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Abstract

We algorithmize the structural characterization for claw-free graphs by Chudnovsky and
Seymour. Building on this result, we show that Dominating Set on claw-free graphs is (i)
fixed-parameter tractable and (ii) even possesses a polynomial kernel. To complement these
results, we establish that Dominating Set is unlikely to be fixed-parameter tractable on the
slightly larger class of graphs that exclude K1,4 as an induced subgraph (K1,4-free graphs).
We show that our algorithmization can also be used to show that the related Connected
Dominating Set problem is fixed-parameter tractable on claw-free graphs. To complement
that result, we show that Connected Dominating Set is unlikely to have a polynomial
kernel on claw-free graphs and is unlikely to be fixed-parameter tractable on K1,4-free graphs.
Combined, our results provide a dichotomy for Dominating Set and Connected Dominat-
ing Set on K1,`-free graphs and show that the problem is fixed-parameter tractable if and
only if ` ≤ 3.

1 Introduction

(Connected) Dominating Set is the problem to determine whether a given graph G has a
(connected) dominating set of size at most k. A subset D ⊆ V (G) is a dominating set if every ver-
tex in G is either contained in D or adjacent to some vertex in D, and D is a connected dominating
set if D is a dominating set and G[D] (the graph induced by D) is connected. Dominating sets
play a prominent role in both algorithmics and combinatorics (see e.g. [46, 47]). Since the (Con-
nected) Dominating Set problem is hard in its decision [54, 41], approximation [34, 43], and
parameterized versions [26], research has focused on finding graph classes for which the problem
becomes tractable.

In this paper, we focus on the class of claw-free graphs. A graph is claw-free if no vertex
has three pairwise nonadjacent neighbors, i.e. if it does not contain K1,3 as an induced subgraph.
The class of claw-free graphs contains several well-studied graph classes, including line graphs,
unit interval graphs, complements of triangle-free graphs, and graphs of several polyhedra and
polytopes. Throughout the years, this graph class attracted much interest, and is by now the
subject of hundreds of mathematical research papers; for an overview we refer to the survey by
Faudree et al. [33].

In the context of algorithms, most research on claw-free graphs has focussed on the Indepen-
dent Set problem. Building on Edmond’s classical polynomial-time algorithm [29] for Inde-
pendent Set on line graphs (better known as Matching), Sbihi [77] and Minty [67] (the latter
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corrected by Nakamura and Tamura [70]) already gave polynomial-time algorithms for Indepen-
dent Set on claw-free graphs over 30 years ago. Recently, significantly faster algorithms have
been discovered that follow a similar approach [31, 72].

In contrast to the Independent Set problem, however, Dominating Set is NP-complete on
claw-free graphs. In fact, Dominating Set is NP-complete even on line graphs [82]. Nevertheless,
Fernau [36] recently showed that Dominating Set on line graphs (also known as Edge Domi-
nating Set) has an f(k) ·nO(1) time algorithm, where k is the size of the solution, meaning that
this problem is fixed-parameter tractable (see e.g. [19, 27, 28, 38]). Moreover, Fernau [36] showed
that any instance of Dominating Set on line graphs can be reduced in polynomial time to have
O(k2) vertices, which implies that the problem admits a polynomial kernel (see e.g. [19, 27, 28, 38]).
Both results were recently slightly improved [81, 52]. It has been left an open question, however,
whether such algorithms also exist for Dominating Set on claw-free graphs.

In a wider picture, claw-free graphs are a member of the more general family of graphs that
exclude K1,` as an induced subgraph for ` ∈ N, i.e. `-claw-free graphs. These graphs generalize
many important classes of geometric intersection graphs; for example, unit square graphs are
K1,5-free, and unit disk graphs are K1,6-free. Marx showed that Dominating Set is W[1]-
hard on unit square graphs when parameterized by the solution size k, implying it is W[1]-hard
on K1,5-free graphs [66], which makes it unlikely that the problem is fixed-parameter tractable
(see e.g. [19, 27, 28, 38]). However, the problem becomes trivial on K1,2-free graphs, since these
graphs are just disjoint unions of cliques. Hence, the computational and parameterized complexity
of Dominating Set has been left open on K1,3-free (claw-free) and K1,4-free graphs.

In this paper, we resolve the question whether Dominating Set is fixed-parameter tractable on
K1,3-free and/or K1,4-free graphs. We answer this same question also for the related Connected
Dominating Set problem. Additionally, we determine the `-claw-free graphs on which these
problems admit a polynomial kernel. These results combined completely settle the parameterized
complexity of both problems on `-claw-free graphs.

Our Results. In the first part of the paper, we present our main contribution: an algorith-
mic version of a recent, highly nontrivial structural decomposition theorem for claw-free graphs
by Chudnovsky and Seymour. This decomposition shows that every claw-free graph can be
built by applying certain gluing operations to certain atomic structures. The proof that such
a decomposition exists is contained in a sequence of seven papers by Chudnovsky and Sey-
mour [10, 11, 12, 13, 14, 15, 16]; an accessible summary of the proof can be found in the an-
nouncement of their results [9]. The original proof of their decomposition theorem, however, does
not directly imply an algorithm to find the decomposition.

In order to obtain our algorithmic decomposition theorem for claw-free graphs, we first develop
polynomial-time algorithms that undo the aforementioned gluing operations (Sect. 3). These
algorithms could be of independent interest, as the structures that these algorithms find are not
specific to claw-free graphs. Then, we develop polynomial-time algorithms that recognize several
of the atomic structures that make up claw-free graphs (Sect. 4). Finally, we make several changes
to the proof of the original decomposition theorem by Chudnovsky and Seymour that simplify it
and make it easier to algorithmize (Sect. 5). Finally, we put all these pieces together to give an
algorithmic decomposition theorem for claw-free graphs that runs in O(n2m3/2) time (Sect. 6).

The structural result for claw-free graphs that is implied by our algorithmic decomposition
theorem is inspired by a claim of Chudnovsky and Seymour [9, Claim 3.1] in the announcement
of their structural result for claw-free graphs. However, as far as we are aware, this claim is not
explicitly proved in their final work [10, 11, 12, 13, 14, 15, 16]. Our algorithmic decomposition
theorem can be seen as a variant or an interpretation of [9, Claim 3.1] with the hindsight of
knowing the final work of Chudnovsky and Seymour, as well as an explicit proof and an algorithm
to actually find the decomposition.

In the second part of the paper, we apply our algorithmic decomposition theorem for claw-free
graphs to establish the following:
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• Dominating Set on claw-free graphs is fixed-parameter tractable when parameterized by
the solution size. To be precise, we show that we can decide the existence of a dominating
set of size at most k in 9k ·O(n5) time when the graph is claw-free (Sect. 7).

• Connected Dominating Set on claw-free graphs is fixed-parameter tractable when pa-
rameterized by the solution size. To be precise, we show that we can decide the existence of
a connected dominating set of size at most k in 36k · nO(1) time when the graph is claw-free
(Sect. 8). This resolves an open question by Misra et al. [68].

• Dominating Set on claw-free graphs has a polynomial kernel when parameterized by the
solution size. To be precise, we show that given a claw-free graph G and an integer k, we
can output a graph G′ with O(k3) vertices and an integer k′ such that G has a dominating
set of size k if and only if G′ has a dominating set of size k′; the presented algorithm runs
in O(n5) time (Sect. 9).

In the third part of the paper (Sect. 10), we complement the above results and show that:

• Dominating Set and Connected Dominating Set are W[1]-hard on K1,4-free graphs.

• Connected Dominating Set has no polynomial kernel on claw-free graphs (even on line
graphs), unless the polynomial hierarchy collapses to the third level.

• Dominating Set and Connected Dominating Set on claw-free graphs (even on line
graphs) cannot have an algorithm that runs in 2o(k)nO(1) time, where k is the size of the
solution, unless the Exponential Time Hypothesis fails.

• The weighted variants of Dominating Set and Connected Dominating Set are W[1]-
hard on claw-free graphs (even on cobipartite graphs).

Combined, this sequence of results completely determines the computational and parameterized
complexity of Dominating Set and Connected Dominating Set in K1,`-free graphs for all `.

Further Applications and Outlook. Since the publication of the extended abstract of our
paper, several results have appeared that apply our algorithmic decomposition for claw-free graphs
to other problems. Martin et al. [64, 65] showed that the Disconnected Cut problem (find a
vertex cut that itself induces at least two connected components) is polynomial-time solvable
on claw-free graphs. Golovach et al. [42] showed that the Induced Disjoint Paths problem
(find disjoint and ‘nonadjacent’ paths between each of k given pairs of terminal vertices) is fixed-
parameter tractable on claw-free graphs. Hermelin et al. [48] showed that a generalization of
Independent Set called Induced H-Matching (find k independent copies of a fixed graph H
in a given graph) is fixed-parameter tractable and has a polynomial kernel on claw-free graphs.
Both results rely heavily on the algorithmic decomposition theorem for claw-free graphs that
we develop in this paper. In fact, the latter paper presents a stronger version of the algorithmic
decomposition theorem than we present here; that version, however, would not be possible without
the structural results and fundamental algorithms that we develop in Sect. 3 and 5 of this paper.

The basic idea behind all three application of our technique ((Connected) Dominating
Set in this paper, and Induced Disjoint Paths and Induced H-Matching in follow-up
work [42, 48]) builds upon the constructs and notions that we develop in this paper. However,
significant technical effort is needed to tailor the decomposition theorem and the way we apply it
to the problem at hand. We believe, however, that using the algorithmic techniques developed in
this paper there is a strong potential to develop algorithms for many other problems on claw-free
graphs.
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Related Work. Since the announcement of the Chudnovsky-Seymour decomposition theorem
for claw-free graphs, several results appeared that use it to attack problems on the class of claw-
free graphs, and particularly on a subclass called quasi-line graphs (see e.g. [17, 7, 39]). However,
most of these results are structural and give no algorithms to find the decomposition.

Recently and independent of our work, two papers appeared that find an algorithmic decom-
position theorem for claw-free graphs. First, the decomposition theorem obtained by King and
Reed [55, 57] is based on the work of Chudnovsky and Seymour and has subtle differences when
compared to ours, but his algorithmic methods are completely different. Intuitively, King and
Reed find the individual parts (strips) of the decomposition by considering the local structure
around 5-wheels, while we find the structures (joins) that hold the different parts together and
only then recognize the parts. Since the joins are central to the decomposition by Chudnovsky
and Seymour, we think that our approach is more flexible. Moreover, the approach by King and
Reed is heavily geared towards an application to the coloring problem and therefore does not need
to identify several parts in their full generality.

Second, the decomposition theorem obtained by Faenza et al. [31] is not based on the proof
of the decomposition theorem by Chudnovsky and Seymour, and thus is substantially different
compared to ours. Faenza et al. use their decomposition to obtain a faster polynomial-time
algorithm for Weighted Independent Set on claw-free graphs (recently improved by Nobili and
Sassano [72]). Although their decomposition can potentially be used to show that Dominating
Set on claw-free graphs is fixed-parameter tractable [78], it is not clear whether a polynomial
kernel would follow as well. Conversely, the ideas behind our work can be adapted to give a
polynomial-time algorithm for Weighted Independent Set on claw-free graphs, albeit with a
worse run time than the algorithms by Faenza et al. and Nobili and Sassano.

A recent paper by Cygan et al. [20] also proves that Dominating Set is fixed-parameter
tractable on claw-free graphs. Their algorithm does not use the decomposition theorem by Chud-
novsky and Seymour, and runs in time 2O(k2) · nO(1), compared to our 9k · nO(1)-time algorithm.
Moreover, their methods do not extend to a polynomial kernel. Cygan et al. [20] also show that
Dominating Set and Connected Dominating Set are W[2]-complete on K1,4-free graphs,
compared to our (slightly weaker) W[1]-hardness results.

From the perspective of approximation algorithms, it is known that Dominating Set has a
polynomial-time (`− 1)-approximation algorithm on `-claw-free graphs, and Connected Domi-
nating Set has a polynomial-time 2(`− 1)-approximation algorithm [63]. These approximation
factors, however, are not known to be tight [6].

Finally, it is important to note that in our paper we exclude K1,` as an induced subgraph, and
not as a subgraph. In the latter case, Dominating Set is already known to be fixed-parameter
tractable [74].

Part I – Algorithmic Decomposition Theorem for Claw-Free
Graphs

2 Definitions

The definitions given in this section are the same as those by Chudnovsky and Seymour [14]. Al-
though the reader could find them there, in order to be self-contained, we repeat those definitions
that we need for our algorithmic structure theorem. Moreover, we sometimes need additional
properties that can be somewhat hidden in Chudnovsky and Seymour [14], and it will be conve-
nient to highlight them here explicitly. We also highlight the most important definitions for our
algorithmic structure theorem in explicit definitions.
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2.1 Trigraphs and Basic Definitions

In this paper, we work with a generalization of the notion of a graph, called a trigraph. Roughly
speaking, a trigraph is a graph with a distinguished subset of edges that are called semi-edges and
that form a matching in the graph. Intuitively, semi-edges capture the idea of ‘fuzzy’ edges in the
graph that are both there and not there at the same time. This intuition will become more clear
later, when we consider the notion of a thickening.

Definition 2.1 (Trigraph) A trigraph G has a finite set of vertices V (G) and an adjacency
function φG : V (G)× V (G)→ {−1, 0, 1}, such that

• φG(v, v) = 0 for all v ∈ V (G),

• φG(u, v) = φG(v, u) for all u, v ∈ V (G),

• at most one of φG(u, v), φG(u,w) = 0 for all distinct u, v, w ∈ V (G).

The pairs u, v ∈ V (G) with u 6= v for which φG(u, v) ∈ {1,−1} are the regular edges and nonedges,
respectively, whereas those for which φG(u, v) = 0 constitute the semi-edges. Observe that, by
definition, the set of semi-edges is indeed a matching. We also note that a trigraph without semi-
edges is just a normal graph. Conversely, given a graph G′, it can be regarded as a trigraph G by
setting V (G) = V (G′) and φG(u, v) = 1 if u, v are adjacent in G′ and φG(u, v) = −1 otherwise.

At first sight, it would appear that trigraphs only form a distraction and complicate our graph-
theoretic framework. However, it turns out that trigraphs make it much easier to describe claw-free
graphs, and in particular, the decomposition theorems for them.

We now extend some classical notions of graph theory (such as adjacency) to trigraphs. In a
trigraph G with adjacency function φG, we say that distinct u, v ∈ V (G) are strongly adjacent
if φG(u, v) = 1, semiadjacent if φG(u, v) = 0, and strongly antiadjacent if φG(u, v) = −1. We
then say that u, v are adjacent if u, v are either strongly adjacent or semiadjacent, and u, v are
antiadjacent if u, v are either strongly antiadjacent or semiadjacent. Moreover, a vertex u is a
neighbor of a vertex v if u, v are adjacent and u, v are strong neighbors if u and v are strongly
adjacent. The notions of antineighbor and strong antineighbor are similarly defined. We denote by
N(v) the set of neighbors of a vertex v and define N [v] = N(v) ∪ {v} as the closed neighborhood
of v. Similarly, we define N(X) = {v | v ∈ N(x) \X,x ∈ X} and N [X] = N(X) ∪X.

Given disjoint sets A,B ⊆ V (G), we say that A is complete to B or B-complete if every vertex of
A is adjacent to every vertex of B. We say that A is strongly complete to B or strongly B-complete
if every vertex of A is strongly adjacent to every vertex of B. If we say that a ∈ V (G) is (strongly)
complete to B, we mean that {a} is (strongly) complete to B. The notions of anticomplete and
strongly anticomplete are defined similarly.

A set C ⊆ V (G) is a clique if every pair of vertices of C is adjacent, and a strong clique if
every pair of vertices of C is strongly adjacent. A vertex v of a trigraph is simplicial if N [v] is a
clique, and strongly simplicial if N [v] is a strong clique.

Definition 2.2 (Stable set, α(G)) A set I ⊆ V (G) is stable or independent if every pair of
vertices of I is antiadjacent, and strongly stable or strongly independent if every pair of vertices
of I is strongly antiadjacent. Let α(G) denote the size of a largest subset of V (G) that is stable.
Sometimes, α(G) will be called the stability number or independence number of G.

The following notion of a thickening is crucial to turn semi-edges into ‘normal edges’. See also
Fig. 1.

Definition 2.3 (Thickening) A trigraph G is a thickening of a trigraph G′ if there is a set
W = {Wv ⊆ V (G) | v ∈ V (G′)} such that each set Wv is nonempty, such that

• Wu ∩Wv = ∅ for all distinct u, v ∈ V (G′) and
⋃

v∈V (G′)Wv = V (G),

• Wv is a strong clique in G for each v ∈ V (G′),
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Figure 1: The left panel shows a trigraph G′. Here the dotted line represents a semi-edge, the
thick lines represent edges, and no line between two vertices represents a nonedge. The right panel
shows a graph G that is a thickening W of G′. Observe that since b is strongly adjacent to a, all
vertices of Wb are adjacent to all vertices of Wa. Moreover, since b is strongly antiadjacent to d,
all vertices of Wb are antiadjacent to all vertices of Wd. Finally, since b is semiadjacent to c, Wb

is neither complete nor anticomplete to Wc. Note that (Wb,Wc) is a W-join in G; in fact, it is a
proper W-join. The sets Wa,Wd,We each form a homogeneous clique or twin set in G.

• if u, v are strongly adjacent in G′, then Wu is strongly complete to Wv in G,

• if u, v are strongly antiadjacent in G′, then Wu is strongly anticomplete to Wv in G,

• if u, v are semiadjacent in G′, then Wu is neither strongly complete nor strongly anticomplete
to Wv in G.

We sometimes talk about the thickening W of G′ to G.

Note that a trigraph is always a thickening of itself. Also note that if G is a thickening of G′ and
G′ is a thickening of G′′, then G is also a thickening of G′′. Finally, note that if a graph G is a
thickening of trigraph G′ and u, v are semiadjacent in G′, then |Wu|+ |Wv| ≥ 3.

For any X ⊆ V (G), G[X] is the trigraph induced by X, which is the trigraph with vertex set
X and adjacency determined by the restriction of φG to X × X. We say that H is an induced
subtrigraph of G if H is isomorphic to G[X] for some X ⊆ V (G). We define G\X = G[V (G)\X].
Isomorphism between trigraphs is defined as expected.

Definition 2.4 (claw, claw-free) A claw is a trigraph with four vertices a, b, c, d, such that
{b, c, d} is stable and complete to a. Then a is the center of the claw. If no induced subtrigraph
of a trigraph G is isomorphic to a claw, then G is claw-free.

2.2 Twins and Joins

In this subsection, we describe the basic graph structures used in the decomposition theorem of
claw-free (tri)graphs. Later, in Sect. 3, we will describe algorithms to actually find these structures
in a graph.

Throughout this section, let G be a trigraph. A strong clique X of G is homogeneous if every
vertex in G \X is either strongly complete or strongly anticomplete to X. This is equivalent to
requiring that for x, x′ ∈ X, x and x′ have the same closed neighborhoods and all their neighbors
are strong neighbors.

Definition 2.5 (twins) A homogeneous strong clique is sometimes also called a twin set. Then
G admits twins if G has a homogeneous strong clique of size 2.

See also Fig. 1.
A pair of strong cliques (A,B) is homogeneous if every vertex v ∈ V (G) \ (A ∪ B) is either

strongly complete or strongly anticomplete to A, and is either strongly complete or strongly
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Figure 2: The left panel shows a graph that admits a (pseudo-)1-join. The sets A1, A2 that
define the (pseudo-)1-join are highlighted in dark green and dark red respectively. The sets V1, V2
are green and red respectively. The middle panel shows a graph that admits a (pseudo-)2-join.
The sets A1, A2, B1, B2 that define the (pseudo-)2-join are highlighted in dark green and dark
red respectively. The sets V1, V2 are green and red respectively. The right panel shows a graph
that admits a generalized 2-join and a pseudo-2-join. The sets A1, A2, B1, B2 that define the
generalized 2-join and pseudo-2-join are highlighted in dark green and dark red respectively. The
sets V0, V1, V2 are purple, green, and red respectively.

anticomplete to B. In other words, the set V (G) \ (A ∪ B) can be partitioned into four sets:
those vertices strongly adjacent to A and strongly antiadjacent to B, those strongly adjacent to
B and strongly antiadjacent to A, those strongly adjacent to both A and B, and those strongly
antiadjacent to both A and B. Observe that if G is a graph and V (G) \ (A ∪B) = ∅, then G is a
cobipartite graph (i.e. the complement of a bipartite graph).

Definition 2.6 ((proper) W-join) A homogeneous pair of cliques (A,B) is a W-join if A is
neither strongly complete nor strongly anticomplete to B, and A or B has size at least 2. A
W-join is proper if no member of A is strongly complete or strongly anticomplete to B and no
member of B is strongly complete or strongly anticomplete to A.

It is important to observe that if a trigraph G is a thickening of a trigraph G′ with {Wv | v ∈
V (G′)} and |Wv| > 1 for some v ∈ V (G′), then Wv is a twin set if v is not semiadjacent to any
vertex of G′, and (Wu,Wv) is a W-join if v is semiadjacent to a vertex u ∈ V (G′). The latter
observation follows from the fact that the semi-edges form a matching in G′. See also Fig. 1.

A partition (V1, V2) of V (G) is a 0-join if V1 is strongly anticomplete to V2 and V1, V2 6= ∅. If
G does not admit a 0-join, then G is called connected. Observe that if G is a graph rather than a
trigraph, then this corresponds to the standard notion of connectedness.

A partition (V1, V2) of V (G) is a 1-join if there are sets A1 ⊆ V1, A2 ⊆ V2 such that

• A1 ∪A2 is a strong clique,

• V1 \A1 is strongly anticomplete to V2, and V2 \A2 is strongly anticomplete to V1,

• Ai, Vi \Ai 6= ∅ for i = 1, 2.

A partition (V1, V2) of V (G) is a pseudo-1-join if there are sets A1 ⊆ V1, A2 ⊆ V2 such that

• A1 ∪A2 is a strong clique,

• V1 \A1 is strongly anticomplete to V2, and V2 \A2 is strongly anticomplete to V1,

• neither V1 nor V2 is a strong stable set.
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See the left panel of Fig. 2 for an example.
A trigraph admitting a 1-join and no 0-join admits a pseudo-1-join. We will denote (pseudo-)

1-joins either by the partition (V1, V2) of the vertices, or the ‘connecting subsets’ (A1, A2). Note
that V1, V2 can be easily determined if we just know A1, A2, and vice versa.

A partition (V0, V1, V2) of V (G) forms a generalized 2-join if for i = 1, 2 there are disjoint sets
Ai, Bi ⊆ Vi such that

• V0, V1, and V2 are pairwise strongly anticomplete, except that V0∪A1∪A2 and V0∪B1∪B2

form a strong clique,

• Ai, Bi, Vi \ (Ai ∪Bi) 6= ∅ for i = 1, 2.

If V0 = ∅, then we call it a 2-join.
A partition (V0, V1, V2) of V (G) forms a pseudo-2-join if for i = 1, 2 there are disjoint sets

Ai, Bi ⊆ Vi such that

• V0, V1, and V2 are pairwise strongly anticomplete, except that V0∪A1∪A2 and V0∪B1∪B2

form a strong clique,

• neither V1 nor V2 is a strong stable set.

See the middle and right panels of Fig. 2 for examples.
A graph admitting a (generalized) 2-join and no 0-join admits a pseudo-2-join. We will use both

the notation (V0, V1, V2) or (V1, V2) and the notation (A1, A2, B1, B2) for (generalized/pseudo-) 2-
joins.

A three-cliqued trigraph (G;A,B,C) consists of a trigraph G and three pairwise disjoint strong
cliques A,B,C in G such that V (G) = A ∪B ∪ C.

A hex-join of two three-cliqued trigraphs (G1;A1, B1, C1) and (G2;A2, B2, C2) is the three-
cliqued trigraph (G;A,B,C), where A = A1 ∪ A2, B = B1 ∪ B2, C = C1 ∪ C2, and G is the
trigraph with vertex set V (G) = V (G1) ∪ V (G2) and adjacency as follows:

• G[V (G1)] = G1 and G[V (G2)] = G2,

• A1 is strongly complete to V (G2) \ B2, B1 is strongly complete to V (G2) \ C2, and C1 is
strongly complete to V (G2) \A2,

• the pairs (A1, B2), (B1, C2), (C1, A2) are strongly anticomplete.

A trigraph G admits a hex-join if G has three strong cliques A,B,C such that (G;A,B,C) is a
three-cliqued trigraph expressible as a hex-join.

We often implicitly use the following important observation, which is immediate from the above
definitions.

Proposition 2.7 Let G be a trigraph that is a thickening of a trigraph G′. If G′ admits twins, a
(proper) W-join, a 0-join, a (pseudo-) 1-join, a (generalized/pseudo-) 2-join, or a hex-join, then
G admits twins, a (proper) W-join, a 0-join, a (pseudo-) 1-join, a (generalized/pseudo-) 2-join,
or a hex-join, respectively.

The following definition is crucial to the structure theorem of Chudnovsky and Seymour for
claw-free graphs. A trigraph G is indecomposable if G neither admits twins, nor a W-join, nor a
0-join, nor a 1-join, nor a generalized 2-join, nor a hex-join.

2.3 Strips and Stripes

The notions in this section are of central importance to our algorithmic structure theorem, as well
as to its applications.

Definition 2.8 (strip-graph) A strip-graph H consists of disjoint finite sets V (H) and E(H),
and an incidence relation between V (H) and E(H) (i.e. a subset of V (H)× E(H)).
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Given a strip-graph H, for any F ∈ E(H), let F denote the set of h ∈ V (H) incident with F .
Note that the definition of strip-graphs is close to the definition of hypergraphs, except that we
allow multiple edges and empty edges here.

Let G be a trigraph and let Y ⊆ V (G). Then a family (X1, . . . , Xk) of subsets of Y is a circus
in Y if

• for 1 ≤ i ≤ k and x ∈ Xi, the set of neighbors of x in Y \Xi is a strong clique,

• for 1 ≤ i < j ≤ k, Xi ∩Xj is strongly anticomplete to Y \ (Xi ∪Xj),

• for 1 ≤ h < i < j ≤ k, Xh ∩Xi ∩Xj = ∅.

Definition 2.9 (strip-structure) A strip-structure (H, η) of a trigraph G is a strip-graph H
with E(H) 6= ∅ and a function η that takes one or two parameters, an F ∈ E(H) or an F ∈ E(H)
and a h ∈ F , satisfying:

• η(F ) ⊆ V (G) and η(F, h) ⊆ η(F ) for each F ∈ E(H) and each h ∈ F .

• The sets η(F ) (F ∈ E(H)) are nonempty, pairwise disjoint, and have union V (G).

• For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with h ∈ F is a strong
clique of G.

• For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in G, then there
exists h ∈ F1 ∩ F2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).

• For each F ∈ E(H), the family η(F, h) (h ∈ F ) is a circus in η(F ).

To simplify notation, we define η(h) =
⋃

F |h∈F η(F, h) for all h ∈ V (H).

