
Thermal-Aware Real-Time Scheduling
using Timed Continuous Petri Nets
G. Desirena-López, CINVESTAV-IPN Unidad Guadalajara
A. Ramı́rez-Treviño, CINVESTAV-IPN Unidad Guadalajara
J.L. Briz, DIIS/I3A Universidad de Zaragoza
C.R. Vázquez, Tecnologico de Monterrey, Escuela de Ingenierı́a y Ciencias, Guadalajara.
D. Gómez-Gutiérrez, Tecnologico de Monterrey, Escuela de Ingenierı́a y Ciencias, Guadalajara.

We present a thermal-aware, hard real-time (HRT) global scheduler for a multiprocessor system designed
upon three novel techniques. First, a modeling methodology based on Timed Continuous Petri nets (TCPN)
which yields a complete state variable model, including job arrivals, CPU usage, power, and thermal be-
havior. The model is accurate and avoids the calibration stage of RC thermal models. Second, based on
this model, a linear programming problem (LPP) determines the existence of a feasible HRT thermal-aware
schedule. Last, a sliding-mode controller and an on-line discretization algorithm implement the global HRT
scheduler, which is capable of managing thermal constraints, context switching, migrations and distur-
bances.

Additional Key Words and Phrases: Real-Time Systems, Thermal-Aware Scheduling, Multiprocessor, mod-
eling, Feedback Control, Timed Continuous Petri Nets.

1. INTRODUCTION
Multi-core systems on-chip (MPSoCs) are becoming pervasive in embedded systems.
They are considered as the next unavoidable step in hard real-time (HRT) mission-
critical environments, traditionally based on single-core processors, because they pro-
vide long-term system flexibility. Flight management or on-board maintenance sys-
tems tend to expand, and single-cores impose strong limits on the available CPU time
when the applications grow. Leveraging the computing power of MPSoCs is, however,
quite a challenge. First, HRT task scheduling is far more complicated on multipro-
cessors than on single-core processors. Second, power consumption can be an issue
in battery-powered systems. Last, inefficient thermal management can lead to unex-
pected failures or to a short chip lifespan. Also, handhelds and other embedded devices
impose thermal constraints because of ergonomic reasons (typically 45oC for plastic
and 41oC for aluminum enclosures [Berhe 2007]).

RT scheduling in multiprocessors has been mostly tackled under two different ap-
proaches: partitioned and global scheduling ([Baker 2005], [Davis and Burns 2011]),
along with some hybrid methods [Casini et al. 2017]. In partitioned scheduling, tasks
are statically allocated to CPUs, and then a uniprocessor scheme can be applied. Since

Authors’ addresses: G. Desirena-López, and A. Ramı́rez-Treviño are with the CINVESTAV-
IPN Unidad Guadalajara, Av. del Bosque 1145, CP 45019, Zapopan, Jalisco, Mexico
{gdesirena}{art}@gdl.cinvestav.mx; C.R. Vázquez and D. Gómez-Gutiérrez are with Tecno-
logico de Monterrey Campus Guadalajara, Av. Ramón Corona 2514, CP 45201,Zapopan, Jalisco, Mexico
{cr.vazquez}{david.gomez.g}@itesm.mx; J.L. Briz is with Dept. de Informática e Ing. de Sistemas -
IA3 Universidad de Zaragoza, Marı́a de Luna 1 - 50018 Zaragoza, España. briz@unizar.es
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1539-9087/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

task allocation is fixed, there is little leeway to allocate new tasks. Global schedulers
allocate tasks to any CPU, allowing migrations. There is a large list of recent multipro-
cessor scheduling algorithms considering RT or thermal constraints (e.g. [Kong et al.
2014; Murali et al. 2008; Shi et al. 2010; Fu et al. 2012; Fu et al. 2009]). This work
proposes a HRT thermal-aware schedule for multicore systems with a global schedul-
ing scheme. As is customary in the field, we assume independent and periodic tasks,
which period, deadline, consumed energy and Worst Case Execution Time (WCET) are
known beforehand [Baruah et al. 2015].

There are three novel contributions in our approach. First, we leverage a modeling
methodology based on Timed Continuous Petri nets (TCPN). This leads to a complete
state variable model, under a single formalism, including job arrivals, CPU usage,
power, and thermal aspects. Second, upon this model we state a Linear Programming
Problem (LPP) whose solution is a set of coefficients that are used to compute fluid
schedule functions. These functions represent a feasible execution of a HRT task set
on the available CPUs, warranting maximum utilization under thermal constraints.
Third, a sliding mode feedback controller tracks the computed fluid schedule functions,
yielding a HRT thermal-aware global scheduler able to deal with disturbances.

The advantages of the first contribution over common approaches such as RC ther-
mal equivalent models [Skadron et al. 2010] are that calibrations are obviated, greatly
improving accuracy. Also, the state space variable representation provided by the
TCPN allows the prediction of future states, and the process of analyzing the system
and designing the controller is easier, thanks to the structural and dynamic proper-
ties of the TCPN model. The benefit of our second contribution lies in that the LPP
solution is computed off-line in polynomial time, simplifying the subsequent on-line
scheduling and avoiding the heuristic algorithms reported in other approaches [Don-
ald and Martonosi 2006] [Zanini et al. 2009]. Last, the virtue of our third contribution
is that a sliding mode controller makes easier the implementation of on-off control
laws, leading to low-overhead schedulers, capable of handling perturbations or CPU
detentions in underloaded systems without rescheduling a job.

To the best of our knowledge, this is the first work on HRT thermal-aware scheduling
leveraging TCPNs. We compare trough simulations three possible implementations of
the algorithm to show the impact on two conflicting objectives: low context-switching
and migration, and thermal control. A first quantum-based implementation sacrifices
the first objective on behalf of a better thermal control. A second implementation, con-
sisting in a bare deadline-partitioning approach, achieves just the opposite effect. A
third opportunistic implementation balances these two objectives under specific re-
strictions. Finally, we show that the sliding mode feedback controller allows dealing
with system disturbances as long as the system utilization keeps lower than 100%.

This paper is organized as follows. Section 2 discusses the related work. Section 3
briefly introduces TCPNs and defines the problem addressed. Section 4 presents
the modeling methodology. Section 5 investigates the existence of a solution for the
thermal-aware HRT scheduling problem. Section 6 designs a feedback controller that
implements a global fluid schedule, and presents two possible discrete implementa-
tions. Sec. 7 presents some key examples. Finally, Section 8 summarizes conclusions
and future work.

2. RELATED WORK
Thermal-aware scheduling has been widely studied for single core systems, scaling the
processor frequency to reduce its power consumption and, accordingly, its temperature.
In [Kong et al. 2014] a Dynamic Voltage and Frequency Scaling (DV FS) technique are
used to control power consumption and temperature. In contrast, we assume a fixed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

frequency for every core in this work yet our underlying model is ready for applying
DV FS if required.

Feedback methods from control theory have been often used to cope with a dynamic
environment for RT scheduling, The feedback control algorithm in [Fu et al. 2010]
enforces both thermal and RT constraints but is restricted to single-core processors,
as they do not consider inter-core thermal coupling in multicore processors. [Donald
and Martonosi 2006] propose a general framework for dynamic thermal management
for multicore. It consists of a hierarchical feedback control loop with PI controllers but
does not guarantee HRT performance. The thermal problem is defined as a control
theory problem with a state space representation in [Zanini et al. 2009]. They propose
an optimum solution to the frequency assignment problem for thermal balancing of
MPSoC, but it does not consider RT constraints nor the scheduling problem. Other
contributions based on control theory are limited to soft RT systems ([Fu et al. 2009],
[Fu et al. 2012]), allowing for a certain percentage of missed deadlines.

[Ahmed et al. 2016] tackle the problem of thermal constrained scheduling of periodic
tasks, but they assume partitioned scheduling instead of global (migration) schedul-
ing like we do. [Chantem et al. 2011] use an equivalent circuit model to estimate the
temperature for a given set of HRT tasks on a multicore system, also referred to a
partitioned scheme.

Fluid scheduling is a powerful theoretical instrument. However, since it instanta-
neously shares the CPU among all the active tasks, practical implementations seek to
interleave the tasks trying to keep a fair CPU share within time periods. Proportion-
ate Fairness (P-Fair) [Baruah et al. 1996], PD [Baruah et al. 1995] and PD2[Anderson
and Srinivasan 2001] are all well-known algorithms based on the notion of fairness
that have been proved optimal when RT constraints are considered. They imply a high
overhead due to context switching and migration. This overhead has been improved
with deadline partitioning schemes (B − Fair, Boundary Fairness) [Zhu et al. 2003],
DP-Fair [Chandra et al. 2001]). It was still reduced by relaxing the fairness require-
ment [Nelissen et al. 2011] with a loss of optimality in terms of CPU usage. Deadline
partitioning splits time into slices demarcated by the deadlines of all tasks in the sys-
tem, greatly reducing the scheduling points. However, these slices can be too long to
cope with temperature variations. This problem can be solved by considering a quan-
tum, which would compromise the effectiveness of the deadline partitioning approach,
as an infinitesimal quantum would match the fluid scheduler, whereas the maximum
quantum value should be limited by time constraints. This was resolved in [Desirena-
Lopez et al. 2016], for a HRT fluid scheduler without thermal constraints, by defining
the quantum as the greatest common divisor of the deadlines of all tasks. In this pa-
per we leverage that solution to meet the thermal constraint, although the accuracy of
thermal control is related to the amount of context-switching and migration. The latter
can be reduced by a DP-Fair implementation at the cost of losing grip on temperature.
Our methodology allows defining the circumstances under which an optimistic DP-Fair
provides a precise thermal control while lowering context-switching and migrations.

