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Abstract
In this work, we address the problem of measuring and pre-
dicting temporal video saliency - a metric which defines the
importance of a video frame for human attention. Unlike the
conventional spatial saliency which defines the location of
the salient regions within a frame (as it is done for still im-
ages), temporal saliency considers importance of a frame
as a whole and may not exist apart from context.
The proposed interface is an interactive cursor-based al-
gorithm for collecting experimental data about temporal
saliency. We collect the first human responses and perform
their analysis. As a result, we show that qualitatively, the
produced scores have very explicit meaning of the semantic
changes in a frame, while quantitatively being highly corre-
lated between all the observers.
Apart from that, we show that the proposed tool can simul-
taneously collect fixations similar to the ones produced
by eye-tracker in a more affordable way. Further, this ap-
proach may be used for creation of first temporal saliency
datasets which will allow training computational predic-
tive algorithms. The proposed interface does not rely on
any special equipment, which allows to run it remotely and
cover a wide audience.
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CCS Concepts
•Information systems→ Multimedia information sys-
tems; •Human-centered computing→ Human computer
interaction (HCI); User interface toolkits;

Introduction
It seems obvious that some fragments of a video are more
important than others. Such fragments concentrate most
of the viewer’s attention while others remain of no interest.
The naïve examples are: a culmination scene in a movie,
a screamer in a horror film, the moment of an explosion, or
even a slight motion in very calm footage. We denote such
fragments as groups of frames with high temporal saliency.
Information about temporal saliency is an essential part of
a video characterization which gives valuable insights about
the video structure. Such information is directly applicable
in video compression (frames which do not attract attention
may be compressed more), video summarization (salient
frames contain the most of perceived video content), in-
dexing, memorability prediction, and others tasks. So, the
reader may expect that there is a big number of algorithms
and techniques aimed at measuring and predicting tempo-
ral saliency. However, this is not the case. The most, if not
all, of the well-known works on video saliency are aimed at
spatial saliency, i.e., a prediction of spatial distribution of the
observer’s attention across the frame (in a similar way as if
it was an individual image). We hypothesize that this is due
to the absence of established methodology for measuring
temporal saliency in the experiment, which is crucial for ob-
taining ground truth data. Conventionally, saliency data are
collected using eye-tracking, which is a technique that pro-
duces a continuous temporal signal. In other words, it does
not allow to differentiate between the frames as a whole,
because each frame produces the same kind of output –
a pair of gaze fixation coordinates with a rate defined by
hardware.

In this work, we propose a new methodology for measur-
ing temporal video saliency in the experiment – the first, to
the best of our knowledge, method of this kind. For this, we
develop a special interface based on mouse-contingent
moving-window approach for measuring saliency maps
of static images. We also show that it can simultaneously
gather meaningful spatial information which can serve as
an approximation of gaze fixations.
During the experiment, observers are presented with re-
peated blurry video-sequences which they can partially
deblur using mouse click (Fig. 1). Users can deblur a cir-
cular region with a center at cursor location which approx-
imates the confined area of focus in the human eye fovea
surrounded by a blurred periphery [3]. Since the number of
clicks is limited - observers are forced to use clicks only on
most "interesting" frames which attract their attention. Sta-
tistical analysis of the collected clicks allows to assign the
corresponding level of importance to each frame. This infor-
mation can be applied directly in numerous tasks of video
processing.
To summarize, unlike the conventional approaches which
only try to understand where the observer looks, we also
study when the observer pay the most attention.

Related works
The straightforward method of retrieving the information
about attention is based on the utilization of commercial
eye-trackers (e.g. EyeLink, Tobii). Hardware-based eye-
tracking has been used widely in various studies on human-
computer interaction [6][13]. A less accurate, but much
more affordable, way of measuring saliency is based on
measuring the mouse cursor position which was proven to
correlate strongly with gaze fixations [4][5][15]. The most
successful algorithms of this type utilize a moving-window
paradigm, which masks information outside of the area ad-
jacent to the cursor and requires a user to move the cur-



sor (followed by a window around it) to make other regions
visible. Such algorithms include Restricted Focus Viewer
software by Jansen et al. [7] and more recent SALICON [8]
and BubbleView [10]. These algorithms were also used in
large online crowdsourcing experiments due to the native
scalability of cursor-based approaches. However, they were
studied only in the context of spatial saliency of static im-
ages. This is fair for static images, but for video-sequences,
temporal information is commonly even more important
than spatial regions. Furthermore, there are no well-known
experimental datasets which can provide this kind of in-
formation1 and be used for training of computational algo-
rithms. For example, the popular video saliency datasets
Hollywood-2 [16], UCF sports [12], SAVAM [2], DHF1K [17]
only provide eye-tracking results which are constant in the
temporal domain.

Figure 1: The proposed interface.
A more representative video
demonstration is available online:
[link].

Methodology
Our approach is inspired by moving-window gaze approx-
imations methods for still images. In the proposed setup
all video frames are blurred. Clicking the mouse deblurs a
round window around the cursor. Users are demonstrated
repeated video sequence during which they can click the
mouse for short periods of time. The total number of times
when the frame was deblurred defines temporal saliency
score, while location of the cursor when the mouse button is
pressed approximates gaze fixation location and allows to
detect what caused the interest.