Definition 2.10 (strip) Let (H, η) be a strip-structure of a trigraph G and let F ∈ E(H), where
F = {h1, . . . , hk}. Let z1, . . . , zk be new vertices and let J be the trigraph obtained from G[η(F )] by
adding z1, . . . , zk, and for each i making zi strongly complete to η(F, hi) and strongly anticomplete
to J \ η(F, hi). Then (J, {z1, . . . , zk}) is the strip corresponding to F .

Note that Z = {z1, . . . , zk} is a strong stable set in J and that Z ∩ V (G) = ∅.
Observe that if G is claw-free, stating that the family η(F, h) (h ∈ F ) is a circus in η(F ) is

equivalent to stating that the strip corresponding to F is claw-free.

Definition 2.11 (spot, stripe) A strip (J, Z) is a spot if J consists of three vertices v, z1, z2
such that v is strongly adjacent to z1 and z2, and z1 is strongly antiadjacent to z2, and Z = {z1, z2}.

A strip (J, Z) is a stripe if J is a claw-free trigraph and Z ⊆ V (J) is a set of strongly simplicial
vertices, such that no vertex of V (J) \ Z is adjacent to more than one vertex of Z.

We say that a stripe (J, Z) is a thickening of a stripe (J ′, Z ′) if J is a thickening of J ′ with
sets Wv (v ∈ V (J ′)) such that |Wz| = 1 for each z ∈ Z ′ and Z =

⋃
z∈Z′ Wz.

The nullity of a strip-structure (H, η) is the number of pairs (F, h) with F ∈ E(H), h ∈ F ,
and η(F, h) = ∅.

Given a strip-structure (H, η) of a trigraph, we say that F ∈ E(H) is purified if either the sets
η(F, h) (h ∈ F ) are pairwise disjoint, or F = {h1, h2}, |η(F )| = 1, and η(F, h1) = η(F, h2) = η(F ).
A strip-structure (H, η) is purified if each F ∈ E(H) is purified.

Observe that saying that F ∈ E(H) is purified is equivalent to saying that the strip corre-
sponding to F is either a stripe or a spot.
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Z Z

Figure 3: This figure is inspired by [48, Fig. 1]. The left panel shows a claw-free graph G. A
strip-structure (H, η) has been marked in the panel. The middle panel shows the strip-graph H;
note that E(H) = {a, b, c, d, e, f} and that |b| = 1. The colored ellipses in the left panel show
η(F ) for each F ∈ E(H). The darker ellipses show the sets η(F, h) for each F ∈ E(H) and h ∈ F .
The right panel shows the two types of strips (J, Z): spots and stripes. The colored ellipses show
η(F ) = V (J) \ Z and the darker ellipses show η(F, h) for F ∈ E(H) and h ∈ F . Note that strips
a, b, and e in the left panel are spots; these always look as pictured. Conversely, strips c, d, and f
are stripes and might look different depending on η(F ); the stripe in the right panel corresponds
to f (the stripes corresponding to c and d are not pictured). From the picture, it is clear that the
set Z ⊆ V (J) is not part of G.

2.4 Special Trigraphs

In the definitions below, whenever adjacency between two vertices is not specified, they are strongly
antiadjacent. Moreover, if two vertices are said to be adjacent, they can be either strongly adjacent
or semiadjacent, unless otherwise specified. Similarly, if two vertices are said to be antiadjacent,
they can be either strongly antiadjacent or semiadjacent, unless otherwise specified.

A line trigraph G of some graph H is a trigraph where V (G) = E(H) and e, f ∈ E(H) are
adjacent in G if and only if e and f share an endpoint in H. Moreover, e, f are strongly adjacent
if e and f share an endpoint of degree at least three. The class of all line trigraphs is denoted S0.
If G is a graph (i.e. G has no semi-edges) and G is the line trigraph of some graph H, then we call
G the line graph of H, a classic notion in graph theory. In this case, we call H the pre-image of
G. Note that the line graph of a graph H is unique, while the pre-image of a line graph G might
not be unique (this happens only when G is a triangle, in which case the pre-image is either a
triangle or a claw).

The icosahedron is the (planar) graph G with V (G) = {v1, . . . , v12} such that

• for i = 1, . . . , 10, vi is adjacent to vi+1 and vi+2 (indices modulo 10),

• v11 is adjacent to v1, v3, v5, v7, v9,

• v12 is adjacent to v2, v4, v6, v8, v10.

This graph regarded as a trigraph is denoted by G0. Let G1 = G0 \ {v12}. Let G2 be obtained
from G1 \ {v10} by possibly making v1 semiadjacent to v4 or making v6 semiadjacent to v9. The
class of trigraphs denoted by S1 consists precisely of G0, G1, and the four possibilities for G2.

Definition 2.12 (XX-trigraph, S2) Let G be the trigraph with V (G) = {v1, . . . , v13} such that

• vi is adjacent to vi+1 for i = 1, . . . , 5 and v6 is adjacent to v1; also vi is antiadjacent to vj
for each i = 1, . . . , 4 and each i+ 2 ≤ j ≤ 6,

• v7 is strongly adjacent to v1 and v2,
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v1

v2 v3

v4

v5v6

v7
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v9 v10

Figure 4: A claw-free XX-trigraph with X = {v11, v12, v13} and where v7 and v8 are strongly
antiadjacent. A solid line illustrates strong adjacency and no line indicates strong antiadjacency.
Note that there are no semiadjacencies per Proposition 2.13.

• v8 is strongly adjacent to v4, v5, and possibly adjacent to v7,

• v9 is strongly adjacent to v1, v2, v3, and v6,

• v10 is strongly adjacent to v3, v4, v5, and v6, and adjacent to v9,

• v11 is strongly adjacent to v1, v3, v4, v6, v9, and v10,

• v12 is strongly adjacent to v2, v3, v5, v6, v9, and v10,

• v13 is strongly adjacent to v1, v2, v4, v5, v7, and v8.

Then G \ X for any X ⊆ {v7, v11, v12, v13} is an XX-trigraph. The class of all XX-trigraphs is
denoted S2.

See Fig. 4 for an example of a member of S2.

Proposition 2.13 Let G be the trigraph defined above on vertices v1, . . . , v13 and let X ⊆ {v11, v12, v13}.
If G is claw-free, then the (anti)adjacencies between v1, . . . , v6 are strong.

Proof: First, suppose that:

• v1 is semiadjacent to v3. Then v3 is strongly antiadjacent to v6 by the definition of a trigraph.
Hence, v1, v3, v6, v7 forms a claw with center v1, a contradiction.

• v1 is semiadjacent to v4. Then v1, v4, v8, v10 forms a claw with center v4, a contradiction.

• v1 is semiadjacent to v5. Then v1, v5, v8, v10 forms a claw with center v5, a contradiction.

• v2 is semiadjacent to v4. Then v2, v4, v8, v10 forms a claw with center v4, a contradiction.

• v2 is semiadjacent to v5. Then v2, v5, v8, v10 forms a claw with center v5, a contradiction.

• v2 is semiadjacent to v6. Then v3 is strongly antiadjacent to v6 by the definition of a trigraph.
Hence, v2, v3, v6, v7 is a claw with center v2, a contradiction.

• v3 is semiadjacent to v5. Then v3 is strongly antiadjacent to v6 by the definition of a trigraph.
Hence, v3, v5, v6, v8 is a claw with center v5, a contradiction.

• v3 is semiadjacent to v6. Then v6 is strongly antiadjacent to v2 and to v4 by the definition of
a trigraph. Moreover, we already established that v2 is strongly antiadjacent to v4. Hence,
v2, v3, v4, v6 is a claw with center v3, a contradiction.
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• v4 is semiadjacent to v6. Then v3 is strongly antiadjacent to v6 by the definition of a trigraph.
Hence, v3, v5, v6, v8 is a claw with center v4, a contradiction.

Now it remains to remark that Hermelin et al. [48, Proposition 1] already showed that vi is strongly
adjacent to vi+1 for i = 1, . . . , 5 and v6 is strongly adjacent to v1.

Consider the sphere S1 and a set I = {I1, . . . , I`} of subsets of S1, such that no distinct Ii, Ij
share an endpoint and no three members of I have union S1. Let P be a finite subset of S1 and
let G be the trigraph with V (G) = P such that distinct u, v ∈ P are adjacent in G if and only if
u, v ∈ Ii for some i = 1, . . . , `. Moreover, u, v are strongly adjacent if at least one of u, v is in the
interior of Ii. Call such trigraphs circular interval trigraphs and denote the class of all circular
interval trigraphs by S3.

Recall that the intersection graph G of a set F of subsets of some given universe is the graph
where each vertex corresponds to a set in F and there is an edge between two vertices if and only
if the corresponding sets of F intersect. If G is the intersection graph of F , then we call F a model
for G.

Definition 2.14 ((Proper) Circular-arc graph) A graph is a circular-arc graph if it is the
intersection graph of some set of arcs of the sphere S1. A graph is a proper circular-arc graph if
it is the intersection graph of some set of arcs of the sphere S1 such that no arc of the set properly
contains another.

Note that this definition allows arcs to be the same.

Proposition 2.15 Any circular interval trigraph without semi-edges is a proper circular-arc graph.

Proof: Let G be a circular interval trigraph that has no semiadjacent edges. Then, in fact, G is
a graph. Consider the sphere S1. Let I = {I1, . . . , I`} be subsets of S1 and P be a finite subset
of S1 such that P = V (G) and distinct u, v ∈ P are adjacent in G if and only if u, v ∈ Ii for some
i = 1, . . . , `. Note that any adjacency must in fact be strong adjacency, by assumption. Define
some orientation on S1 that we call clockwise. For each u ∈ P , let Iu denote the subset of S1 in I
that extends furthest clockwise from u on S1. Let I ′u denote the subset of Iu that comes clockwise
after u (including u itself). Consider the set I ′ = {I ′u | u ∈ P}. It is not hard to see that no arc
of I ′ contains another (possible after infinitesimal extensions of some arcs, i.e. of I ′v if Iu = Iv and
v comes after u), and that G is the intersection graph of I ′.

Although one can prove a converse of this proposition if one makes more assumptions on the arcs
of a proper circular-arc graph, this will not be relevant to this paper, and we thus omit it.

Let H be a graph with V (H) = {h1, . . . , h7} such that

• {h1, . . . , h5} is a cycle with vertices in this order,

• h6 is adjacent to at least three of h1, . . . , h5,

• h7 is adjacent to h6 and no other vertices,

• all adjacencies not specified so far can be arbitrary.

Let G be the graph obtained from the line graph of H by adding a new vertex adjacent to those
edges of E(H) not incident with h6, and then regarding it as a trigraph. If h4, h5 both have degree
two in H, possibly make the vertices of G corresponding to edges h3h4 and h1h5 semiadjacent.
The class of trigraphs containing precisely these trigraphs is denoted by S4.

Let G be a trigraph that is the disjoint union of three n-vertex strong cliques A = {a1, . . . , an},
B = {b1, . . . , bn}, and C = {c1, . . . , cn} for n ≥ 2 and five vertices {d1, . . . , d5} such that for some
X ⊆ A ∪B ∪ C with |X ∩A|, |X ∩B|, |X ∩ C| ≤ 1,

• for 1 ≤ i, j ≤ n, ai and bj are adjacent if and only if i = j, and ci is strongly adjacent to aj
if and only if i 6= j, and ci is strongly adjacent to bj if and only if i 6= j,
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• ai is semiadjacent to bi for at most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X,

• ai is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X,

• bi is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X,

• no two of A \X, B \X, C \X are strongly complete to each other,

• d1 is strongly complete to A ∪B ∪ C,

• d2 is strongly complete to A ∪B and adjacent to d1,

• d3 is strongly complete to A ∪ {d2},

• d4 is strongly complete to B ∪ {d2, d3},

• d5 is strongly adjacent to d3 and d4.

The class of all trigraphs G \X is denoted by S5.
The following trigraphs are called near-antiprismatic or antihat trigraphs. Let G be a trigraph

that is the disjoint union of three n-vertex strong cliques A = {a1, . . . , an}, B = {b1, . . . , bn},
and C = {c1, . . . , cn} for n ≥ 2 and two vertices a0, b0 such that for some X ⊆ A ∪ B ∪ C with
|C \X| ≥ 2,

• for 1 ≤ i, j ≤ n with i 6= j, ai is strongly antiadjacent to bj and ai and bi are strongly
adjacent to cj ,

• for 1 ≤ i ≤ n, ai and bi are adjacent, ci and ai are antiadjacent, ci and bi are antiadjacent.
All such pairs are strongly (anti)adjacent, except possibly

– ai is semiadjacent to bi for at most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X,

– ai is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X,

– bi is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X.

• a0 is strongly complete to A,

• b0 is strongly complete to B,

• a0 is antiadjacent to b0.

The class of all trigraphs G \X is denoted by S6.
A trigraph G is antiprismatic if for every X ⊆ V (G) with |X| = 4, X is not a claw, and at least

two pairs of vertices in X are strongly adjacent. The class of antiprismatic trigraphs is denoted
by S7.

The following is the main result from the work of Chudnovsky and Seymour on claw-free
graphs. Recall the definition of indecomposable trigraphs from page 8.

Theorem 2.16 (Chudnovsky and Seymour [13, 14]) Every indecomposable trigraph belongs
to S0 ∪ · · · ∪ S7.

2.5 Special Stripes

In the definitions below, whenever adjacency between two vertices is not specified, they are strongly
antiadjacent. Moreover, if two vertices are said to be adjacent, they can be either strongly adjacent
or semiadjacent, unless otherwise specified. Similarly, if two vertices are said to be antiadjacent,
they can be either strongly antiadjacent or semiadjacent, unless otherwise specified.

Consider a trigraph J with vertex set {v1, . . . , vn} with n ≥ 2 such that for 1 ≤ i < j < k ≤ n,
if vi and vk are adjacent in J , then vj is strongly adjacent to both vi and vk. This is a linear
interval trigraph.
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Definition 2.17 (proper interval graph) A graph is a proper interval graph if it is the inter-
section graph of a set of intervals of the real line, such that no interval of the set properly contains
another.

The following observation is implied by a result of Looges and Olariu [61, Proposition 1, Theorem 1]
(the “umbrella property”).

Proposition 2.18 Any linear interval trigraph without semi-edges is a proper interval graph.

Let J be a linear trigraph with vertex {v1, . . . , vn} as per the definition, let v1, vn be strongly
antiadjacent, let no vertex be adjacent to both v1 and vn, and let no vertex be semiadjacent to
either v1 or vn. Let Z = {v1, vn}. The class of all such stripes (J, Z) is denoted by Z1.

Let J ∈ S6, let a0, b0 be as in the definition of S6, with a0, b0 strongly antiadjacent, and let
Z = {a0, b0}. The class of all such stripes (J, Z) is denoted by Z2.

Let H be a graph, and let h1, . . . , h5 be a path in H such that h1 and h5 have degree one
and every edge of H is incident with one of h2, h3, h4. Let J be obtained from a line trigraph of
H by making the vertices corresponding to edges h2h3 and h3h4 either semiadjacent or strongly
antiadjacent, and let Z = {h1h2, h4h5}. The class of all such stripes (J, Z) is denoted by Z3. See
Fig. 5 for an example.

Let J be the trigraph with vertices {a0, a1, a2, b0, b1, b2, b3, c1, c2} such that {a0, a1, a2}, {b0, b1, b2, b3},
{a2, c1, c2}, and {a1, b1, c2} are strong cliques, b2, c1 are strongly adjacent, b2, c2 are semiadjacent,
and b3, c1 are semiadjacent. Let Z = {a0, b0}. The class of all such stripes (J, Z) is denoted by
Z4. See Fig. 6 for an example.

Definition 2.19 (Z5) Let J ∈ S2, let v1, . . . , v13, X be as in the definition of S2, let v7, v8 be
strongly antiadjacent in J , and let Z = {v7, v8} \X. The class of all such stripes (J, Z) is denoted
by Z5.

See Fig. 7 for an example.
Let J ∈ S3, let I1, . . . , In be as in the definition of S3, let z ∈ V (G) belong to at most one of

I1, . . . , In and not be an endpoint of one of I1, . . . , In. Then z is a strongly simplicial vertex of J .
Let Z = {z}. The class of all such stripes (J, Z) is denoted by Z6.

Let J ∈ S4, let H,h1, . . . , h7 be as in the definition of S4, let e be the edge in H between h6
and h7, and let Z = {e}. The class of all such stripes (J, Z) is denoted by Z7.

Let J ∈ S5, let d1, . . . , d5, A,B,C be as in the definition of S5, and let Z = {d5}. The class of
all such stripes (J, Z) is denoted by Z8.

Let J be the trigraph where the vertex set is the union of five sets {z}, A,B,C,D with A =
{a1, . . . , an} and B = {b1, . . . , bn} for some n ≥ 1, such that

• {z} ∪D is a strong clique,

• A ∪ C and B ∪ C are strong cliques,

• for 1 ≤ i ≤ n, ai and bi are antiadjacent and every vertex of D is strongly adjacent to
precisely one of ai, bi,

• for 1 ≤ i < j ≤ n, {ai, bi} is strongly complete to {aj , bj}, and

• the adjacency between C and D is arbitrary.

Note that J is antiprismatic. Let Z = {z}. The class of all such stripes (J, Z) is denoted by Z9.

3 Algorithms to Find Twins and Joins

If we want to prove an algorithmic decomposition theorem for claw-free graphs, then Theorem 2.16
suggests that we develop algorithms that find twins and the joins defined in Sect. 2.2 in trigraphs.
Actually, we will see later that we only apply these algorithms to graphs, and so we restrict our

14



attention to graphs instead of trigraphs. Moreover, we will see later that we do not need an
algorithm to find a hex-join in a graph. Therefore, in this section, we propose algorithms to find
twins, proper W-joins, 0-joins, (pseudo-) 1-joins, and (pseudo-/generalized) 2-joins in graphs in
polynomial time.

We observe here that in the literature 1-joins and 2-joins are usually defined in a different
manner than they were defined in this paper, and several fast, polynomial-time algorithms are
known to find these alternate 1- and 2-joins (see e.g. [21, 22, 4, 5]). It is not difficult to show that
on claw-free graphs that do not admit twins and have a stable set of size at least five the alternate
definitions of 1- and 2-joins coincide with those defined in this paper. Under these conditions we
can thus use the fast algorithms available in the literature. However, we emphasize that on general
(claw-free) graphs, the alternate definitions diverge from those in our paper, which led us to study
them separately. Our algorithms work on general graphs, and thus may be of independent interest.

Throughout this section, let G be a graph, let n = |V (G)| and m = |E(G)|, and let ∆(G) be
the maximum degree of any vertex in G.

3.1 Finding 0-joins, Proper W-joins, and Twins

The results of this section follow from known results or were known before. First, finding 0-joins
corresponds to standard connectivity testing.

Proposition 3.1 In O(n+m) time, one can find a 0-join in a graph G, or report that G has no
0-join.

King and Reed [56] showed that proper W-joins can be found in O(n2m) time.

Theorem 3.2 ([56]) In O(n2m) time, one can find a proper W-join in a graph G, or report that
G does not admit a proper W-join.

Other algorithms for finding (proper) W-joins and applications of such algorithms are considered
in several papers (see e.g. [8, 32, 56, 73]).

Twins can be found in linear time. The algorithm is actually implicitly given by Habib et
al. [45]. We provide it here only for completeness.

Theorem 3.3 In O(n + m) time, one can find twins in a graph G, or report that G does not
admit twins.

Proof: We use a technique called partition refinement (see e.g. [44]). Given a universe U, a
partition P of U, and a subset S of U, the refinement of P splits each partition class P of P into a
class P ∩S and a class P \S. This operation takes O(|S|) time [44]. Now observe that u, v ∈ V (G)
are twins if and only if for any x ∈ V (G), either u, v ∈ N [x] or u, v 6∈ N [x]. Hence if we set
U = V (G), initialize P = {V (G)}, and iteratively refine P with N [x] for each x ∈ V (G), then any
two vertices in any non-singleton class of the final partition P ′ are twins. Moreover, if P ′ consists
only of singleton classes, then G does not admit twins. The total run time of this algorithm is
O(
∑

x∈V (G) |N [x]|) = O(n+m).

3.2 Finding 1-joins

In this subsection, we describe how to find a 1-join in polynomial time. We first need some
auxiliary lemmas.

Lemma 3.4 Let (A1, A2) be a 1-join of a connected graph G. Then G[V1] and G[V2] are connected.

Proof: Suppose that G[V1] has two connected components C and C ′. Because G[A1] is a clique,
at most one of C,C ′ contains vertices of A1. Suppose that C contains no vertices of A1. Because
(A1, A2) is a 1-join, C is not connected to V2. This contradicts that G is connected.
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A spanning tree T of a graph G is a BFS-spanning tree if it is obtained from a breadth-first search
on G. The root of a BFS-spanning tree is the vertex that is the origin of the breadth-first search.
Throughout, for a, b ∈ V (G), we use dist(a, b) to denote the length of a shortest path between a
and b in G, and distT (a, b) to denote the length of a shortest path between a and b in T .

The following lemma is inspired by an observation of Cornuéjols and Cunningham [21].

Lemma 3.5 Let T be a BFS-spanning tree of a connected graph G and let (A1, A2) be a 1-join.
Suppose that the root r of T is in V1. Then there is a vertex v ∈ A1 such that all vertices of A2

are neighbors of v in T .

Proof: This is immediate from the fact that T is a BFS-spanning tree.

For a tree T , call a pair of vertices (u, v) diametral if the length of the u–v-path in T is
maximum among all pairs.

Lemma 3.6 Given a tree T on n vertices, a diametral pair of vertices can be found in O(n) time.

Proof: Let w be an arbitrary leaf of T and let u be a vertex furthest away in T from w. Let v be
a vertex furthest away from u in T . Note that all these vertices can be found in O(n) time. If u
is in a diametral pair, then (u, v) is clearly a diametral pair. Otherwise, let (a, b) be a diametral
pair. For vertices s, t, let Pst denote the unique path between s and t in T . Let x be a vertex
of Puv that is closest to a vertex of Pab. By the choice of v, dist(x, v) ≥ max{dist(x, a),dist(x, b)}.
Recall that a subtree of T is any connected subgraph of T . Consider the subtree Tx of T induced
by x, the vertices in the subtree of T \ {x} containing u, and the vertices in the subtree of T \ {x}
containing v. Suppose that w is in V (T ) \ V (Tx). Since x is contained in both the shortest path
from w to u and the shortest path from w to v, the choice of u implies that dist(x, u) ≥ dist(x, v).
Hence dist(x, u) ≥ max{dist(x, a),dist(x, b)}, implying that

dist(u, v) = dist(u, x)+dist(x, v) ≥ 2 max{dist(x, a),dist(x, b)} ≥ dist(x, a)+dist(x, b) = dist(a, b) .

Hence (u, v) is a diametral pair. Suppose then that w is in V (Tx) and let y be the vertex of
Puv closest to w. Note that any shortest path from w to u, v, a, or b must contain y, and that
any shortest path from w to a or b must contain x. The choice of u implies that dist(y, u) ≥
max{dist(y, a),dist(y, b)}, and thus dist(x, u) ≥ max{dist(x, a),dist(x, b)}. As before, this implies
that dist(u, v) ≥ dist(a, b). Hence (u, v) is a diametral pair.

We require some auxiliary notions on trees. Given any rooted tree T , the nearest common ancestor
of any two vertices a, b ∈ V (T ), denoted by nca(a, b), is the vertex c in T that is an ancestor of
both a and b and no child of c is an ancestor of both a and b. If a is not an ancestor of b and
vice versa, define the a-nearest almost-common ancestor of a and b, or a-nca(a, b), as the child of
nca(a, b) that is an ancestor of a.

Lemma 3.7 Let T be a BFS-spanning tree of a connected graph G. Then for any diametral pair
(u, v) of T , at most one of u, v is in A1 ∪A2 for any 1-join (A1, A2) of G.

Proof: Let T be a BFS-spanning tree of a graph G, let (u, v) be any diametral pair of T , and let
(A1, A2) be a 1-join of G with a corresponding partition (V1, V2) of G. Suppose that the root r of
T is in V1. We distinguish three cases.

(1) u, v ∈ A2

Note that u, v must be leafs of T . From Lemma 3.5, there is a vertex w ∈ A1 adjacent in T
to all vertices of A2, and so distT (u, v) = 2. Since G[V2] is connected by Lemma 3.4, there
is a path in T ∩ (V2 ∪ {w}) from w to a vertex x ∈ V2 \ A2 that is a leaf of T . But then
distT (x, v) > distT (u, v) = 2, contradicting that (u, v) is a diametral pair.

(2) v ∈ A1, u ∈ A2
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Consider the vertex w ∈ A1 adjacent to all vertices of A2. Since G[V2] is connected, there is a path
from w to a vertex x ∈ V2 \A2 that is a leaf of T . But then distT (x, v) > distT (u, v), contradicting
that (u, v) is a diametral pair.

(3) u, v ∈ A1

Consider the vertex w ∈ A1 neighboring all vertices in A2. Again there is a vertex x ∈ V2 \ A2

that is a leaf of T with distT (w, x) ≥ 2 and thus distT (r, x) ≥ distT (r, w) + 2. Note that w 6= u, v,
as u and v are leafs. Moreover, w is not adjacent to u or v in T ; otherwise, x has larger distance
to u or v than v or u respectively, contradicting that (u, v) is a diametral pair.

Let a = nca(u, v), b = nca(u,w) and c = nca(v, w). Note that distT (u, v) = distT (r, u) +
distT (r, v) − 2 · distT (r, a). Also, distT (u, x) = distT (r, u) + distT (r, x) − 2 · distT (r, b). Because
(v, w) ∈ E(G) and T is a BFS-spanning tree, |distT (r, v)−distT (r, w)| ≤ 1. But then distT (r, x) >
distT (r, v). Suppose that b and c are equal to a or an ancestor of a. Since distT (r, a) ≥ distT (r, b),
this implies that distT (u, x) > distT (u, v). This contradicts that (u, v) forms a diametral pair.
Hence b or c is a descendant of a. Assume, without loss of generality,that c is a descendant of a.
Then

distT (c, x) = distT (r, x)− distT (r, c)
≥ distT (r, w) + 2− distT (r, c)
> distT (r, v)− distT (r, c)
= distT (c, v).

This means that distT (u, x) > distT (u, v), contradicting that (u, v) is diametral.

A 1-join (A1, A2) is minimal if there is no A ⊂ A1 such that (A1 \A,A2 ∪A) is 1-join as well.

Lemma 3.8 If (A1, A2) is a minimal 1-join, then G[V1]− E(G[A1]) is connected.

Proof: For suppose not and let C be the set of connected components of G[V1]− E(G[A1]). For
any C ∈ C, observe that C ∩ A1 6= ∅, because G[V1] is connected. But since the components are
pairwise disjoint, this implies that the components induce a partition of A1 into nonempty subsets.
As |C| ≥ 2, (A1 \ (A1 ∩C), A2 ∪ (A1 ∩C)) is a 1-join for any C ∈ C, contradicting the minimality
of (A1, A2).

Theorem 3.9 In O(n(n+m)) time, one can find a 1-join in a connected graph G, or report that
G does not have such a join.

Proof: Consider any BFS spanning tree of G and some diametral pair (r, r′) of this tree. If G
has a 1-join (A1, A2), we know from Lemma 3.7 that at most one of r, r′ is in A1 ∪ A2. Assume,
without loss of generality,that r is not in A1 ∪ A2 (algorithmically we will actually try both r
and r′). Construct a BFS spanning tree T with r as its root.