3. BACKGROUND
This Section introduces basic definitions concerning TCPNs. An interested reader
may also consult [David and Alla 2008], [Vázquez et al. 2014] to get a deeper insight
in the field.

3.1. Timed continuous Petri nets
Definition 3.1. A Timed Continuous Petri net (TCPN) is a time-driven continuous-

state system described by the tuple (N,λ,m0). N is a Petri net (graph) structure, and
it is defined as a tuple N = (P, T,Pre,Post), where P and T are finite disjoint sets

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

of places (circles representing local states) and transitions (rectangles representing
events), respectively. Pre and Post are |P |× |T | Pre− and Post− incidence matrices,
where Pre(i, j) (resp. Post(i, j)) is the weight of the arc going from transition tj ∈ T to
place pi ∈ P (resp. going from place pi ∈ P to transition tj ∈ T), otherwise Pre(i, j) = 0
(resp. Post(i, j) = 0). The incidence matrix of N is defined as C = Post− Pre. The
column vector m0 ∈ {R+ ∪ 0}|P | is the initial state (initial marking). Its i-th entry
represents the marks in place pi ∈ P the initial state. In continuous Petri nets, the
marking and transition firings (event occurrences) can take any value in R. A tran-
sition ti is enabled at m if ∀ pj ∈• ti,m[pi] > 0 and its enabling degree is defined as
enab(ti,m) = minpj∈•ti

m[pj]
Pre[pj ,ti]

. The vector λ ∈ {R+ ∪ 0}|T | represents the transitions
rates (the speed at which transitions fire), i.e. the temporal evolution of the system.

Transitions fire (events occur) at a certain speed, which is generally a function of the
transition rates λ and the current marking (state) distribution m. Such function de-
pends on the semantics associated to the transitions. Under infinite server semantics
[Silva et al. 2011], the flow through a transition ti (transition firing speed) is defined as
the product of its rate, λi, and enab(ti,m), the enabling of the transition at the current
marking, i.e., fi(m) = λienab(ti,m) = λi min

pj∈•ti

m[pj]
Pre[pj ,ti]

(through the rest of this paper,

the flow through a transition ti is denoted as fi).
The firing rate matrix is defined as Λ = diag(λ1, ..., λ|T |). For the flow to be well de-

fined, every continuous transition must have at least one input place, hence we assume
∀t ∈ T, |•t| ≥ 1. The min in the definition above leads to the concept of configuration. A
configuration of a TCPN atm is a set of arcs (pi, tj) such that pi provides the minimum
ratio m[p]/Pre[p, ti] among the places p ∈• ti at the given marking m. We say that pi
constrains tj for each arc (pi, tj) in the configuration. A configuration matrix is defined
for each configuration as follows:

Π(m) =

{
1

Pre[i,j] if pi is constraining tj
0 otherwise.

(1)

The flow through the transitions can be written as f(m) = ΛΠ(m)m. The dynamic
behaviour of a PN system is given by its fundamental equation:

ṁ = CΛΠ(m)m (2)
The Petri net (graph) structure determines the incidence matrix C. The current mark-
ing (state) m determines the configuration matrix Π(m), and the rates λ determine
Λ. Thus, (2) can be used to simulate the TCPN, based on the knowledge of the graph,
initial state, and rates.

In order to apply a control action to (2), we add a term u to every transition ti such
that 0 ≤ ui ≤ fi(m). Thus the controlled flow of transition ti becomes wi = fi − ui.
Then, the forced state equation is

ṁ = C[f(m) − u] = Cw
0 ≤ ui ≤ fi(m)

(3)

Example 3.2. Consider the manufacturing system in Fig. 1b. Raw materials arrive
to input buffer I. A resource of type R moves the material to the machine M , after
which the resource is released.M performs some operations over the material to obtain
a final product. A resource of type R unloads the machine and moves the product to
the output buffer O. Then, the resource is released.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

I

O

M

a) c)

b)

Fig. 1: a) TCPN model. b) Manufacturing Process. c) Marking evolution.

Fig. 1a shows the TCPN model of the system. The quantity of raw material is mod-
eled as tokens in place p1, the resource is modeled by place p6, and the capacity of the
machine is the initial marking of the net. The resource allocation policy is modeled by
the firing of transitions, and the number of products per unit time is the throughput
of the net system. If the initial marking is set as m0 = [5 0 0 0 3 3] and the firing
rate vector is λ = [1 1 1 1]T , then Λ = diag(Λ). Therefore, f(m) = ΛΠ(m)m and from
Eq. (3), we have:

ṁ =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 −1 1 0
−1 1 −1 1


 λ1 ·m1

λ2 ·min{m2,m5}
λ3 ·min{m3,m6}

λ4 ·m4

 =


m4 −m1

m1 −min{m2,m5}
min{m2,m5} −min{m3,m6}

min{m3,m6} −m4

min{m3,m6} −min{m2,m5}
m4 −m1 +min{m2,m5} −min{m3,m6}


Note that enab(t1,m0) = m0[p1] = m1, enab(t2,m0) = m0[p2] = m2, enab(t3,m0) =

m0[p3] = m3 and enab(t4,m0) = m0[p4] = m4. In the initial state, the configuration
is given by (p1, t1), (p2, t2), (p3, t3) and (p4, t4). The marking evolution is depicted on
Fig. 1c. As the system evolves, the marking m3 increases and the marking m6 de-
creases. At time τ = 2, m2 = m6 and the configuration switches to (p1, t1), (p2, t2),
(p6, t3) and (p4, t4). The marking evolution graph shows the two different dynamics
provided by the two different system configurations.

3.2. Problem definition
Definition 3.3. The system consists of a set of n periodic tasks T = {τ1, τ2, . . . , τn}

that must be allocated and executed on a set of m identical processors P =
{CPU1, . . . , CPUm} with an homogeneous clock frequency F . A task τi is character-
ized by a 4-tuple τi = (cci, di, ωi, ei), where cci are the CPU cycles required to complete
an instance of the task or job, calculated as the Worst-Case Execution-Time (WCET);
ωi is the task’s period, di is the associated implicit deadline (di = ωi), and ei is the en-
ergy demanded by the task during execution. All tasks hold the same priority and are
independent (with no resource sharing). A job τki of task τi ∈ T must run to completion

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

within the time period [(k − 1)ωi, (k − 1)ωi + di], i.e. it executes for a fixed number of
cci CPU cycles. Once a job τki is over, a new one (τk+1

i) becomes immediately ready for
execution at time kωi.

We define the hyperperiod as the period equal to the least common multiple H =
lcm(ω1, ω2, . . . , ωn) of all tasks periods. A task τi executed on a processor at clock fre-
quency F requires ci = cci

F processor time at every ωi interval. The system utilization is
defined as the fraction of time during which the processor is busy running the task set:
U =

∑n
i=1

ci
ωi

. This work only considers the case where U ≤ m [Baruah et al. 1996]. A
schedule is a set of 3-tuples (τ qi , CPUk, [ζr, ζs]), where τ qi is the q− th job of task τi that
is allocated to CPUk, starting execution at time ζr and completing or being preempted
at ζs. A schedule is considered feasible if it can be repeated every hyperperiod while
meeting the required deadlines [Liu and Layland 1973].

Feasible schedules can be computed before system operation as a set of 3-tuples, or
can be computed online, determining which jobs must be allocated to which processors.
In this work, we leverage on-line scheduling for a multiprocessor system with a fixed
frequency.

Problem Definition 3.1. Thermal-aware fluid scheduler. Given the system defined
in Def. 3.3, design an algorithm to allocate within the hyperperiod the tasks in T to the
m identical CPUs in P in such a way that the deadlines for T are always satisfied, and
the CPU temperatures are always kept below a given temperature threshold Tmax.

4. SYSTEM MODELING METHODOLOGY
A TCPN system model is an aggregation of three types of submodels, respectively for
tasks, CPUs and thermal behavior.

4.1. TCPN submodel for tasks
The TCPN task model for the task set presented in Def. 3.3 is fully explained
in [Desirena-Lopez et al. 2016] and summarized here. The top row in Fig. 2a (TCPN
module for τi) depicts this model.

