there is a need for it.

To help developers implement both transformations (M2M and
M2T), the Builder class provides a function that goes through the
whole model and triggers functions depending on the type of the
component found during the search as already described in Sec-
tion 3.3. After the implementation of the callback functions, which
are triggered when the search find each type of component, the
Specialized Builder became very simple as shown in Listing 3.

1 from .callback_functions import found_device, found_project,

found_database↪→

2
3 class MySpecializedBuilder(Builder):
4
5 def __init__(self, project, output_path, config):
6 self.project = project
7 self.output_path = output_path
8 self.config = config
9
10 def extend(self):
11 self.register_callback(Project, found_project)
12
13 self.search()
14
15 def generate(self):
16 self.register_callback(Device, found_device)
17 self.register_callback(Database, found_database)
18
19 self.search()

Listing 3: A simplified example of a Specialized Builder class.
This is not a working source code, some parts like libraries
importing and inheritance specific details were removed to
increase the overall readability.

Other Specialized Builders can be created by developers and in-
corporated to AutoIoT (as shown in Figure 4). The only restriction
is that it receives as input a JSON object containing a model that
follows the proposed meta-model as shown in Listing 2. There are
no restrictions about the type of system the Specialized Builder
can generate (Web, Mobile or Desktop) or the underlying program-
ming language used to implement it. Even that anyone can create
a Builder and incorporate to AutoIoT, in a normal workflow devel-
opers do not need to create any Specialized Builders since most of
the Builders are provided by the AutoIoT Framework itself or its
community, similar to how it happens when choosing a third-party
programming library.

4 EVALUATION
To evaluate the AutoIoT framework an experiment has been con-
ducted. It consists of using AutoIoT to generate the server-side
application of an IoT use case, extracted from one of our industrial
projects. After trying AutoIoT, the developers answered a post-
study questionnaire to evaluate their experience. This helps us to
understand what technologies should be used when developing
tools for this target audience: IoT and Web developers.

In the rest of this section the use case, the experiment, and the
results are detailed.



AutoIoT: a Framework based on User-driven MDE for Generating IoT Applications , ,

Figure 5: A dashboard page of the prototype application generated by the Prototype Builder for the motivating scenario. It
allows visualisation of the data sent by a container, including basic information about the container and its sensor data (tem-
perature, position and filing status).

4.1 Experiment
To evaluate the proposed framework an experiment was conducted.
First, 5 developers from both academy and industry were invited to
use AutoIoT to develop the application for the use case described
in Section 3.1 and answer the post-study questionnaire (available
on Google Forms9). This initial phase was used to improve both
the experiment and the questionnaire itself.

In the second phase of the experiment, developers from different
companies and research labs around the world were invited to try
AutoIoT. The only requirement needed was to have previous experi-
ence with IoT or Web development. In total, 54 developers finished
the experiment and completed the questionnaire. The evaluation
was performed by 17 − 56 years old participants (Mdn = 28.81,
Std = 7.56), with qualification ranging from Doctorate to no tech-
nical qualification at all. The two most common qualification levels
have a Bachelor and Master degree, corresponding to 62% of the
total of participants (17 participants has each qualification). Most of
the participants declared to have between 5 to 8 years of experience
in programming (38.89% of the participants).

The experiment consisted of downloading a zip file containing
AutoIoT, a device Simulator software and a tutorial that describes

9https://forms.gle/m2BBKmWJfNxiiexA6

the same scenario introduced in Section 3.1. This very simple sce-
nario was chosen to make the evaluation process simpler, since
some of the participants are Web developers with no expertise in
IoT, a simpler use case allows them to understand and evaluate
the framework better. In Section 5 is discussed briefly how to use
AutoIoT in more complex IoT use cases.

The tutorial also describe the steps required to accomplish the
task. The task consists of (i) using AutoIoT to generate the applica-
tion source code for the given scenario, (ii) running the generated
software and (iii) simulate the smart containers through the pro-
vided Simulator software.

After completing the tutorial, the participants were asked to
answer a post-study questionnaire. The questions are presented as
statements (S1-7) and are divided into two groups. The first group
evaluates AutoIoT itself, and the participants should choose the
answer from a five-point Likert scale ranging from agree to disagree.

• S1 - The system generated by AutoIoT cover the require-
ments of the scenario.

• S2 - After reading the project description file I could easily
change the configuration to cover a scenario with different
IoT devices.

• S3 - I would spend more than 40 working hours to manually
codify the same system generated by AutoIoT.



