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ABSTRACT
The recently released Bluetooth 5.1 specification introduces

fine-grained positioning capabilities in this wireless technol-

ogy, which is deemed essential to context-/location-based In-

ternet of Things (IoT) applications. In this paper, we evaluate

experimentally, for the first time, the accuracy of a position-

ing system based on the Angle of Arrival (AoA) mechanism

adopted by the Bluetooth standard. We first scrutinize the

fidelity of angular detection and then assess the feasibility

of using angle information from multiple fixed receivers to

determine the position of a device. Our results reveal that

angular detection is limited to a restricted range. On the

other hand, even in a simple deployment with only two an-

tennas per receiver, the AoA-based positioning technique

can achieve sub-meter accuracy; yet attaining localization

within a few centimeters remains a difficult endeavor. We

then demonstrate that a malicious device may be able to eas-

ily alter the truthfulness of the measured AoA, by tampering

with the packet structure. To counter this protocol weakness,

we propose simple remedies that are missing in the standard,

but which can be adopted with little effort by manufacturers,

to secure the Bluetooth 5.1 positioning system.
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1 INTRODUCTION
Indoor localization of user devices is a critical research topic

that has been attracting increasing interest from vendors [1],

app developers [2], and the researcher community at large [3].

Localization is also a key application on the 5G mobile tech-

nology roadmap [4]. To date, however, a positioning solution

as widespread as GPS and usable when satellite signals can-

not be received has not been available.

To address this problem in IoT scenarios, the Bluetooth

Special Interest Group (Bluetooth SIG) introduced a set of

features in the latest Bluetooth Core Specification v5.1 [5],

which are specifically aimed at determining the location

of a device with high accuracy. In particular, the standard

adopts two signal processing techniques for identifying the

Angle-of-Arrival (AoA) and Angle-of-Departure (AoD) of a

transmitted signal. AoA enables a receiver to determine the

angular position of a transmitter by measuring the phase-

delay at multiple antennas. With AoD, a transmitter having

multiple antennas can send a signal that allows receivers

equipped with a single antenna to detect their angular posi-

tion with respect to the transmitter. Combined with distance

estimation [6, 7], these techniques aim to help pinpoint the

precise location of a device.

Numerous systems based on different technologies have

been proposed to date to tackle indoor localization, rang-

ing from those whereby users carry smart tags, to systems

that opportunistically use signals transmitted by mobile de-

vices/smartphones to infer their position. Naturally, previous

solutions build upon wireless communications systems com-

monly embedded into mobile devices, including Wi-Fi [8,

9], Bluetooth [10, 11], and ultra-wideband (UWB) [12, 13]

transceivers. Nevertheless, even if some of these solutions

demonstrated remarkable performance in terms of position-

ing accuracy, none of them gained enough traction to witness

wide adoption. With the growing adoption of IoT technology

and the emergence of standardized methods for positioning,

the situation is bound to change. In 2018, nearly 4 billion

devices were shipped with Bluetooth technology and, thanks

to its low energy capability, the Bluetooth SIG forecasts that

the location services domain will encompass over 400 million

products per year by 2022 [14], with applications spanning

https://doi.org/10.1145/3349623.3355475
https://doi.org/10.1145/3349623.3355475


supply chain asset tracking, customized visitor experience in

museums through proximity detection, smart homes, health-

care, and many more.

Contributions. In this paper we test themarket readiness

of the Bluetooth 5.1 positioning capability by experimentally

evaluating the performance of the adopted AoA mechanism

from two perspectives: that of pure angular measurement

accuracy and the ability to correlate two or more angular

measurements in order to estimate a device’s position in a

2D plane. To this end, we use a software-defined radio (SDR)

testbed and deploy the BLE 5.1 positioning technique in its

simplest form, i.e., with only two antennas at the receiver.
1

We report results that offer a first glimpse into the perfor-

mance of this localization solution, and a primer for more

complex implementations that are yet to appear.

Through our study, we first reveal severe limitations that

affect angular measurements and which restrict the applica-

bility of the AoA technique within a specific circular sector

centered at the receiver. Secondly, we show that positioning

based on AoA measurements, although offering sub-meter

accuracy, is far from achieving centimetre-level precision.