Let e = (u, v) be any edge of the spanning tree not incident with r. Assume that u ∈ A1,
v ∈ A2, and v has a child w in T . By Lemma 3.5 and 3.4, we can assume that such an edge
exists. Moreover, w ∈ V2 \A2. Now find the set of all vertices in N [u] ∩N [v]. This set forms the
candidate set A := A1 ∪A2. This can be done in O(∆(G)) time.

What remains is to verify that we have indeed found a 1-join. As a first step, we verify that A
is a clique. This can be done in O(|A|2) or O(m) time. Next, we find the partition V1, V2. To this
end, collect the set R of all vertices reachable from u in G \ A, using say a breadth-first search.
Let A′ = N(R). Note that A′ ⊆ A. Then consider N(A′)\A and continue the breadth-first search
in G \ A from those vertices. Iteratively apply this procedure. If the search visits all vertices of
G \A, then G has no 1-join with (u, v) as its basis. Otherwise, the set R of visited vertices forms
V1 \A1 and the vertices in N(R) ∩A form A1. It is now easy to find A2 and V2. The correctness
of this procedure follows from Lemma 3.8.

The run time for each edge of T is bounded by O(n+m). Since we need to consider at most
n−2 edges of the spanning tree and at most two possible roots, the total run time of the algorithm
is O(n(n+m)).
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We will now speed-up the part of the algorithm responsible for finding A1 and A2, which is the most
expensive part of the above lemma. We assume a random access machine model with logarithmic
costs. Let α(i, j) denote the inverse Ackermann function.

Theorem 3.10 In O(m(∆(G) + α(m,∆(G)))) time, one can find a 1-join in a connected graph
G, or report that G does not have such a join.

Proof: Consider again the rooted tree T and edge e = (u, v) from the previous lemma. As before,
we assume that u ∈ A1, v ∈ A2 for some 1-join (A1, A2). Moreover, we may assume that u is
closer to the root r of T than v. This in turn implies that all vertices of A2 are further from r
than u.

Given any rooted tree T and vertex t ∈ V (T ), define Tt as the subtree of T , rooted at t,
containing t and all of its descendants. If T is a spanning tree of a graph G, define h(t) as the
nca(a, b) closest to r for any edge (a, b) ∈ E(G) for which one of a, b is in V (Tt)\{t}. Clearly, h(t)
is either t or an ancestor of t.

Consider a graph G and a rooted spanning tree T of G. For any vertex p and its set of
children C, we say that c, c′ ∈ C are linked if there is an edge (a, b) ∈ E(G) for which distT (a, b) ≥
3, a ∈ V (Tc), and b ∈ V (Tc′). We then say that c, c′ ∈ C are sequentially linked if there is a
sequence c = c1, . . . , ci = c′ of children of C such that cj is linked to cj+1 for any j = 1, . . . , i− 1.
Observe that if c, c′ ∈ A1 ∪A2 for some 1-join (A1, A2) and c and c′ are sequentially linked, then
either both c and c′ must be in A1 or both must be in A2.

Now think back on the algorithm of Theorem 3.9 and let A be the candidate set for the join.
All vertices for which we have not yet decided whether they should be in A1 or in A2 must be
children of u. We say a child c of u is of type 1 if h(c) 6∈ V (Tu) or it is incident with an edge
e 6∈ E(A) for which nca(e) 6∈ V (Tu). Here nca(e) is a shorthand for the nearest common ancestor
of the two endpoints of e.

Now consider the following observation.

(1) A child c is in A1 for some minimal 1-join (A1, A2) if and only if it is of type 1 or
sequentially linked to a child of type 1.

This follows immediately from Lemma 3.8.
Using this observation, we can split A into sets A1 and A2. Note that this choice is only

difficult for children of u. Other vertices must belong to A1. For children of u, we use the above
observation. If every child of u is, or is sequentially linked to, a vertex of type 1, then A cannot
be split to form a 1-join.

To use these ideas algorithmically, we should be able to compute nca and h efficiently. By
preprocessing T in linear time, we can compute nca and a-nca in constant time for any pair of
vertices using the algorithms of Lu and Yeh [62] (note that finding the a-nca can be simulated by
finding the nca, then its depth, and then the appropriate level ancestor of a, all in constant time).
Define x(t) for any t ∈ V (T ) as the nca(t, t′) closest to r for any (t, t′) ∈ E(G). By preprocessing
in linear time, we know the height of each vertex in the tree. Then we can compute x(t) in O(m)
time. Now set h(t) = t for any leaf of T , and for any nonleaf t, set h(t) equal to the highest vertex
among x(t′) and h(t′) over all children t′ of t. This takes O(n) time.

To determine whether two children c, c′ of a vertex p are sequentially linked, we use preprocess-
ing with a union-find data structure. For each vertex p, associate one such data structure, initially
with each child c of p in a separate set. Now for any edge (a, b) ∈ E(G), we determine x = nca(a, b).
If x = a or x = b, then this edge is not relevant. Otherwise, determine y = a-nca(a, b) and z =
b-nca(a, b). If y = a and z = b, then again this edge is not relevant. Otherwise, we perform a
union in the data structure associated with x on y and z. This takes O(m · α(m,∆(G))) time in
total [79]. Afterwards, we process all structures such that find-operations will take constant time.
This takes O(n) time. Using this data structure, we can answer in O(1) time whether two children
are sequentially linked.

This concludes the analysis of all preprocessing. Preprocessing takes O(m · α(m,∆(G))) time
in total.

18



We now analyze the algorithm itself. Finding the candidate set A can be done in O(∆(G))
time. Since we do this n − 2 times, this contributes O(n ·∆(G)) to the run time. To determine
the contribution of the total time it takes to verify that candidate sets form a clique, we note that
we check a nonedge at most once per candidate set, so this uses O(n) time. An edge is checked
only if both endpoints are in the closed neighborhood of the edge (u, v) that is the basis of the
candidate set. Hence an edge is checked O(∆(G)) times during the course of the algorithm. This
gives a contribution of O(m ·∆(G)) to the run time.

It remains to analyze the run time for splitting the candidate set A into A1 and A2. For this,
we only need to check whether a child c of u is of type 1 or sequentially linked to a child of type 1.
Determining whether h(c) 6∈ V (Tu) takes O(1) time. Hence we spend no more than O(n ·∆(G))
time on this in the course of the algorithm. We determine nca(e) for an edge at most ∆(G) times
if one of its endpoints is a child of the current vertex u. Since this happens at most twice, we
spend no more than O(m · ∆(G)) time on this. If we determine that a vertex is of type 1, we
indicate in the set of the union-find data structure containing this vertex that it contains a vertex
of type 1. Finally, the algorithm checks for each child whether it is or is sequentially linked to a
vertex of type 1. This takes another O(n ·∆(G)) time over the course of the algorithm.

The conclusion of the analysis is a run time for the algorithm of O(m ·∆(G)+m ·α(m,∆(G))).

Corollary 3.11 In O(m(∆(G) +α(m,∆(G)))) time, one can find a pseudo-1-join in a connected
graph G, or report that G does not have such a join.

Proof: Let (A1, A2) be a pseudo-1-join. Suppose that V1 \ A1 = ∅. Since |A1| must be at least
two in this case, A1 contains twins. Hence we should first check whether G has twins whose
neighborhood is a clique. If no such twins exist, any pseudo-1-join of G also is a 1-join, which can
be found using Theorem 3.10. Using Theorem 3.3, we can find all twins in O(n+m) time. Using
similar ideas as in the proof of Theorem 3.10, we can test all neighborhoods of twins for being a
clique in O(m ·∆(G)) time in total.

3.3 Finding 2-joins

We now describe algorithms to find the various 2-joins.

Lemma 3.12 Let (A1, A2, B1, B2) be a (generalized) 2-join of a connected graph G that does not
admit a 1-join. Then G[V1] and G[V2] are connected.

Proof: Suppose that G[V1] has at least two connected components. Note that any such connected
component must contain a vertex from A1 or B1, or it would be a connected component of G,
contradicting that G is connected. Hence G[V1] has a connected component C such that A1 ⊆ C
and C ∩B1 = ∅. But then (A1, A2 ∪ V0) is a 1-join, a contradiction.

Theorem 3.13 In O(nm(∆(G) +α(m,∆(G)))) time, one can find a 2-join in a connected graph
G that does not admit a 1-join, or report that G does not have such a join.

Proof: Observe that if (A1, A2, B1, B2) is a 2-join of G, then one of the connected components
of G \ (A1 ∪A2) admits a 1-join. Furthermore, if T is a spanning tree of G, then there is an edge
e = (u, v) of T such that u ∈ A1, v ∈ A2 or u ∈ B1, v ∈ B2.

We now proceed as follows. Find a spanning tree of G. For each edge (u, v) ∈ E(T ), we remove
all edges between vertices in N [u] ∩N [v] from G and try to find a 1-join in one of the connected
components of this graph that does not use any vertices of N [u] ∩ N [v]. If no such join exists,
then (u, v) cannot be a basis for a 2-join. Otherwise, let (B1, B2) be this 1-join. Now remove all
edges between B1 and B2 from G and try to find a 1-join (A1, A2) in the remaining graph that
does not use any vertices of B1 ∪B2 and for which neither V1 \A1 nor V2 \A2 equals B1 or B2. If
no such 1-join exists, then G does not have a 2-join with (u, v) as a basis. Otherwise, let (A1, A2)
be the 1-join we just found. Then (A1, A2, B1, B2) is a 2-join.

Using the algorithm of Theorem 3.10 as a subroutine, the algorithm described above takes
O(nm(∆(G) + α(m,∆(G)))) time.
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Theorem 3.14 In O(nm(∆(G) +α(m,∆(G)))) time, one can find a generalized 2-join in a con-
nected graph G that does not admit a 1-join, or report that G does not have such a join.

Proof: We first try to find a 2-join (i.e. a generalized 2-join with V0 = ∅), using Theorem 3.13.
This takes O(nm(∆(G) + α(m,∆(G)))) time. If no 2-join exists, then only a generalized 2-join
with V0 6= ∅ might exist. Guess a vertex v ∈ V0. Then V0 is equal to the set of vertices u ∈ N [v]
for which N [u] = N [v]. Finding V0 takes O(n + m) = O(m) time by Theorem 3.3. Observe that
A1 ∪A2 ∪B1 ∪B2 = N(V0). Let a be an arbitrary vertex in N(V0) and without loss of generality
assume that a ∈ A1. Let B′ be the set of vertices in N(V0) that is antiadjacent to a; it takes
O(∆(G)) time to find B′. Then B′ ⊆ B1 ∪B2 and B2 ⊆ B′ by definition. We now aim to identify
A1 ∪ A2 and B1 ∪ B2. After that, we will test whether these two sets indeed form the basis of a
generalized 2-join with the given set V0. We consider four cases:

Suppose B′ ∩ B1 6= ∅. Then all vertices in N(V0) \ B′ that are complete to B′ are in B1, and
all other vertices in N(V0) \ B′ are in A1 ∪ A2. Hence, we have identified A1 ∪ A2 and B1 ∪ B2.
This takes O(m) time.

Suppose B′ ∩B1 = ∅. Then B′ = B2 and a is complete to A1 ∪A2 ∪B1. Let b be an arbitrary
vertex in B′. Let A′ be the set of vertices in N(V0) that are antiadjacent to b. Then A′ ⊆ A1 ∪A2

and A1 ⊆ A′ by definition. If A′ ∩ A2 6= ∅, then we can identify A1 ∪ A2 and B1 ∪ B2 as before.
This takes O(m) time. Otherwise, A′ ∩ A2 = ∅ and thus, A′ = A1. Then N(V0) \ (A′ ∪ B′) is
precisely equal to a disjoint union of two cliques by definition; one clique is A2, the other is B1.
We consider both possibilities; in each, we have identified A1 ∪A2 and B1 ∪B2. This takes O(m)
time too.

Now we have identified A1 ∪ A2 and B1 ∪ B2 (to be precise, four possible cases). Call two
vertices x, y ∈ V (G) \V0 equivalent if there is a path between them in the graph G′ obtained from
G by removing all edges between vertices in V0 ∪ A1 ∪ A2 and between vertices in V0 ∪ B1 ∪ B2.
Let Q = {Q1, . . . , Qk} denote the set of equivalence classes of this relation. We can find these
equivalence classes in O(m) time using a depth-first search. Note that G[V1] and G[V2] are both
connected by Lemma 3.12. Moreover, V1 and V2 are antiadjacent, and any path between them in
G uses an edge of E(G) \ E(G′). Hence, there exists a partition of Q into two nonempty sets Q1

and Q2 such that for every i = 1, 2, Vi =
⋃

Q∈Qi
Q and there exists a set in Qi (say Qi) such that

Ai ∩Qi 6= ∅ and Bi ∩Qi 6= ∅.
In fact, for any partition of Q into two nonempty sets Q′1 and Q′2 such that for every i = 1, 2

there exists a set in Qi (say Qi) such that (A1 ∪ A2) ∩ Qi 6= ∅ and (B1 ∩ B2) ∩ Qi 6= ∅, there
exists a generalized 2-join with sets A′i = (A1 ∪ A2) ∩

⋃
Q∈Qi

Q, B′i = (B1 ∪ B2) ∩
⋃

Q∈Qi
Q, and

V ′i =
⋃

Q∈Qi
Q for i = 1, 2. It takes O(m) to identify such a partition, and verify whether the

resulting sets indeed constitute a generalized 2-join.
The running time of this algorithm is O(m) for each vertex v we guess, and thus O(nm) in

total. Combined with the test for a 2-join, this brings the total running time to O(nm(∆(G) +
α(m,∆(G)))), as claimed.

Theorem 3.15 In O(nm(∆(G)+α(m,∆(G)))) time, one can find a pseudo-2-join in a connected
graph G that does not admit a pseudo-1-join, or report that G does not have such a join.

Proof: We first try to find a generalized 2-join using Theorem 3.14. If one exists, G has a pseudo-
2-join. Otherwise, suppose that G has a pseudo-2-join (V0, V1, V2) for which V1 \ (A1 ∪ B1) = ∅.
Suppose that there is no edge in G between A1 and B1. Then, without loss of generality,|A1| ≥ 2.
But then (A1, V (G) \ A1) would form a pseudo-1-join of G, a contradiction. Hence we can just
apply the same idea as in the proof of Theorem 3.14, but when using Theorem 3.13 inside of it,
we do not insist that neither V1 \A1 nor V2 \A2 equals B1 or B2.

From the fact that the maximum degree of a claw-free graph is O(
√
m) [58, Lemma 4], we

immediate obtain the following corollary.

Corollary 3.16 • In O(n + m) time, one can find a 0-join in a graph G, or report that G
has no 0-join.
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• In O(m3/2) time, one can find a pseudo-1-join in a connected graph G, or report that G does
not have such a join.

• In O(nm3/2) time, one can find a pseudo-2-join in a connected graph G that does not admit
a pseudo-1-join, or report that G does not have such a join.

4 Recognizing Thickenings of Z2, Z3, Z4, and Z5

The algorithmic decomposition theorem that we prove later is based on a strip-structure of the
graph where most of its stripes are the special stripes defined in Sect. 2.5. However, several classes
of stripes defined in Sect. 2.5 play a more prominent role than others. In particular, we will need
algorithms that recognize stripes that are thickenings of members of Z2, Z3, Z4, and Z5.

We first make the following observation. It is important to note that J ′ might be a trigraph.

Proposition 4.1 Let (J, Z) be a stripe such that J is a graph, let (J ′, Z ′) be a stripe, and let
W = {Wv′ ⊆ V (J) | v′ ∈ V (J ′)}. Then it can be verified in linear time whether (J, Z) is the
thickening W of (J ′, Z ′).

Proof: We verify that:

• Wv′ is a nonempty clique for each v′ ∈ V (J ′);

•
⋃

v′∈V (J′)Wv′ = V (J);

• |Wz′ | = 1 for each z′ ∈ Z ′;

•
⋃

z′∈Z′ Wz′ = Z;

• for each u′, v′ ∈ V (J ′), if the edge between u′ and v′ in J ′ is:

– a nonedge, then Wu′ is anticomplete to Wv′ ;

– a (regular) edge, then Wu′ is complete to Wv′ ;

– a semi-edge, then Wu′ is neither complete nor anticomplete to Wv′ .

The first four items are straightforward to verify in linear time. For the fifth item (and its
subitems), we group the neighbors of each vertex of Wv′ of each v′ ∈ V (J ′) according to which
Wu′ it belongs to. Since v ∈Wv′ is only supposed to have neighbors that belong to Wu′ for which
u′ and v′ are adjacent in J ′, the grouping takes linear time using bucket sort. After that, the last
three items take linear time to verify as well by simply counting.

We now describe linear-time recognition algorithms for thickenings of members Z2, Z3, Z4,
and Z5 in turn.

4.1 Recognizing Thickenings of Z2

Lemma 4.2 Let (J, Z) be a stripe such that J is a connected graph that does not admit twins.
Then we can decide in linear time whether (J, Z) is a thickening of a member of Z2. If so, then
we can find such a member and its thickening to (J, Z) as well in the same time.

Proof: The proof of this lemma consists of two parts. In the first part, we argue about the
structure of (thickenings) of members of Z2 and show that each (thickening of such a) member
has, without loss of generality, a particular structure. In the second part, we give an algorithm to
determine whether (J, Z) is a thickening of such a structured member.

Let (J ′, Z ′) be a member of Z2. Let n, a0, b0, A = {a1, . . . , an}, B = {b1, . . . , bn}, C =
{c1, . . . , cn}, and X be as in the definition of Z2. Without loss of generality, we may assume that
a1, b1 are semiadjacent (and thus c1 ∈ X), that a2, c2 are semiadjacent (and thus b2 ∈ X), and
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that b3, c3 are semiadjacent (and thus a3 ∈ X). In particular, this implies that n ≥ 3 and that if
J ′ has no semi-edges, then ai, bi, ci ∈ X for i ∈ {1, 2, 3}.

Suppose that (J, Z) is a thickening W of (J ′, Z ′). We show that without loss of generality
(J ′, Z ′) andW have specific properties. Let AJ =

⋃
i∈{1,...,n}|ai 6∈X Wai

, BJ =
⋃

i∈{1,...,n}|bi 6∈X Wbi ,

and CJ =
⋃

i∈{1,...,n}|ci 6∈X Wci .

Claim 4.2.1 If a ∈ AJ is complete to CJ and anticomplete to BJ , then without loss of generality
a ∈Wai

for some i ∈ {4, . . . , n}.
Proof: Suppose that a ∈ Wa1

or a ∈ Wa2
(the case a ∈ Wa3

is excluded by the previous
assumption that a3 ∈ X). By assumption, this implies that c1 ∈ X respectively that b2 ∈ X.

We provide a modified member (J ′′, Z ′′) of Z2 and a modified thickeningW ′′ to (J, Z). Initially,
(J ′′, Z ′′) is equal to (J ′, Z ′) andW ′′ =W, and in particular n′′, a′′0 , b

′′
0 , A

′′, B′′, C ′′, X ′′ are the same
as n, a0, b0, A,B,C,X. Now add 1 to n′′ (effectively adding a (n + 1)-th vertex to A′′, B′′, C ′′),
add bn+1, cn+1 to X ′′, remove a from W ′′a1

or W ′′a2
respectively, and add a to W ′′an+1

. At present,
(J ′′, Z ′′) is still a member of Z2, and (J, Z) is the thickening W ′′ of (J ′′, Z ′′), unless b1 6∈ X and
W ′′a1

is complete or anticomplete to W ′′b1 respectively c2 6∈ X and W ′′a2
is complete or anticomplete

to W ′′b2 .
Suppose first that a ∈Wa1

and b1 6∈ X. By the definition of a thickening, Wa1
is not anticom-

plete to Wb1 . Hence, Wa1
\ {a} is not anticomplete to Wb1 . Suppose that Wa1

\ {a} is complete
to Wb1 . Then add 1 to n′′ (effectively adding a (n+ 2)-th vertex to A′′, B′′, C ′′), add a1, b1, cn+2

to X ′′, blank W ′′a1
and W ′′b1 , and set W ′′an+2

= Wa1 \ {a} and W ′′bn+2
= Wb1 . Then (J ′′, Z ′′) is still

a member of Z2, and (J, Z) is the thickening W ′′ of (J ′′, Z ′′).
The case that a ∈Wa2

can be argued similarly as the previous case. 4

Similarly, one can argue the following.

Claim 4.2.2 If b ∈ BJ is complete to CJ and anticomplete to AJ , then without loss of generality
b ∈Wbi for some i ∈ {4, . . . , n}.

Let A1
J denote the set of vertices in AJ that are complete to CJ but not anticomplete to BJ ; let

B1
J denote the set of vertices in BJ that are complete to CJ but not anticomplete to AJ .

Claim 4.2.3 If a1, b1 6∈ X, then without loss of generality Wa1
⊆ A1

J and Wb1 ⊆ B1
J .

Proof: Suppose that a1, b1 6∈ X. By assumption, c1 ∈ X. Hence, a1 and b1 are strongly complete
to C\X in J ′. Therefore, Wa1 and Wb1 are strongly complete to CJ in J . By Claim 4.2.1 and 4.2.2,
without loss of generality every vertex in Wa1

is not anticomplete to BJ and every vertex in Wb1

is not anticomplete to AJ . It follows that Wa1
⊆ A1

J and Wb1 ⊆ B1
J . 4

Claim 4.2.4 If |A1
J |, |B1

J | ≥ 1 and |A1
J | + |B1

J | ≥ 3, then without loss of generality a1, b1 6∈ X,
Wa1

= A1
J , and Wb1 = B1

J . Otherwise, without loss of generality a1, b1 ∈ X.

Proof: Suppose that |A1
J |, |B1

J | ≥ 1 and |A1
J | + |B1

J | ≥ 3. Observe first that if a2 6∈ X, then
Wa2

∩A1
J = ∅, because b2 ∈ X and thus a2 is strongly anticomplete to B \X in J ′, and therefore

every vertex of Wa2
is anticomplete to BJ in J . Next, we observe that if Wai

∩ A1
J 6= ∅ for some

i ≥ 4, then Wai
⊆ A1

J . This is immediate from the fact that J does not admit twins and thus
|Wai | = 1 for i ≥ 4. Mutatis mutandis, we can argue that if b3 6∈ X, then Wb3 ∩ B1

J = ∅, and if
Wbi ∩B1

J 6= ∅ for some i ≥ 4, then Wbi ⊆ B1
J .

Let IA = {i ∈ {4, . . . , n} | Wai
⊆ A1

J} and let IB = {i ∈ {4, . . . , n} | Wbi ⊆ B1
J}. If i ∈ IA,

then ci ∈ X, because each vertex in A1
J is complete to CJ , and ai is strongly antiadjacent to ci for

i ≥ 4 by the definition of Z2. Similarly, if i ∈ IB , then ci ∈ X. We claim that IA = IB . If i ∈ IA,
then bi 6∈ X, because each vertex in A1

J has a neighbor in BJ and ai is strongly adjacent to bi and
strongly antiadjacent to B \ {bi} in J ′ by the definition of Z2. Therefore, Wbi is complete to Wai ,
and in particular, not anticomplete to AJ in J . Moreover, ci ∈ X as observed before; therefore,
bi is strongly complete to C \X in J ′, and thus Wbi is complete to CJ in J . Hence, i ∈ IB , and
thus IA ⊆ IB . A similar argument shows that IB ⊆ IA, proving the claim.

Now note that a1, b1 6∈ X or |IA| ≥ 2. Indeed, if a1, b1 ∈ X, then |IA| ≥ 1 since |A1
J | ≥ 1,

Wa2 ∩ A1
J = ∅, and a3 ∈ X. If |IA| = 1, then let IA = {i}. Since IB = {i} by the claim in the
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previous paragraph and since Wa2 ∩ A1
J = ∅ and Wb3 ∩ B1

J = ∅, A1
J = Wai and B1

J = Wbi . But
then the assumption that |A1

J |+ |B1
J | ≥ 3 implies that J admits twins, a contradiction.

If |IA| = 0, then without loss of generality a1, b1 6∈ X, Wa1
= A1

J , and Wb1 = B1
J by Claim 4.2.3.

So suppose otherwise. We provide a modified member (J ′′, Z ′′) of Z2 and a modified thick-
ening W ′′ to (J, Z). Initially, (J ′′, Z ′′) is equal to (J ′, Z ′) and W ′′ = W, and in particular
n′′, a′′0 , b

′′
0 , A

′′, B′′, C ′′, X ′′ are the same as n, a0, b0, A,B,C,X. Remove a1, b1 from X ′′ if either is
in X. Now add Wai to W ′′a1

and Wbi to W ′′b1 for each i ∈ IA, and reduce n′′ by |IA| (effectively
removing ai, bi, ci from A′′, B′′, C ′′ respectively and from X ′′ for each i ∈ IA). Since ci ∈ X for
each i ∈ IA, |C ′′ \ X ′′| = |C \ X| ≥ 2, and thus (J ′′, Z ′′) is indeed still a member of Z2. Now
recall that IA = IB , and that a1, b1 6∈ X or |IA| ≥ 2 thus implies that Wa1

∪
⋃

i∈IA Wai
is neither

complete nor anticomplete to Wb1 ∪
⋃

i∈IA Wbi . Therefore, W ′′a1
is neither complete nor anticom-

plete to W ′′b1 . Moreover, a1, b1 6∈ X or |IA| ≥ 2 implies that W ′′a1
,W ′′b1 6= ∅. Hence, (J, Z) is the

thickening W ′′ of (J ′′, Z ′′).
For the second part of the claim, suppose that |A1

J | = 0, |B1
J | = 0, or |A1

J | + |B1
J | < 3. If

a1, b1 6∈ X, then by Claim 4.2.3 without loss of generality Wa1
⊆ A1

J and Wb1 ⊆ B1
J . However,

since a1 and b1 are semiadjacent, this is not possible by the definition of a thickening. If a1 6∈ X
but b1 ∈ X, then without loss of generality we contradict Claim 4.2.1. Similarly, if a1 ∈ X but
b1 6∈ X, then without loss of generality we contradict Claim 4.2.2. Hence, a1, b1 ∈ X. 4

The above claim will be sufficient to localize Wa1 and Wb1 in J , as we show later. We now
turn our attention to Wa2 and Wc2 .

Claim 4.2.5 No vertex in AJ is anticomplete to CJ .

Proof: Suppose that a ∈ Wai for some i ∈ {1, . . . , n} is anticomplete to CJ . Observe that ai is
strongly adjacent to cj for each j 6= i, and thus Wai (and particularly a) is strongly complete to
Wcj . Since |C \X| ≥ 2 by the definition of Z2, such a j indeed exists. Therefore, a has an edge
to a vertex in CJ , a contradiction. 4

The remaining claims and particularly their proofs are similar to Claim 4.2.2, 4.2.3, and 4.2.4.
We include them here for sake of completeness.

Claim 4.2.6 If c ∈ CJ is complete to AJ and BJ , then without loss of generality c ∈ Wci for
some i ∈ {4, . . . , n}.
Proof: Suppose that c ∈Wc2 or c ∈Wc3 (the case c ∈Wc1 is excluded by the previous assumption
that c1 ∈ X). By assumption, this implies that b2 ∈ X respectively that a3 ∈ X.