Discretization
Short fragment of a video is more likely to attract user’s at-
tention rather than a single frame, so we let the users keep
the mouse button pressed instead of clicking on each frame
they find interesting. However, when not forced explicitly,

1A comprehensive list of saliency datasets:
http://saliency.mit.edu/datasets.html

observers tend to keep the mouse button pressed all the
time, which is natural. Thus, to obtain variation of scores, it
is crucial to restrict users artificially. Our solution is to sim-
ply limit the amount of deblurred frames (time period), after
which clicking the mouse button stops working, and addi-
tionally limit the amount of deblurred frames per one con-
tinuous click. The users cannot see the limits, instead, they
learn them during a test trial and then follow them intuitively.
For example, a 10-second video may have up to 4 seconds
of deblurred frames, but no more than 1 second at once. In
the result, a user can make 4 long clicks 1 second each or
a larger number of short clicks, while we are guaranteed to
have at least four discrete responses after one run.

Repetition
The idea of repeating the videos may be used to gather
more responses from one observer and have richer statis-
tics. Moreover, if a salient event happens at the end, the
observer may reach the limit before seeing it, so it is neces-
sary to make a second round. Also, eye-motion and cogni-
tive processing are faster than clicking the mouse, so giving
the user an opportunity to predict when an event will hap-
pen is beneficial for the creation of more accurate saliency
maps with a shorter delay. However, we observed that in
the majority of the cases, the first run is the most informa-
tive one, and the user is able to detect most salient infor-
mation without preparation. Subsequent repeats lead to
shifting the user’s attention to smaller details. Eventually,
we used repetition in our experiments, but analyze different
numbers of repeats in results.

Other parameters
Other important parameters are the blur radius and the ra-
dius of the window. Their definition requires more detailed
study. The task given to an observer also influences where
they look [18][10], so, this parameter depends on the par-

https://drive.google.com/open?id=1IxoZ69ImmeguHQ5LWRroiQ93zyy6gqy3
http://saliency.mit.edu/datasets.html


ticular context in which the experiment is performed. In our
case, we are interested in basic watching of a video without
a particular task, so we worked under a "free-view" setup.

Figure 2: Experimental setup (the
light is off during the session).

Experimental setup
The experiments were performed offline using a special
setup in the laboratory (Fig. 2) for the sake of fully-controlled
conditions (in future we are also planning to run the ex-
periment on Amazon Mechanical Turk for gathering larger
database, which would be impossible to do with an eye-
tracker). The display used is 24.1" EIZO ColorEdge CG241W
color-calibrated with X-Rite Eye-One Pro. The distance be-
tween the display and the observer was 50 cm.
The code is written in MatLab with Psychtoolbox-3 [11] and
is publicly available by the link 2.
Videos with ground-truth eye-tracking data were taken from
SAVAM dataset [2] due to their high quality and diverse
content. We used eight 10-seconds long HD videos includ-
ing two test videos. The content of the videos is diverse
and includes: a basketball game with a score moment, a
calm shot of leaves in the wind, marine animals underwater,
a cinematic scene of a child coming home, a surveillance
camera footage of two men meeting, a suffocating diver
emerging from the water.
Interface parameters: radius of a circular window – 200
px (6.2◦ visual angle), blur kernel – Gaussian with stan-
dard deviation of 15, video duration – 10 s, limit of deblurred
frames per one round – 4 s (100 frames), limit of deblurred
frames at one click – 1 s (25 frames), number of repetitions
– 5, frame-rate of the videos – 25 fps, video resolution –
1280 px × 720 px (38.2◦ × 22◦ visual angle), videos are
silent.
The observers were invited from the University staff and
students. 30 subjects in total, 15 women and 15 men. Age:
21-42 (mean 25.6).

2https://github.com/acecreamu/temporal-saliency
Figure 3: The produced temporal saliency graphs. Thick black
line C1−5, red line C1, thin black line C

(W )
1−5 . Zoom is required.

https://github.com/acecreamu/temporal-saliency


Pearson Correlation Coefficient (mean std) Kolmogorov-Smirnov test (mean p-value)
C1 C1−2 C1−5 C

(W )
1−5 C1 C1−2 C1−5 C

(W )
1−5

"The underwater world" 0.663 0.082 0.694 0.082 0.740 0.074 0.770 0.064 0.119 0.048 0.011 0.036
"Cinematic scene" 0.615 0.092 0.711 0.057 0.803 0.053 0.789 0.051 0.164 0.107 0.033 0.067
"Leaves in the wind" 0.694 0.068 0.563 0.099 0.545 0.108 0.647 0.092 0.081 0.073 0.044 0.057
"Basketball game" 0.741 0.072 0.766 0.070 0.863 0.050 0.845 0.051 0.164 0.099 0.055 0.063
"Diver suffocating" 0.789 0.050 0.788 0.054 0.820 0.057 0.834 0.051 0.134 0.092 0.043 0.068
"Meeting of the two" 0.660 0.089 0.701 0.085 0.740 0.069 0.753 0.069 0.121 0.112 0.061 0.053

Table 1: Inter-observer consistency of the measured temporal saliency maps. C1−N denotes sum of N rounds used for computation.