Our findings should prove useful to system and app develop-

ers who aim to build upon this feature. We then provide a

preliminary assessment of the (in)security of the AoA-based

positioning mechanism, laying out guidelines on antenna

switching patterns that manufacturers could follow to pre-

vent attackers from compromising position truthfulness. Fi-

nally, we release the tool opensource, interested readers can

download and test it from https://github.com/bsnet/bleaoa.

2 RELATEDWORK
Determining a wireless device’s position should be strictly

a matter of signal direction (angle) finding. The problem of

estimating the Angle-of-Arrival (AoA) of a signal has been

extensively studied. In general, an antenna array is required

in order to measure the phase-delay between the replicas

of the signal received by each element of the array. The

most common approach to determine the AoA based on the

measured phase-delay is the multiple signal classification

(MUSIC) [15], which achieves excellent angular resolution.

In commodity wireless systems, however, estimating the

position of a transmitter has been largely based on measur-

ing the power of the received packets (RSSI). With respect

to Bluetooth Low Energy (BLE), the accuracy of positioning

frameworks based on iBeacon technology has been studied

in [10] and [11]. In the former, an average localization error

of 4 m was achieved by installing 36 beacons. The latter di-

vided a testbed into 12 subareas and obtained localization

errors within 5 m of adjacent subareas. An analysis of how

1
At the time of writing, commercial devices implementing Bluetooth 5.1

positioning were not launched to market. We thus resort to SDR hardware.

positioning accuracy depends on the number of BLE beacons

has been carried out in [16]. More recently, De Blasio et al.

examined the positioning accuracy of BLE 5.0 in a deploy-

ment with 12 beacons in a 168 m
2
area, reporting accuracy

within 2.5 m [17]. The key limitation of existing methods for

estimating indoor position is that they assume an accurate

channel model, which is very difficult to build. Moreover,

different BLE channels may exhibit different characteristics,

leading to modest positioning accuracy when relying on

RSSI [18]. To circumvent these problems, MUSIC has been

applied recently to determine the position of BLE transmit-

ters based on the AoA estimated by multiple nodes [19].

The decision made by the Bluetooth SIG to include the di-

rection finding feature in the new BLE standard reshapes the

positioning problem. In particular, in order to apply MUSIC,

multiple coherent RF channels would be required. Instead,

the AoA feature in BLE 5.1 uses only one channel connected

to the different elements of an antenna array and an RF

switch to select among them [5]. The sequence transmitted

to perform AoA measurements is assumed to be known (as

described in the next sections). Luo et al. have conducted

simulations to assess the performance of AoA estimation in

the case of known transmit sequences [20]. However, a thor-

ough characterization of the positioning accuracy of BLE 5.1

in real deployments has not been reported yet. This is mainly

due to the lack of commercial hardware supporting this fea-

ture. To the best of our knowledge, our work is the first to

conduct an experimental study of the BLE 5.1 positioning

system and document its performance and vulnerabilities.

3 BLUETOOTH LOW ENERGY (BLE)
BLE is a wireless standard designed for inexpensive personal

area networks that require low power consumption and low

data rates. BLE has been integrated into version 4.0 of the

Bluetooth Core specification in 2010 and has been also mar-

keted as Bluetooth Smart.

At the physical layer (PHY), BLE operates in the 2.4 GHz

ISM Band. The access to the medium is regulated by a hybrid

time-frequency division multiplexing scheme. In particular,

the assigned 80MHz bandwidth is divided into 40 orthogonal

channels with central frequencies equally spaced by 2 MHz.

Two types of BLE channels exist: 3 advertising channels are

used for enabling device discovery, connection setup, and

broadcasting messages; the other 37 data channels are used
to exchange data. When a connection is established between

a pair of devices, an Adaptive Frequency Hopping (AFH)

technique is used to combat interference: connected devices

switch rapidly between channels according to a pseudo-

random sequence that is known by both transmitter and

receiver. Channels can be dynamically removed from the

hopping sequence depending on external conditions (e.g.,

https://github.com/bsnet/bleaoa
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Figure 1: The AoA mechanism needs to estimate
phase-delay φ between antennas to compute angle θ :
multiple antennas are connected to a single radio
transceiver using an RF switch.

strong narrow-band interference). The communication be-

tween devices happens at specific time intervals. A channel

access policy is defined based on time slots and intervals that

depend on the role of a BLE device (master/slave).