, , T. Nepomuceno et al.

• S4 - The code generated by AutoIoT is well organized and
easy to understand.

• S5 - If I had to change the generated code and change the
way that the sensor data is handled, I would know which file
I should change. (Example: Instead of just store the received
data in the database, inspect it and check if the "filling_status"
is equal to zero, if so send an email/message to administrators
informing that the container is empty).

• S6 - Use AutoIoT to generate the server application was easy.
• S7 - I could use AutoIoT to generate the server-side applica-
tion in some of my IoT projects in the future.

The questionnaire was designed to evaluate whether the code
generated by AutoIoT works and cover the requirements of the
proposed scenario (S1). Additionally, it was evaluated whether
the developers could use AutoIoT to cover different IoT scenarios,
whether the generated source code was easy to understand, and
whether developers were able to extend the code to fulfill further
project requirements (S2, S4, and S5, respectively). One of the main
benefits of using an MDE approach with code generation is to
save development time, this aspect was also evaluated (S3). Finally,
developers were asked if their experience using AutoIoT was easy
and if they could use the framework to develop future IoT projects
(S6 and S7, respectively).

The main objective of this work is to provide a tool that uses
technologies that developers already know, removing the need for
having a long learning phase and easing its adoption. Additionally
to the evaluation of AutoIoT itself, it is important to know the
expertise of the developers regarding different technologies. There-
fore, the second group of questions asked how much experience
the participants had regarding the following technologies.

• General Programming Language (e.g. Python, Java, C++, etc.)
• Internet of Things Development (e.g. MQTT Protocol, IoT
projects, etc.)

• Domain Specific Languages (e.g. WebRatio, OCL, ThingML,
etc.)

• Flow-Based Programming (e.g. Node-RED)
• Model Driven Engineering (e.g. models, system modeling,
model transformations, etc.)

After gathering feedback from the participants, the evaluation
of the results was conducted.

4.2 Results
Since the group of developers that participated in the experiment
consists of professional Web developers and IoT researchers, it was
expected that most of them show expertise in General Programming
Languages and Internet of Things technologies as depicted in Figure 6.
Few developers reported expertise in Domain Specific Languages
and Model-Driven Engineering. This finding supports our choice of
not including any of these technologies, at least not in a way visible
to developers. Results also show that few developers have expertise
in Flow-Based programming, a technology commonly employed to
quickly model the behavior of a system (used by Pramudianto [14]
and Node-Red, for example).

Figure 6: The percentage of developers that declared to have
experience 4 or 5 (in a 1-5 scale) in a given technology.

Figure 7: Questionnaire results from the participants with
no expertise in MDE.

Figure 8: Questionnaire results from the participants with
expertise in MDE.

Figure 9: Questionnaire results from the participants with
expertise in IoT.

To better understand the groups with different expertise, the
participants were divided in three groups (with possible intersec-
tions): (i) participants with no expertise in MDE, (ii) participants
with expertise in MDE and (iii) IoT experts.



AutoIoT: a Framework based on User-driven MDE for Generating IoT Applications , ,

The participants with no expertise in MDE represent 86% of
the total and reacted positively to all aspects evaluated. 97% of the
participants agreed that the system generated by AutoIoT cover
the requirements of the scenario (S1) and all of them agreed that
using AutoIoT to generate the server application was easy (S6), as
can be seen in Figure 7. In turn, 71.73% of the participants agreed
that it is easy to use AutoIoT in a different IoT scenario (S2) and
84.78% agreed that they could use AutoIoT in a future IoT project
(S7). Only 4.34% and 6.52% of the participants had difficulties in
understanding the generated code (S4) and changing the behavior
of the generated system (S5), respectively. Finally, 93.47% of the
participants agree that AutoIoT saves development time and that
replicating the software produced by AutoIoT manually would cost
them more than 40 hours of work (S3).

No participants of the group containing MDE experts disagreed
with S1, S4, S6, and S7, but 12.5% of them disagree about the time
necessary to create the same application generated by AutoIoT (S3),
the easiness of change the JSON file for a different scenario (S2) and
about how easy would be to change the behaviour of the generated
system (S5).

In the last group (Figure 9), containing participantswith expertise
in IoT development, 96.55% of them agreed that the generated
application cover all requirements of the scenario (S1). All of them
agreed that develop the generated system manually would take
more than 40 hours (S3) and that use AutoIoT was easy (S6). 93.10%
of them agreed that they would easily apply AutoIoT in a scenario
with different devices (S2) and 89.65% agreed that they could use
AutoIoT in future IoT projects (S7). Finally, only 3.44% thinks that
the generated code was not well organized (S4), and 6.89% of them
were not able to extend the generated system (S5).