Figure 4: The comparison of spatial saliency maps. Top row in each pair – eye-tracking results, bottom – our results. Zoom is required.

Results and discussion
The proposed interface allows measuring both temporal
and spatial saliency at the same time, thus, we evaluate the
accuracy of both these outputs.

Temporal saliency results
Considering that there are no ground truth temporal saliency
data, we evaluate the output of the algorithm by analyzing
the produced temporal saliency "maps" and estimating
inter-observer consistency. The examples of obtained tem-
poral saliency "maps" are illustrated in Fig. 3. The demon-
stration of the videos with saliency scores encoded as
a color-map is available online: [link]. Figure 3 demon-

strates three plots for each video which correspond to dif-
ferent averaging approaches: the sum of all clicks from all
five video repeats (C1−5); the sum of clicks only from the
first round without repeating (C1); and the weighted sum
of clicks from 5 rounds (C(W )

1−5 =
∑5

n=1 CnWn, where
Wn = {1, 0.8, 0.6, 0.4, 0.2}). All the scores are normalized
by a maximum number of clicks the frame can have.
Qualitative analysis shows that most of the peaks on the
temporal saliency graph correspond to the semantically
meaningful salient events on the video. This is the main
achievement of the proposed interface. It can also be seen
that an intentionally taken monotonic video without salient
events ("leaves in the wind") has relatively flat saliency

https://drive.google.com/open?id=1g7egplutXqOqSMtNl7N5NkO-4SkZTMxY


graph without strongly pronounced peaks (which could be
even flatter when the response statistics is larger). Apart
from that, it may be seen that in the case of other videos,
the output of the first round (red line) is very similar to the
total output of all five rounds. This means that even when
in the next rounds observers start exploring smaller, less
salient details, they still return to the "main" events and
follow a similar pattern of clicks as in the first round. Also,
adding weights to the sum (thin black line) does not influ-
ence the results significantly, which again indicates the
similarity of clicks from all the rounds. However, using N
rounds indeed allows to gather N times more responses
making the graph smoother and, as we show next, pro-
duces more consistent responses from each observer.
In order to estimate consistency between different groups of
observers, we synthetically split observers into two groups
of 15 people each. Then, we compute temporal saliency
maps for each group independently and compare the re-
sults. The comparison is done using the Pearson Correla-
tion Coefficient between the saliency maps from different
groups, as well as performing the Kolmogorov-Smirnov test
between two distributions and reporting the p-value. Re-
sults are averaged between 100 random splits (standard
deviation is also reported for PCC). Table 1 shows that the
correlation between responses from different observers is
very high, up to 0.86. Increasing the number of rounds con-
sidered increases the correlation of responses significantly,
with maximum values achieved when all five rounds are
included.

Spatial saliency results
The spatial saliency maps produced by eye-tracking data
versus our interface can be compared visually in Fig. 4.
(fixation points are blurred with a Gaussian of sigma equal
to 1◦ of visual angle (33 px)). As may be seen, the results
are very similar, even though we did not use any special

AUC (mean std) NSS (mean std)

"The underwater world" 0.617 0.108 0.73 0.78

"Cinematic scene" 0.712 0.119 1.59 1.05

"Leaves in the wind" 0.548 0.055 0.18 0.21

"Basketball game" 0.727 0.114 1.52 0.93

"Diver suffocating" 0.794 0.113 2.66 1.41

"Meeting of the two" 0.625 0.060 0.95 0.43

Table 2: Comparison of the measured spatial saliency maps and
gaze-fixations obtained using eye-tracker.

equipment and collected spatial data additionally to the
main temporal output.
Saliency maps are evaluated quantitatively using stan-
dard saliency metrics: Area under ROC Curve (AUC) [9][1]
and Normalized Scanpath Saliency (NSS) [14]. Table 2
presents statistics of the scores computed per frame. Re-
sults demonstrate both good and poor performance, and
differ significantly from video to video. Additionally, quality
of spatial saliency can be assessed visually via the ren-
dered videos with map overlay [link], as well as the videos
with both eye-tracking (blue dots) and our results (red dots)
simultaneously [link].

Conclusions
In this work, we presented a novel mouse-contingent inter-
face designed for measuring temporal and spatial video
saliency. Temporal saliency is a novel concept which is
studied incongruously less than it should in comparison to
spatial saliency. Temporal video saliency allows identifying
the important fragments of a video by assigning a saliency
score to each frame. The analysis of the experimental study
shows that the use of the proposed interface allows to accu-
rately approximate the temporal saliency "map" as well as
gaze-fixations of the observers at the same time.

https://drive.google.com/open?id=17Cjd1SwO0sqlkWbVm2F9WVd5zQHxkXOT
https://drive.google.com/open?id=1xRJ-U2O9zniXu0MQ7NTUvegPcoFP1XmI
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