We provide a modified member (J ′′, Z ′′) of Z2 and a modified thickeningW ′′ to (J, Z). Initially,
(J ′′, Z ′′) is equal to (J ′, Z ′) andW ′′ =W, and in particular n′′, a′′0 , b

′′
0 , A

′′, B′′, C ′′, X ′′ are the same
as n, a0, b0, A,B,C,X. Now add 1 to n′′ (effectively adding a (n + 1)-th vertex to A′′, B′′, C ′′),
add an+1, bn+1 to X ′′, remove c from W ′′c2 or W ′′c3 respectively, and add c to W ′′cn+1

. At present,
(J ′′, Z ′′) is still a member of Z2, and (J, Z) is the thickening W ′′ of (J ′′, Z ′′), unless a2 6∈ X and
W ′′c2 is complete or anticomplete to W ′′a2

respectively b3 6∈ X and W ′′c3 is complete or anticomplete
to W ′′b3 .

Suppose first that c ∈Wc2 and a2 6∈ X. By the definition of a thickening, Wc2 is not anticom-
plete to Wa2 . Hence, Wc2 \ {c} is not anticomplete to Wa2 . Suppose that Wc2 \ {c} is complete to
Wa2

. Then add 1 to n′′ (effectively adding a (n+ 2)-th vertex to A′′, B′′, C ′′), add a2, c2, bn+2 to
X ′′, blank W ′′a2

and W ′′c2 , and set W ′′an+2
= Wa2

and W ′′cn+2
= Wc2 \ {c}. Then (J ′′, Z ′′) is still a

member of Z2, and (J, Z) is the thickening W ′′ of (J ′′, Z ′′). 4

Let A2
J denote the set of vertices in AJ that are anticomplete to BJ but not complete to CJ ;

let C2
J denote the set of vertices in CJ that are complete to BJ but not complete to AJ .

Claim 4.2.7 If a2, c2 6∈ X, then without loss of generality Wa2
⊆ A2

J and Wc2 ⊆ C2
J .

Proof: Suppose that a2, c2 6∈ X. By assumption, b2 ∈ X. Hence, a2 is strongly anticomplete
to B \ X in J ′ and c2 is strongly complete to B \ X in J ′. Therefore, Wa2

is anticomplete to
BJ and Wc2 is complete to BJ in J . By Claim 4.2.1, without loss of generality no vertex of Wa2
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is complete to CJ . By Claim 4.2.6, without loss of generality no vertex of Wc2 is complete to
AJ . 4

Claim 4.2.8 If |A2
J |, |C2

J | ≥ 1 and |A2
J | + |C2

J | ≥ 3, then without loss of generality a2, c2 6∈ X,
Wa2

= A2
J , and Wc2 = C2

J . Otherwise, without loss of generality a2, c2 ∈ X.

Proof: Suppose that |A2
J |, |C2

J | ≥ 1 and |A2
J | + |C2

J | ≥ 3. Observe first that if a1 6∈ X, then
Wa1

∩ A2
J = ∅, because c1 ∈ X and thus a1 is strongly complete to C \ X in J ′, and therefore

every vertex of Wa1 is complete to CJ in J . Next, we observe that if Wai ∩A1
J 6= ∅ for some i ≥ 4,

then Wai ⊆ A2
J . This is immediate from the fact that J does not admit twins and thus |Wai | = 1

for i ≥ 4. If c3 6∈ X, then Wc3 ∩C2
J = ∅, because a3 ∈ X and thus c3 is strongly complete to A\X

in J ′, and therefore every vertex of Wc3 is complete to AJ in J . If Wci ∩ C2
J 6= ∅ for some i ≥ 4,

then Wci ⊆ C2
J , because J does not admit twins and thus |Wci | = 1 for i ≥ 4.

Let IA = {i ∈ {4, . . . , n} | Wai ⊆ A2
J} and let IC = {i ∈ {4, . . . , n} | Wci ⊆ B1

J}. If i ∈ IA,
then bi ∈ X, because each vertex in A2

J is anticomplete to BJ , and ai is strongly adjacent to bi
for i ≥ 4 by the definition of Z2. If i ∈ IC , then bi ∈ X, because each vertex in C2

J is complete to
BJ , and ci is strongly antiadjacent to bi for i ≥ 4 by the definition of Z2. We claim that IA = IC .
If i ∈ IA, then ci 6∈ X, because each vertex in A2

J has a nonneighbor in CJ and ai is strongly
antiadjacent to ci and strongly adjacent to C \{ci} in J ′ by the definition of Z2. Therefore, Wci is
anticomplete to Wai , and in particular, not complete to AJ . Moreover, bi ∈ X as observed before;
therefore, ci is strongly complete to B \ X in J ′, and thus Wci is complete to BJ in J . Hence,
i ∈ IC and IA ⊆ IC . A similar argument argument shows that IC ⊆ IA, proving the claim.

Now note that a2, c2 6∈ X or |IA| ≥ 2. Indeed, if a2, c2 ∈ X, then |IA| ≥ 1 since |A2
J | ≥ 1,

Wa1
∩ A2

J = ∅, and a3 ∈ X. If |IA| = 1, then let IA = {i}. Since IC = {i} by the claim in the
previous paragraph and since Wa1 ∩ A2

J = ∅ and Wc3 ∩ C2
J = ∅, A2

J = Wai and C2
J = Wci . But

then the assumption that |A2
J |+ |C2

J | ≥ 3 implies that J admits twins, a contradiction.
If |IA| = 0, then without loss of generality a2, c2 6∈ X, Wa2

= A2
J , and Wc2 = C2

J by Claim 4.2.7.
So suppose otherwise. We provide a modified member (J ′′, Z ′′) of Z2 and a modified thick-
ening W ′′ to (J, Z). Initially, (J ′′, Z ′′) is equal to (J ′, Z ′) and W ′′ = W, and in particular
n′′, a′′0 , b

′′
0 , A

′′, B′′, C ′′, X ′′ are the same as n, a0, b0, A,B,C,X. Remove a2, c2 from X ′′ if either is
in X. Now add Wai to W ′′a2

and Wci to W ′′c2 for each i ∈ IA, and reduce n′′ by |IA| (effectively
removing ai, bi, ci from A′′, B′′, C ′′ respectively and from X ′′ for each i ∈ IA). Since bi ∈ X for
each i ∈ IA, |B′′ \ X ′′| = |B \ X| ≥ 1, and thus (J ′′, Z ′′) is indeed still a member of Z2. Now
recall that IA = IC , and that a2, c2 6∈ X or |IA| ≥ 2 thus implies that Wa2

∪
⋃

i∈IA Wai
is neither

complete nor anticomplete to Wc2 ∪
⋃

i∈IA Wci . Therefore, W ′′a2
is neither complete nor anticom-

plete to W ′′c2 . Moreover, a2, c2 6∈ X or |IA| ≥ 2 implies that W ′′a2
,W ′′c2 6= ∅. Hence, (J, Z) is the

thickening W ′′ of (J ′′, Z ′′).
For the second part of the claim, suppose that |A2

J | = 0, |C2
J | = 0, or |A2

J | + |C2
J | < 3. If

a2, c2 6∈ X, then by Claim 4.2.7 without loss of generality Wa2
⊆ A2

J and Wc2 ⊆ C2
J . However,

since a2 and c2 are semiadjacent, this is not possible by the definition of a thickening. If a2 6∈ X
but c2 ∈ X, then without loss of generality we contradict Claim 4.2.5. Similarly, if a2 ∈ X but
c2 6∈ X, then without loss of generality we contradict Claim 4.2.6. Hence, a2, c2 ∈ X. 4

The above claim will be sufficient to localize Wa2 and Wc2 in J , as we show later. We now
turn our attention to Wb3 and Wc3 .

Let B3
J denote the set of vertices in BJ that are anticomplete to AJ but not complete to AJ ;

let C3
J denote the set of vertices in CJ that are complete to AJ but not complete to BJ . Observe

that the definition of Z2 is symmetric with respect to A and B. Hence, similarly as to Claim 4.2.8,
we can prove the following.

Claim 4.2.9 If |B3
J |, |C3

J | ≥ 1 and |B3
J | + |C3

J | ≥ 3, then without loss of generality b3, c3 6∈ X,
Wb3 = B3

J , and Wc3 = C3
J . Otherwise, without loss of generality b3, c3 ∈ X.

We are now ready to describe the recognition algorithm. Observe that the definition of Z2

is symmetric for the choice of a0, b0. That is, if Z = {z1, z2}, then we can choose a0 = z1 and
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b0 = z2, or vice versa. Initialize a member of Z2 by setting n = 3 and X = {ai, bi, ci | i = 1, 2, 3},
and initialize a thickening W such that Wa0 = {z1} and Wb0 = {z2}.

Now let AJ = N(z1), BJ = N(z2), and CJ = V (J) \ (AJ ∪ BJ ∪ Z). We verify that AJ ,
BJ , and CJ are cliques; if not, then (J, Z) is not a thickening of a member of Z2. Find the sets
A1

J , A
2
J , B

1
J , B

3
J , C

2
J , C

3
J . This all takes linear time.

We now deal with the sets A1
J , A

2
J , B

1
J , B

3
J , C

2
J , C

3
J as prescribed by Claim 4.2.4, 4.2.8, and 4.2.9.

Observe that these sets are pairwise disjoint by definition. If |A1
J |, |B1

J | ≥ 1 and |A1
J |+ |B1

J | ≥ 3,
then by Claim 4.2.4, we can set a1, b1 6∈ X (note that c1 ∈ X still), Wa1

= A1
J , Wb1 = B1

J , we
make a1, b1 semiadjacent, and we discard A1

J and B1
J . If |A2

J |, |C2
J | ≥ 1 and |A2

J |+ |C2
J | ≥ 3, then

by Claim 4.2.8, we can set a2, c2 6∈ X, (note that b2 ∈ X still), Wa2
= A2

J , Wc2 = C2
J , we make

a2, c2 semiadjacent, and we discard A2
J and C2

J . If |B3
J |, |C3

J | ≥ 1 and |B3
J | + |C3

J | ≥ 3, then by
Claim 4.2.9, we can set b3, c3 6∈ X, (note that a3 ∈ X still), Wb3 = B3

J , Wc3 = C3
J , we make b3, c3

semiadjacent, and we discard B3
J and C3

J .
Following Claim 4.2.4, 4.2.8, and 4.2.9, all vertices not discarded so far should be in Wai

, Wbi ,
or Wci for some i ≥ 4. But these are straightforward to recognize using the fact that J does not
admit twins. For each undiscarded vertex a ∈ AJ , increase n by 1, set Wan = {a}, and

• if a is adjacent to a discarded vertex, or a is adjacent to more than one vertex in BJ , or a is
antiadjacent to more than one vertex in CJ , or a is adjacent to a single vertex b in BJ and
a and b are not antiadjacent only to the same vertex c in CJ , then answer that (J, Z) is not
a thickening of a member of Z2;

• if a is anticomplete to BJ , then add bn to X;

• if a is complete to CJ , then add cn to X;

• if a is adjacent to a single vertex b ∈ BJ , then set Wbn = {b}, make an strongly adjacent to
bn, and discard b;

• if a is antiadjacent to a single vertex c ∈ CJ , then set Wcn = {c}, make an strongly
antiadjacent to cn, and discard c.

Finally, we discard a. The correctness of the first step follows from Claim 4.2.4, 4.2.8, and 4.2.9,
which imply that a ∈Wai

for i ≥ 4, as well as from the fact that J does not admit twins and the
definition of Z2. We can perform similar steps for each undiscarded vertex in BJ and CJ . At the
end, we verify that |C \X| ≥ 2; otherwise, answer that (J, Z) is not a thickening of a member of
Z2.

By construction, the resulting stripe (J ′, Z ′) is indeed a member of Z2, and the resulting sets
W indeed form a thickening of (J ′, Z ′) to (J, Z).

4.2 Recognizing Thickenings of Z3

Lemma 4.3 Let (J, Z) be a stripe such that J is a connected graph that does not admit twins.
Then we can decide in linear time whether (J, Z) is a thickening of a member of Z3. If so, then
we can find such a member, its underlying graph H, and its thickening to (J, Z) as well in the
same time.

Proof: Let (J ′, Z ′) be a member of Z3. Let H, h1, . . . , h5 be as in the definition of Z3, and
let P = {h1, . . . , h5}. Recall that J ′ is a line trigraph of H, where the vertex corresponding to
the edge h2h3 and the vertex corresponding to the edge h3h4 are made strongly antiadjacent or
semiadjacent.

Let Z = {z1, z2}. Suppose that (J, Z) is a thickening W of (J ′, Z ′).

Claim 4.3.1 N(z1) is not complete to N(z2).

Proof: Consider Wh2h3 and Wh3h4 . By the definition of Z3, Wh2h3 ⊆ N(z1) and Wh3h4 ⊆ N(z2)
or vice versa. Recall that the vertex corresponding to the edge h2h3 and the vertex corresponding
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h1 h2 h3 h4 h5

h6

h1h2 h2h3 h3h4 h4h5

h2h6 h3h6

h1 h2 h3 h4 h5

h6

h1h2 h2h3 h3h4 h4h5

h2h6 h3h6 h4h6

h1 h2 h3 h4 h5

h6

h1h2 h2h3 h3h4 h4h5

h3h6

Figure 5: Three examples of graphs H with exactly one edge incident to h3 and the stripes they
induce when used in the definition of Z3. Observe that the top two graphs in the right column
can each be seen as a thickening of the bottom one if h2h3 is semiadjacent to h3h4.

to the edge h3h4 are made strongly antiadjacent or semiadjacent in J ′. Hence, by the definition of
a thickening, Wh2h3 is not complete to Wh3h4 . Therefore, N(z1) is not complete to N(z2). 4

Claim 4.3.2 If h3 has degree 3, then without loss of generality H is isomorphic to the graph on
the bottom left of Fig. 5 with the possible addition of vertices adjacent to h2 or h4.

Proof: Recall that by the definition of H, every edge of H must be incident on h2, h3, or h4.
Consider the graph H ′ obtained from H by removing any vertices of V (H) \ P not adjacent to
h3. Then the three graphs on the left of Fig. 5 are the only nonisomorphic possibilities for H ′.
However, the top two graphs on the right of Fig. 5 are thickenings of the bottom graph on the
right of Fig. 5 if h2h3 is semiadjacent to h3h4. 4

We are now ready to describe the recognition algorithm. Suppose that V (J) \N [Z] = ∅. Then
J is a disjoint union of two cliques, N [z1] and N [z2]. We verify that J is indeed a disjoint union
of two cliques and that N(z1) is not complete to N(z2); otherwise, answer that (J, Z) is not a
thickening of a member of Z3. The correctness of this step follows from Claim 4.3.1. Since J is
connected, N(z1) is not anticomplete to N(z2). Hence, we can set (J ′, Z ′) as a four-vertex path
where the middle edge is a semi-edge. Clearly, (J ′, Z ′) ∈ Z3 and (J, Z) is a thickening of (J ′, Z ′).

Suppose that V (J) \ N [Z] 6= ∅. We verify that N [z1], N [z2], and V (J) \ N [Z] form cliques;
otherwise, answer that (J, Z) is not a thickening of a member of Z3. We now argue about a
hypothetical member of Z3 with associated graph H, and a thickening W of it to (J, Z). Observe
that without loss of generality:

1. e is incident on h2 in H if and only if We ⊆ N [z1];

2. e is incident on h3 in H if and only if We ∩N [Z] = ∅;

3. e is incident on h4 in H if and only if We ⊆ N [z2].

We note that for each e ∈ E(H), either We ⊆ N [z1], We ⊆ N [z2], or We ∩ N [Z] = ∅ by the
definition of a thickening.

We now identify Wh2h3 and Wh3h4 . Suppose that |V (J) \ N [Z]| = 1 and let v be this single
vertex. By Claim 4.3.2 and the above observations, we can focus on H resembling the graph on
the bottom left of Fig. 5. Then, without loss of generality Wh2h3

= N(z1) ∩ N(v) and Wh3h4
=
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N(z2)∩N(v). We verify that N(z1)∩N(v) and N(z2)∩N(v) are both nonempty and not complete
to each other; otherwise, answer that (J, Z) is not a thickening of a member of Z3. The correctness
follows from the previous discussion.

Suppose that |V (J) \N [z]| ≥ 2. Let u, v ∈ V (J) \N [Z]. Then u and v are from We and Wf

respectively, where e 6= f because J does not admit twins, and e and f are incident on h3 by
Observation 2 above. Then, from the definition of Z3, it follows without loss of generality that
Wh2h3 = N(z1)∩N(u)∩N(v) andWh3h4 = N(z2)∩N(u)∩N(v). We verify thatN(z1)∩N(u)∩N(v)
and N(z2)∩N(u)∩N(v) are both nonempty cliques and that they are not complete to each other;
otherwise, answer that (J, Z) is not a thickening of a member of Z3. The correctness follows from
the previous discussion.

The previous paragraphs have identified Wh2h3
and Wh3h4

and that they are not complete to
each other. If they are anticomplete to each other, then the edge between h2h3 and h3h4 is a
nonedge; otherwise, this edge is a semi-edge.

We are now ready to identify the vertices of V (H) \ P and their incident edges. Let L2 =
N(z1) \Wh2h3

, let L3 = V (J) \ N [Z], and let L4 = N(z2) \Wh3h4
. Note that L2, L3, and L4

correspond to the yet unidentified vertices of J and must belong to We for an edge e incident on
h2, h3, and h4 respectively by Observation 1, 2, and 3 above.

Claim 4.3.3 Let vi ∈ Li for some i ∈ {2, 3, 4} be adjacent to a vertex vj ∈ Lj for each j ∈
{2, 3, 4} \ {i}. Then these three vertices are pairwise adjacent. Moreover, vertex vk has degree 2
outside Lk ∪ Z ∪Wh2h3

∪Wh3h4
for each k ∈ {2, 3, 4}.

Proof: Suppose that i = 2. By the above observations, v2, v3, and v4 belong to We2 , We3 , and
We4 respectively, where e2, e3, and e4 are edges incident on h2, h3, and h4 respectively. Let x
denote the end of e2 that is not h2. Since v2 is adjacent to v3, e2 and e3 are both incident on x.
Since v2 is adjacent to v4, e2 and e4 are incident on x. But then e2, e3, e4 are all incident on x, and
{e2, e3, e4} induces a strong clique in J ′. Hence, v3 and v4 are adjacent. Since J does not admit
twins, Wek = {vk} for each k ∈ {2, 3, 4}, and thus vk has degree 2 outside Lk∪Z ∪Wh2h3

∪Wh3h4
.

The cases that i is 3 or 4 follow similarly. 4
We first identify the set D of vertices of V (H) \P of degree 3. Observe that the three vertices

corresponding to the edges incident to a vertex of D yield a strong clique in any line trigraph
of H. In particular, the three vertices have no incident semi-edges, because h2, h3, and h4 have
degree at least 3. It follows that every vertex of D creates a triangle of vertices in J with one
vertex from each of L2, L3, and L4; moreover, the three vertices of the triangle are complete to
L2, L3, and L4 respectively. Finally, the vertex of this triangle from L2 is anticomplete to L3

except for the vertex from L3 of the triangle, etc. By Claim 4.3.3, the converse is also true, that
is, if there is a triangle in J with one vertex from each of L2, L3, and L4, then this must be due a
vertex of D. Hence, |D| is equal to the number of triangles in J with one vertex from each of L2,
L3, and L4. Using this characterization, we can construct D and the sets W corresponding to its
incident edges in linear time. We first find the vertices in Li with degree 1 to Lj for i 6= j. These
vertices induce an auxiliary graph where every vertex has degree 2 outside their own Li, and thus
it becomes straightforward to detect the requested triangles in linear time.

We remove vertices identified in the previous step from L2, L3, and L4. By Claim 4.3.3, every
vertex that has not been identified so far is anticomplete to Li for at least one value of i ∈ {2, 3, 4}.
Otherwise, answer that (J, Z) is not a thickening of a member of Z3. We now consider L2. Suppose
that L2 6= ∅. Let L2i denote the set of vertices in L2 adjacent to a vertex of Li for i = {3, 4}. By
Claim 4.3.3 and the previous step, L23∩L24 = ∅. Otherwise, answer that (J, Z) is not a thickening
of a member of Z3. For each i ∈ {3, 4}, let N2i denote the set of neighbors of L2i in Li. Verify
that N23 is anticomplete to N24; otherwise, answer that (J, Z) is not a thickening of a member of
Z3. The correctness of this step follows from Claim 4.3.3. Add a single edge e to H incident on h2
and a new vertex of V (H) \ P , set We = L2 \ (L23 ∪ L24). Suppose that L23 6= ∅. Then N23 6= ∅.
Add a new vertex to V (H) \P and make it adjacent to h2 by edge e23 and to h3 by edge f23. Set
We23 = L23 and Wf23 = N23. Since L23 is not anticomplete to N23 by definition, We23 is either
complete to Wf23 or neither complete nor anticomplete to Wf23 . In the first case, we make e23
strongly adjacent to f23 in J ′; in the second case, we make them semiadjacent. If L24 6= ∅, then
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Figure 6: The stripe Z4. The thick dashed lines represent semi-edges. The thick lines represent
edges, where the edges of the strong cliques {a0, a1, a2}, {b0, b1, b2, b3}, and {c1, c2} are not drawn.
All other pairs of vertices are strongly antiadjacent.

we apply a similar operation. Now remove N23 from L3 and N24 from L4. It remains to apply
similar operations as above with respect to L3 and L4.

This completes the description of the recognition algorithm. It is easy to see that it runs in
linear time.

4.3 Recognizing Thickenings of Z4

Lemma 4.4 Let (J, Z) be a stripe such that J is a connected graph that does not admit twins.
Then we can decide in linear time whether (J, Z) is a thickening of a member of Z4. If so, then
we can find such a member and its thickening to (J, Z) as well in the same time.

Proof: We argue about a hypothetical member (J ′, Z ′) of Z4 and its hypothetical thickening W
to (J, Z). By the definition of Z4, z1 corresponds to a0 and z2 corresponds to b0 or vice versa.
Consider the stripe (J ′, Z ′) of Z4 in Fig. 6. Then |N(a0)| = 2, while |N(b0)| ≥ 3. In a thickening
of (J ′, Z ′) that does not admit twins, these (in)equalities still hold. Hence, we can determine the
correct correspondence of z1 and z2 in linear time by counting. Without loss of generality, z1
corresponds to a0 and z2 corresponds to b0. We verify that z1 indeed has precisely two neighbors
and that these are adjacent; otherwise, answer that (J, Z) is not a thickening of a member of Z4.
Let u, v denote the neighbors of z1. Then Wa1 = {u} and Wa2 = {v}, or vice versa. We determine
this more precisely later. By definition, we observe that {c2} = (N(a1)∩N(a2))\{a0} in J ′. Hence,
Wc2 = (N(u)∩N(v))\{z1} in J . Similarly, note that {b1} = N(b0)∩ (N(a1)∪N(a2)) and {a1} =
N(b1) \ (N [b0]∪ {c2}). Hence, Wb1 = N(z2)∩ (N(u)∪N(v)) and Wa1

= N(Wb1) \ (N [z2]∪Wc2).
This enables us to identify whether Wa1

= {u} and Wa2
= {v}, or vice versa. Without loss of

generality, Wa1
= {u} and Wa2

= {v}.
Now observe that {c1} = N(a2) \ {a0, a1, c2} in J ′. Hence, Wc1 = N(v) \ ({z1, u} ∪Wc2). We

have now identified all sets of W except Wb2 and Wb3 . Let Wb2 be the subset of the remaining
vertices that are complete to Wc1 and put the other vertices in Wb3 . If Wb3 is anticomplete to Wc1 ,
then there must be a vertex v we put into Wb2 that is anticomplete to Wc2 . Otherwise, answer
that (J, Z) is not a thickening of a member of Z4. Add v to the set Wb3 ; then Wb3 is neither
complete nor anticomplete to Wc1 .

If the sets we identified are not pairwise disjoint, or not all nonempty, or not all cliques, or
do not exhaust V (J), then answer (J, Z) is not a thickening of a member of Z4. Otherwise, by
Proposition 4.1, it can be checked in linear time that (J, Z) is the thickening that we identified of
a member of Z4.
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4.4 Recognizing Thickenings of Z5

Lemma 4.5 Let (J, Z) be a stripe such that J is a connected claw-free graph that does not admit
twins and |Z| = 2. Then we can decide in linear time whether (J, Z) is a thickening of a member
of Z5. If so, then we can find such a member and its thickening to (J, Z) as well in the same time.

Proof: Suppose that (J, Z) is indeed a thickening of (J ′, Z ′) ∈ Z5 and let v1, . . . , v13, X be as in
the definition of Z5. Note that v13 is (strongly) adjacent to both v7 and v8. Since |Z| = 2 and
thus Z ′ = {v7, v8}, and since no vertex of a stripe can be adjacent to more than one vertex of Z ′,
v13 ∈ X. There is also quite a bit of symmetry in the labeling of V (J ′). In fact, we can freely
swap the labels of v7 and v8, or of v11 and v12, by appropriately relabeling the other vertices of J ′

(i.e. relabeling those vertices with label 1, . . . , 6, 9, 10). See Fig. 7. We also recall Proposition 2.13,
which states that the adjacencies along the cycle v1, . . . , v6 are strong and the chords of this cycle
are nonedges.

Let Z = {z1, z2}. We now argue about a hypothetical member of Z5 and a thickening W of
it to (J, Z). By the aforementioned symmetry, without loss of generality Wv7 = {z1} and that
Wv8 = {z2}. Observe that N(v7) = {v1, v2} and N(v8) = {v4, v5} in J ′, and that v9 is the only
vertex adjacent to both v1 and v2 in J ′. Hence, Wv9 can be found even though we do not yet
know exactly which vertices of N(v7) correspond to Wv1 and which to Wv2 . Indeed, since J does
not admit twins, z1 has two neighbors, and the common neighbors of these vertices form Wv9 .
Similarly, observe that {v10} = (N(v4)∩N(v5))\{v8} in J ′. Hence, Wv10 can be found in the same
way as Wv9 . Now either Wv9 and Wv10 are anticomplete to each other and thus |Wv9 | = |Wv10 | = 1
(because J does not admit twins), or |Wv9 |, |Wv10 | ≥ 1 and Wv9 and Wv10 are neither complete
nor anticomplete to each other. In the first case, the edge between v9 and v10 is a nonedge; in the
second case, the edge is a semi-edge.

Now observe that v9 and v10 share exactly two neighbors in J ′, namely v3 and v6, i.e. {v3, v6} =
(N(v9)\{v10})∩(N(v10)\{v9}). Hence, Wv3∪Wv6 = (N(Wv9)\Wv10)∩(N(Wv10)\Wv9). Consider
the set of remaining vertices. These must be split among Wv11

and Wv12
. Recall that J does not

admit twins, and since v11 and v12 have no semi-neighbors in J ′, |Wv11 |, |Wv12 | ≤ 1. Hence, there
are three cases. If there are no remaining vertices, then v11, v12 ∈ X. If there are two remaining
vertices, then they must be antiadjacent in J . By the aforementioned symmetry, we can make
these vertices Wv11 and Wv12 arbitrarily. Finally, if there is one remaining vertex, then by the
aforementioned symmetry, we can make this vertex Wv11 and add v12 to X. Using the symmetry
and the structure of J ′ (see Fig. 7), it is now straightforward to determine Wv1 , . . . ,Wv6 .