For transmission, BLE employs binary Gaussian Frequency

Shift Keying (GFSK) modulation with a bandwidth-bit period

product of 0.5 and two possible symbol rates: 1 Msym/s and

2 Msym/s. Even if four different PHY modes build on these

modulation schemes, in version 5.1 of the BLE standard the

AoA mechanism can be used only with the Uncoded PHYs.

In the rest of the paper we confine consideration to the

mandatory LE 1M PHY with 1 Mb/s data rate.

3.1 Direction Finding in BLE 5.1
According to the standard, a device equipped with an an-

tenna array ofM elements can determine the AoA of signals

from a transmitter using simple geometric calculations. The

documentation considers the scenario illustrated in Fig. 1.

Assuming the radio signal is a plane wave with constant

frequency impinging on the antenna array of the receiver,

the phase difference φ between the signals received at each

pair of adjacent antennas is expressed as

φ = 2π (d/λ) cosθ , (1)

where λ is the wavelength of the signal, d the distance be-

tween the antennas, and θ the angle of arrival. Therefore,

θ = arccos

(
λφ

2πd

)
. (2)

By measuring the phase-delay φ and knowing both λ and d ,
computing θ is straightforward. Fusing θ values computed

at different antenna pairs is left to the manufacturer.

From Eq. 1 it is clear that all the angles θ from 0
◦
to 180

◦

can be determined from the phase-delay φ only if d < λ/2.
If this condition is not met, then an aliasing phenomenon

appears, whereby it is not possible to uniquely map a value

of φ to an angle θ . Further, how to evaluate the phase-delay φ

is unclear, because the standard requires a single radio in the

chipset to be connected to the different antennas using a RF

switch (as in Fig. 1) and a procedure for inferring the phase-

delay is not specified in the official documentation. Instead,

manufacturers can develop their own algorithms to estimate

φ. We explain in the next section how we implemented this

feature on our SDR platform. On the other hand, the standard

specifies (i) the format of the field inside a packet that should

be used to evaluate the phase-delay and (ii) the timing for

performing antenna switching over this field. We discuss

these features next.

3.2 Direction Finding Packets and Antenna
Switching Timings

BLE packets supporting the direction finding capability em-

bed an additional field called Constant Tone Extension (CTE)

that follows the CRC coefficient aswe show in Fig. 2. The CTE

consists of a constantly modulated sequence of unwhitened

1-valued bits, i.e., a constant tone signal with variable length,

which can last between 16–160 µs. This is divided into dif-

ferent subfields: a reference period (8 µs) is sent first, after
a guard interval; then, an alternating sequence of switch
slots and sample slots follows. Slots of 2 µs must be imple-

mented by all the devices that support the direction finding

features, whereas slots of 1 µs can be optionally supported.

Protocol Data Unit 
(PDU) 2-257B

Acc. Addr.
4B

FCS
3B

CTE
16-160µs

antM sw
itc

h

sw
itc

h
sw

itc
h

ant2
ant1

Preamble
1B

Figure 2: The format of a packet supporting AoA de-
tection, and corresponding switching timing.

A receiver uses one antenna to receive a BLE packet (from

preamble to the CRC field) and relies on the same antenna

to collect 8 IQ samples during the reference period (8 µs
sampled at 1 MS/s). It then switches among the available

antennas during switch slots, taking one IQ sample per sam-

ple slot (even if the sample slot is 2 µs-long). The switching
pattern is defined by the BLE host. The shortest possible

switching pattern lasts 16 µs and uses only two antennas.

This is also the pattern with which we work in our study. We

leave investigating the impact of the length of the switching

pattern on positioning accuracy for future work.