The task period ω1 of task τ1 implies that 1
ω1

jobs arrive per second on average (task
arriving frequency). This is modeled as the firing rate λω1 = 1

ω1
of transition tω1 in the

figure. The arc from transition tω1 (jobs arrival) to place pcc1 (arrived job cycles) stands
for the task WCET in CPU cycles. The weight cci of the arc represents the marking
of place pcc1 in CPU cycle units. Tasks relative deadlines are captured as tokens inside
places (pd1 for τ1). We assume implicit deadlines(di = ωi) so we use ωi in computations
throughput this work instead of di.

4.2. TCPN submodel for CPUs
The TCPN module CPUj of Fig. 2a models a CPU. It consists of transitions talloc1,j , ... ,
tallocn,j , transitions texec1,j , ... , texecn,j , places pbusy1,j , ... , pbusyn,j and the place pidlej . Transitions
talloc1,j , ... ,tallocn,j (allocation transitions) model the allocation of the jobs of tasks τ1, ... ,τn
to processor CPUj . The transition rates λalloc1,j , ... , λallocn,j match the allocation rate of
jobs to the processor.

Places pbusy1,j , ... , pbusyn,j represent the busy state of the processor, once a job of task τi
is allocated to CPUj . Transitions texec1,j , ... , texecn,j represent the execution of the corre-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

...

...

T
∞

T1
TkT2

T3

T
C

P
N

T
h

er
m

al
 M

o
d

el
T

C
P

N
 m

o
d

u
le

 f
o

r
T

C
P

N
 m

o
d
u
le

 f
o
r

(a)

...

(b)

Boundary transition

Boundary place

Global Multiprocessor

TCPN

...

...

...

.

...

Fig. 2: (a) Detailed TCPN global model of a monoprocessor system. It includes the task,
CPUs and thermal models. (b) Global multiprocessor TCPN schematic representation.

Weights ϑjq→q+1 =
λ
condj
q→q+1

λ
condj
q+1→q

, where q = 1, . . . ,K − 1

sponding task jobs on CPUj . Transition rates λexec1,j , ... , λexecn,j represent the execution
rate. The model considers that jobs start to run immediately after the allocation. 1.

The marking of a place pidlej models the availability of CPUj (throughput capacity).
The initial marking at pidlej is set to 1, meaning that the CPUj is idle.

The arcs from transitions texec1,j , ... , texecn,j to place pidlej and from place pidlej to tran-
sitions talloc1,j , ... , tallocn,j are weighted by a constant value η, to ensure that the flow in
transitions talloci,j is limited by the CPU throughput capacity modeled by place pidlej .

The power consumed by a CPUj has two components: the dynamic power due to
computational activities of tasks Pdyn, and the static power due to leakage currents
Pleak. The latter can be modeled as a linear function of temperature for the limited
operating range ([Liu et al. 2007]). Thus,

PCPUj
= Pdynj

+ Pleakj (4)

1For simulation reasons, the execution rates of CPUj can be set as λexeci,j = ηF , where F is the frequency
of CPUj and η is a modeling parameter to ensure that pidlej constraints talloci,j (a suitable value is given by
η > 10). The firing rate of transition talloci,j can be set as λalloci,j = ηλexeci,j .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 3: Thermal conduction and convection mechanisms and their TCPN models.

Pdynj
is the dynamic power due to computational activities. The summation Pleakj =

δTj + ρ approximates leakage power consumption, where Tj is the j − th processor
temperature and δ, ρ are modeling constants [Liu et al. 2007].

The average energy consumed by task τi in one cycle running on CPUj at frequency
F is defined as ei = PCPUj

/F . In Fig. 2a, module CPUj , the execution flow fexeci,j of
transitions texeci,j stands for the number of CPU cycles of task τi executed on CPUj .
Therefore the dynamic power consumed by CPUj when task τi runs cci cycles can be
stated as:

Pdynj =
∑

τiexecuted in CPUj

fexeci,j

ei
cci

(5)

4.3. TCPN Thermal submodel
We leverage the thermal model presented in [Desirena-Lopez et al. 2014]. It divides
a multiprocessor into prismatic solid components capable of heat generation, thermal
conduction and thermal convection, yielding a general thermal equation and a state
space representation of the system.

4.3.1. Thermal Conduction and convection. The thermal conduction of two adjacent pris-
matic components is modeled according to the equation of the TCPN module together
with the parameters shown in the row Thermal Conduction of Fig. 3. These compo-
nents (prisms) are assumed to hold isotropic properties (thermal conductivity coeffi-
cients k1, k2; volumes V1, V2; densities ρ1, ρ2 and specific heat capacities cp1, cp2). The
marking in the TCPN places (pcom1 and pcom2) represents the average temperature of
component 1 and component 2 respectively.

The thermal convection in a prismatic component with a convection coefficient h and
temperature T1 is modeled by the TCPN module shown at the row Thermal Convection

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 4: Heat generation mechanisms and their TCPN models.

of Fig. 3. The marking in places pcom1 and pair represents the average temperatures of
the component and the ambient temperature, respectively.

4.3.2. Heat generation. A prismatic component increments its thermal energy due to
the execution of tasks’ jobs. This is modeled by Eq. (5), corresponds to the TCPN mod-
ule shown at the first row of Fig. 4.

The thermal energy due to the leakage of a prismatic component with temperature
T1 is represented by the TCPN module at the second row of Fig. 4. The leakage co-
efficients δ and α depend on the technology node and the type of subcircuit (SRAM,
logic) modeled by each element. Our model allows setting both coefficients for each el-
ement separately, honoring a precise floorplan if required. However, since our schedul-
ing technique is unaffected by the magnitude of their values, we assume in this paper
an average leakage behavior for every element, setting δ = 0.1 and α = 0.001 [Ahmed
et al. 2016]. The marking of place pcom1 represents the average temperature of the solid
component.

4.3.3. Integrating conduction, convection and heat generation. The module Thermal model
in the TCPN, at the bottom of Fig. 2a, depicts the thermal model of a prism component
which generates heat due to the dynamic power of job execution and transfers heat by
conduction and convection to its surrounding elements. The model is composed of the
basic models of Figs. 3 and 4, by merging the corresponding places of the basic TCPNs
that represent the temperature of the component. The component in Fig. 2a is linked
to three other surrounding components (partially represented in the figure) through
shadowed (boundary) transitions. By the principle of superposition of a thermal sys-
tem, the merged model is dynamically equivalent to merging the Petri net places in
the TCPN [Desirena-Lopez et al. 2014]. The number of prismatic thermal components
depends on the desired balance between accuracy and computing time.

4.4. Global TCPN model
The TCPN submodels for tasks, CPUs and thermal dynamics, combine into a global
model by merging specific shared places and transitions (boundary nodes) and defining

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

arcs accordingly. Fig. 2a shows a detailed part of the TCPN global model, whereas
Fig. 2b outlines the integration of the submodels into the single global TCPN model.
Each CPU in (b) links to a set of nine components (modeling nine prisms), by way of
example. The TCPN Thermal Model in (a) shows the net of each component enclosed in
a dotted rounded box. The arcs from places pcci to transitions talloci,j represent the jobs of
τi allocated to processor CPUj . Places pexeci,j and arcs going from texeci,j to pexeci,j are added
in order to merge the models. The marking of place pexeci,j stands for the total amount
of jobs of τi that have been executed in CPUj from the initial time.

Modeling the power consumption due to task execution implies adding weighting
arcs from transitions texeci,j to places pcomj

1,...,k denoting the temperatures of the CPUj ’s
prismatic components. The flow of transitions texeci,j (execution flow) stands for the num-
ber of CPU cycles by time unit demanded by task τi while running on CPUj . The exe-
cution flow (fexeci,j) multiplied by the weight ei×V j

1

cci×VCPUj
equals the power generation at

each prismatic component corresponding to CPUj when the task τi is running.
The global TCPN model scales up easily by adding a new task or CPU submodule per

every additional task or CPU, with the calculations being limited by the computational
complexity. The thermal model is unaffected by the number of tasks or CPUs: it only
depends on the degree of required detail, translated into more or fewer components
(prisms).

4.5. Fundamental equation of the global model
The global model of Fig. 2 is fully described by its Petri net (graph) structure, firing
rates and initial marking. Upon this information, the system can be simulated by us-
ing the fundamental equation (2). For convenience, we assume that the places are
numbered in such a way that m = [mT

T ,m
T
a ,m

T
τ ,m

T
P ,m

T
exec]

T , where mT , ma, mτ ,
mP and mexec denote the marking at the places representing temperature at compo-
nents (pcomj

k), air temperature (pair), places belonging to the task submodel (pωi , pcci ,
pdi), processor sub-model (pbusyi,j , pidlej) and places representing accumulated executed
jobs (pexeci,j), respectively. Thus, the fundamental equation (2) can be represented by
blocks as

ṁT =CT ΛT ΠT (m)mT + CaΛaΠa(m)ma+Cexec
P fexec (6a)

ṁa =0 (6b)

ṁT =CT ΛTΠT (m)mT − Calloc
T walloc (6c)

ṁP =CPΛPΠP(m)mP + Calloc
P walloc (6d)

ṁexec =Cexec
P fexec (6e)

The differential equations underlying the Thermal TCPN submodel are represented
in Eqs. (6a) and (6b).