4.3 Discussion
Overall, all participants were satisfied with the system generated
by AutoIoT and its easy(and ready)-to-use feature. The results of
the evaluation show that the user-driven approach proposed by
this work and the AutoIoT framework accomplish its goals, pro-
viding a tool that helps developers quickly create IoT server-side
applications with no need to learn new technologies, as shown by
the group with no MDE expertise (Figure 7).

The experiment also shows that the group with MDE expertise
is slightly more resistant to the AutoIoT approach (as shown in
Figure 8), 12.5% of them had difficulties changing the model (the
JSON file) and extending the generated source code. This probably
happens because they are used to other kind of model representa-
tion and it is not common, in a traditional MDE approach, to ask
users to change the generated source code. Usually the user rarely
update the generate code and, if a different output is desired, the
models or the transformation usually need to be changed.

While working with models is natural to system designers and
MDE experts, it is mainly avoided by common developers. Mostly
of the participants of the experiment showed no modeling expertise
and are used to work in the source code directly (Figure 6), using
AutoIoT as a tool to speed up the development in the initial phase
of the project. Additionally, 12.5% of the participants with MDE
expertise disagree that they would take more than 40 hours of work
to manually develop the system generated by AutoIoT.

It is possible that the participants were already considering tools
that they know that could speed up the development process. This
is a preliminary result, only 8 out of the 54 participants that partici-
pated in the experiment declared to have expertise in MDE. This
is expected since MDE experts are not the target audience for this
work. To better understand this group, further studies including
more MDE experts are needed.

The group with expertise in IoT mostly contains no MDE ex-
perts, so its evaluation is very similar to the first group. The main
difference between both groups is that IoT developers are familiar
with the difficulties of developing the application to the proposed
scenario. All of them agreed that they would take more than 40
hours of work to implement the application generated by AutoIoT.

This work also shows that Web and IoT developers do not have
expertise in many of the technologies required to use conventional
MDE-to-IoT approaches. This finding goes in accordance with [7],
which found that less than 11% of a total of 3785 surveyed pro-
fessional developers use any form of modeling (even sketches in
a whiteboard) during the development, and most of them do not
know or do not remember formal notations, like UML.

Finally, it is important to highlight that none of the developers
had any assistance other than the step-by-step tutorial provided
during the experiment. Personal assistance or further documenta-
tion about AutoIoT were not provided. The lack of documentation
may be the reason behind some of the participants (7.40% of all
participants) were not sure about how to extend the generated code
(S5).

5 MORE COMPLEX USE CASES
The system generated by the Prototype Builder (PB) is excellent for
prototyping development or scenarios that are very similar to the
one presented in Section 3.1, but since it is based on a monolith
architecture, it would be hard to adapt its source code to more
complex IoT scenarios.

In bigger IoT projects, it is common to use a microservice archi-
tecture [17], in which the complete system is composed of multiple
small independent services that communicate to each other using
lightweight mechanisms. In those scenarios, AutoIoT could be used
to generate some of these services, like a Device Twin Service,MQTT
Message Processing Service, Report Generator Service or a GUI, for
example. This way, the complete solution would be composed by
manually written software in conjunction with the ones generated
automatically by AutoIoT.

The main advantage in use AutoIoT compared to hand-written
software is that AutoIoT automatically adapts to the characteris-
tics of the devices and sensors that are going to be used in the
new project. This means that changing one file (the JSON file that
contains the model) AutoIoT is able to generate multiple ready-
to-use microservices that can be automatically incorporated into
the new project, with little-to-no change in the generated source
code. Without AutoIoT, either the microservices would need to be
implemented or previous source code would need to be adapted,
increasing the cost of the project.

Furthermore, themicroservices created by the Specialized Builders
could also work in collaboration with other open-source projects
like Node-RED, Eclipse Hono and Eclipse Ditto, for example.



, , T. Nepomuceno et al.

6 CONCLUSION
With the growth of IoT applications, new IoT-specific technologies
have also arisen. In order to avoid the overload of such technologies,
many approaches have advocated the adoption of MDE with a
promise of long term benefits, but most of these work achieved
limited success due to the use of tools and concepts very well known
in the MDE community, but less used outside of it [4, 8, 9].