4 BLE 5.1 TESTBED DEPLOYMENT
We implement Software-Defined Radio (SDR) prototypes to

replicate the behavior of BLE transceivers supporting the

AoA detection mechanism as defined by the Bluetooth 5.1

Specification. Our setup consists of two USRP Ettus B210



boards that we use for receiving, and a USRP Ettus N200 that

we use for transmitting. The receiver is connected to a laptop

powered by an Intel i5 CPU clocked at 2.7GHz with 8GB of

RAM, which has enough power to run our software receiver

in real-time. We manufactured a plastic support to place two

half-wavelength dipole antennas at a distance of 6 cm from

each other; each antenna is connected to a TX/RX port of

the USRP B210 using a rigid coaxial cable. The transmitter

is driven by a Chromebook powered by an Intel Core M

CPU clocked at 2GHz with 2 GB of RAM. All computers

run Ubuntu 18.04. Next, we describe our implementation

of the BLE AoA detection mechanism, introducing first the

real-time BLE software transmitter/receiver developed, then

explaining how we customize this to emulate the AoA detec-

tion feature.

4.1 Emulating BLE 5.1 Connections
For our experiments we do not setup a real BLE FH data con-

nection; we rather emulate it by continuously transmitting

packets and tuning all nodes simultaneously on the same

channels. We program the software transmitter to generate

BLE packets, which we encode as LE 1M PHY and send at the

rate of 100 packets per second, using a fixed Access Address.

Inside the payload we embed a sequence number that we use

for debugging purposes and for matching the same packet at

multiple receivers. To emulate the CTE, we add a sequence

of binary ones at the end of each packet.

The software receiver acquires IQ samples with a sam-

pling frequency of 2 MS/s. It then decodes bits at 1 Mb/s by

operating a phase-discrimination procedure on consecutive

pairs of samples. Finally, it detects valid packets starting from

every preamble found and checking the validity of the CRC.

It is important to notice that in BLE 5.1 the CTE is not sub-

ject to error checking and that in the packet format (Fig. 2)

it comes right after the CRC field. In addition, AoA mea-

surements can be performed by BLE devices even if errors

occurred while receiving the packet.

To achieve FH and ensure the transmitter and receivers

are on the same physical channel, we rely on out-of-band

signalling performed via a wired network that connects all

nodes and distributes information generated by a controller.

The controller provides to all nodes a deterministic hopping

sequence spanning all the available BLE channels. Each re-

ceiver can adjust the gain dynamically by measuring the

amplitude of the IQ samples in the received BLE packets, so

that it can use the entire dynamic range of the Analog-to-

Digital Converters of the USRP B210.

4.2 Implementing AoA Detection
As described before, BLE devices supporting the AoA mech-

anism have only one receiving radio chain that is connected

to the different elements of the antenna array using an RF

switch. This means that only one antenna can be active at

any given time and that phase-delay φ must be inferred from

IQ samples captured during the reference period in the CTE

and in the following sample slot. We explain here the algo-

rithm that we implemented for inferring the phase-delay and

how we emulated it over USRP B210 boards. Hereafter we

consider the case withM = 2 antennas.

As the CTE is a sequence of unwhitened ones, the signal

appears as a constant frequency tone and as such its phase

increases linearly. During the CTE reference period, we col-

lect 8 IQ samples from antenna 1 and we build a linear model

of its phase evolution. The AoA antenna switching takes

place during the switch slot, after which we collect an IQ

sample from antenna 2 exactly at the next sample slot. We

then compare the phase of this IQ sample with the instan-

taneous phase of the signal on antenna 1 that we estimate

using the linear model built during the reference period, as

shown in Fig. 3. The phase difference estimated with this

method corresponds to φ in Eq. 1, and the angle of arrival θ
is found with Eq. 2.

t

ph
as

e

Switch
Slot

Ant 1

Ant 2j

predicted
sampled

Reference samples

Figure 3: The phase difference is computed by sub-
tracting the phase sampled on antenna 2 from the
phase predicted on antenna 1 according to the samples
it received during the reference period.

Emulating the algorithm over the B210 boards is straight-

forward: we continuously look for valid packets received at

one antenna and, once we detect one, we process the refer-

ence period of the CTE, we predict the value of the phase

on this antenna in the following sample slot, and we finally

subtract from it the value of the phase sampled on the other

antenna at that same moment in time.