The matrices CT , ΛT , and ΠT (m) are the incidence matrix, the firing rate transi-
tions and the configuration matrix respectively of the thermal module in Fig. 2, cor-
responding to the prismatic components of the floorplan. The matrices Ca, Λa, and
Πa(m) represent the incidence matrix, the firing rate transitions and the configura-
tion matrix respectively, for the ambient temperature of the thermal subnet.

Task arrival is given by Eq. (6c). The matricesCT , ΛT , and ΠT (m) are the incidence
matrix, the firing rate transitions and the configuration matrix corresponding to the
subnet of the task model in Fig. 2 modules task model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The behavior of a CPU is modeled by Eq. (6d). The matrices CP , ΛP , and ΠP(m)
represent the incidence matrix, the firing rate transitions and the configuration matrix
corresponding to the CPU models.

The matrices Cexec
P , Calloc

T and Calloc
P represent the connections of transitions texeci,j

and talloci,j from (to) places in the thermal model, task arrival model and CPU model,
respectively. Fig. 2b shows the connection of the aforementioned models, by means of
the allocation transitions talloci,j and the execution transitions texeci,j . The task model does
not depend on the temperature model or the CPU model but on walloc (Eq. 6c). The
vector walloc represents the jobs allocated per time unit. These jobs are removed from
the task submodels and allocated to the processors for execution. In addition, the CPU
model evolves independently from the thermal model (Eq. 6a). The marking mexec,
i.e., the accumulated executed jobs, is the integral of fexec (Eq. 6e).

Note that Eq. (6) is in a state space form, thus being able to design controllers. The
actual input control is the vectorwalloc. It represents the necessary flow going through
transitions talloc, i.e. the allocation of tasks to CPUs to meet temporal constraints.
The controlled variables are mexec and mT . The former represents the accumulated
task execution, it must be equal to the required task execution over time, the latter
represents the CPU’s temperature.

The proposed scheduling algorithms will act on the model by determining when
transitions talloci,j must be fired. In particular, we will define a controlled flow vector
walloc = [1w

alloc
1 , . . . , 1w

alloc
n , . . . ,mw

alloc
n] (where each jw

alloc
i represents the controlled

flow of transition talloci,j), it will define the allocation of jobs to CPUs, influencing the
dynamical behavior of the global model, and causing temperature to raise or decrease
accordingly.

5. HRT THERMAL-AWARE FLUID SCHEDULE FEASIBILITY
We prove that if a feasible schedule exists, then a set-point for the controlled variable
mexec exists that satisfies simultaneously the thermal and temporal constraints.

Definition 5.1. A schedule is thermal feasible if it satisfies the required deadlines
every hyperperiod and the temperature of the processors do not exceed a maximum
operating value Tmax = [Tmax1 , . . . , Tmaxm]. Moreover, since the schedule is periodic,
the temperature of the processors must satisfy that temperatures at the start and at
the end of the hyperperiod are equal.

The feasibility analysis is accomplished in three parts. First, we present the tempo-
ral and CPU utilization restrictions. Second, we derive the thermal constraints. Both
restrictions are described as linear functions of certain coefficients jβi denoting frac-
tions of task executions. Third, we pose a LPP to computate the fraction of each task
job to be run at each CPU, subject to the constraints mentioned above, whose solution
provides the values of the coefficients jβi. The continuous controller in Section 6 uses
these coefficients.

5.1. Computation of the temporal fluid-schedule functions
The task fluid schedule function is computed as:

FSCτi(ζ) =
ci
ωi
ζ (7)

where ζ is the current time. This function represents the optimal fluid execution of
task τi at time ζ [Baruah et al. 1996] [Zhu et al. 2003]. Eq. (7) is defined as optimal

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

in the literature, although it just provides a feasible schedule for task τi. We obtain a
fluid schedule function for each pair CPUj and task τi as follows.

Assume that sτ = τ1i . . . τ
q
h is a sequence of jobs, and T ′ the set of tasks in the se-

quence sτ , i.e., T ′ = {τa ∈ T | ∃ τ ba ∈ sτ}. Now, suppose that the jobs in sτ can be
executed in any CPU. Since migration is possible, a single job τ ba ∈ sτ (the b − th exe-
cution of τa) can be executed in several CPU. If we denote by jcc

b
a the CPU cycles that

job τ ba runs in CPUj , the total number of cycles that the b − th execution of τa takes

running in all the CPUs is cca =
m∑
j=1

jcc
b
a.

Moreover, if the sequence sτ is a periodic schedule with period H, then the number
of instances of task τa in sτ is ia = H

ωa
. The number of CPU cycles that task τa executes

in CPUj during the hyperperiod is jcca =
ia∑
r=1

jcc
r
a = jβa× cca. Thus jcca is a proportion

of cca, where jβa is the number of times that τa is executed on CPUj until the hyper-
period (always a real positive). Hence, the number of jobs of τa executed during the
hyperperiod of a periodic sequence sτ can be computed as:

ia =
m∑
j=1

jβn =
H

wa
∀ τa ∈ T [Temporal Constraint] (8)

In order to fulfill task temporal requirements, the CPUj utilization must not exceed
the processors capacity:

∑
τi∈T

ci × jβi
H

≤ 1 ∀ CPUj ∈ P [CPU utilization Constraint] (9)

where ci = cca
F is the respective total execution time of τi.

The fluid execution of a task (FSCτi) can be derived from the previous equations.

Since cca =
m∑
j=1

jcc
b
a, then cca × ia =

m∑
j=1

ia∑
r=1

jcc
r
a represents the CPU cycles during the

hyperperiod. Thus, at the hyperperiod H, the total execution time ca× ia = ca×
m∑
j=1

jβa,

and it follows that ca ×
(
H
ωa

)
=

m∑
j=1

jβa × ca. By dividing the last expression by H, we

obtain ca
ωa

=
m∑
j=1

jβa×ca
H . Generalizing, for a task τi, FSCτi(ζ) can be expressed as:

FSCτi(ζ) = 1FSCτi(ζ) + . . .+ mFSCτi(ζ) =
1βi × ci
H

ζ + . . .+
mβi × ci

H
ζ (10)

where jFSCτi(ζ) = jβi×ci
H ζ stands for the fluid schedule function of τi at time ζ in

CPUj . Eqs. (8) and (9) provide the temporal restrictions for computing the jβa coeffi-
cients.

5.2. Thermal Analysis
The relationship between task allocation and temperature was formulated in Sec-
tion 4.5 using Eqs. (6a) and (6d). Eq. (6d) can be rewritten by applying the following
change of variable. Let M1

T = mT and M2
T = mP , thus MT = [M1

T M
2
T]T denotes

the state variables corresponding to the thermal behavior of processors and the dy-
namic task allocation respectively. Hence, the part of the model that represents the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

 relationship

between the temperature and the power consumption due to task alloca-tion is:

ṀT = AMT +Bwalloc +B′ma

YT = S′MT
(11)

where A corresponds to the system matrix, B is the input matrix, and B′ con-
forms the matrix associated to ambient temperature (ma which is considered constant).
These matrices are:

A =

[
CT ΛT ΠT Cexec

P ΛexecΠexec

0 CPΛPΠP

]
B′ =

[
CaΛaΠama

0

]
B =

[
0

Calloc
P

]
(12)

As stated before, vector walloc is the controlled flow of the allocation transitions (it
stands for the task allocation rate to CPUs). The task allocated to CPU (mP) times
Cexec
P ΛexecΠexec(m) represents the dynamic computational power of the tasks under

execution. The matrix S′ = [S 0] is the output matrix which selects the components
representing the temperature of the CPUs, and YT stands for the temperature of the
components of the processor. The schedule must be periodic from a temporal and ther-
mal point of view. Thus, the initial temperature must be equal to the final tempera-
ture (evaluated at the hyperperiod H) to meet the thermal feasibility condition, i.e.:
YT (H) = S′MT (0).

Now, we assume that the processor is running the periodic schedule at a constant
rate, then its temperature is a non-decreasing function, and it reaches a steady state
condition. In a thermal steady state ṀT = 0, the steady state temperature (MTss) and
the steady state CPUs temperature (YTss) are computed as:

MTss = −A−1(Bwalloc +B′ma)
YTss = S′MTss

(13)

The steady state temperature YTss
[k] of CPUk must be less than or equal to its maxi-

mum temperature level i.e., YTss
[k] ≤ Tmaxk

so as not to violate the thermal constraint.
In vectorial form:

S′MTss ≤ Tmax (14)
Combining Eqs. (13) and (14),

−S′A−1Bwalloc ≤ Tmax + S′A−1B′ma [Thermal constraint] (15)
The previous equation provides the thermal constraints that the allocation of tasks

to the processors (walloc) must fulfill. Now, walloc must be represented as a function
of jβi parameters. In steady state, the flows in transitions talloc and texec are equal.
According to the temporal restrictions in Eq. (8), the flow required in talloci,j must be
jβi×ci
H , matching the number of jobs of task τi assigned to CPUj per time unit. The

next subsection computes the jβi coefficients.