If the sets we identified are not pairwise disjoint, or not all nonempty, or not all cliques, or
do not exhaust V (J), then answer (J, Z) is not a thickening of a member of Z5. Otherwise, by
Proposition 4.1, it can be checked in linear time that (J, Z) is the thickening that we identified of
a member of Z5.

5 Towards a Modified Decomposition Theorem for Claw-
Free Graphs

In this section, we present many supporting lemmas that enable us to slightly modify the de-
composition theorem for claw-free graphs proposed by Chudnovsky and Seymour [14]. Our main
contribution compared to their decomposition theorem is that we completely avoid or sidestep
certain structures known as bicliques, as well as hex-joins. In particular, we will not need to find
these structures algorithmically later. We also prove several novel structural results that make it
easier for our algorithms to find the decomposition.

The lemmas and theorems in this section draw heavily on the work of Chudnovsky and Sey-
mour [14], and we explicitly point out these connections. Hence, lemmas and theorems where we
do not mention such a connection are novel and independent of their work.

Throughout the remainder of this section, we only consider trigraphs unless explicitly specified
otherwise.
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Figure 7: The stripe in Z5 with |Z| = 2 with three possible labelings. The thick dashed edge is a
semi-edge or a nonedge.
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The following definition of almost-unbreakable stripes (J, Z) is crucial to our structural anal-
ysis of claw-free graphs in this section. It is similar to the definition of unbreakable stripes by
Chudnovsky and Seymour [14], except that we still allow J to contain bicliques (see [14] for their
definition) and that Z does not need to be the set of all simplicial vertices in J .

Definition 5.1 We call a stripe (J, Z) almost-unbreakable if

• J neither admits a 0-join, nor a pseudo-1-join, nor a pseudo-2-join,

• there are no twins u, v ∈ V (J) \ Z,

• there is no W -join (A,B) in J such that Z ∩A,Z ∩B = ∅.

5.1 Twins and Proper W-Joins

We prove some lemmas related to twins and proper W-joins. The following lemma is inspired by
and strengthens [14, Theorem 10.1]; in particular, we avoid the assumption that Z contains all
simplicial vertices of J .

Lemma 5.2 Let (J, Z) be an almost-unbreakable stripe. Then either J does not admit twins, or
J is a strong clique with |V (J)| = 2 and |Z| = 1.

Proof: Suppose that J admits twins u, v. Since by the definition of almost-unbreakable J \ Z
does not admit twins and since Z is strongly stable, exactly one of u, v is in Z, and thus |Z| ≥ 1.
But then N [u] = N [v] is a strong clique, because each z ∈ Z is strongly simplicial. As (J, Z) is an
almost-unbreakable stripe, ({u, v}, V (J)\{u, v}) is not a pseudo-1-join of J , and thus V (J)\{u, v}
must be strongly stable. Since J does not admit a 0-join, each vertex of V (J) \ {u, v} is strongly
adjacent to u and v. Hence, J is a strong clique, and thus |Z| = 1, as Z is strongly stable.
Moreover, as J \ Z does not admit twins, and therefore, |V (J)| = 2.

The following lemma is used implicitly by Chudnovsky and Seymour [14].

Lemma 5.3 Let (J, Z) be a thickening of an almost-unbreakable stripe. Then J admits a proper
W-join if and only if J admits a proper W-join (A,B) such that Z ∩A,Z ∩B = ∅.

Proof: Suppose that J admits a proper W-join (A,B). Suppose, without loss of generality,that
Z ∩A 6= ∅. As Z is strongly stable, Z ∩A = {z} for some z ∈ Z. Since (A,B) is a proper W-join,
N [z] ∩ B 6= ∅. Say b ∈ N [z] ∩ B. As A is a strong clique and z ∈ A, A ⊆ N [z]. Since z is
strongly simplicial, this implies that b is strongly complete to A, contradicting that (A,B) is a
proper W-join. The converse is trivial.

5.2 Circular and Linear Interval Trigraphs

We show that if a thickening of a circular or linear interval graph has no proper W-join, then it is
a proper circular-arc or proper interval graph, respectively.

Lemma 5.4 Let graph G be a thickening of a circular interval trigraph. Then G is a proper
circular-arc graph or G contains a proper W-join.

Proof: We follow an idea of Eisenbrand et al. [30, Lemma 2]. Let G′ be a circular interval trigraph
with |V (G′)| maximum such that there is a set X = {Xv | v ∈ V (G′)} that is a thickening of G′

to G. Let I be a set of subsets of S1 that defines G′. Suppose that G does not admit a proper W-
join, but that there exist vertices u′, v′ ∈ V (G′) such that u′, v′ are semiadjacent. Then (Xu′ , Xv′)
is a W-join in G. Since this is not a proper W-join in G, there exists (say) a vertex w ∈ Xu′ that
is strongly complete or strongly anticomplete to Xv′ in G. Create a new vertex w′ in G′ such that
w′ is strongly adjacent (if w is compete to Xv′ in G) or strongly antiadjacent (otherwise) to v′

and that w′ is strongly complete to N [u′] \ {v′}. Observe that the resulting graph G′′ is a circular
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interval trigraph (by duplicating and slightly moving the point corresponding to u′, and possibly
adding another subset of S1 to I). Moreover, G is a thickening of G′′ and |V (G′′)| > |V (G′)|. This
contradicts the choice of G′. Hence, G′ has no semi-edges. Then it follows from Proposition 2.15
that G′ is a proper circular-arc graph. As proper circular-arc graphs are closed under inserting
twins, the lemma follows.

Lemma 5.5 Let graph G be a thickening of a linear interval trigraph. Then G is a proper interval
graph or G contains a proper W-join.

Proof: We follow the same idea as in the above lemma. Let G′ be a linear interval trigraph with
|V (G′)| maximum such that there is a set X = {Xv | v ∈ V (G′)} that is a thickening of G′ to
G. Let v1, . . . , v` be an ordering for the vertices G′ as prescribed by the definition of a linear
interval trigraph. Suppose that G does not admit a proper W-join, but that there exist vertices
vi, vj ∈ V (G′) with i < j such that vi, vj are semiadjacent. Then (Xvi , Xvj ) is a W-join in G.
Since this is not a proper W-join in G, there exists (say) a vertex w ∈ Xvi such that w is strongly
complete or strongly anticomplete to Xvj in G. Create a new vertex w′ in G′ such that w′ is
strongly adjacent (if w is compete to Xvj in G) or strongly antiadjacent (otherwise) to v′ and that
w′ is strongly complete to N [vi] \ {vj}. Since vi and vj are only semiadjacent, there do not exist
vk and vl with k ≤ i, j ≤ l, {k, l} 6= {i, j} such that vk and vl are adjacent. Hence, if we insert
w′ between vi and vi+1 when w is strongly complete to Xvj , or w′ between vi−1 and vi when w
is strongly anticomplete to Xvj , then it follows that the resulting graph G′′ is a linear interval
trigraph. Moreover, G is a thickening of G′′ and |V (G′′)| > |V (G′)|. This contradicts the choice
of G′. Hence, G′ has no semi-edges. Then it follows from Proposition 2.18 that G′ is a proper
interval graph. As proper interval graphs are closed under inserting twins, the lemma follows.

The following lemma shows that [14, Theorem 12.1] goes through under the weaker assumption
that (J, Z) is almost-unbreakable.

Lemma 5.6 Let (J, Z) be an almost-unbreakable stripe such that Z 6= ∅. If J is a thickening of a
circular interval trigraph, then (J, Z) ∈ Z1 ∪ Z6.

Proof: Let J be a thickening of a circular interval trigraph J ′. By Lemma 5.2, either J does not
admit twins or J is a strong clique with |V (J)| = 2 and |Z| = 1. In the latter case, (J, Z) ∈ Z1

trivially. Hence, we assume that J does not admit twins.
It remains to follow the proof of [14, Theorem 12.1], which relies only on the fact that Z 6= ∅

and that J does not admit twins, 0-joins, pseudo-1-joins, nor pseudo-2-joins. This holds by the
above paragraph and by the assumption that (J, Z) is almost-unbreakable.

5.3 The Union of Two Strong Cliques

We aim to understand the structure of almost-unbreakable stripes (J, Z) for which J is the union
of two strong cliques.

The following lemma shows that [14, Theorem 10.2] goes through under the weaker assumption
that (J, Z) is almost-unbreakable; in particular, we avoid bicliques.

Lemma 5.7 Let (J, Z) be an almost-unbreakable stripe with |V (J)| > 2 such that J is the union
of two strong cliques. Then |V (J)| ≤ 4, and (J, Z) ∈ Z1 ∪ Z6.

Proof: We start with some observations about the structure of (J, Z). Since (J, Z) is almost-
unbreakable, J \Z does not admit twins. As |V (J)| > 2, Lemma 5.2 implies that J does not admit
twins. Let A,B be disjoint strong cliques in J with A∪B = V (J) such that A is maximal (i.e. no
vertex of B is strongly complete to A). Let X denote the set of vertices of A that are strongly
complete to B. Since J does not admit twins and |V (J)| > 2, |X| ≤ 1 and |A \X|, |B| ≥ 1. As
Z is strongly stable, |Z ∩ A|, |Z ∩ B| ≤ 1. Because vertices of Z are strongly simplicial but no
member of A \X is strongly complete to B and vice versa, X ∩Z = ∅. For the same reason, each
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vertex of Z is either strongly anticomplete to A \X or strongly anticomplete to B. Since (J, Z) is
almost-unbreakable, Z must contain a vertex of any W-join of J . Observe, however, that (A,B)
is a homogeneous pair and one of |A|, |B| > 1. Therefore, Z 6= ∅.

We now prove that |V (J)| ≤ 4. Let A′ = A\X. Since (A′\Z,B\Z) is a homogeneous pair that
is not a W-join (as (J, Z) is almost-unbreakable) and J does not admit twins, |A′ \Z|, |B \Z| ≤ 1.
Hence |V (J)| ≤ 5. Suppose that |V (J)| = 5. Since |A′ \Z|+ |B \Z| ≤ 2 and |Z| ≤ 2, |A′|+ |B| ≤ 4
and thus |X| = 1. As (J, Z) is a stripe, no vertex of V (J) is adjacent to more than one vertex of
Z. As X is strongly complete to A′ and B, |Z| = 1. Recall that |A′ \ Z|+ |B \ Z| ≤ 2, and thus
|A′|+ |B| ≤ 3 and |V (J)| = |A|+ |B| ≤ 4, a contradiction. It follows that |V (J)| ≤ 4.

It remains to prove that (J, Z) ∈ Z1 ∪ Z6. We consider two cases, depending on |V (J)|.
Consider first the case that |V (J)| = 4. Suppose that |A| = 3. As J has no 0-join, a vertex

of A is adjacent to b, where B = {b}. If more than one vertex of A is strongly adjacent to b, or
if more than one vertex of A is strongly antiadjacent to b, then J admits twins, a contradiction.
If all three vertices of A are semiadjacent to b, then Z = ∅, a contradiction. If two vertices of A
are semiadjacent to b, then neither is in Z, and those two vertices of A together with b form a
W-join in J \ Z, contradicting that (J, Z) is almost-unbreakable. Hence, there is a vertex of A
that is strongly adjacent to b, a vertex of A that is semiadjacent to b, and a vertex of A that is
strongly antiadjacent to b. Then (J, Z) ∈ Z6. Suppose that |A| = 1, where A = {a}. Following
the same reasoning as before (mutatis mutandis), there is a vertex of B that is strongly adjacent
to a. This, however, contradicts the maximality of A. Therefore, |A| = 2. Suppose that B∩Z 6= ∅
and |X| = 1. Then A ∩ Z = ∅ and the vertex in A′ must be semiadjacent to the vertex in B \ Z,
as J does not admit twins. Hence, (J, Z) ∈ Z6. Suppose that B ∩ Z 6= ∅ and X = ∅. As A is
neither strongly complete nor strongly anticomplete to B \ Z, (A,B \ Z) is a homogeneous pair,
and as (J, Z) is almost-unbreakable, A∩Z 6= ∅. But then J is a four-vertex path and (J, Z) ∈ Z1.
Suppose that B ∩ Z = ∅. Then A ∩ Z 6= ∅. As J does not admit twins, X = ∅. Since (A \ Z,B)
is a homogeneous pair, A \ Z is neither strongly complete nor strongly anticomplete to B, and as
(J, Z) is almost-unbreakable, B ∩ Z 6= ∅, a contradiction. This completes the analysis in the case
that |V (J)| = 4.

Finally, consider the case that |V (J)| = 3. Since Z 6= ∅ and J does not admit twins, J contains
at least one strongly antiadjacent pair of vertices. But then J must be a three-vertex path, and
thus (J, Z) is a member of Z6.

Proposition 5.8 Let G be a trigraph that is a thickening of a trigraph G′. Then G is the disjoint
union of two strong cliques if and only if G′ is.

Proof: Suppose that G′ is the disjoint union of two strong cliques. Then by the definition of a
thickening, so is G.

Suppose that G is the disjoint union of two strong cliques A,B. Let W = {Wv′ | v′ ∈ V (G′)}
be a thickening of G to G′. We use induction on the number of vertices v′ ∈ V (G′) for which
Wv′ ∩A 6= ∅ and Wv′ ∩B 6= ∅. In the base case, for each v′ ∈ V (G′) it holds that either Wv′ ⊆ A
or Wv′ ⊆ B. Then G′ is the disjoint union of two strong cliques by the definition of a thickening.
In the inductive step, let v′ ∈ V (G) be such that Wv′ ∩A 6= ∅ and Wv′ ∩B 6= ∅. Since all vertices
of A \Wv′ are strongly complete to Wv′ ∩ A and all vertices of B \Wv′ are strongly complete
to Wv′ ∩ B, it follows that each vertex of G′ is adjacent to v′. Moreover, by the definition of
a trigraph, at most one vertex of G′ is semiadjacent to v′ and all other vertices of G′ must be
strongly adjacent to v′. Let u′ denote the vertex of G′ that is semiadjacent to v′ if it exists, and
let u′ be any other vertex of V (G′) \ {v′} otherwise. Since, G \Wv′ is the union of two strong
cliques A\Wv′ and B \Wv′ and G\Wv′ is a thickeningW \{Wv′} of G′ \ v′, it follows inductively
that G′ \v′ is the disjoint union of two strong cliques A′ and B′. We then add v′ to A′ or B′ when
A′ or B′ respectively does not contain u′. Hence, G′ is the disjoint union of two strong cliques.

Corollary 5.9 Let (J, Z) be a thickening of an almost-unbreakable stripe (J ′, Z ′) such that J is
the union of two strong cliques and Z 6= ∅. Then (J, Z) is a thickening of a member of Z1 ∪ Z6.

Proof: Since J is the union of two strong cliques, J ′ also is a union of two strong cliques by
Proposition 5.8. If |V (J ′)| = 2, then J ′ consists of a strongly adjacent pair of vertices. Then
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(J ′, Z ′) ∈ Z6. If |V (J ′)| > 2, then it follows from Lemma 5.7 that (J ′, Z ′) ∈ Z1 ∪ Z6. The
corollary follows.

The following proposition is inspired by and strengthens [14, Claim 2 in Theorem 13.2].

Proposition 5.10 Let G be a trigraph that does not admit a 0-join nor a pseudo-2-join and let
(A,B) be a W-join of G such that no vertex of V (G) \ (A∪B) is strongly complete to both A and
B, that there is a vertex a ∈ A that is strongly simplicial in G\B, and that there is a vertex b ∈ B
that is strongly simplicial in G \A. Then G is the union of two strong cliques.

Proof: Let V0 = ∅, V1 = A ∪ B, and V2 = V (G) \ (A ∪ B). Let A1 = A and B1 = B. Let A2 be
the set of neighbors of a in V2; since a is strongly simplicial in G \ B and every v ∈ V2 is either
strongly complete or strongly anticomplete to A by the definition of a W-join, A1 ∪A2 is a strong
clique. Let B2 be the set of neighbors of b in V2; using a similar argument as for A1 ∪A2, B1 ∪B2

is a strong clique. Note that each vertex of V2 \ (A2 ∪B2) is strongly anticomplete to V1, because
(A,B) is a W-join and thus each vertex is either strongly complete or strongly anticomplete to A
or B, and A2 and B2 thus contain all neighbors of A and B in V2. Moreover, A2 ∩ B2 = ∅, as
no vertex of V (G) \ (A ∪ B) is strongly complete to both A and B. Since G does not admit a
pseudo-2-join, (V0, V1, V2) is not a pseudo-2-join. By the definition of a W-join, V1 is not a strong
stable set. Hence, V2 must be a strong stable set. Since G does not admit a 0-join, every vertex in
V2 is strongly complete to either A or B. Moreover, at most one vertex of V2 is strongly complete
to A, because V2 is a strong stable set and a is strongly simplicial. Similarly, at most one vertex
of V2 is strongly complete to B. Therefore, G is the union of two strong cliques (A1 ∪ A2 and
B1 ∪B2).

The following lemma is an explicit statement of a result that is implicitly obtained in [14, Theo-
rem 10.3].

Lemma 5.11 Let G be a thickening of a line trigraph of a graph H such that G admits no 0-join,
pseudo-1-join, or pseudo-2-join. Then G is a thickening of the line graph of H, or G is the union
of two strong cliques.

Proof: Let G′ denote a line trigraph of H such that G is a thickening of G′. The first paragraph
of [14, Theorem 10.3] then proves that H has no vertex of degree two, or G is the union of two
strong cliques. If H has no vertex of degree two, then the definition of a line trigraph implies
that G′ has no semiadjacent vertices. In particular, G′ is the line graph of H.

5.4 The Union of Three Strong Cliques

We aim to understand the structure of (almost-unbreakable) stripes (J, Z) for which J is the union
of three strong cliques.

The following lemma is similar to [14, Theorem 13.1]; in particular, we observe that the proof
goes through under the weaker assumption that (J, Z) is any stripe. We repeat the proof only to
be more self-contained.

Lemma 5.12 Let (J, Z) be a stripe such that J admits a hex-join. Then |Z| ≤ 2.

Proof: First, we claim that if a three-cliqued trigraph (G;A,B,C) is a hex-join of (G1;A1, B1, C1)
and (G2;A2, B2, C2), then any stable set of size three in G is also contained in either G1 or G2.
Suppose that {x, y, z} is a stable set. By symmetry, we can assume that x, y ∈ V (G1) and
z ∈ V (G2), and that x ∈ A1 and y ∈ B1. However, in G, A1 is strongly complete to V (G2) \ B2

and B1 is strongly complete to V (G2) \ C2. In particular, one of x, y is strongly adjacent to z in
G, a contradiction. The claim follows.

To prove the lemma, suppose for sake of contradiction that |Z| ≥ 3, and let z1, z2, z3 be three
distinct vertices from Z. Let J be a hex-join of J1 and J2. Since {z1, z2, z3} is a (strong) stable
set, it follows from the claim that, without loss of generality,{z1, z2, z3} ⊆ V (J1). Consider any
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v ∈ V (J2). Since (J, Z) is a stripe, v is (strongly) antiadjacent to at least two of z1, z2, z3. This
yields a stable set of size three. Again, following the claim, the stable set and the two vertices of
z1, z2, z3 in particular are in J2, a contradiction. The lemma follows.

Lemma 5.13 Let (J, Z) be a stripe with |Z| = 2. Then J is the union of three (nonempty) strong
cliques if and only if V (J) \N [Z] is a (nonempty) strong clique.

Proof: Suppose that V (J) \N [Z] is a strong clique. Since (J, Z) is a stripe, the vertices in Z are
strongly simplicial. It follows that J is the union of three strong cliques.

Let Z = {z1, z2}. Suppose that J is the union of three strong cliques A, B, C. Since z1 and
z2 are strongly antiadjacent, we can assume that z1 ∈ A and z2 ∈ B. But then V (J) \N [Z] ⊆ C.

The following lemma and its corollary show that [14, Theorem 13.2] goes through under the weaker
assumption that (J, Z) is almost-unbreakable. We repeat the proof only to be more self-contained,
and to make the connection to our earlier lemmas explicit.

Lemma 5.14 Let (J, Z) be an almost-unbreakable stripe with |Z| = 2, such that J is the union of
three strong cliques. Then (J, Z) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 or J is a line trigraph.

Proof: Let Z = {z1, z2}. Since (J, Z) is a stripe, no vertex is adjacent to both z1 and z2.
Moreover, |V (J)| > 2.

If J is the union of two strong cliques, then it follows from Lemma 5.7 that (J, Z) ∈ Z1 (note
that (J, Z) 6∈ Z6, as |Z| = 2). Hence, we may assume that J is not the union of two strong cliques.
By Lemma 5.2, this implies that J does not admit twins.

Let J ′ be the trigraph that is obtained from J by making z1, z2 semiadjacent. Note that J ′ is
claw-free, as z1 and z2 are strongly simplicial in J .

We claim that J ′ does not admit a W-join. Suppose otherwise and let (A,B) be a W-join
of J ′. Since (J, Z) is almost-unbreakable, at least one of z1, z2 must be in A ∪ B. As z1, z2 are
semiadjacent in J ′, this implies by the definition of a W-join that (without loss of generality)
z1 ∈ A and z2 ∈ B. It follows that A and B satisfy all the conditions of Proposition 5.10 in J ′

(adding a semi-edge cannot create a 0-join or pseudo-2-join), and thus Proposition 5.10 implies
that J ′ (and thus also J) is the union of two strong cliques, a contradiction. This proves the claim.

Using Lemma 5.13, we may observe that J ′ and z1, z2 satisfy all conditions of [13, Theo-
rem 11.1]. Consider the six possible conclusions from applying [13, Theorem 11.1]. In the first
case, note that J ′ does not admit twins as J does not and that J ′ does not admit a W-join by
the claim, a contradiction. In the second case, (J, Z) ∈ Z1. In the third case, J ′ is a line trigraph
of a graph H such that z1 and z2 (as edges in H ′) are both incident on the same vertex of degree
two in H ′. By ‘splitting’ this vertex, we obtain a graph H where z1 and z2 have no common end
and are each incident on a pendant vertex of H. It follows that J is a line trigraph of H. In
the fourth case, it can be seen that (J, Z) ∈ Z3. In the fifth case, either (J, Z) ∈ Z4 or J admits
a generalized 2-join, where the latter contradicts that J does not admit a pseudo-2-join. In the
sixth case, (J, Z) ∈ Z2. The lemma follows.

Corollary 5.15 Let (J, Z) be a thickening of an almost-unbreakable stripe with |Z| = 2, such
that J is the union of three strong cliques. Then (J, Z) is a thickening of a member of Z1 ∪ Z2 ∪
Z3 ∪ Z4 or J is a thickening of a line trigraph.

Proof: Suppose that (J, Z) is a thickening of an almost-unbreakable stripe (J ′, Z ′) with |Z| = 2
such that J is the union of three strong cliques. Since each z′ ∈ Z ′ is strongly simplicial, it follows
that V (J) \N [Z] is a thickening of V (J ′) \N [Z ′]. As V (J) \N [Z] is empty or a strong clique by
Lemma 5.13, so is V (J ′) \ N [Z ′]. Hence, J ′ is the union of three strong cliques. It follows from
Lemma 5.14 that (J ′, Z ′) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 or J ′ is a line trigraph.

Lemma 5.16 Let (J, Z) be a stripe such that J admits a hex-join. Then J is the union of two
strong cliques, or V (J) \N [Z] 6= ∅ and α(J) ≤ 3.

Proof: We may assume that J is not the union of two strong cliques. Since the neighborhood of
each z ∈ Z is a strong clique and |Z| ≤ 2 by Lemma 5.12, V (J) \ N [Z] 6= ∅. Moreover, J is the
union of three strong cliques by the definition of a hex-join, and thus α(J) ≤ 3.
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5.5 Almost-Unbreakable Stripes and Indecomposable Members

We prove strong relations between almost-unbreakability and indecomposability.
The following lemma is similar to [14, Theorem 10.4], and essentially shows that it goes through

under the weaker assumption that (J, Z) is almost-unbreakable.

Lemma 5.17 Let (J, Z) be a thickening of an almost-unbreakable stripe. Then either J is a
thickening of an indecomposable member of S0, . . . ,S7 or J admits a hex-join.

Proof: Let (J, Z) be a thickening of an almost-unbreakable stripe (J ′, Z ′) (where possibly J = J ′).
Since (J ′, Z ′) is almost-unbreakable, J ′ does not admit a 0-join, a pseudo-1-join, nor a pseudo-
2-join. Following the observations near the definitions of pseudo-1-join and pseudo-2-join, this
means that J ′ does not admit a 0-join, a 1-join, nor a generalized 2-join. Then, following [14,
Theorem 10.4], either J ′ is a thickening of an indecomposable member of S0, . . . ,S7 or J ′ admits
a hex-join. The lemma follows using Proposition 2.7.

We prove the following corollary.

Corollary 5.18 Let (J, Z) be a thickening of an almost-unbreakable stripe. Then either (J, Z) is
a thickening of an almost-unbreakable stripe (J ′, Z ′) such that J ′ is an indecomposable member of
one of S0, . . . ,S7, or J is the union of three strong cliques and |Z| ≤ 2.

Proof: Following Lemma 5.17, either J is a thickening of an indecomposable member of S0, . . . ,S7,
or J admits a hex-join. In the latter case, it follows from the definition of a hex-join and
Lemma 5.12 that J is the union of three strong cliques and |Z| ≤ 2.

A vertex v of a trigraph G is near-simplicial if v is semiadjacent to some vertex and the set of
strong neighbors of v is a strong clique [14].

Lemma 5.19 (Chudnovsky and Seymour [14, Theorem 11.1]) Let J ∈ Si for some i ∈
{1, 2, 4, 5, 6, 7} and suppose that J is indecomposable and not the union of two strong cliques.

1. If z ∈ V (J) is a simplicial vertex, let Z be the set of all simplicial vertices of J . Then |Z| ≤ 2
and (J, Z) ∈ Zj for some j ∈ {2, 5, 7, 8, 9}.

2. If z ∈ V (J) is a near-simplicial vertex semiadjacent to z′, let Z = {z, z′}. Then (J ′, Z) ∈
Z2 ∪ Z5, where J ′ is the trigraph obtained from G by making z, z′ strongly antiadjacent.

The following lemma and its corollary show that [14, Theorem 12.2] goes through under the weaker
assumption that (J, Z) is almost-unbreakable. We repeat the proof only to be more self-contained,
and to make the connection to our earlier lemmas explicit.

Lemma 5.20 Let (J, Z) be an almost-unbreakable stripe with Z 6= ∅. If J is a thickening of an
indecomposable member of Si, where i ∈ {1, . . . , 7}, then (J, Z) ∈ Zj, where j ∈ {1, 2, 5, 6, 7, 8, 9}.