In our setup, we account for a constant phase offset be-

tween the two receiving chains of each B210 board. This de-

lay can result from path differences between the two receiv-

ing chains due to the specific manufacturing of the boards

and the antennas used. Before deploying the boards in the

testbed, we execute a calibration procedure by connecting

both input ports of a USRP to the same source with a splitter,

using good quality cables of the same length.
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Figure 4: Indoor testbed used for evaluating the
AoA-based positioningmechanism. Two receivers (an-
chors)A1 andA2 determine the position of target trans-
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4.3 Positioning Using BLE 5.1
To estimate the position of the transmitter, instead of rang-

ing, we use an additional USRP B210 connected to a different

laptopwith same specification as before. The two software re-

ceivers perform the steps described before to determine AoAs

independently. The receivers are connected in a network, so

that it is possible to collect all the AoAmeasurements and use

simple geometric operations to convert the two angles into

the 2D coordinates of the target device. The configuration

we used for positioning experiments is the indoor scenario

shown in Fig. 4. The two receivers (anchors) A1 and A2 are

placed at equal distance from the origin of the reference

frame. The linear antenna array of each receiver is aligned

with the x and y axes of the reference frame respectively.

5 EXPERIMENTAL RESULTS
We test the viability of the positioningmechanism adopted by

BLE 5.1 by conducting two sets of experiments: one focusing

on assessing the accuracy of the determined AoAs, the other

on quantifying positioning errors when employing 2 anchors.

5.1 Angular Accuracy
We begin by evaluating the angular accuracy in the simplest

configuration, i.e., a device running our software receiver

with two dipole antennas, and another running our soft-

ware transmitter. To isolate the impact of reflections and

multipath-induced errors, we ran these experiments in an

outdoor scenario, on a flat court far away from obstacles,

with both the receiver and transmitter placed at 0.5 m above

the ground and all antennas of the same type, i.e., dipoles

positioned vertically.

We measure the angle θ between the axis of the antenna

array and the propagation direction of the signal, starting

with θ = 90°, which corresponds to ideal no-phase-delay. We

progressively reduce the angle to 0°, in 5° steps. For all angles

we collect 30 correctly received packets with CTE extension,

on each of the 40 BLE channels, which corresponds to a total

of 1,200 phase-delay measurements per angle. As the two

antennas are spaced less than half of the wavelength for all

the BLE channels, and given the position of the reference

antenna, by reducing θ we expect to observe the phase-delay

decreasing monotonically.

First of all, we note that, when the propagation direction

of the signal is close to the axis of the antenna array, the

collected phase-delays are almost random. Hence we do not

report data for the range 0° ≤ θ ≤ 10°. We then check the ac-

curacy of the estimated angle within each of the 40 BLE chan-

nels, for all the remaining 16 values, i.e., θ ∈ {15°, 20°, ..., 90°}.
The four bitmaps in Fig. 5 demonstrate that the estimated

angle is relatively stable over different packets received on

the same channel/angle. For instance (bottom maps), only

1.5% of the explored configurations exceed a standard devia-

tion of 5°, and only 4% exceed 2° (this happens almost only

for θ = 15°). More than 65% of the configurations exhibit a

standard deviation below 0.2° (top-left map) and it is interest-

ing to notice that estimation over higher frequency channels

seems to be more accurate.

Looking more closely at the data collected, even though

the qualitative variation with θ is correct, we observe two

issues: (i) angle estimation depends on the channel, this

becoming more noticeable at lower frequencies, i.e., estima-

tions spread more; and (ii) because of spreading, for angles
close to zero there is a higher chance the phase-delay wraps

around and the estimated angle bounces up to 180°. Interest-

ingly, for 60° ≤ θ ≤ 90° the dependency with channel seems

random rather than deterministic: lower frequency channels,

in fact, spread similarly to higher frequency channels, sug-

gesting there is some residual multipath effect affecting the

estimation on all channels in the same way. Instead, for the

40° ≤ θ ≤ 55° range, estimations spread much less. This is

somewhat expected, since for such angles the size of the an-

tenna array seen by the incident wave is much smaller than

in the θ = 90° case and waves with higher frequency and

smaller wavelength can be more accurate. To avoid wrap-

around phenomena on the phase difference that greatly af-

fects the angle error, we exclude from the rest of the analysis

situations where θ can be small: hence, we limit the “cone”