5.3. Computation of coefficients jβi

The computation of the fluid execution of tasks can be formulated as a LPP, to deal
with the steady state temperature and the maximum temperature of each CPU. The
problem consists in finding a solution for the jβi subject to thermal, temporal and CPU
utilization constraints, which translates into Eq. (16):

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

min
m∑
j=1

∑
τa∈T

jβa

s.t.

−SA−1B

[∑
τa

1βaca
H

, . . . ,
∑
τa

mβaca
H

]T
≤ Tmax + SA−1B′ma

}
Thermal Constraint

m∑
j=1

jβn = H
ωn

∀i = 1, . . . , n

}
Temporal Constraint

∑
τa∈T

ca×mβa
H

≤ 1 ∀j = 1, . . . ,m
}

CPU util. Constraint

(16)

The thermal constraint in Eq. (15) states that the temperature of the processors due
to task execution must not violate the maximum allowed temperature. The estimated
temporal constraints, Eqs. (8) and (9) ensure that the number of tasks’ jobs within the
hyperperiod allows a feasible schedule. The last constraint ensures that the computa-
tion utilization of each CPU is ≤ 1.

PROPOSITION 5.2. Consider a system as defined in 3.3 and the thermal-aware fluid
scheduler problem 3.1 for this system. If the linear programming problem LPP (16)
defined for the system parameters has a feasible solution, then there exists a thermal-
aware HRT feasible schedule.

If a solution exists, then the coefficients jβi can be found. Hence the jFSCτi(ζ) =
jβi×ci
H ζ functions are completely known, and any scheduler capable of tracking these

functions will obtain a schedule that fulfills thermal and temporal task constraints
since temporal and thermal restrictions are met.

To show the existence of such a scheduler (and complete the proof), we propose in the
next section a continuous scheduler whose result is discretized in a later stage. It uses
the functions jFSCτi(ζ) (target function) and mexec

i,j (ζ) (actual task execution) to define
an error as the difference between these two quantities. By controlling task allocation
with walloc the proposed scheduler brings the error down to zero. This is proved in
proposition 6.1, where the Lyapunov functions guarantee that the error reaches a zero
value.

6. THERMAL-AWARE HRT FLUID SCHEDULER CONTROL
If the LPP has a feasible solution, then each task τi in each CPUj must be executed at
the fluid execution rate (jFSCτi(ζ)) to honor the HRT thermal fluid schedule. Consid-
ering ϕi,j = jβi×ci

H the fluid schedule function becomes jFSCτi(ζ) = ϕi,jζ. This function
jFSCτi(ζ) will be used as a set-point for the control stage.

We leverage a sliding mode feedback controller to manage workload execution [Utkin
et al. 2009]. The purpose of the controller is to keep the RT thermal fluid execution
error ETi,j

(ζ) equal to zero. This error is defined as the difference between the task
fluid execution jFSCτi(ζ) of a task τi in CPUj and its actual execution percentage
(mexec

i,j (ζ) in Fig. 2a):

ETi,j
(ζ) = jFSCτi(ζ)−mexec

i,j (ζ) (17)

6.1. RT Thermal Sliding surface
In the sliding mode technique, a sliding surface S is first designed as a function of the
system’s state in such way that, if the system is controlled so that S is null then the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

i,j

 error

converges to zero. In order to construct the sliding surface, let x1i,j = ETi,j (ζ) and x2i,j =

mbusy. Then, the following system holds:

•
x1i,j = ϕi,j − λexeci,j x2i,j
•
x2i,j = jw

alloc
i − λexeci,j x2i,j

(18)

For this system, the sliding surface may then be set to be of the form:

Si,j(ζ) =
K1

λexeci,j

x1i,j +
ϕi,j
λexeci,j

− x2i,j (19)

where K1 is a real positive number.
Since the aim is to force the system states to the sliding surface, the control strat-

egy must guarantee that the system trajectory moves toward and stays on the sliding
surface from any initial condition. Such control law is described in the following sub-
section. Once the system slides on the surface Si,j(ζ) = 0, then

x2i,j = − K1

λexeci,j

x1i,j −
ϕi,j
λexeci,j

(20)

Therefore

•
x1i,j = −K1x

1
i,j (21)

In other words, the RT thermal error fluid execution tends to zero asymptotically
when the system slides on the surface.

6.2. Control law computation
Now, a control law is designed to force the system to slide on the surface, which will
lead to a null error and thus the system will track the fluid schedule function of each
task τi and CPUj , meeting both temporal and thermal requirements. The control law
is proposed as:

jw
alloc
i (ζ) = jŵ

alloc
i (ζ) + K1

λexec
i,j

ϕi,j (22)

where jŵ
alloc
i (ζ) = K2sign(Si,j(ζ)) and sign(x) = 1 if x ≥ 0; 0 otherwise.

PROPOSITION 6.1. Let T and P be the sets of n tasks and m processors, respectively.
Let jFSCτi be fluid schedule function of task τi andCPUj , obtained by solving the linear
programming problem of Eq. (16). If the control law given by Eq. (22) is applied to the
global system with K1 = λexeci,j and 0 < K2 < ϕi,j then each RT thermal fluid execution
error ETi,j

(ζ) converges to zero.

PROOF. The controlled flow of a transition talloci,j is given by jw
alloc
i (ζ) in Eq. (22),

where jŵ
alloc
i (ζ) is the control action. Note that when jw

alloc
i > 0, transition talloci,j is

fired, i.e., jobs of τi are being allocated to CPUj .
In order to prove the asymptotic stability of Eq. (17), a Lyapunov function can be

defined, satisfying V (0) = 0, V (x) > 0 and
•
V (x) < 0 ∀x 6= 0 ([Khalil and Grizzle 1996]).

Let us consider the following quadratic candidate Lyapunov function V :

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

V (S1,1, . . . ,Sn,m) = 1
2

n∑
i=1

m∑
j=1

S2i,j (23)

V = 0 iff each Si,j = 0, and V > 0 if any Si,j 6= 0. Therefore, V can be considered

a Lyapunov function (and Eq. (17) is asymptotic stable) iff
•
V < 0 for any Si,j 6= 0. To

prove this, we first compute the derivative of V :

•
V =

n∑
i=1

m∑
j=1

Si,j
•
Si,j =

n∑
i=1

m∑
j=1

Si,j
(
−jŵalloci + x2i,j(λ

exec
i,j −K1)

)
≤

n∑
i=1

m∑
j=1

−K2Si,jsign(Si,j) + |Si,j ||x2i,j ||λexeci,j −K1|

≤
n∑
i=1

m∑
j=1

−|Si,j |
(
K2 − |x2i,j ||λexeci,j −K1|

) (24)

Next, let us prove that following holds for each term in the sum (i.e. for each task
and CPU) −|Si,j |

(
K2 − |x2i,j ||λexeci,j −K1|

)
< 0. The term is negative if K2 satisfies

K2 > |x2i,j ||λexeci,j − K1|. Since the controlled flow is always positive (i.e., jw
alloc
i =

K2sign(Si,j) + K1

λexec
i,j

ϕi,j > 0), then if Si,j is positive, K2 must satisfy K2 > − K1

λexec
i,j

ϕi,j ,

otherwise (when Si,j is negative) K2 must satisfy K2 <
K1

λexec
i,j

ϕi,j .

Therefore, in order to satisfy the stability condition (
•
V < 0), K2 must satisfy

|x2i,j ||λexeci,j − K1| < K2 <
K1

λexec
i,j

ϕi,j . For simplicity, we assume that K1 = λexeci,j , hence
0 < K2 < ϕi,j . Thus, for each τi and CPUj the RT thermal fluid execution error ETi,j (ζ)
converges to zero asymptotically.

The correct selection of the gains K1 and K2 for the derived control law provided
by Eq. (22) allows tracking the optimal fluid schedule for each τi and CPUj , which is
thermally feasible. Therefore, the fluid execution mexec follows a fluid schedule.

6.3. On-line discretization of the Thermal-Aware fluid schedule
The Alg. 1 (OLDTFS) implements our thermal-aware RT fluid scheduler, aiming to bal-
ance a good thermal control and a suitable context-switch overhead. We leverage the
approach taken in [Desirena-Lopez et al. 2016], which limits the fluid schedule com-
putation to the set of deadlines, but places the scheduling points on a quantum basis.
Later we will show that under precise circumstances it is possible to limit the schedul-
ing points to the set of deadlines as well, and still accomplish the RT and thermal
constraints without requiring a fixed quantum, all the more lowering the overhead.
OLDTFS yields a discrete schedule that closely tracks the fluid one (mexec) by com-
puting a schedule up to the hyperperiod (from time zero to time H). We first define the
set of deadlines SD and quantum Q as in [Desirena-Lopez et al. 2016].