Proof: Let J ′ be a trigraph such that J ′ is an indecomposable member of Si for some i ∈ {1, . . . , 7}
and that there is a set W = {Wv′ | v′ ∈ V (G′)} that is a thickening of J ′ to J . By Lemma 5.2,
either J does not admit twins or J is a strong clique with |V (J)| = 2 and |Z| = 1. In the latter
case, (J, Z) ∈ Z6 trivially. Hence, we may assume that J does not admit twins. If J ′ is the union
of two strong cliques, then so is J by Proposition 5.8. If J is the union of two strong cliques, then
the result follows from Lemma 5.7. If i = 3, then (J, Z) ∈ Z1 ∪Z6 by Lemma 5.6. So assume that
neither J ′ nor J is the union of two strong cliques and that i 6= 3.

We claim that |Wv′ | = 1 for each v′ ∈ V (J ′). Suppose otherwise. Since J does not admit
twins, there exist u′, v′ ∈ V (J ′) such that u′, v′ are semiadjacent and (Wu′ ,Wv′) is a W-join in J .
As (J, Z) is almost-unbreakable, without loss of generality, Z ∩Wu′ 6= ∅. Because each z ∈ Z is
strongly simplicial, u′ is near-simplicial in J ′. This, combined with the assumption that J ′ is not
the union of two strong cliques, i 6= 3, and J ′ is indecomposable, implies by Lemma 5.19:2 that
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(J ′′, Z ′′), where J ′′ is obtained from J ′ by making u′, v′ strongly antiadjacent and Z ′′ = {u′, v′},
is a stripe. Hence, v′ is also near-simplicial in J ′ and no vertex of J ′ is adjacent to both u′ and v′.
It follows that A = Wu′ and B = Wv′ satisfy all the conditions of Proposition 5.10 in J , and thus
Proposition 5.10 implies that J is the union of two strong cliques, a contradiction. This proves
the claim.

Following the claim, J and J ′ are isomorphic. Hence, J ∈ Si. Since Z 6= ∅, J has a simplicial
vertex. By Lemma 5.19:1, (J, Z) ∈ Zj where j ∈ {2, 5, 7, 8, 9}. The lemma follows.

The following corollary is immediate.

Corollary 5.21 Let (J, Z) be an almost-unbreakable stripe such that Z 6= ∅ and J is a thickening
of an indecomposable member of one of S1, . . . ,S7. Then |Z| ≤ 2.

5.6 Stability Numbers

We prove bounds on the stability number of certain trigraphs. We start with the following obser-
vation.

Proposition 5.22 (Hermelin et al. [48, Proposition 2]) Let G be a trigraph that is a thick-
ening of a trigraph G′. Then α(G) = α(G′).

Lemma 5.23 Let G be a trigraph. If G ∈ S1 ∪S4 ∪S5 ∪S6 ∪S7, then α(G) ≤ 3. If G ∈ S2, then
α(G) ≤ 4.

Proof: The result for the case that G ∈ S2 was shown by Hermelin et al. [48, Proposition 1].
Throughout, let G′ be the graph obtained from G by removing all semi-edges. Note that

deleting (semi-)edges can only increase α, and thus α(G) ≤ α(G′). Therefore, we show an upper
bound on α(G′). Let I be any stable set of G′ and suppose that |I| > 3. Consider the various
cases depending on to which class of graphs G belongs:

S1: Consider the definition of S1. Since deleting vertices or adding (semi)edges can only reduce α,
it suffices to show that α(G) ≤ 3 if G = G0. So let v1, . . . , v12 be as in the definition of G0.
If v11, v12 ∈ I, then |I| = 2, a contradiction. Let I ′ = I ∩ {v1, . . . , v10} and let J denote
the set of indices of the vertices in I ′. If J contains only even or only odd integers, then
|I ′| ≤ 2 as vi is adjacent to vi+2 (indices modulo 10) for 1 ≤ i ≤ 10. Hence, |I| ≤ 3, a
contradiction. But then J contains both odd and even integers and thus v11, v12 6∈ I. If
j ∈ J , then j− 2, j− 1, j+ 1, j+ 2 6∈ J (integers modulo 10). Hence, |I| = |J | ≤ b10/3c = 3,
a contradiction. Therefore, α(G) ≤ α(G′) ≤ 3.

S4: Let H,h1, . . . , h7 be as in the definition of S4. Let E6 denote the set of edges of H incident
with h6 and let x be the vertex added to L(H) to obtain G. Note that x is strongly adjacent
to the edges and chords of the cycle C = {h1, . . . , h5}; denote this set of edges and chords by
E(C). Observe that V (G′) = E6∪E(C)∪{x}. Since E6 is a strong clique in G′, |I∩E6| ≤ 1.
Hence, if x ∈ I, then |I| ≤ 2, a contradiction. Otherwise, as G′[E(C)] is can be covered by
five strong cliques such that each vertex is in at least two of these cliques, |I ∩ E(C)| ≤ 2
and thus |I| ≤ 3, a contradiction. Therefore, α(G) ≤ α(G′) ≤ 3.

S5: Let A,B,C, d1, . . . , d5, X be as in the definition of S5. Since A,B,C are strong cliques,
|I ∩ (A ∪B ∪C)| ≤ 3. Suppose that |I ∩ (A ∪B ∪C)| = 3. Then I has precisely one vertex
from each of A,B,C, say ai, bj , ck respectively. Since ck is strongly adjacent to bj if and only
if j 6= k, j = k. Similarly, i = k. But then i = j, thus ai and bj are adjacent in G. By the
construction of G′, ai and bj must be semiadjacent in G and thus ck ∈ X. Hence, ck 6∈ V (G)
and thus ck 6∈ V (G′), a contradiction. Hence, |I ∩ (A∪B ∪C)| ≤ 2. Note that d3, d4, d5 are
pairwise strongly adjacent, so |I ∩ {d3, d4, d5}| ≤ 1. Therefore, d1 ∈ I or d2 ∈ I. As d1 is
strongly complete to A ∪B ∪ C, d1 ∈ I implies that |I| ≤ 3, a contradiction. Hence, d1 6∈ I
and d2 ∈ I. As d2 is strongly complete to A∪B, |I ∩ (A∪B∪C)| ≤ 1, implying that |I| ≤ 3,
a contradiction. Therefore, α(G) ≤ α(G′) ≤ 3.
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S6: Observe that G is the union of three strong cliques, and thus so is G′. Therefore, |I| ≤ 3
and α(G) ≤ α(G′) ≤ 3.

S7: Since for any X ⊆ V (G) with |X| = 4, at least two pairs of vertices in X are strongly
adjacent, the same holds with respect to G′. Applying this to any subset of I of size four,
we obtain a contradiction to the assumption that I is stable.

This completes the proof.

From this lemma and Proposition 5.22, we immediately obtain the following corollary.

Corollary 5.24 Let G be a trigraph that is a thickening of a trigraph G′. If G′ ∈ S1 ∪ S4 ∪ S5 ∪
S6 ∪ S7, then α(G) ≤ 3. If G′ ∈ S2, then α(G) ≤ 4.

5.7 Supporting Lemma

Finally, we present a crucial supporting lemma. Although the lemma is ours, the proof is somewhat
inspired by the proof of [14, Theorem 7.2].

Lemma 5.25 Let G be a connected claw-free graph with α(G) > 3 such that G does not admit
twins or proper W-joins. If G is not a line graph nor a proper circular-arc graph, then G is a
thickening of a member of S2, or G admits a pseudo-1-join or a pseudo-2-join.

Proof: Suppose that G does not admit a pseudo-1-join or a pseudo-2-join. Hence, G does not
admit a 1-join or a generalized 2-join. As G is connected, G does not admit a 0-join neither. Since
α(G) > 3, G is not the union of three strong cliques, and thus G does not admit a hex-join. Let
G′ be a trigraph with |V (G′)| minimum among all trigraphs of which G is a thickening (i.e. G
is a thickening of G′). Observe that G′ does not admit a 0-join, a 1-join, a generalized 2-join,
nor a hex-join, as G does not. Moreover, G′ does not admit twins nor W-joins, as |V (G′)| is
minimum. Hence, G′ is indecomposable, and thus G′ ∈ S0 ∪ · · · ∪ S7 following Theorem 2.16.
From Corollary 5.24 and the assumption that α(G) > 3, it follows that G′ ∈ S0 ∪S2 ∪S3 and thus
G is a thickening of a member of S0 ∪ S2 ∪ S3.

Suppose that G is a thickening of a member of S0. Following Lemma 5.11 and the fact that
α(G) > 3, G is a thickening of a line graph. As G does not admit twins, G is in fact a line graph,
a contradiction.

Suppose that G is a thickening of a member of S3. Since G does not admit a proper W-join,
it follows from Lemma 5.4 that G is a proper circular-arc graph, a contradiction.

Therefore, G is a thickening of a member of S2, and the lemma follows.

6 An Algorithmic Decomposition for Claw-Free Graphs

In this section, we obtain our algorithmic decomposition theorem for claw-free graphs following
from the decomposition approach for claw-free graphs by Chudnovsky and Seymour [14]. The main
idea is to decompose the graph along 0-joins, pseudo-1-joins, and pseudo-2-joins, so that we obtain
a strip-structure of the graph where each strip is a spot or a thickening of an almost-unbreakable
stripe. Almost-unbreakable stripes that are line graphs are decomposed even further into trivial
line graph strips (spots or two-vertex stripes). We then apply the supporting structural lemmas
of Sect. 5 to show that the other strips indeed belong to a few basic graph classes, i.e. the ones
described in Sect. 2.5.

As before, given a graph G, we use n = |V (G)| and m = |E(G)|.
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6.1 Finding a Strip-Structure

We give an algorithm that finds a strip-structure of a claw-free graph such that the resulting strips
are spots or thickenings of almost-unbreakable stripes (recall Definition 5.1). The proof of this
theorem is a combination of the observation that [14, Theorem 8.1 and Theorem 9.1] go through
if only we need to decompose to spots and almost-unbreakable stripes, and the algorithms to find
twins and joins that we developed in Sect. 3. We give (most of) the proof only to be self-contained,
and to make the dependence on the algorithms that find twins and joins explicit.

Theorem 6.1 Every claw-free trigraph G admits a purified strip-structure with nullity zero such
that all its strips are either spots or thickenings of almost-unbreakable stripes. If G is a graph,
such a strip-structure can be found in O(n2m3/2) time.

Proof: Let H be such that V (H) = ∅, E(H) = {F}, and the incidence relation is empty, and let
η be such that η(F ) = V (G). Then (H, η) is a purified strip-structure for G with nullity zero.

We now define five conditions on the strips of H; when a particular condition is met for a
strip F ∈ E(H), we apply a transformation to the strip-structure. We call a condition and its
transformation a rule. We iteratively apply the rules: we do not apply rule i until rule i−1 cannot
be applied to any strip. Moreover, after applying a rule, we check for rule 1 again, etc., until no
more rules can be applied to any strip. The rules closely follow those proposed by Chudnovsky
and Seymour [14, Theorem 8.1 and Theorem 9.1].

Consider any F ∈ E(H) and its corresponding strip (J, Z). Assume that (J, Z) is not a spot.
Let F = {h1, . . . , hk} and let Z = {z1, . . . , zk}.

(1) F is not purified

If k ≤ 1, then F is purified. So suppose, without loss of generality,that k ≥ 2 and η(F, h1) ∩
η(F, h2) 6= ∅. Let W = η(F, h1) ∩ η(F, h2). If k ≥ 3, then W ∩ η(F, hi) = ∅ for 3 ≤ i ≤ k by the
definition of a circus. Moreover, again by the definition of a circus, W is strongly anticomplete to
η(F ) \ (η(F, h1) ∪ η(F, h2)). Finally, by the definition of a strip-structure, W is a strong clique of
G.

Let W = {w1, . . . , w`}. Create a new edge F ′i for each wi and construct a new strip-structure
(H ′, η′) for G as follows:

• V (H ′) = V (H) and E(H ′) = E(H) ∪ {F ′1, . . . , F ′`},

• for each F0 ∈ E(H) and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H,

• each F ′i is incident only with h1, h2 for all 1 ≤ i ≤ `,

• for each F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0,

• η′(F ) = η(F )\W , η′(F, h1) = η(F, h1)\W , η′(F, h2) = η(F, h2)\W , and η′(F, hi) = η(F, hi)
for all 3 ≤ i ≤ k,

• η′(F ′i ) = {wi}, η′(F ′i , h1) = {wi}, and η′(F ′i , h2) = {wi} for all 1 ≤ i ≤ `.

If η(F ) = W , we remove F from H ′. It can be quickly verified that (H ′, η′) is a strip-structure
for G. Furthermore, F ′1, . . . , F

′
` are all purified. Finally, note that (H ′, η′) can be constructed in

linear time.

Observe that the nullity of (H ′, η′) might be higher than the nullity of (H, η). This happens
only if η(F, h1) = W or η(F, h2) = W . Hence, the nullity of (H ′, η′) is at most two more than the
nullity of (H, η). Thus, we need a rule to reduce the nullity.

(2) η(F, hi) = ∅ for some hi ∈ F

Construct a new strip-structure (H ′, η′) for G as follows.
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• V (H ′) = V (H) and E(H ′) = E(H),

• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H,

• for each h ∈ V (H) \ {hi}, F is incident with h in H ′ if and only if they are adjacent in H
(note that this implies that F is not incident with hi in H ′),

• for each F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0,

• η′(F ) = η(F ) and η′(F, h) = η(F, h) for all h ∈ F \ {hi}.

Clearly, (H ′, η′) is a strip-structure for G. Note that (H ′, η′) can be constructed in linear time.

After exhaustively applying Rule (1) and (2), (H, η) is a purified strip-structure of nullity zero.
In particular, (J, Z) is a stripe.

(3) J admits a 0-join (V1, V2)

For j = 1, 2, let Zj = Z ∩ Vj and let Pj = {hi | 1 ≤ i ≤ k and zi ∈ Zj}. Clearly, P1 ∩ P2 = ∅ and
P1 ∪ P2 = F . As (H, η) has nullity zero, each zi has a neighbor in J \ Z. Hence V1 \ Z1 6= ∅ and
V2 \ Z2 6= ∅.

Now create two new edges F ′1 and F ′2 and let (H ′, η′) be obtained from (H, η) as follows.

• V (H ′) = V (H) and E(H ′) = (E(H) \ {F}) ∪ {F ′1, F ′2},

• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H,

• for j = 1, 2 and h ∈ V (H), F ′j is incident with h in H ′ if and only if h ∈ Pj ,

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0,

• for j = 1, 2, η′(F ′j) = Vj \ Zj and η′(F ′j , h) = η(F, h) for all h ∈ Pj .

Observe that (H ′, η′) is again a strip-structure for G and that it has the same nullity as (H, η).
Note that (H ′, η′) can be constructed in linear time.

(4) J admits a pseudo-1-join (V1, V2)

As J has no 0-join, Ai 6= ∅ for i = 1, 2. For j = 1, 2, since Vj is not strongly stable, Vj \ Z 6= ∅.
For j = 1, 2, let Zj = Vj ∩ Z and let Pj = {hi | 1 ≤ i ≤ k and zi ∈ Zj}. Clearly, P1 ∩ P2 = ∅ and
P1 ∪ P2 = F . Moreover, Vj \ Zj 6= ∅.

If Z ∩ (A1 ∪ A2) 6= ∅, suppose that z1 ∈ A1. Then since A1 ∪ A2 is a strong clique and (H, η)
is purified, Z ∩ (A1 ∪A2) = {z1} and Z \ {z1} is strongly anticomplete to A1 ∪A2. Furthermore,
z1 is strongly anticomplete to V (J) \ (A1 ∪A2), since every vertex in this set has an antineighbor
in A1 ∪A2 and z1 is strongly simplicial.

Now create two new edges F ′1 and F ′2. If Z∩ (A1∪A2) = ∅, then create a new vertex h′ as well;
otherwise, assume that z1 ∈ A1 and let h′ = h1. Let (H ′, η′) be obtained from (H, η) as follows:

• V (H ′) = V (H) ∪ {h′}, and E(H ′) = (E(H) \ {F}) ∪ {F ′1, F ′2},

• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H,

• for j = 1, 2 and h ∈ V (H), F ′j is incident with h in H ′ if and only if h ∈ Pj ,

• F ′1 and F ′2 are incident with h′,

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0,
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• for j = 1, 2, η′(F ′j) = Vj \ Zj and η′(F ′j , h) = η(F, h) for all h ∈ Pj \ {h′},

• for j = 1, 2, η′(F ′j , h
′) = Aj \ Zj .

Observe that since J does not admit a 0-join, Aj \ Zj 6= ∅ for j = 1, 2. It can now be readily
verified that (H ′, η′) is a strip-structure of G and that it has the same nullity as (H, η). Note that
(H ′, η′) can be constructed in linear time.

(5) J admits a pseudo-2-join

We again compute a new strip-structure of G in a manner similar to Rule (4). To be precise, we
apply the procedure as described in Chudnovsky and Seymour [14, Theorem 9.1: Condition (3)].
Note that this procedure takes linear time and does not increase the nullity.

Let (H, η) be the resulting strip-structure and let (J, Z) be any stripe of the strip-decomposition.
Choose (J ′, Z ′) with |V (J ′)| minimum such that (J, Z) is a thickening of (J ′, Z ′). Since |V (J ′)| is
minimum, no two vertices in V (J ′) \ Z ′ are twins in J ′ and there is no W-join (A,B) in J ′ with
Z ′ ∩ A,Z ′ ∩ B = ∅. Moreover, by Rule (3)-(5), J does not admit a 0-join, a pseudo-1-join, or a
pseudo-2-join, and thus neither does J ′ by Proposition 2.7. This shows that (J, Z) is a thickening
of an almost-unbreakable stripe.

Observe that in applying one of Rules (1),(3)-(5), the number of edges of the strip-structure
increases by at least one. By definition, a strip-structure can have at most |V (G)| edges, and
thus we need only apply these rules at most |V (G)| times. Rule (2) only needs to be applied after
Rule (1) has been applied, as all other rules do not increase the nullity. Since Rule (1) can increase
the nullity by at most two, Rule (2) is applied at most twice as often as Rule (1). Furthermore,
Rule (1) only needs to be applied after one of Rules (3)-(5) have been applied. Hence, Rule (1) is
applied at most |V (G)|/2 times and Rule (2) at most |V (G)| times.

Note that applying the transformation of a rule takes at most linear time. If G is a graph,
then by Corollary 3.16, it takes O(nm3/2) time to test the condition of a rule. Hence, the total
run time of the algorithm is O(n2m3/2).

6.2 Decomposing Line Graphs

We first show that we can find a good strip-structure of line graphs in a fast and easy way, without
using Theorem 6.1. The arguments here resemble those in [48, Theorem 8]. For this, we need the
following definition.

Definition 6.2 Let (J, Z) be a strip such that J is a line graph. Then this is a trivial line graph
strip if (J, Z) is a spot or if |V (J)| = 2 and |Z| = 1. Otherwise, we call (J, Z) a nontrivial line
graph strip.

Observe that if (J, Z) is a trivial line graph strip, then |V (J) \ Z| = 1.

Lemma 6.3 Let G be a connected line graph. Then in linear time, we can find a strip-structure
of G such that each strip is a trivial line graph strip.

Proof: Recall that a vertex of G is pendant if it has degree 1. Compute the pre-image G′ of G
(i.e. a graph G′ such that G is the line graph of G′); this takes linear time [76]. Then consider the
following strip-graph H: V (H) is equal to the set of vertices of G′ that are not pendant; E(H) is
obtained from E(G′) be removing a vertex from an edge of E(G′) if that vertex is pendant. For
each F ∈ E(H), let η(F ) be the set containing just the vertex of J that corresponds to the edge
of G that corresponds to F . For each F ∈ E(H) and each h ∈ F , let η(F, h) = η(F ). We then
output the strip-structure (H, η). Observe that (H, η) is indeed a valid strip-structure, and that
each strip is trivial line graph strip.

We then show that if we are given a strip-structure of a claw-free graph, then we can decompose
each nontrivial line graph strip into trivial line graph strips using Lemma 6.3.
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Lemma 6.4 Let G be a graph and let (H, η) be a purified strip-structure of nullity zero of G such
that each strip is connected and either a spot or a stripe. Then, in linear time, we can find a
purified strip-structure of nullity zero of G such that if a strip (J, Z) of (H, η) is not a nontrivial
line graph strip, then (J, Z) is a strip of the resulting strip-structure, and all other strips of the
resulting strip-structure are trivial line graph strips.

Proof: Consider each strip (J, Z) of (H, η) in turn. If (J, Z) is a trivial line graph strip, then we
proceed to the next strip. Since spots are trivial line graph strips, we may thus assume that (J, Z)
is a stripe. We then check whether J is a line graph; this takes linear time [76]. If J is indeed a
line graph, then (J, Z) is a nontrivial line graph strip. We now aim to ‘shatter’ (J, Z) into several
trivial line graph strips.

Suppose that J is the line graph of J ′. Apply Lemma 6.3 to compute a strip-structure (H ′, η′)
of J such that each strip is a trivial line graph strip. We now incorporate (H ′, η′) into (H, η). For
each z ∈ Z, let Fz denote the edge of H ′ such that η′(Fz) = {z} and let hz denote the vertex of
H that corresponds to z. Let F denote the edge of H that corresponds to the strip (J, Z). Now
construct a new strip-structure (H ′′, η′′) by merging (H, η) and (H ′, η′) as follows:

• V (H ′′) = V (H)∪ (V (H ′) \ (
⋃

z∈Z Fz)) and E(H ′′) = (E(H ′) \ (
⋃

z∈Z{Fz}))∪ (E(H) \ {F}),

• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′′ if and only if they are
incident in H,

• for each F0 ∈ E(H ′) \ (
⋃

z∈Z{Fz}) and h ∈ V (H ′) \ (
⋃

z∈Z Fz), F0 is incident with h in H ′′

if and only if they are incident in H ′,

• for each F0 ∈ E(H ′) \ (
⋃

z∈Z{Fz}), F0 is incident with hz in H ′′ if and only if F0 is incident

with a vertex of Fz in H ′,

• for each F0 ∈ E(H) \ {F}, η′′(F0) = η(F0) and η′′(F0, h) = η(F0, h) for each h ∈ F0,

• for each F0 ∈ E(H ′) \ (
⋃

z∈Z{Fz}), η′′(F0) = η′(F0) and η′′(F0, h) = η′(F0, h) for each

h ∈ F0 \ (
⋃

z∈Z Fz),

• for each z ∈ Z and each F0 ∈ E(H ′) \ (
⋃

z∈Z{Fz}) such that Fz ∩ F0 6= ∅, η′′(F0, hz) =

η′(F0, h
′
z), where Fz ∩ F0 = {h′z}.

Since (J, Z) is a stripe, no vertex of J is adjacent to two or more vertices of Z and Z is strongly
stable. Therefore, (H ′′, η′′) is indeed a valid strip-structure of G. Moreover, it is purified and has
nullity zero. Observe also that each strip that corresponds to an edge of E(H ′) \ (

⋃
z∈Z Fz) is a

trivial line graph strip of (H ′′, η′′), and that each strip that corresponds to an edge of E(H) \ {F}
is still a strip of (H ′′, η′′).

Proceeding iteratively, we indeed find a strip-structure of G such that no strip is a nontrivial
line graph strip. Moreover, it follows from the description of the algorithm that if a strip of (H, η)
was not a nontrivial line graph strip, it is still a strip of the resulting strip-structure. Since each of
the strips resulting from the ‘shattering’ of a nontrivial line graph strip is a trivial line graph stripe
and the ‘shattering’ procedure takes linear time, the total run time of the algorithm is linear.

6.3 Auxiliary Algorithm

Let ω denote the matrix-multiplication constant; currently ω < 2.373 [80, 59].

Lemma 6.5 Let (J, Z) be a stripe such that J is a graph. We can check in O(nω) time whether
|Z| = 1, V (J) \N [Z] 6= ∅, and α(J) ≤ 3.

Proof: It can be checked in linear time whether |Z| = 1 and V (J) \ N [Z] 6= ∅. Then there is a
largest stable set of J that contains the lone element z of Z, as z is simplicial. Hence, it remains
to verify that there is no triangle in the complement of J \N [Z], which takes O(nω) time [51].
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6.4 Main Theorems

We now state our main structural and algorithmic results.

Theorem 6.6 Let G be a connected claw-free graph with α(G) > 3 such that G does not admit
twins or proper W-joins. Then

• G is a thickening of a member of S2 (i.e. G is a thickening of an XX-trigraph),

• G is a proper circular-arc graph, or

• G admits a strip-structure such that for each strip (J, Z)

– (J, Z) is a trivial line graph strip, or

– (J, Z) is a stripe for which J is connected and

∗ |Z| = 1, α(J) ≤ 3, and V (J) \N [Z] 6= ∅,
∗ |Z| = 1, J is a proper circular-arc graph, and either J is a strong clique or α(J) > 3,

∗ |Z| = 2 and J is a proper interval graph, or

∗ (J, Z) is a thickening of a member of Z2 ∪ Z3 ∪ Z4 ∪ Z5.

Moreover, we can distinguish the cases and find the strip-structure in O(n2m3/2) time.

Proof: We first check whether G is a line graph; this takes linear time [76]. If G is indeed a
line graph, then we use Lemma 6.3 to compute, in linear time, a strip-structure of G such that
each strip is a trivial line graph strip. Note that such strips are either spots or proper circular-arc
graphs with |Z| = 1. Hence, we can output this strip-structure.

We then check whether G is a proper circular-arc graph; this takes linear time [24]. If it is,
then we output G.

We may thus assume that G is neither a line graph nor a proper circular-arc graph. By
Lemma 5.25, this implies that G is a thickening of a member of S2, or G admits a pseudo-1-join
or a pseudo-2-join. Following Corollary 3.16, we can decide in O(nm3/2) time whether G admits
a pseudo-1-join or a pseudo-2-join. If not, then we output G, as G must be a thickening of a
member of S2.

We may thus assume that G admits a pseudo-1-join or a pseudo-2-join. By Theorem 6.1, we
can find in O(n2m3/2) time a purified strip-structure (H, η) of nullity zero of G such that all strips
are spots or thickenings of almost-unbreakable stripes. Since G is connected and thus does not
admit a 0-join, by inspecting the proof of Theorem 6.1, it follows that each edge of H is incident
on at least one vertex of H. Hence, each strip of the strip-structure has |Z| ≥ 1.

Now apply the algorithm of Lemma 6.4 in linear time and (by abuse of notation) call the
resulting strip-structure (H, η) as well. Observe that (H, η) is purified, has nullity zero, and all
its strips are trivial line graph strips or thickenings of almost-unbreakable stripes. Moreover, still
each strip (J, Z) of the strip-structure has |Z| ≥ 1.

Consider each strip (J, Z) of the strip-structure in turn. We first check whether (J, Z) is a
trivial line graph strip; this takes constant time. If it is, then we can proceed to the next strip.
Hence, we may assume that (J, Z) is a thickening of an almost-unbreakable stripe. Since the stripe
is almost-unbreakable, it follows that by the definition of thickenings that J is connected.

We then check whether |Z| = 1, α(J) ≤ 3, and V (J) \N [Z] 6= ∅; this takes O(|V (J)|ω) time
by Lemma 6.5. If it is, then we proceed to the next strip.

We then check whether |Z| = 1 and J is a proper circular-arc graph; this takes linear time [24].
If it is, then note that either V (J) \N [Z] = ∅ and thus J is a strong clique, or α(J) > 3, and we
proceed to the next strip. We then check whether |Z| = 2 and J is a proper interval graph; this
takes linear time [24]. If it is, then we proceed to the next strip.