by considering only θ ≥ 35°. The random dependency with

the frequency suggests that averaging estimations obtained

on different channels would be appropriate, to reject the

uncertainty due to multipath. This would come at no cost,
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given that AoA should be used within connection events,

i.e., when the two AoA nodes are hopping over the channel

sequence that was decided during the connection establish-

ment phase. For this reason in the following we consider

only data channels, excluding those dedicated to advertising.

Fig. 6-top, where we report the absolute estimation error

after averaging over different sets of data channels, confirms

our finding: while for 60° ≤ θ ≤ 90° restricting the average

over the upper half of the set of data channels does not
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Figure 7: Indoor results for angular accuracy: top,
qualitative match of average estimation to True angle;
bottom, ECDF of absolute error.

bring any advantage, using only higher frequencies would

be beneficial for higher rotations, i.e., for θ ≤ 55°. However,

nodes may exclude upper channels from the FH sequence

and for this reason in the following we will always consider

all data channels. We will instead limit further the maximum

rotation by restricting even more the “cone”, setting θ ≥ 45°,

to contain the maximum error within 4°. In the bottom part

of the figure, we show the ECDF of the absolute error within

this new cone. To this end, we consider the estimation after

averaging over all data channels (thick blue line) and that

of every data channel considered alone (thinner red lines).

It can be noticed that apart from very few cases (some red

lines above the average ECDF close to 100%) averaging over

all data channels is always beneficial. We also note that 80%

of the averaged estimations are affected by error below 1°.

Before moving to positioning, we repeat this experiment in

the indoor scenario. This time however we keep the receiver

fixed andwemove the transmitter along a straight line placed

at 4 m from the receiver, in 40 cm steps. This measurement

procedure is much more similar to what we will consider

next, i.e., it faces different propagation issues at different

positions of the transmitter because of the strongermultipath

effects inherent to indoor environments as that in Fig. 4. As

this environment is not symmetric and there are plenty of

objects around, we reduce the cone to 50° < θ < 130°.

We report the obtained estimation results in Fig. 7. In

the top part we emphasize the very good qualitative match

between the True angle and the one estimated after averaging

over all data channels.We also show the estimations obtained

on selected channels, respectively the one with the minimum

and maximum root-mean-square error computed over all the

considered angles. The benefit of averaging over channels

becomes evident. In the bottom part we give a comparison

of the ECDF after averaging and for every channel. Wrt. the

outdoor case, we note a much worse estimation on each
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Figure 8: The effect of number of channels used for
AoA estimation on the average absolute error.

separate channel, which however reduces to similar results

when averaging is performed.

We complete our AoA analysis by examining the average

absolute error that we may obtain with the same dataset

in case we limit the average to a restricted number of data

channels. For each number we compute the average error by

considering all possible FH sequences with a different start-

ing channel and different hop value. We depict the obtained

results in Fig. 8. We observe that starting with 15 channels,

the average estimation error is well below 2°.

5.2 Positioning Accuracy
To evaluate the accuracy of 2D positioning based on AoA

detection, we conduct experiments using the playground

area shown in Fig. 4. We use the two receivers A1 and A2

placed in the bottom and left corners of the shaded area,

within which we constrain the position of the transmitter

according to the angular accuracy limitations identified and

discussed in the previous subsection. We consider a four

by five position grid spanning 4 m over the x- and 2.7 m

over the y-axis. The system operates as before, by receiving

30 packets per channel and hopping over all data channels.

After collecting the angular data generated by each receiver,

we apply the methodology described in Sec. 4.3 to compute

positions (x ,y) of the target.
We quantify the positioning accuracy in Fig. 9 (left), where

we report the ECDF of the absolute estimation error. Observe

that (thick blue line) the error is below 85 cm for more than

95% of the positions. However, this is far from meeting the

centimetre level accuracy expected by IoT applications, since

the absolute positioning error is <10 cm only in 15% of cases.