For every time interval [sdk, sdk+1] (sdk+1 ≤ H and k =, 0, 1, . . .), at time ζ, if
jFSCτi(sdk) > Mexec

i,j (ζ), τi must be allocated to CPUj so that it runs to the point
required by the fluid scheduler, to warrant that the k-th job of τi completes before its
k-th deadline. The thermal-compliant HRT fluid schedule (jFSCτi(sdk)) was computed
in the off-line stage. We define the remaining jobs execution until the next deadline in
the whole set of deadlines as REi,j(ζ) = jFSCτi(sdk) −Mexec

i,j (ζ) for each task τi and
CPUj (line 4), and the task priority function as PRi,j(ζ) = mexec

i,j (ζ)−Mexec
i,j (ζ) (line 6).

All tasks τi such that REi,j(ζ) > 0 must be allocated to CPUj before the next quantum.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

ALGORITHM 1: On-line discretization of Thermal fluid schedule (OLDTFS)
Input: The TCPN of the set of tasks T , the ordered set SD where any sdk ∈ SD is lower or equal than

H. The quantum Q. The fluid schedule jwalloci . The number of processors m
Output: The discrete schedule jWalloc

i
1 Initialize i = 1, sd = sdi, ζ = 0, Mexec

i,j (ζ) = 0 ∀τi ∈ T and ∀CPUj ∈ P;

2 for ζ ≤ H do
3 All tasks are preempted from the processors;
4 REi,j(ζ) = jFSCτi (sd)−Mexec

i,j (ζ) ; /* Compute remaining jobs */

5 ETj(ζ) = {τi|REi,j(ζ) > 0∀CPUj ∈ P} ; /* Compute the set of tasks to be executed */
6 PRi,j(ζ) = mexeci,j (ζ)−Mexec

i,j (ζ) ; /* Compute the priority for every task τi in ETj(ζ) */

7 for j = 1 to m do
8 jW

alloc
i = 0, 1 ≤ j ≤ m, 1 ≤ i ≤ n ;

9 τa = task with the highest priority value in ETj(ζ); /* ETj(ζ): task queue of CPUj */

10 jW
alloc
a = 1 ; /* Set τa to run on CPUj */

11 ; /* Now remove τa from all tasks queues but ETj(ζ): */
12 Remove τa from ETk(ζ) for all 1 ≤ k ≤ m and k 6= j ;
13 Mexec

a,j (ζ +Q) =Mexec
a,j (ζ) +Q× jW

alloc
a ; /* Compute the discrete execution of τa */

14 Remove τa from ETj ;
15 Switch to τa in CPUj ; /* Only if scheduling tasks in a real, physical system */

16 end
17 Simulate the CPU TCPN model from ζ to ζ +Q; /* Solve Eqs. (6.e) to compute mexec */
18 ζ = ζ +Q; /* Update time */
19 if ζ == sd then
20 i = i+ 1, sd = sdi
21 end
22 end

The discretized time that task τi must run on CPUj starting at time ζ +Q is given by
the following equation (line 13):

Mexec
i,j (ζ +Q) = Mexec

i,j (ζ) +Q× jW
alloc
i (25)

where

jW
alloc
i =

{
1 if τi is allocated for execution in CPUj at time ζ
0 otherwise

Thus, Eq. (25) yields the execution time slice of each task job in a CPUs when dis-
patched for the next interval. We can leverage the TCPN to entirely simulate a physical
system, or to exclusively compute the fluid schedule, discretized on a quantum basis
in Alg. 1. In the first case, besides accounting for the runtime, we have to actually
dispatch the task on a specific CPU (statement in line 15).

6.4. Overview of the Thermal-Aware Real-Time scheduler
Fig. 5 summarizes the three parts of the proposed scheduler higlighting the system
control signals. The dotted boxes above and below (A, B) exemplify the evolution of
the principal system’s input and output signals during normal operation (A) or under
disturbance (such as a CPU detention, B). During the off-line stage, the scheduler is
build up as described in Sec. 4, from the TCPN model, according to the thermal pa-
rameters of the materials of the system, the number of prisms, and the parameters
of the CPUs and HRT task set, obtaining its state equation. Then, the constraints of
the LPP are stated from this model, and the LPP solution provides the coefficients for
the fluid scheduling functions jFSCτi(ζ) (S1), which guarantee the accomplishment of
the thermal and HRT constraints in H (hyperperiod). All this process has been fully

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 5: Scheduler overview. To simplify the view we respectively name jFSCτi(ζ),
jw

alloc
i , mexec

i,j and Mexec
i,j as the signal arrays S1, S2, S3, S4. S5 provides the feedback to

capture disturbances.

automated, as part of a publicly available simulation framework [Desirena et al. 2019]
that includes a number of schedulers that can be simulated out-of-the-box, including
the one presented in this paper. Also, this package provides tools to manually or au-
tomatically generate RT task sets for simulation, and plots scheduling results and
temperature variations.

The on-line stage starts with the sliding mode controller allocating tasks to CPUs
in the TCPN model. The controller throttles the fluid marking jw

alloc
i (S2), which is

proportional to the error ETi,j
(ζ) (Eq. (17)), to make S3 (the current fluid schedule,

mexec
i,j in the TCPN) follow S1 (the fluid schedule calculated off-line), closing ETi,j

(ζ).
During normal operation S3 will always follow S1 (upper dotted box A in Fig. 5). Alg. 1
iterates every quantum Q. It computes the error as the difference between the fluid
execution time S3 (provided by the TCPN model) and the actual discrete execution
time S4 (Alg. 1 line 4), dynamically adjusts priorities accordingly (line 6) and selects,
allocates and dispatches the jobs until the next scheduling point (line 18).

The flow of transitions texeci,j (representing the active execution of task τi on CPUj ,
Fig. 2) is computed as fexeci,j = (λexeci,j mbusy

i,j)×S5. Under disturbance (e.g.Fig. 5 box B, at
time ζ0) S5 will be set to 0. This will halt the simulated CPUj in the TCPN model. As a
consequence, the controller will increase S2 so that S3 (mexec

i,j) becomes higher than S1
(jFSCτi(ζ)) until ζ2. By ζ3, S1 reaches its normal level, and S3 catches up with the S1
line. Then, OLDTFS discretizes S3 by increasing the ratio at which the tasks smitten
by the CPU halt are dispatched in successive quanta (compare S4 in box A and B). A
scheduler lacking a continuous controller like this are not capable of recovering from
disturbances. A sliding mode controller is specially suitable when dealing with off-line
and on-line signals.

6.4.1. Complexity. The algorithm executes I = H/Q times (H is the hyperperiod), thus
the outer loop in Alg. 1 runs I times. The instructions inside this loop run in polynomial

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

time in the size of the number of tasks and CPUs. All the instructions in the inner loop
(lines 7−14) run in polynomial time. Moreover, Eq. (6.e) (Alg. 1 line 15) can be rewritten
in a discrete state space representation. Hence the TCPN is simulated in polynomial
time, and therefore the algorithm is polynomial too. Note that Eqs. (6a) and (6b) are
not computed in the algorithm because they are not required to solve mexec.

6.5. Discretization of the Thermal-Aware fluid schedule by opportunistic DP-Fair
Our methodology allows establishing the circumstances under with we can implement
the thermal-aware RT scheduler without a fixed quantum, limiting the scheduling
points (i.e. possible context-switches and migrations) to the set of all tasks’ deadlines,
still ensuring a proper thermal control.

If the linear programming problem in Eq. (16) has a solution, it means that the
coefficients jβi of the solution meet the thermal, temporal and CPU utilization con-
straints in a steady-state temperature. These coefficients can now be used to develop
an algorithm based on DP-Fair. However, in contrast with the deadline partitioning
technique, based on the task local utilization, we leverage the coefficients jβi as the
task share that must run on each CPU for each time slice, defined by all the deadlines
of all tasks in the system. The algorithm is opportunistic in that it prioritizes the ther-
mal constraint and makes the processors to become idle when processors’ temperature
approaches the temperature limit. When resuming execution, the algorithm catches
up and meet the temporal constraints.

7. SIMULATION RESULTS
The following experiments show the ability of the proposed scheduler to meet HRT and
thermal constraints and to deal with disturbances. Also, we compare OLDTFS with a
straightforward implementation of a DP-Fair scheduler [Chandra et al. 2001]

7.1. Experimental setup
We consider a package with two homogeneous 1cm×1cmmicroprocessors mounted over
a 5cm × 5cm copper heat spreader. The microprocessors and the copper heat spreader
are respectively 0.5mm and 1mm thick. The temperature of the surrounding air is
fixed and set to 35oC, in the range of an environment type C according to [ASHRAE
2012]. The convection coefficient of the heat spreader is h = 0.001 W

mm2oC . The isotropic
thermal properties of the materials in the package are shown in Table I. We assume
CPUs with caches and speculative mechanisms non-existent or turned-off, and tasks
running at a fixed frequency F = 1GHz. Thus, WCET, deadline and period time bounds
can be stated more accurately. We include scheduling and context switch overhead in
the WCET. We have used for the thermal model a mesh of 25 × 25 prisms for the heat
spreader, 5× 5 prisms per CPU, totaling 675 prisms.