Claim 6.6.1 At this stage, (J, Z) is a thickening of a member of Z2 ∪ Z3 ∪ Z4 ∪ Z5.

Proof: Observe that (J, Z) is a thickening of some almost-unbreakable stripe (J ′, Z ′). Note that
|V (J)| ≥ 2, as |Z| ≥ 1 and each strip of (J, Z) has nullity zero. If |V (J)| = 2 or |V (J ′)| = 2, then
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|Z| = 1 and J is a proper circular-arc graph, a contradiction at this stage. Hence, |V (J)| > 2 and
|V (J ′)| > 2.

Suppose that J contains a proper W-join (A,B) such that Z ∩ A,Z ∩ B = ∅. Then (A,B)
is also a proper W-join in G, a contradiction. Hence, by Lemma 5.3, J does not admit a proper
W-join.

Suppose that (J, Z) is a thickening of a member of Z1 or of Z6. Hence, by Lemma 5.5
respectively Lemma 5.4, J is a proper interval graph and |Z| = 2 respectively J is a proper
circular-arc graph and |Z| = 1. This is a contradiction at this stage, and thus (J, Z) is not a
thickening of a member of Z1 ∪ Z6. In particular, (J ′, Z ′) is not a member of Z1 ∪ Z6.

Suppose that J is the union of two strong cliques. By Corollary 5.9, (J, Z) is a thickening of a
member of Z1 ∪ Z6, a contradiction. Hence, J is not the union of two strong cliques. Therefore,
by Proposition 5.8, J ′ is not the union of two strong cliques.

Suppose that J is a thickening of a line trigraph. Since J is not the union of two strong cliques,
it follows from Lemma 5.11 that J is a thickening of a line graph. As |V (J)| > 2, it follows from
Lemma 5.2 that J does not admit twins. Hence, J is in fact a line graph, a contradiction (at this
stage, we can have neither trivial nor nontrivial line graph strips). Hence, J is not a thickening
of a line trigraph. In particular, J ′ is not a line trigraph and thus not a line graph. We can then
repeat the same argument to show that J ′ is not even a thickening of a line trigraph.

Suppose that J admits a hex-join. Then |Z| ≤ 2 by Lemma 5.12. Suppose that |Z| = 1. Since
J is not the union of two strong cliques, it follows from Lemma 5.16 that V (J) \ N [Z] 6= ∅ and
α(J) ≤ 3, a contradiction at this stage. Hence, |Z| = 2. Then using the fact that J is not a
thickening of a line trigraph and that (J, Z) is not a thickening of a member of Z1, it follows from
Corollary 5.15 that (J, Z) is a thickening of a member of Z2 ∪Z3 ∪Z4 and the claim would follow.

Suppose that J does not admit a hex-join. Then J ′ does not admit a hex-join either by
Proposition 2.7. Hence, by Lemma 5.17, the fact that (J ′, Z ′) is a (trivial) thickening of itself,
and the fact that J ′ is not a thickening of a line trigraph, J ′ is a thickening of an indecomposable
member of S1, . . . ,S7. It follows from Lemma 5.20 and the fact that (J ′, Z ′) is not a member of
Z1 ∪ Z6, that (J ′, Z ′) is a member of Zi, where i ∈ {2, 5, 7, 8, 9}.

Suppose that (J ′, Z ′) is a member of Zi, where i ∈ {7, 8, 9}. We show that α(J) ≤ 3 and
V (J) \N [Z] 6= ∅. For suppose that (J ′, Z ′) is a member of

Z7: Since J ′ ∈ S4, α(J) ≤ 3 by Corollary 5.24. Since the edge h6h7 is not incident with any
edges of the cycle h1 . . . h5, V (J) \N [Z] 6= ∅.

Z8: Since J ′ ∈ S5, α(J) ≤ 3 by Corollary 5.24. Since d5 is not incident with the nonempty
strong cliques A,B,C, it follows that V (J) \N [Z] 6= ∅.

Z9: Since J ′ ∈ S7 (J ′ is antiprismatic), α(J) ≤ 3 by Corollary 5.24. Moreover, z is strongly
antiadjacent to the nonempty strong cliques A,B,C, so V (J) \N [Z] 6= ∅.

In each of these three cases, trivially |Z| = 1. We thus reach a contradiction at this stage. Hence,
(J ′, Z ′) ∈ Z2 ∪ Z5, proving the claim. 4

Observe that the total run time of the described algorithm is dominated by the run time of
the algorithm of Theorem 6.1, which is O(n2m3/2). This proves the theorem.

By slightly adapting the algorithm and the analysis, we obtain the following results.

Theorem 6.7 Let G be a connected claw-free graph with α(G) > 3 such that G does not admit
twins or proper W-joins. Then

• G is a thickening of a member of S2 (i.e. G is a thickening of an XX-trigraph),

• G is a proper circular-arc graph, or

• G admits a strip-structure such that for each strip (J, Z)

– (J, Z) is a trivial line graph strip, or
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– (J, Z) is a stripe for which J is connected and

∗ |Z| = 1, α(J) ≤ 3, and V (J) \N [Z] 6= ∅,
∗ |Z| = 1, J is a proper circular-arc graph, and either J is a strong clique or α(J) > 3,

∗ |Z| = 2 and J is a proper interval graph,

∗ |Z| = 1, α(J) = 4, and V (J) \N [Z] 6= ∅, or

∗ |Z| = 2 and (J, Z) is a thickening W of a member (J ′, Z ′) of Z2 ∪ Z3 ∪ Z4 ∪ Z5.
Moreover, we know W, (J ′, Z ′), and the class that (J ′, Z ′) belongs to.

Moreover, we can distinguish the cases and find the strip-structure in O(n2m3/2) time.

Proof: We apply the same algorithm as in the proof of Theorem 6.6. However, we modify it at
the stage that we consider each (J, Z) of a strip-structure of G. At the end (i.e. at Claim 6.6.1),
we prove that (J, Z) is a thickening W of a member (J ′, Z ′) of Z2 ∪Z3 ∪Z4 ∪Z5. We now extend
the algorithm as follows.

If |Z| = 1, then it follows from the definitions of Z2, Z3, Z4, and Z5 that (J, Z) is a thickening
of a member of Z5. By Corollary 5.24, this implies that α(J) ≤ 4. If V (J) \N [Z] = ∅, then J is
a (strong) clique, and in particular, J is a proper circular-arc graph, a contradiction at this stage.
Hence, V (J) \ N [Z] 6= ∅. Then α(J) ≤ 3 would form a contradiction at this stage. Therefore,
α(J) = 4.

If |Z| = 2, then we run the recognition algorithms of Lemma 4.2, Lemma 4.3, Lemma 4.4, and
Lemma 4.5. Then, in linear time, we know W, (J ′, Z ′), and the class that (J ′, Z ′) belongs to.

Theorem 6.8 Let G be a connected claw-free graph with α(G) > 3 such that G does not admit
twins or proper W-joins. Then

• G is a thickening of a member of S2 (i.e. G is a thickening of an XX-trigraph),

• G is a proper circular-arc graph, or

• G admits a strip-structure such that for each strip (J, Z)

– (J, Z) is a trivial line graph strip, or

– (J, Z) is a stripe for which J is connected and

∗ 1 ≤ |Z| ≤ 2, α(J) ≤ 3, and V (J) \N [Z] 6= ∅,
∗ |Z| = 1, J is a proper circular-arc graph, and either J is a strong clique or α(J) > 3,

∗ |Z| = 2, J is a proper interval graph, and α(J) > 3, or

∗ (J, Z) is a thickening of a member of Z5.

Moreover, we can distinguish the cases and find the strip-structure in O(n2m3/2) time.

Proof: We apply the same algorithm as in the proof of Theorem 6.6. However, we modify it
at the stage that we consider each (J, Z) of a strip-structure of G. At the stage where we test
whether |Z| = 1, α(J) ≤ 3 and V (J)\N [Z] 6= ∅, we additionally test for each strip (J, Z) whether
|Z| = 2, α(J) ≤ 3 and V (J) \N [Z] 6= ∅. Since there is a largest stable set of J that contains both
elements of Z, it remains to verify that there is no nonedge in J \N [Z], which takes linear time.
Hence, the run time of the algorithm remains O(n2m3/2).

We then modify the final part of the analysis, where (J ′, Z ′) has the same properties as in
the final part of the proof of Theorem 6.6. Recall that in that part of the analysis, J is not the
union of two strong cliques, and thus neither is J ′. We show that α(J) ≤ 3 and V (J) \N [Z] 6= ∅.
Suppose that (J ′, Z ′) is a member of

Z2: Since J ′ ∈ S6, α(J) ≤ 3 by Corollary 5.24. As the strong clique C in the definition of S6 has
|C\X| ≥ 2 and both a0 and b0 are strongly antiadjacent to C, it follows that V (J)\N [Z] 6= ∅.

Z3: Note that J is the union of three nonempty strong cliques. Hence, α(J) ≤ 3 and V (J) \
N [Z] 6= ∅.
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Z4: Note that J is the union of three nonempty strong cliques. Hence, α(J) ≤ 3 and V (J) \
N [Z] 6= ∅.

Since |Z| = 2 in all three cases, we would obtain a contradiction at this stage.

Using Corollary 5.24, the definition of a trivial line graph strip, and Theorem 6.8, we obtain the
following.

Theorem 6.9 Let G be a connected claw-free graph with α(G) > 4 such that G does not admit
twins or proper W-joins. Then

• G is a proper circular-arc graph, or

• G admits a strip-structure such that for each strip (J, Z)

– (J, Z) is a spot, or

– (J, Z) is a stripe for which J is connected and

∗ 1 ≤ |Z| ≤ 2, α(J) ≤ 4, and V (J) \N [Z] 6= ∅,
∗ |Z| = 1, J is a proper circular-arc graph, and either J is a strong clique or α(J) > 3,

or

∗ |Z| = 2, J is a proper interval graph, and either J is a strong clique or α(J) > 3.

Moreover, we can distinguish the cases and find the strip-structure in O(n2m3/2) time.

Part II – Algorithmic Applications on Claw-Free Graphs

7 Fixed-Parameter Algorithm for Dominating Set

In this section, we show that Dominating Set parameterized by solution size is fixed-parameter
tractable on claw-free graphs. The general idea of how to establish this is as follows. We first
show how to remove twins and proper W-joins from G without changing the size of its smallest
dominating set (see Sect. 7.1). Moreover, if α(G) ≤ 3, then we can find a smallest dominating set
of G by exhaustive enumeration. Then we can apply Theorem 6.8, and G either belongs to some
basic class, or it can be decomposed into strips that each belong to a basic class. If G belongs
to a basic class, then we can again find a smallest dominating set of G in polynomial time (see
Sect. 7.2). If G can be decomposed into strips, then we solve Dominating Set separately on
each strip in polynomial time (see Sect. 7.2), and then we present a fixed-parameter algorithm to
stitch the solutions of the strips together (see Sect. 7.3).

Throughout the section, we rely on the following notation. Let G be a graph. We let γ(G)
denote the smallest size of a dominating set of G. More generally, for each subset A ⊆ V (G), we
let γ(G | A) denote the size of a smallest subset of V (G) dominating all vertices in V (G) \A. An
independent dominating set is a subset of V (G) that is both an independent set and a dominating
set of G. We need the following fact proved by Allan and Laskar [1].

Lemma 7.1 (Allan and Laskar [1]) There is a (polynomial-time) algorithm that, given a claw-
free graph G and a dominating set D of G, outputs an independent dominating set of G of size at
most |D|.

As a consequence of this lemma, we can assume throughout that any smallest dominating set that
we consider is also an independent set.

We also need the following folklore fact.

Proposition 7.2 Let G be a graph. Then γ(G) ≤ α(G).
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7.1 Removing Twins and W-joins

We first show how to remove twins and (proper) W-joins from a graph G without changing the
size of its smallest dominating set. The reductions are powerful enough to operate on general
graphs, while still maintaining claw-freeness.

Lemma 7.3 Let a, b be twins of a graph G, and let G′ = G \ a. Then γ(G) = γ(G′). Moreover,
if G is claw-free, then so is G′.

Proof: Let D be a smallest dominating set of G. Since N [a] = N [b] (in particular, a and b are
adjacent) and D is a smallest dominating set of G, at most one of a, b belongs to D. If a ∈ D,
then replace a by b. Then the resulting set is still a dominating set of G of the same size as D,
and thus also a dominating set of G′ = G \ a.

Let D′ be a smallest dominating set of G′. Then D′ ∩ N [b] 6= ∅. Since N [a] = N [b], D′ is a
dominating set of G as well.

We remark here that a more general reduction exists that is even more powerful. The reduction
removes vertex a if there is an adjacent vertex b for which N [a] ⊆ N [b]. Note that twins indeed
satisfy the conditions of this reduction. Using this rule, all W-joins in the graph would be proper,
as proven by Martin et al. [64, Lemma 14] (see also [65, Lemma 12]). The absence of general W-
joins would simplify several parts of the structural decomposition theorem presented in this work.
Martin et al. [64, 65] provide a first example of such simplifications. We leave further explorations
to future work.

Lemma 7.4 Let (A,B) be a W-join of a graph G. Construct a graph G′ from G as follows:

1. if some a0 ∈ A is complete to B and some b0 ∈ B is complete to A, then remove A \ {a0}
and B \ {b0};

2. otherwise, if some a0 ∈ A is complete to B and some a1 ∈ A is antiadjacent to some b0 ∈ B,
then remove all vertices of A \ {a0, a1} and all vertices of B \ {b0};

3. otherwise, if some b0 ∈ B is complete to A and some b1 ∈ B is antiadjacent to some a0 ∈ A,
then remove all vertices of B \ {b0, b1} and all vertices of A \ {a0};

4. otherwise, let a0 ∈ A be a vertex that is antiadjacent to some b0 ∈ B, and remove A \ {a0}
and B \ {b0}.

Then γ(G) = γ(G′). Moreover, if G is claw-free, then so is G′.

Proof: Since G′ is obtained from G by removing vertices, G′ is claw-free if G is. It remains to
show that γ(G) = γ(G′). We do that by showing that, in each of the above four cases, we can
construct from a (smallest) dominating set of G a dominating set of G′ of equal or smaller size,
and vice versa.

Case 1: Some a0 ∈ A is complete to B and some b0 ∈ B is complete to A.
Let D′ ⊆ V (G′) be a dominating set of G′. Consider any vertex a ∈ A\{a0}. If b0 ∈ D′ or a0 ∈ D′,
then D′ dominates a, since b0 is complete to A by assumption and A is a clique by the definition
of a W-join respectively. If a0, b0 6∈ D′, then there is a vertex v that is both in N(a0) ∩D′ and in
V (G′) \ {a0, b0} = V (G) \ (A ∪ B). Since every vertex of V (G) \ (A ∪ B) is either A-complete or
A-anticomplete by the definition of a W-join and v ∈ N(a0), it follows that v is A-complete, and
thus D′ dominates a. By symmetric arguments, D′ dominates every b ∈ B \ {b0}. Hence, D′ is
also a dominating set of G.

Let D ⊆ V (G) be a smallest dominating set of G. If D ∩ A 6= ∅, then we can assume that
D ∩ A = {a0}, because N [a0] ⊇ N [a] for each a ∈ A by the definition of a W-join and by the
assumption that a0 is complete to B. Hence, we may assume that D ∩ A ⊆ {a0}. Similarly, we
may assume that D ∩B ⊆ {b0}. Therefore, D is a dominating set of G′.
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In the remainder, we may thus assume that each vertex of A is not complete to B or that each
vertex of B is not complete to A.

Case 2: Some a0 ∈ A is complete to B and some a1 ∈ A is antiadjacent to some b0 ∈ B.
Let D′ ⊆ V (G′) be a dominating set of G′. Consider any vertex a ∈ A \ {a0, a1}. If a0 ∈ D′ or
a1 ∈ D′, then D′ dominates a, since A is a clique. If a0, a1 6∈ D′, then because b0 is antiadjacent
to a1 (both in G and G′), it follows that there is a vertex v that is both in N(a1) ∩ D′ and in
V (G′)\{a0, a1, b0} = V (G)\ (A∪B). Since every vertex of V (G)\ (A∪B) is either A-complete or
A-anticomplete by the definition of a W-join and v ∈ N(a1), it follows that v is A-complete, and
thus D′ dominates a. Consider any vertex b ∈ B \ {b0}. Observe that NG′ [a0] ⊇ NG′ [a1]; hence,
we may assume that D′ ∩ {a0, a1} ⊆ {a0}. Then we can use similar arguments as in Case 1 to
show that D′ dominates b. Therefore, D′ is also a dominating set of G.

Let D ⊆ V (G) be a smallest dominating set of G. If D ∩ A 6= ∅, then we can assume that
D ∩ A = {a0}, because N [a0] ⊇ N [a] for each a ∈ A by the definition of a W-join and by the
assumption that a0 is complete to B. Hence, we may assume that D ∩A ⊆ {a0}. If |D ∩B| > 1,
then we can replace a vertex of D ∩ B by a0 to obtain another smallest dominating set of G,
because A and B are cliques and N(b) \ A = N(b′) \ A for each b, b′ ∈ B by the definition of a
W-join. Hence, we may assume that |D ∩ B| ≤ 1 and D ∩ A ⊆ {a0}. If D ∩ B = {b} for some
vertex b, then b is not complete to A by assumption. Hence, a0 ∈ D or there is a vertex v both in
D and in V (G) \ (A∪B) that is adjacent to a vertex of A that is not adjacent to b. In the second
case, v is A-complete by the definition of a W-join. Then each vertex of A is dominated by a0 or v
respectively. Hence, the only responsibility of b is to dominate N [b]\A. Since N [b]\A = N [b′]\A
for each b′ ∈ B by the definition of a W-join, we may assume that b = b0. Therefore, we may
assume that D ∩A ⊆ {a0} and D ∩B ⊆ {b0}. Hence, D is a dominating set of G′.

Case 3: Some b0 ∈ B is complete to A and some b1 ∈ B is antiadjacent to some a0 ∈ A.
This case is symmetric to the previous one.

In the remainder, we may thus assume that each vertex of A is not complete to B and that
each vertex of B is not complete to A.

Case 4: Let a0 ∈ A be a vertex that is antiadjacent to some b0 ∈ B.
Let D′ ⊆ V (G′) be a dominating set of G′. Consider any vertex a ∈ A \ {a0}. If a0 ∈ D′, then D′

dominates a, since A is a clique. If a0 6∈ D′, then because b0 is antiadjacent to a0 (both in G and
in G′), there is a vertex v that is both in NG′(a0) ∩D′ and in V (G′) \ {a0, b0} = V (G) \ (A ∪B).
Since every vertex of V (G) \ (A ∪ B) is either A-complete or A-anticomplete by the definition of
a W-join and v ∈ N(a0), it follows that v is A-complete, and thus D′ dominates a. By symmetric
arguments, D′ dominates every b ∈ B \ {b0}. Hence, D′ is also a dominating set of G.

LetD be a smallest dominating set ofG. If |D∩A| > 1, then we replace a vertex ofD∩A by b0 to
obtain another smallest dominating set of G, because A and B are cliques and N [a]\B = N [a′]\B
for each a, a′ ∈ A by the definition of a W-join. Hence, we may assume that |D ∩ A| ≤ 1. If
D ∩ A = {a} for some vertex a, then a is not complete to B by assumption. Hence, b ∈ D for
some b ∈ B or there is a vertex v both in D and in V (G) \ (A ∪ B) that is adjacent to a vertex
of B that is not adjacent to a. In the second case, v is B-complete by the definition of a W-join.
Then each vertex of B is dominated by b or v respectively. Hence, the only responsibility of a is
to dominate N [a] \ B. Since N [a] \ B = N [a′] \ B for each a′ ∈ A by the definition of a W-join,
we may assume that a = a0. Therefore, we may assume that D ∩ A ⊆ {a0} and, similarly, that
D ∩B ⊆ {b0}. Therefore, D is a dominating set of G′.

The final case of the lemma implies that we can remove proper W-joins, since in a proper W-join
(A,B) each vertex of A is not complete to B and each vertex of B is not complete to A.

Corollary 7.5 Let (A,B) be a proper W-join of a graph G and let a0 ∈ A be a vertex that is
antiadjacent to some b0 ∈ B. Create a graph G′ from G by removing A \ {a0} and B \ {b0}. Then
γ(G) = γ(G′). Moreover, if G is claw-free, then so is G′.
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7.2 Dominating Set in Basic Classes

Let G be a claw-free graph. Through the reductions of Lemma 7.3 and Corollary 7.5, we may
assume that G admits no twins and proper W-joins. Consider the following lemma.

Lemma 7.6 Let G be a graph and k an integer. Then in O(nk+1) time we can compute γ(G) or
correctly decide that γ(G) > k.

Proof: Use exhaustive enumeration to find a smallest set D ⊆ V (G) with |D| ≤ k such that
|N [D]| = |V (G)|, or report that no such set exists. This takes O(nk+1) time.

Corollary 7.7 Let G be a graph such that α(G) ≤ 3. Then we can compute γ(G) in O(n4) time.

Proof: By Proposition 7.2, γ(G) ≤ α(G) ≤ 3, and the result follows from Lemma 7.6.

Intuitively, we may now assume that the claw-free graph G admits no twins, admits no proper
W-joins, and satisfies α(G) > 3. Therefore, we can use the implications of Theorem 6.8 for G. (A
formal proof of these facts follows later.)

First, we show that if G is a proper circular-arc graph or a thickening of an XX-trigraph, then
we can compute γ(G) in polynomial time.

Theorem 7.8 (Hsu and Tsai [49]) Let G be a circular-arc graph. Then γ(G) can be computed
in linear time.

Lemma 7.9 Let G be a graph that is a thickening of an XX-trigraph. Then γ(G) can be computed
in O(n4) time.

In order to show this lemma, we need the following auxiliary result.

Lemma 7.10 Let G be a graph that is thickening of a trigraph G′, and let G′′ be the graph obtained
from G′ by removing all semi-edges from G′. Then γ(G) ≤ γ(G′′).

Proof: Let W be a thickening of G′ to G, and let D′ be any dominating set of G′′. Construct
a set D ⊆ V (G) as follows: for each v′ ∈ D′, pick an arbitrary vertex v ∈ Wv′ . We claim that
D is a dominating set of G. Consider any w ∈ V (G) \ D and let w′ ∈ V (G′) be such that
w ∈ Ww′ . If w′ ∈ D′, then because Ww′ is a (strong) clique and Ww′ ∩D 6= ∅ by construction, w
is dominated by D. Otherwise, there is a u′ ∈ D′ ⊆ V (G′′) such that w′ and u′ are adjacent. By
the construction of G′′, this implies that w′ and u′ are strongly adjacent in G′. By the definition
of a thickening, each vertex of Wu′ is (strongly) complete to Ww′ . By construction, D ∩Wu′ 6= ∅,
and thus w is dominated by D. The claim follows. Since |D| = |D′|, γ(G) ≤ γ(G′′).

It is now straightforward to prove Lemma 7.9.

ProofProof of Lemma 7.9: Consider an XX-trigraph G′ such that G is a thickening of G′.
Remove all semi-edges from G′ and call the resulting graph G′′. By the definition of XX-trigraphs,
it follows that {v2, v4, v6} is a dominating set of G′′. Hence, by Lemma 7.10, γ(G) ≤ γ(G′′) ≤ 3,
and the result follows from Lemma 7.6.

Intuitively, Theorem 7.8 and Lemma 7.9 imply that Theorem 6.8 yields a strip-structure.
Therefore, we turn to the basic classes of strips of Theorem 6.8. For reasons that will become
clear later, we need stronger results for strips (J, Z) than just being able to compute a smallest
dominating set. However, intuitively, if we compute γ(J), then we enforce that any dominating
set that attains this bound contains a vertex of N [Z]. Sometimes we might want to enforce this,
but sometimes we do not. Similarly, it might be that N(Z) is already dominated by a vertex from
another strip, and then we do not need to dominate it, but can of course still include a vertex of
it in the dominating set. Therefore, we want to compute γ(J \ (Q ∪ R) | N [R]) for any disjoint
Q,R ⊆ Z. We now do this for each strip type of Theorem 6.8.
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Lemma 7.11 Let (J, Z) be a stripe such that J is a proper circular-arc graph and either J is a
(strong) clique or α(J) > 3. For any disjoint Q,R ⊆ Z, γ(J \ (Q∪R) | N [R]) can be computed in
linear time.

Proof: First, test whether J is a (strong) clique. If so, then γ(J \ (Q ∪ R) | N [R]) is trivial to
compute for any disjoint Q,R ⊆ Z; this all takes linear time. So assume that J is not a (strong)
clique. Then find a set of arcs I1, . . . , In of the sphere S1 that forms a representation of J as a
proper circular-arc graph (that is, Ii 6⊆ Ij for each i 6= j). Such a set of arcs can be found in linear
time [24].

We now show this representation has the Helly property, that is, any three arcs that pairwise
intersect have a common intersection point. To this end, it suffices to show that no two or three arcs
cover the circle (i.e. their union is equal to S1) [60, Theorem 7]. For sake of contradiction, suppose
that there are three arcs, say I1, I2, I3, that jointly cover the circle (we implicitly allow that I1 and
I2 already cover the circle). Let i ∈ {1, 2, 3} and consider any arc Ia that intersects Ii (possibly
a = i). Since J is a proper circular-arc graph and Ii intersects Ii′ for each i′ ∈ {1, 2, 3} \ {i}, Ia
covers an endpoint of Ii as well as an endpoint of Ii′ for some i′ ∈ {1, 2, 3} \ {i}. Hence, Ia covers
at least two endpoints of the arcs I1, I2, I3. Since I1, I2, I3 cover the circle, it follows that any arc
corresponding to a vertex of an independent set of G must cover at least two endpoints of the arcs
I1, I2, I3. Therefore, α(J) ≤ 3, a contradiction. Hence, the representation has the Helly property.

From the definition of a stripe, each z ∈ Z is strongly simplicial. Since the representation has
the Helly property, there is a point pz ∈ S1 for each z ∈ Z such that the arcs containing pz are
precisely those corresponding to N [z]. We can assume that pz is contained in the interior of each
of these intervals.

Now consider disjoint sets Q,R ⊆ Z. For each z ∈ R, remove the interval [pz − ε, pz + ε] from
each arc for some infinitesimally small ε > 0. Let I ′1, . . . , I

′
n′ be the resulting set of arcs and J ′ the

intersection graph of these arcs. Note that n′ = n+ |N [R]| and that J ′ is a circular-arc graph.
Consider some z ∈ R. Observe that both copies of z in J ′ correspond to either a ‘leftmost’

or a ‘rightmost’ interval of the representation. For each copy of z, add a new vertex to J ′ that is
adjacent only to this copy of z. Let J ′′ be the graph obtained by adding these new vertices for all
z ∈ R, and removing Q. By the preceding observation, J ′′ is still a circular-arc graph.

The vertices added to J ′ ensure that both copies of z, for each z ∈ R, will belong to some
smallest dominating set of J ′′. In particular, this ensures that there is a smallest dominating set
of J ′′ that dominates N [R]. Hence, γ(J ′′)− 2|R| = γ(J \ (Q ∪R) | N [R]). As J ′′ is a circular-arc
graph, γ(J ′′) can be computed in linear time following Theorem 7.8.