We report on the right a qualitative evaluation: we showwith

blue circles and red crosses the real and estimated positions.

6 COMPROMISING AOA ESTIMATION
At this early development stage, the AoA mechanism in the

BLE 5.1 standard does not enforce any security provisions.

Surprisingly, no procedure for detecting whether interfer-

ence affects the transmission of the CTE is considered. In-

deed, this follows the CRC that protects the packet, thus
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Figure 9: ECDF of indoor position estimation error
(left). Qualitative estimation, real (circles) vs esti-
mated (crosses) positions.

there is no way of checking CTE correctness. This offers

attackers opportunities to exploit the AoA based positioning

capability for malicious purposes, as we explain next.

As we show in Fig. 10, in our implementation we compute

a single value for φ by subtracting the phase on antenna 2

(filled circle) from that predicted on antenna 1 (empty circle).

Despite the very low level of complexity – in a real device

this technique requires just one integrated Single-Pole Dou-

ble Throw circuit switch (SPDT) – we showed in the previous

section some good results that could attract manufacturers.

However, we will demonstrate a simple attack on this proce-

dure and propose simple countermeasures. To this end, we

change the code of the transmitter to artificially modify the

phase of the CTE during the switch slot: here we anticipate

the phase of a constant term Ω.
The value predicted by the AoA method on antenna 1

does not change, since the receiver keeps assuming its value

corresponds to the top empty circle in Fig. 10 (“Normal”

case). However, the value sampled on antenna 2 is different

and corresponds to the bottom filled circle (“Hacking” case).

The computed phase-delay is hence φ + Ω. This gives the
transmitter the ability to modify the detected angle over time

by properly choosing Ω.
To demonstrate the feasibility of this attack, we run an

experiment with the transmitter placed in front of the AoA

receiver sweeping Ω linearly over time, between −π/6 and
π/6, which corresponds to a rotation of approximately 60°

t
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Figure 10: The transmitter can control the phase-delay
computed at receiver bymodifying phase after switch-
ing time, thus compromising correct AoA detection.



0 1 2 3 4 5 6 7 8

Time (s)

60

80

100

120

 (
d
e
g
re

e
)

AoA approach

True phase delay approach

0 1 2 3 4 5 6 7 8

Time (s)

60

80

100

120

 (
d
e
g
re

e
)

Figure 11: By artificially modifying the signal phase,
a transmitter can trick a BLE 5.1 receiver into measur-
ing an arbitrary crafted angle even if notmoving (top).
A simple approach to detect misleading devices in-
volves changing antenna switching pattern (bottom).

around the receiver. We report the detected angle θ with

the blue line in Fig. 11-top. We want to underline that the

same procedure can be adopted to trick more complex re-

ceivers using multiple antennas, by modifying the signal

phase multiple times during the transmission of the CTE.

For comparison we also show in the figure with a red line

the angle that would be measured by a classic approach that

receives the signals at the two antennas with two coherent

radio chains active at the same time. Since no prediction is

involved in this case, the receiver would not be tricked by

any artificial modification of the signal phase.

As a simple countermeasure, we can slightly change the

behavior of the receiver, so that instead of using one main

antenna and switching to the other only for measuring the

phase-delay, it keeps the other antenna active for the next

packet to be received. In this case, the resulting angle θ
appears instead as in Fig. 11-bottom and an untruthful trans-

mitter would be immediately discovered. Needless to say

that should the transmitter know the switching pattern, it

would always be able to properly craft the phase. To prevent

this, keeping the switching pattern hidden to the transmitter

and not deterministic would be an effective way of detecting

such positioning attacks.

7 SUMMARY & CONCLUSIONS
In this paper, we performed an empirical evaluation of the

AoA based positioning mechanism incorporated in the BLE

5.1 standard. We revealed that angular detection accuracy

is limited to a constrained range and localization within

few centimeters remains difficult. We further showed that

an attacker may tamper with the BLE packet structure to

mislead the positioning system, and we proposed simple

guidelines that manufactures can implement to guarantee

the truthfulness of this feature.
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