The off-line and online stages are implemented in MatLab R©. For the off-line stage,
we use the lingprog (simplex algorithm) function to solve the LPP (16). We obtain the
predicted task execution (ṁexec) during the on-line stage with the ODE45 solver. We
provide a package publicly available that automates the whole modeling and simula-
tion process [Desirena et al. 2019].

7.2. OLDTFS results
The first experiment considers a thermo-hydraulic system. Both the water level in a
tank and its temperature are controlled by a certain algorithm, resulting in a periodic
task set T = {τ1, τ2, τ3} running on a MPSoC with two cores; the maximum operating
temperature of both cores is Tmax1,2

= 100oC. Tasks τ2 and τ3 control the level and
temperature respectively. Task τ1 (acquisition task) is used to read the sensors every
sample period. We have computed the sample period according to Shannon’s theorem.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 6: Schedule computed by OLDTFS algorithm for the example of subsection 7.2. Its
execution produce a rising in the CPUs temperature depicted in Fig. 7.

The relevant task parameters are WCET (in CPU cycles), sample time ω and deadline
d (with ω = d in this case), resulting in τ1 = (2×109, 4, 4, 6.4), τ2 = (5×109, 8, 8, 8), τ3 =
(6× 109, 12, 12, 9.6), and the consumed energy e. Task independence is achieved by the
correct computation of the sample time. If ω1 is two or more times shorter than ω2 and
ω3, then the level and temperature variables are known before the execution of τ2 and
τ3, i.e. tasks are independent of each other.

Fig. 6 depicts the schedule obtained by the on-line discretization of the fluid tem-
poral scheduler. Fig. 7 shows the evolution of temperature in both CPUs until the
hyperperiod, using two different values for the quantum. Temporal and thermal con-
straints are met with both values, but temperature variations are much narrower with
Q = 0.05 than with the computed quantum Q = 0.5. A theoretical infinitesimal quan-
tum would match the optimal thermal solution with infinitesimal context switches.

A second experiment shows the sensitivity of OLDTFS to computation utilization
and its ability to cope with a significant number of tasks pushing temperature well over
the limit. We leverage the algorithm UUnifast [Bini and Buttazzo 2005] to generate
103 task sets with computation utilization varying from 1 to 2 to evaluate the thermal
feasibility (only considering task sets which are computationally feasible).

Fig. 8 shows the maximum temperature per CPU reached during the first hyperpe-
riod, while varying the computation utilization (x-axis). The maximum temperature
does not only depend on the computational utilization, but on the power consumption
of each task set too (see LPP in Eq. (16). OLDTFS keeps the maximum temperature
under control along the whole range of utilization values. The smaller the quantum,
the finer the thermal control at the cost of a higher overhead.

7.3. OLDTFS vs. DP-Fair
We have seen that OLDTFS allows a great control on temperature, but finding a bal-
ance to keep a low overhead requires experimenting with different quanta. DP-Fair
only schedules tasks on the set of deadlines, which generally yelds fewer scheduling
points than when using a quantum. However, a baseline DP-Fair can fail to keep the
temperature inside a safe region. We consider two identical processors and three tasks
such that T = {τ1, τ2, τ3}, where τ1 = (2 × 109, 4, 4, 6.4), τ2 = (5 × 10, 8, 8, 8), τ3 =
(6 × 10, 12, 12, 9.6). The CPU utilization is U = 1.625, and therefore the scheduling
problem has a solution on a two processor platform.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 7: CPUs temperature evolution due to the execution of the computed schedule in
the example of subsection 7.2, for different quantums. The initial conditions of CPU1

and CPU2 are mT (0)[1] = 81.5664oC, mT (0)[2] = 80.7352oC respectively. Note that the
temperature does not exceed the bound Tmax = 100oC. As expected, a smaller quantum
means a lower temperature variation.

Fig. 8: Maximum temperature of processors considering 103 tasks sets, generated by
the UniFast algorithm, with utilization varying 1-2. Each marker represents the max-
imum temperature of a task set with the corresponding utilization.

Both DP-Fair and OLDTFS compute feasible schedules. Fig. 9 shows the tempera-
ture evolution for both schedules. OLDTFS evenly distributes the execution and idle
time of the CPUs over the scheduling points, keeping temperature under the 90◦C
bound. In contrast, DP-Fair runs all the tasks as soon as possible during the schedul-
ing points, with accrued idle time at the end of each scheduled point, which leads to a
temperature violation. The number of context switches and migrations in DP-Fair is
much lower than in OLDTFS nonetheless.

7.4. Thermal-aware Opportunistic DP-Fair
Fig. 10 compares the temperature variations yielded by OLDTFS with a small quan-
tum and by the thermal-aware opportunistic DP-Fair presented in Sec. 6.5. The tem-
perature bound is set to Tmax = 100oC for a set of task T = {τ1, τ2, τ3}, where τ1 =
(2×109, 4, 4, 9.6), τ2 = (5×109, 8, 8, 9.6), τ3 = (6×109, 12, 12, 9.6), and P = {CPU1, CPU2}.
The hyperperiod is H = 24 and the CPU utilization is U = 1.62. Both algorithms meet
the thermal constraint, but OLDTFS reaches a lower temperature.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 9: Temperature evolution in both CPUs for the example in Sec. 7.3. DP-Fair pro-
duce a temporal feasible schedule, but unlike OLDTFS it violates the thermal bound.

Fig. 10: Temperature evolution for the example in Sect. 7.4 by applying the OLDTFS
and the opportunist DP-Fair algorithm, wich is a blend of the DP-Fair algorithm and
the proposed fluid schedules functions. Both algorithms produce a thermal and tempo-
ral feasible schedule, but context switches are higher in OLDTFS.

7.5. Disturbance recovering with OLDTFS
The feedback controller embedded in the scheduler can recover the system from dis-
turbances such as CPU detentions due to hazardous environmental conditions, energy
interruptions and others, as we discussed when describing the overall structure and
operation of the scheduler (Sec. 6.4, Fig. 5 box B). As a proof of concept, we consider
three tasks T = {τ1, τ2, τ3}, where τ1 = (2 × 109, 4, 4, 6.4), τ2 = (5 × 109, 8, 8, 8), τ3 =
(6× 109, 12, 12, 9.6) running on two processors. A disturbance causes CPU1 to halt dur-
ing the time interval [5, 7], resuming task execution in ζ > 7. Fig. 11 represents the task
execution according to our scheduler (Fig. 5). The three plots on the left correspond to
the allocation of the three tasks on CPU1. During the time interval [5, 7], mexec

1,i (ζ) (S3)
is unable to track the fluid schedule (1FSCi(ζ), S3), and appears constant (flat) in
the plot. When ζ > 7, the controller starts increasing the task execution rate (with-
out never exceeding a 100% CPU utilization): mexec

1,i (ζ) increases continuously and the
discretized schedule (Mexec

1,i (ζ), red dots) follows up on a quantum basis.

8. CONCLUSIONS
We have presented a global on-line fluid scheduler that meets both thermal and RT
constraints, resorting to a feedback control technique, which offers a number of ad-
vantages. First, we can track state variables by leveraging an underlying TCPN that
models a HRT set of tasks with implicit deadlines, along with the features of the CPUs
in a MPSoC, encompassing power consumption, thermal and HRT behavior. The mod-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

time (sec)

0 10 20 30T
a
s
k

e
x
e
c
u
ti
o
n

0

5

(1,1)
M

i,j
exec(�) m

i,j
exec(�)

time (sec)

0 10 20 30T
a
s
k
 e

x
e
c
u
ti
o
n

0

5

10

(1,2)

time (sec)

0 10 20 30T
a
s
k

e
x
e
c
u
ti
o
n

0

5

(1,3)

time (sec)

0 10 20 30T
a
s
k
 e

x
e
c
u
ti
o
n

0

5

(2,1)

time (sec)

0 10 20 30T
a
s
k
 e

x
e
c
u
ti
o
n

0

5

10

(2,2)

time (sec)

0 10 20 30T
a
s
k
 e

x
e
c
u
ti
o
n

0

5

(2,3)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

M
i,j
exec(�)

u
ti
o
n

m
i,j
exec(�)

(

Fig. 11: Task execution of the example presented in Sec. 7.5. A disturbance is intro-
duced during 5-7 s, when the CPU1 stops task execution due to an external and un-
controllable interruption. Note that when the interruption is released, CPU1 increases
task execution by using the idle spaces; when the fluid schedule function is reached (its
reference), then the CPU1 continues with its normal task execution.

eling methodology is automated by a software application. The thermal schedule fea-
sibility is proved by a LPP that captures HRT and thermal requirements as linear
constraints. If there exists a feasible solution, then the LPP solution represents the
correct execution of tasks as a continuous linear functions over time (fluid schedule
functions), honoring thermal constraints. Then, the fluid scheduler is discretized al-
lowing control on context switching and migrations. Second, the feedback controller
that implements the proposed global scheduler allows the system to recover from dis-
turbances such as CPU detentions due to environmental hazards causing energy in-
terruptions or thermal peaks. Last, the number of scheduling points can be tuned to
react to thermal changes accurately. When it comes to discretize the fluid schedule,
deadline partitioning is a good start, and we present a thermal-aware opportunistic
DP-Fair which can solve the problem as long as the system can support wide temper-
ature variations, always under the limit. However, time slices in DP-Fair can be too
long for a more accurate thermal control. Introducing a quantum in the implemen-
tation algorithm, calculated as the greatest common divisor of the set of deadlines,
provides a way of properly tracking temperature, upon the reference set by a deadline
partitioning scheme.