This work proposedAutoIoT, a framework based on a user-driven
MDE approach to develop IoT server-side applications. By using it,
users can model their IoT scenarios either graphically (Web GUI)
or textually (manually writing a JSON file) and, through internal
M2M and M2T transformations carried by Specialized Builder com-
ponents, the source code of the IoT application is automatically
created. During the modelling developers only need to use tech-
nologies that they are used to work with (JSON representation and
a general programming language), thus decreasing the learning
phase and easing the framework adoption.

According to the initial evaluation, AutoIoT can successfully be
used to speed up the development of IoT server-side applications
and has been well received by Web and IoT developers. The partici-
pants of the evaluation reported more than 80% of satisfaction in
6 out of 7 evaluated criteria. Due to lack of documentation about
the framework and the system generated by it during the experi-
ment, only 74% of the participants reported being able to extend
the generated system. This problem will be addressed in future
versions.

This work shows how to design an user-driven MDE approach
with very simplified modeling phase, while still giving users some
freedom and control over the system to be generated. Additionally,
it demonstrates that hiding MDE concepts behind technologies
that users already know has a great impact on user satisfaction
and adoption of the approach. Furthermore, it does not intend to
replace existing MDE-to-IoT approaches. Instead, it gives develop-
ers an option to get some benefits of MDE methods without the
need of learning MDE theory or using very specific MDE tools. Fi-
nally, this work does not tackle all layers of a complete IoT system
development, but rather focuses only on developing the server-
side application part. It does not generate device, gateway or data
analysis source code in the current stage.

As future work it is planned the release of more Specialized
Builders that will allow AutoIoT to be used to create IoT systems
following the microservice architecture and tackle more complex
IoT use cases. Additionally, it is intended to create a better AutoIoT
ecosystem, publishing the source code of the framework at the
Github and creating a website where users can share information
and custom created Specialized Builders.

Further information about AutoIoT Framework and its related
projects can be found on Github10.

7 ACKNOWLEDGEMENT
The research was partially supported by the Bavarian State Ministry
of Economic Affairs, Regional Development and Energy (StMWi)
through the Center for Analytics – Data – Applications (ADA-
Center) and as part of the lead project "Technologies and Solutions

10https://github.com/AutoIoT

for Digitalized Value Creation" within the framework of „BAYERN
DIGITAL II“

REFERENCES
[1] S. Abrahão, F. Bourdeleau, B. Cheng, S. Kokaly, R. Paige, H. Stöerrle, and J.Whittle.

2017. User Experience for Model-Driven Engineering: Challenges and Future
Directions. In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS). 229–236. https://doi.org/10.1109/
MODELS.2017.5

[2] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. 2015. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Communications Surveys & Tutorials 17, 4
(2015), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095

[3] Marco Brambilla, Eric Umuhoza, and Roberto Acerbis. 2017. Model-driven de-
velopment of user interfaces for IoT systems via domain-specific components
and patterns. Journal of Internet Services and Applications 8, 1 (26 Sep 2017), 14.
https://doi.org/10.1186/s13174-017-0064-1

[4] Jesús Sánchez Cuadrado, Javier Luis Cánovas Izquierdo, and Jesús García Molina.
2014. Applying model-driven engineering in small software enterprises. Science
of Computer Programming 89 (2014), 176 – 198. https://doi.org/10.1016/j.scico.
2013.04.007 Special issue on Success Stories in Model Driven Engineering.

[5] Antonella Galizia, Gabriele Zereik, Luca Roverelli, Emanuele Danovaro, Andrea
Clematis, and Daniele D’Agostino. 2019. Json-GUI—A module for the dynamic
generation of form-based web interfaces. SoftwareX 9 (2019), 28 – 34. https:
//doi.org/10.1016/j.softx.2018.11.007

[6] Francesco Gianni, Simone Mora, and Monica Divitini. 2018. RapIoT toolkit: Rapid
prototyping of collaborative Internet of Things applications. Future Generation
Computer Systems (2018). https://doi.org/10.1016/j.future.2018.02.030

[7] Tony Gorschek, Ewan Tempero, and Lefteris Angelis. 2014. On the use of software
design models in software development practice: An empirical investigation.
Journal of Systems and Software 95 (2014), 176 – 193. https://doi.org/10.1016/j.
jss.2014.03.082

[8] A. Hamou-Lhadj, A. Gherbi, and J. Nandigam. 2009. The Impact of the Model-
Driven Approach to Software Engineering on Software Engineering Education.
In 2009 Sixth International Conference on Information Technology: New Generations.
719–724. https://doi.org/10.1109/ITNG.2009.160

[9] John Hutchinson, Jon Whittle, and Mark Rouncefield. 2014. Model-driven en-
gineering practices in industry: Social, organizational and managerial factors
that lead to success or failure. Science of Computer Programming 89 (2014), 144 –
161. https://doi.org/10.1016/j.scico.2013.03.017 Special issue on Success Stories
in Model Driven Engineering.