Future work includes frequency control to reduce the MPSoC power consumption
in thermal-aware schedulers, further heuristics to minimize the number of migrations
and context switches, and implementing the proposed scheduler in a RT kernel. Other
feedback control characteristics are to be exploited yet, to include aperiodic tasks and
slight variations in task parameters.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Acknowledgements
This work was supported by grants TIN2016-76635-C2-1-R (AEI/ERDF, EU), Aragón
Government (T58 17R research group) and ERDF 2014-2020 Construyendo Europa
desde Aragon.

REFERENCES
Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. 2016. Necessary and Sufficient Condi-

tions for Thermal Schedulability of Periodic Real-Time Tasks Under Fluid Scheduling Model. ACM
Transactions on Embedded Computing Systems (TECS) 15, 3 (2016), 49.

James H Anderson and Anand Srinivasan. 2001. Mixed Pfair/ERfair scheduling of asynchronous periodic
tasks. In Real-Time Systems, 13th Euromicro Conference on, 2001. IEEE, 76–85.

ASHRAE. 2012. Thermal guidelines for data Processing Environments. ASHRAE Datacom Series.
Theodore P Baker. 2005. A comparison of global and partitioned EDF schedulability tests for multiproces-

sors. In In International Conf. on Real-Time and Network Systems. Citeseer.
S. Baruah, M. Bertogna, and G. Butazzo. 2015. Multiprocessor Scheduling for Real-Time Systems. Springer-

Verlag New York, Inc., Secaucus, NJ, USA.
Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel. 1996. Proportionate progress: A

notion of fairness in resource allocation. Algorithmica 15, 6 (1996), 600–625.
Sanjoy K Baruah, Johannes E Gehrke, and C Greg Plaxton. 1995. Fast scheduling of periodic tasks on

multiple resources. In ipps. IEEE, 280.
Mulugeta K Berhe. 2007. Ergonomic Temperature Limits for Handheld Electronic Devices. In ASME 2007

InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Sum-
mer Conference. ASME.

Enrico Bini and Giorgio C Buttazzo. 2005. Measuring the performance of schedulability tests. Real-Time
Systems 30, 1-2 (2005), 129–154.

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. 2017. Semi-Partitioned Scheduling of Dynamic
Real-Time Workload: A Practical Approach Based on Analysis-Driven Load Balancing. In 29th Euromi-
cro Conference on Real-Time Systems (ECRTS 2017) (Leibniz International Proceedings in Informatics
(LIPIcs)), Marko Bertogna (Ed.), Vol. 76. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 13:1–13:23. DOI:http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.13

Abhishek Chandra, Micah Adler, and Prashant Shenoy. 2001. Deadline fair scheduling: bridging the theory
and practice of proportionate pair scheduling in multiprocessor systems. In Real-Time Technology and
Applications Symposium, 2001. Proceedings. Seventh IEEE. IEEE, 3–14.

Thidapat Chantem, X. Sharon Hu, and Robert P. Dick. 2011. Temperature-Aware Scheduling and Assign-
ment for Hard Real-Time Applications on MPSOCS. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 19, 10 (Oct 2011), 1884–1897.

R. David and H. Alla. 2008. Discrete, Continuous and Hybrid Petri Nets (David, R. and Alla, H.; 2004).
Control Systems, IEEE 28, 3 (June 2008), 81–84.

Robert I Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems.
ACM computing surveys (CSUR) 43, 4 (2011), 35.

G. Desirena, L. Rubio, A. Ramirez, and J.L. Briz. 2019. Thermal-Aware HRT Scheduling simula-
tion framework. (2019). https://www.gdl.cinvestav.mx/art/uploads/TCPN-Thermal-Aware\ Real-Time\
Scheduling.zip

Gaddiel Desirena-Lopez, José Luis Briz, Carlos Renato Vázquez, Antonio Ramı́rez-Treviño, and David
Gómez-Gutiérrez. 2016. On-line Scheduling in Multiprocessor Systems based on continuous control us-
ing Timed Continuous Petri Nets. In 13th International Workshop on Discrete Event Systems. 278–283.

Gaddiel Desirena-Lopez, Carlos Renato Vázquez, Antonio Ramı́rez-Treviño, and David Gómez-Gutiérrez.
2014. Thermal modelling for Temperature Control in MPSoC’s Using Fluid Petri Nets. In IEEE Confer-
ence on Control Applications part of Multi-conference on Systems and Control.

James Donald and Margaret Martonosi. 2006. Techniques for multicore thermal management: Classification
and new exploration. In ACM SIGARCH Computer Architecture News, Vol. 34. IEEE Computer Society,
78–88.

Xing Fu, Xiaorui Wang, and Eric Puster. 2009. Dynamic thermal and timeliness guarantees for distributed
real-time embedded systems. In 2009 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications. IEEE, 403–412.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xenofon D Koutsoukos, and Hongan Wang.
2010. Feedback thermal control for real-time systems. In 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 111–120.

Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D Koutsoukos. 2012. Feedback thermal control
of real-time systems on multicore processors. In Proceedings of the tenth ACM international conference
on Embedded software. ACM, 113–122.

Hassan K Khalil and JW Grizzle. 1996. Nonlinear systems. Vol. 3. Prentice hall New Jersey.
Joonho Kong, Sung Woo Chung, and Kevin Skadron. 2014. Recent thermal management techniques for

microprocessors. Comput. Surveys 44, 3 (2014), 13:1–13:42.
Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multiprogramming in a hard-

real-time environment. Journal of the ACM (JACM) 20, 1 (1973), 46–61.
Yongpan Liu, Robert P Dick, Li Shang, and Huazhong Yang. 2007. Accurate temperature-dependent inte-

grated circuit leakage power estimation is easy. In Proceedings of the conference on Design, automation
and test in Europe. EDA Consortium, 1526–1531.

Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd, Luca Benini, and Gio-
vanni De Micheli. 2008. Temperature Control of High-Performance Multi-core Platforms Using Convex
Optimization. In Design, Automation and Test in Europe. 110–115.

Geoffrey Nelissen, Vandy Berten, Jöel Goossens, and Dragomir Milojevic. 2011. Reducing Preemptions and
Migrations in Real-Time Multiprocessor Scheduling Algorithms by Releasing the Fairness. 1 (Aug 2011),
15–24.

Bing Shi, Yufu Zhang, and Ankur Srivastava. 2010. Dynamic thermal management for single and multi-
core processors under soft thermal constraints. In Proceedings of the 16th ACM/IEEE international
symposium on Low power electronics and design. ACM, 165–170.

Manuel Silva, Jorge Júlvez, Cristian Mahulea, and Carlos Renato Vázquez. 2011. On fluidization of discrete
event models: observation and control of continuous Petri nets. Discrete Event Dynamic Systems 21, 4
(2011), 427–497.

Kevin Skadron, Mircea Stan, and Wei Huang. 2010. Thermal Modeling for Processors and Systems-on-Chip.
In Processor and System-on-Chip Simulation. Springer, 243–257.

Vadim Utkin, Jürgen Guldner, and Jingxin Shi. 2009. Sliding mode control in electro-mechanical systems.
Vol. 34. CRC press.

Carlos Renato Vázquez, Antonio Ramı́rez, and Manuel Silva. 2014. Controllability of timed continuous Petri
nets with uncontrollable transitions. Internat. J. Control 87, 3 (2014), 537–552.

Francesco Zanini, David Atienza, and Giovanni De Micheli. 2009. A control theory approach for thermal
balancing of MPSoC. In 2009 Asia and South Pacific Design Automation Conference. IEEE, 37–42.

Dakai Zhu, Daniel Mossé, and Rami Melhem. 2003. Multiple-resource periodic scheduling problem: how
much fairness is necessary?. In Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE. IEEE,
142–151.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