[10] S. Mora, F. Gianni, and M. Divitini. 2016. RapIoT Toolkit: Rapid Prototyping of
Collaborative Internet of Things Applications. In 2016 International Conference
on Collaboration Technologies and Systems (CTS). 438–445. https://doi.org/10.
1109/CTS.2016.0083

[11] B. Morin, N. Harrand, and F. Fleurey. 2017. Model-Based Software Engineering
to Tame the IoT Jungle. IEEE Software 34, 1 (Jan 2017), 30–36. https://doi.org/10.
1109/MS.2017.11

[12] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs. 2015. FRASAD: A framework
for model-driven IoT Application Development. In 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT). 387–392. https://doi.org/10.1109/WF-IoT.2015.
7389085

[13] F. Pramudianto, M. Eisenhauer, C. A. Kamienski, D. Sadok, and E. J. Souto. 2016.
Connecting the Internet of Things rapidly through a model driven approach.
In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). 135–140. https:
//doi.org/10.1109/WF-IoT.2016.7845416

[14] F. Pramudianto, C. A. Kamienski, E. Souto, F. Borelli, L. L. Gomes, D. Sadok,
and M. Jarke. 2014. IoT Link: An Internet of Things Prototyping Toolkit. In
2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE
11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf
on Scalable Computing and Communications and Its Associated Workshops. 1–9.
https://doi.org/10.1109/UIC-ATC-ScalCom.2014.95

[15] Alexey Savelyev and Emre Brookes. 2019. GenApp: Extensible tool for rapid
generation of web and native GUI applications. Future Generation Computer
Systems 94 (2019), 929 – 936. https://doi.org/10.1016/j.future.2017.09.069

[16] C. S. Shih, J. J. Chou, N. Reijers, and T. W. Kuo. 2016. Designing CPS/IoT ap-
plications for smart buildings and cities. IET Cyber-Physical Systems: Theory
Applications 1, 1 (2016), 3–12. https://doi.org/10.1049/iet-cps.2016.0025

[17] K. Vandikas and V. Tsiatsis. 2016. Microservices in IoT clouds. In 2016 Cloudifi-
cation of the Internet of Things (CIoT). 1–6. https://doi.org/10.1109/CIOT.2016.
7872912

https://doi.org/10.1109/MODELS.2017.5
https://doi.org/10.1109/MODELS.2017.5
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1186/s13174-017-0064-1
https://doi.org/10.1016/j.scico.2013.04.007
https://doi.org/10.1016/j.scico.2013.04.007
https://doi.org/10.1016/j.softx.2018.11.007
https://doi.org/10.1016/j.softx.2018.11.007
https://doi.org/10.1016/j.future.2018.02.030
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1109/ITNG.2009.160
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1109/CTS.2016.0083
https://doi.org/10.1109/CTS.2016.0083
https://doi.org/10.1109/MS.2017.11
https://doi.org/10.1109/MS.2017.11
https://doi.org/10.1109/WF-IoT.2015.7389085
https://doi.org/10.1109/WF-IoT.2015.7389085
https://doi.org/10.1109/WF-IoT.2016.7845416
https://doi.org/10.1109/WF-IoT.2016.7845416
https://doi.org/10.1109/UIC-ATC-ScalCom.2014.95
https://doi.org/10.1016/j.future.2017.09.069
https://doi.org/10.1049/iet-cps.2016.0025
https://doi.org/10.1109/CIOT.2016.7872912
https://doi.org/10.1109/CIOT.2016.7872912

	Abstract
	1 Introduction
	2 Related Work
	3 AutoIoT Framework
	3.1 Motivating example
	3.2 The User-driven MDE Process
	3.3 Prototype Builder
	3.4 Implementation Details

	4 Evaluation
	4.1 Experiment
	4.2 Results
	4.3 Discussion

	5 More Complex Use Cases
	6 Conclusion
	7 Acknowledgement
	References