Lemma 7.12 Let (J, Z) be a thickening of a stripe (J ′, Z ′) ∈ Z5 such that J is a graph. For any
disjoint Q,R ⊆ Z, γ(J \ (Q ∪R) | N [R]) can be computed in O(n5) time.

Proof: Consider disjoint sets Q,R ⊆ Z. For any z ∈ R, add a new vertex adjacent to z only, and
remove Q; call the resulting graph H. By construction, there is a smallest dominating set of H
that contains R, and thus γ(H)− |R| = γ(J \ (Q ∪R) | N [R]).

It remains to compute γ(H). Since J is a thickening of J ′, where J ′ is an XX-trigraph, H is a
thickening of a trigraph H ′ that is obtained from J ′ by possibly adding a vertex that is strongly
adjacent to v7, possibly adding a vertex that is strongly adjacent to v8, and possibly removing v7
or v8. Let H ′′ be the graph obtained from H by removing all semi-edges. From the definition
of XX-trigraphs, one of {v4, v6, v7}, {v2, v6, v8}, {v3, v6, v7, v8}, or {v2, v4, v6} is a dominating set
of H ′′. Hence, using Lemma 7.10, γ(H) ≤ γ(H ′′) ≤ 4, and the result follows from Lemma 7.6.

Lemma 7.13 Let (J, Z) be a stripe such that J is a graph and 1 ≤ |Z| ≤ 2, α(J) ≤ 3, and
V (J) \ N [Z] 6= ∅. For any disjoint Q,R ⊆ Z, γ(J \ (Q ∪ R) | N [R]) can be computed in O(n4)
time.

Proof: Consider disjoint sets Q,R ⊆ Z. For any z ∈ R, add a new vertex adjacent to z only, and
remove Q; call the resulting graph J ′. By construction, there is a smallest dominating set of J ′

that contains R, and thus γ(J ′)− |R| = γ(J \ (Q ∪R) | N [R]).
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It remains to compute γ(J ′). Since each z ∈ R is simplicial and R is an independent set (recall
that (J, Z) is a stripe), there is a maximum independent set of J that contains R. Hence, using
Proposition 7.2, γ(J ′) ≤ α(J) ≤ 3. The result then follows from Lemma 7.6.

Since trivial line graph strips have at most three vertices (recall Definition 6.2), the following
lemma is immediate.

Lemma 7.14 Let (J, Z) be a trivial line graph strip such that J is a graph. For any disjoint
Q,R ⊆ Z, γ(J \ (Q ∪R) | N [R]) can be computed in constant time.

We will also rely on the following observation.

Proposition 7.15 Let (J, Z) be a strip such that J is a graph. For any disjoint Q,R ⊆ Z, there
is a set D ⊆ V (J) \ Z of size γ(J \ (Q ∪R) | N [R]) that dominates V (J) \ (Q ∪N [R]).

Proof: Let D ⊆ V (J) \ (Q∪R) be a set of size γ(J \ (Q∪R) | N [R]) that dominates V (J) \ (Q∪
N [R]). Suppose that D contains some z ∈ Z. By the definition of a strip, z is a simplicial vertex
that is not adjacent to any z′ ∈ Z \ {z}. Hence, we can replace z by any other vertex of N(z),
and the resulting set still is a subset of V (J) \ (Q ∪R) that dominates V (J) \ (Q ∪N [R]).

7.3 Stitching Dominating Sets

We now describe a method to stitch dominating sets for individual strips of a strip-structure
together to form a dominating set of the entire graph. To this end, we need several supporting
definitions and lemmas.

Definition 7.16 Let G be a graph and let (H, η) be a purified strip-structure of nullity zero for G.
We say h ∈ V (H) is striped if there is an F ∈ E(H) such that h ∈ F and the strip corresponding
to F is a stripe. The subset of V (H) that is striped is denoted P(H).

We can show the following useful lemma.

Lemma 7.17 Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G, let k
be an integer, and let d = maxF∈E(H) |F |. If γ(G) ≤ k, then |P(H)| ≤ dk.

Proof: Suppose that γ(G) ≤ k, but |P(H)| > dk. Let D be a dominating set of G of size at
most k. Define a set M ⊆ V (H) where h ∈ M if and only if there is an F ∈ E(H) such that
η(F ) ∩ D 6= ∅ and h ∈ F . Since |D| ≤ k and d = maxF∈E(H) |F |, |M ∩ P(H)| ≤ dk. Let
h ∈ P(H) \M ; as |P(H)| > dk, h is properly defined. As h ∈ P(H), there is an F ∈ E(H) such
that h ∈ F and the strip (J, Z) corresponding to F is a stripe. Consider the vertices in η(F, h).
Note that η(F ) ∩ D = ∅, because h 6∈ M . Hence, the vertices in η(F, h) can only be dominated
by a vertex in η(h) ∩ D, since η(F, h′) ∩ η(F, h) = ∅ for any h′ ∈ F \ {h}, as (J, Z) is a stripe.
However, because h 6∈M , there is no F ′ ∈ E(H) such that η(F ′)∩D 6= ∅, and thus η(h)∩D 6= ∅.
Because (H, η) has nullity zero, η(F, h) 6= ∅, and therefore, there is a vertex not dominated by D,
a contradiction.

We now define a set of auxiliary edge-weighted multigraphs (each possibly with parallel edges)
with each an associated integer. The goal will be to show that if γ(G) ≤ k, then there is at least
one such an auxiliary multigraph with an edge dominating of weight bounded by the associated
integer.

Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G such that
1 ≤ |F | ≤ 2 for each F ∈ E(H), and let P ⊆ P(H). The idea of the construction is to ensure that
h ∈ P if and only if there is an F ∈ E(H) that corresponds to a stripe for which the dominating
set has a vertex in η(F, h). To this end, we define the triple (KP , wP , kP ) of a multigraph, an
edge-weight function, and an integer as follows. Initially, KP is empty and kP = 0. For each
h ∈ V (H), add a vertex vh to KP . If h ∈ P , then also add a vertex v′h to KP as well as an edge
between vh and v′h of weight ∞. For each F ∈ E(H), there are several cases:
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Case 1: F = {h} for some h ∈ V (H).
Let (J, Z) be the strip corresponding to F . Note that (J, Z) is in fact a stripe. There are several
cases:

Case 1a: h ∈ P .
Add a vertex vF and an edge eF between vh and vF of weight γ(J) − γ(J \ Z | N [Z]) to KP ;
additionally, increase kP by γ(J \ Z | N [Z]).

Case 1b: h 6∈ P .
Increase kP by γ(J \ Z).

Case 2: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a stripe.
Let Z = {z, z′}, where z corresponds to h and z′ to h′. There are several cases:

Case 2a: h, h′ ∈ P and γ(J \ Z | N [Z]) = γ(J \ {z′} | N [z′]) = γ(J \ {z} | N [z]) = γ(J)− 1.
Add two vertices v1F , v

2
F to KP and three edges ehF , e

h′

F , e
1
F :

• ehF connects vh and v1F , and has weight 1.

• eh′

F connects vh′ and v1F , and has weight 1.

• e1F connects v1F and v2F , and has weight ∞.

Increase kP by γ(J \ Z | N [Z])− 1.

Case 2b: h, h′ ∈ P and not γ(J \Z | N [Z]) = γ(J \ {z′} | N [z′]) = γ(J \ {z} | N [z]) = γ(J)− 1.

Add two vertices vhF , v
h′

F to KP , and three edges ehF , e
h′

F , e
h,h′

F :

• eh,h
′

F connects vh and vh′ , and has weight γ(J)− γ(J \ Z | N [Z]).

• ehF connects vhF and vh, and has weight γ(J \ {z′} | N [z′])− γ(J \ Z | N [Z]).

• eh′

F connects vh
′

F and vh′ , and has weight γ(J \ {z} | N [z])− γ(J \ Z | N [Z]).

Increase kP by γ(J \ Z | N [Z]).

Case 2c: h ∈ P and h′ 6∈ P .
Add a vertex vF to KP as well as an edge eF of weight γ(J \ {z′})− γ(J \ Z | N [z]) between vF
and vh, and increase kP by γ(J \ Z | N [z]).

Case 2d: h′ ∈ P and h 6∈ P .
Add a vertex vF to KP as well as an edge eF of weight γ(J \ {z})− γ(J \ Z | N [z′]) between vF
and vh′ , and increase kP by γ(J \ Z | N [z′]).

Case 2e: h, h′ 6∈ P .
Increase kP by γ(J \ Z).

Case 3: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a spot.
Add an edge eF between vh and vh′ of weight 1.

Since 1 ≤ |F | ≤ 2 for each F ∈ E(H) and (H, η) is purified, the cases are exhaustive.
It is worth observing that kP ≥ 0. Indeed, the only case where possibly a negative number

could be added to kP is Case 2a. However, we can argue that the number added to kP in Case 2a
is nonnegative. Let h, h′, F , and (J, Z) be as in Case 2a. Since (J, Z) is a stripe, N [z]∩N [z′] = ∅,
and since the strip-structure has nullity zero, N [z] 6= ∅. Hence, any dominating set of J \{z′} that
does not necessarily dominate N [z′] has at least one vertex in order to dominate N [z]. Therefore,
γ(J \{z′} | N [z′]) ≥ 1, and thus γ(J \Z | N [Z])−1 = γ(J \{z′} | N [z′])−1 ≥ 0. Then the number
added to kP in this case is nonnegative. Hence, kP ≥ 0. Moreover, each edge of KP received a
nonnegative weight.

Now recall that an edge dominating set of a graph G is a set D ⊆ E(G) such that each edge
of E(G) has an endpoint in common with an edge of D.
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Lemma 7.18 Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G such
that 1 ≤ |F | ≤ 2 for each F ∈ E(H), and let k be an integer. Then γ(G) ≤ k if and only if there
is a P ⊆ P(H) such that there is an edge dominating set D of KP for which wP (D) ≤ k − kP .
Moreover, such a set D satisfies |D| ≤ k.

Proof: Suppose that there is a P ⊆ P(H) such that there is an edge dominating set D of KP for
which wP (D) ≤ k − kP .

We first slightly modify D without increasing its weight. Consider any F ∈ E(H) where F =
{h, h′} for which the corresponding strip (J, Z) is a stripe. Let Z = {z, z′}, where z corresponds
to h and z′ to h′. Suppose additionally that h, h′ ∈ P and not γ(J \ Z | N [Z]) = γ(J \ {z′} |
N [z′]) = γ(J \ {z} | N [z]) = γ(J) − 1. In short, F corresponds to a stripe in Case 2b. Suppose

that eh,h
′

F ∈ D and at least one of ehF , e
h′

F is in D. Then by the construction of KP , we can remove

ehF and eh
′

F from D, and the resulting set would still be an edge dominating set of KP ; clearly, the

weight has not increased. Suppose that eh,h
′

F 6∈ D and ehF , e
h′

F ∈ D. Then we claim that we can

replace ehF and eh
′

F by just eh,h
′

F . Indeed, by the construction of KP , the resulting set is still an
edge dominating set of KP . Moreover, note that

γ(J)− 1 ≤ γ(J \ {z′} | N [z′]),

γ(J \ {z} | N [z]) ≤ γ(J),

γ(J \ Z | N [Z]) ≤ γ(J \ {z′} | N [z′]),

γ(J \ {z} | N [z]) ≤ γ(J \ Z | N [Z]) + 1,

and thus, using the assumption of Case 2b,

γ(J)−γ(J \Z | N [Z]) ≤ (γ(J \{z′} | N [z′])−γ(J \Z | N [Z]))+(γ(J \{z} | N [z])−γ(J \Z | N [Z])),

and therefore, wP (eh,h
′

F ) ≤ wP (ehF ) + wP (eh
′

F ). Hence, the weight of the resulting set is at most
wP (D).

Apply the above modification to D for each F ∈ E(H) that corresponds a stripe in Case 2b. By
abuse of notation, we call the resulting set D as well. Observe that D is still an edge dominating
set of KP for which wP (D) ≤ k−kP , but now with the additional property that for each F ∈ E(H)

that is a stripe in Case 2b, at most one of ehF , eh
′

F , and eh,h
′

F is in D.
We construct a set D′ ⊆ V (G) of size at most k as follows (and later show that it is in fact a

dominating set of G). Initially, D′ = ∅. For each F ∈ E(H), we consider the same cases as before:

Case 1: F = {h} for some h ∈ V (H).
Let (J, Z) be the strip corresponding to F . Note that (J, Z) is in fact a stripe. There are several
cases:

Case 1a: h ∈ P .
There are two cases:

Case 1a-i: eF ∈ D.
Add a smallest subset of V (J)\Z to D′ that dominates all vertices of V (J)—note that the weight
of eF is γ(J)− γ(J \ Z | N [Z]) and kP was increased by γ(J \ Z | N [Z]) in the construction; the
sum is equal to the size of the set added to D′ (using Proposition 7.15).

Case 1a-ii: eF 6∈ D.
Add a smallest subset of V (J) \Z to D′ that dominates all vertices of V (J) \N [Z]—note that kP
was increased by γ(J \ Z | N [Z]) in the construction, which is equal to the size of the set added
to D′.

Case 1b: h 6∈ P .
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \ Z—note that kP
was increased by γ(J \ Z) in the construction, which is equal to the size of the set added to D′.

Case 2: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a stripe.
Let Z = {z, z′}, where z corresponds to h and z′ to h′. There are several cases:
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Case 2a: h, h′ ∈ P and γ(J \ Z | N [Z]) = γ(J \ {z′} | N [z′]) = γ(J \ {z} | N [z]) = γ(J)− 1.
Then at least one of ehF and eh

′

F is in D by the construction of KP , because wP (e1F ) =∞ and thus
e1F 6∈ D. This leads to several cases:

Case 2a-i: ehF , e
h′

F ∈ D.
Add a smallest subset of V (J)\Z to D′ that dominates all vertices of V (J) — note that the weight
of ehF , e

h′

F combined is 2 = γ(J)− (γ(J \Z | N [Z])−1) and kP was increased by γ(J \Z | N [Z])−1
in the construction; the sum is equal to the size of the set added to D′ (using Proposition 7.15).

Case 2a-ii: ehF ∈ D and eh
′

F 6∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \N [z′] — note that
the weight of ehF is 1 = γ(J \ {z′} | N [z′]) − (γ(J \ Z | N [Z]) − 1) and kP was increased by
γ(J \Z | N [Z])− 1 in the construction; the sum is equal to the size of the set added to D′ (using
Proposition 7.15).

Case 2a-iii: eh
′

F ∈ D and ehF 6∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \N [z] — note that
the weight of eh

′

F is 1 = γ(J \ {z} | N [z]) − (γ(J \ Z | N [Z]) − 1) and kP was increased by
γ(J \Z | N [Z])− 1 in the construction; the sum is equal to the size of the set added to D′ (using
Proposition 7.15).

Case 2b: h, h′ ∈ P and not γ(J \Z | N [Z]) = γ(J \ {z′} | N [z′]) = γ(J \ {z} | N [z]) = γ(J)− 1.

After the above modification of D, we can assume that at most one of ehF , eh
′

F , and eh,h
′

F is in D.
This leads to several cases:

Case 2b-i: eh,h
′

F ∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) — note that the

weight of eh,h
′

F is γ(J)−γ(J \Z | N [Z]) and kP was increased by γ(J \Z | N [Z]); the sum is equal
to the size of the set added to D′ (using Proposition 7.15).

Case 2b-ii: ehF ∈ D.
Add a smallest subset of V (J) \Z to D′ that dominates all vertices of V (J) \N [z′] and that does
not contain a vertex of Z—note that the weight of ehF is γ(J \ {z′} | N [z′]) − γ(J \ Z | N [Z])
and kP was increased by γ(J \Z | N [Z]); the sum is equal to the size of the set added to D′ (using
Proposition 7.15).

Case 2b-iii: eh
′

F ∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \N [z] and that does
not contain a vertex of Z—note that the weight of eh

′

F is γ(J \ {z} | N [z]) − γ(J \ Z | N [Z])
and kP was increased by γ(J \Z | N [Z]); the sum is equal to the size of the set added to D′ (using
Proposition 7.15).

Case 2b-iv: none of ehF , eh
′

F , and eh,h
′

F is in D.
Add a smallest subset of V (J)\Z to D′ that dominates all vertices of V (J)\N [Z] — note that kP
was increased by γ(J \ Z | N [Z]) in the construction, which is equal to the size of the set added
to D′.

Case 2c: h ∈ P and h′ 6∈ P .
There are two cases:

Case 2c-i: eF ∈ D.
Add a smallest subset of V (J) \Z to D′ that dominates all vertices of V (J) \ {z′}—note that the
weight of eF is γ(J \ {z′} | N [z′])− γ(J \ Z | N [z]) and that kP was increased by γ(J \ Z | N [z])
in the construction; the sum is equal to the size of the set added to D′ (using Proposition 7.15).

Case 2c-ii: eF 6∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \ (Z ∪ N [z])—note
that kP was increased by γ(J \ Z | N [z]) in the construction, which is equal to the size of the set
added to D′.

Case 2d: h′ ∈ P and h 6∈ P .
There are two cases:
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Case 2d-i: eF ∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \ {z}—note that the
weight of eF is γ(J \ {z})− γ(J \ Z | N [z′]) and that kP was increased by γ(J \ Z | N [z′]) in the
construction; the sum is equal to the size of the set added to D′ (using Proposition 7.15).

Case 2d-ii: eF 6∈ D.
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \ (Z ∪N [z′])—note
that kP was increased by γ(J \Z | N [z′]) in the construction, which is equal to the size of the set
added to D′.

Case 2e: h, h′ 6∈ P .
Add a smallest subset of V (J) \ Z to D′ that dominates all vertices of V (J) \ Z — note that kP
was increased by γ(J \ Z) in the construction, which is equal to the size of the set added to D′.

Case 3: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a spot.
If eF ∈ D, then add the vertex of J \ Z to D′ — note that the weight of eF is 1, which is equal
to the size of the set added to D′. If eF 6∈ D, then do nothing.

From the construction of D′ and the analysis in each of the above cases, it follows that |D′| ≤
wP (D) + kP = k.

We now show that D′ is a dominating set of G. Let v be an arbitrary vertex of G. Since (H, η)
is a strip-structure for G, by definition there is an F ∈ E(H) such that v ∈ η(F ). Let (J, Z) be
the strip corresponding to F . Then v ∈ N(Z) or v ∈ V (J)\N [Z]. If v ∈ V (J)\N(Z), then (J, Z)
is not a spot, and regardless of in which of the above subcases of Case 1 and 2 that F falls, v will
be dominated by the dominating set that is added to D′ for F . So assume that v ∈ N(z) for some
z ∈ Z and let h ∈ V (H) correspond to z. If (J, Z) is a spot, then we have a choice in z (and thus
also in h): we prefer that h ∈ P if possible.

If h 6∈ P and F falls into Case 1 or Case 2, then regardless of in which of the above subcases
F falls (Case 1b, 2c, 2d, or 2e), N(z) and thus v will be dominated by the dominating set that is
added to D′ for F .

If h 6∈ P and F falls into Case 3, then let h′ denote the single element of F \ {h}. Since
we preferred h to h′, h′ 6∈ P . By the construction of KP , there is an edge between vh and vh′

corresponding to F . Moreover, since h, h′ 6∈ P and by the construction of KP , every edge incident
with vh and vh′ corresponds to an edge introduced for a spot in Case 3. Therefore, since D is an
edge dominating set of KP , there is an edge in D that is incident with vh or v′h which corresponds
to an F ′ ∈ E(H) (possibly F = F ′) with h ∈ F ′ or h′ ∈ F ′ such that F ′ corresponds to a spot. By
the construction of D′, the single vertex of η(F ′) is in D′, that is, η(F ′) ⊆ D′. Assume without
loss of generality that h ∈ F ′. Then v is dominated, because η(F ′, h) = η(F ′) ⊆ D′ and thus
η(h) ∩D′ 6= ∅, v ∈ η(F, h) ⊆ η(h), and η(h) is a clique.

If h ∈ P , then due to the presence of the edge e between vh and v′h, there is an edge e′ incident
with vh that is in D. Since e has weight ∞, e′ 6= e. Hence, there is an F ′ ∈ E(H) (possibly
F ′ = F ) with h ∈ F ′ such that an edge associated with F ′ in the construction is in D. Then,
by inspecting the above cases (Case 1a-i, 2a-i, 2b-i, 2b-ii, 2b-iii, 2c-i, 2d-i, 3) for the strip (J ′, Z ′)
corresponding to F ′, there is a vertex of D′ in N(z′), where z′ is the vertex of Z ′ that corresponds
to h. In other words, η(F ′, h) ∩ D′ 6= ∅, and thus η(h) ∩ D′ 6= ∅. Since η(h) is a clique and
η(F ′, h) ⊆ η(h), each vertex in η(h) is dominated, and in particular each vertex in η(F, h) is
dominated. As v ∈ N [z] = η(F, h), v is dominated. Hence, D′ is a dominating set of G of size at
most k.

Suppose that γ(G) ≤ k. Let D′ be a smallest dominating set of G; hence, |D′| ≤ k. Let P be
such that h ∈ P if and only if h ∈ P(H) and there is an F ∈ E(H) with h ∈ F and D′∩η(F, h) 6= ∅.

We construct a set D ⊆ E(KP ) of weight at most k − kP that is an edge dominating set of
KP . Initially, D = ∅. For each F ∈ E(H), we consider the following cases.

Case 1: F = {h} for some h ∈ V (H).
If h ∈ P and η(F, h)∩D′ 6= ∅, then add eF to D — note that the weight of eF is γ(J)− γ(J \Z |
N [Z]), which is at most |D′ ∩ η(F )| − γ(J \ Z | N [Z]).
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Case 2: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a stripe.
Let Z = {z, z′}, where z corresponds to h and z′ to h′. There are several cases:

Case 2a: h, h′ ∈ P and γ(J \ Z | N [Z]) = γ(J \ {z′} | N [z′]) = γ(J \ {z} | N [z]) = γ(J)− 1.

• If η(F, h)∩D′ 6= ∅ and η(F, h′)∩D′ 6= ∅, then add ehF and eh
′

F to D — note that the weight of
the added edges is 2 = γ(J)− (γ(J \Z | N [Z])−1), which is at most |D′∩η(F )|− (γ(J \Z |
N [Z])− 1).

• If η(F, h) ∩ D′ 6= ∅ and η(F, h′) ∩ D′ = ∅, then add ehF to D — note that the weight
of the added edges is 1 = γ(J \ {z′} | N [z′]) − (γ(J \ Z | N [Z]) − 1), which is at most
|D′ ∩ η(F )| − (γ(J \ Z | N [Z])− 1).

• If η(F, h′) ∩ D′ 6= ∅ and η(F, h) ∩ D′ = ∅, then add eh
′

F to D — note that the weight
of the added edges is 1 = γ(J \ {z} | N [z]) − (γ(J \ Z | N [Z]) − 1), which is at most
|D′ ∩ η(F )| − (γ(J \ Z | N [Z])− 1).

• If η(F, h) ∩ D′ = ∅ and η(F, h′) ∩ D′ = ∅, then add ehF to D — note that the weight
of the added edges is 1 = γ(J \ Z | N [Z]) − (γ(J \ Z | N [Z]) − 1), which is at most
|D′ ∩ η(F )| − (γ(J \ Z | N [Z])− 1).

Case 2b: h, h′ ∈ P and not γ(J \Z | N [Z]) = γ(J \ {z′} | N [z′]) = γ(J \ {z} | N [z]) = γ(J)− 1.

• If η(F, h) ∩ D′ 6= ∅ and η(F, h′) ∩ D′ 6= ∅, then add eh,h
′

F to D — note that the weight of

eh,h
′

F is γ(J)− γ(J \ Z | N [Z]), which is at most |D′ ∩ η(F )| − γ(J \ Z | N [Z]).

• If η(F, h)∩D′ 6= ∅ and η(F, h′)∩D′ = ∅, then add ehF to D — note that the weight of ehF is
γ(J \ {z′} | N [z′])− γ(J \ Z | N [Z]), which is at most |D′ ∩ η(F )| − γ(J \ Z | N [Z]).

• If η(F, h′) ∩D′ 6= ∅ and η(F, h) ∩D′ = ∅, then add eh
′

F to D — note that the weight of eh
′

F

is γ(J \ {z} | N [z])− γ(J \ Z | N [Z]), which is at most |D′ ∩ η(F )| − γ(J \ Z | N [Z]).

• If η(F, h)∩D′ = ∅ and η(F, h′)∩D′ = ∅, then do nothing — note that |D′∩η(F )|−γ(J \Z |
N [Z]) ≥ 0.

Case 2c: h ∈ P and h′ 6∈ P .
If η(F, h)∩D′ 6= ∅, then add eF to D — note that the weight of eF is γ(J \{z′})−γ(J \Z | N [z]),
which is at most |D′ ∩ η(F )| − γ(J \ Z)N [z].

Case 2d: h′ ∈ P and h 6∈ P .
If η(F, h′)∩D′ 6= ∅, then add eF to D — note that the weight of eF is γ(J \{z})−γ(J \Z | N [z′]),
which is at most |D′ ∩ η(F )| − γ(J \ Z | N [z′]).

Case 2e: h, h′ 6∈ P .
Do nothing; note that γ(J \ Z) ≤ |D′ ∩ η(F )|.

Case 3: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a spot.
If the vertex of J \ Z is in D′, then add eF to D — note that the weight of eF is |D′ ∩ η(F )|.
Otherwise, do nothing.

From the construction of D and the analysis in each of the above cases, it follows that wP (D) ≤
k − kP .

To see that |D| ≤ k, observe that when we add an edge to D, we can map it to a unique vertex
of D′. Indeed, in Case 3, this is clear, because we add eF when the vertex of the corresponding
spot is in D′. In the other two cases (and their subcases), whenever we add an edge to D, then
this edge is incident on a vertex vh with h ∈ P . Moreover, for the considered F ∈ E(H), there is
a vertex in η(F, h)∩D′. As for stripes the sets η(F, h′) where h′ ∈ F are pairwise disjoint and we
add at most one edge per element of F to D, this indeed presents the claimed mapping from the
edges added to D to the vertices of D′. Therefore, |D| ≤ k, as claimed.
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We now show that D is an edge dominating set of KP . Let e ∈ E(KP ). If e is incident on
a vertex vh with h ∈ P , then there is an F ∈ E(H) with h ∈ F such that η(F, h) ∩ D′ 6= ∅.
For this F , by going through the above cases, an edge incident on vh will be added to D and e
is dominated. If e is not incident on any vertex vh for h ∈ V (H), then e is the edge e1F of the
construction of Case 2a. Then, by the construction of D, e is dominated. We can now assume
that e is incident only on vertices of vh for h ∈ V (H) \P . By the construction of KP , this implies
that e was added in Case 3 due to an F ∈ E(H) that corresponds to a spot. Hence, there is an
F ′ ∈ E(H) (possibly F = F ′) such that h ∈ F ′ or h′ ∈ F ′, and respectively η(F ′, h) ∩ D 6= ∅
or η(F ′, h′) ∩ D 6= ∅. Assume it is the former. Note that F ′ corresponds to a spot; otherwise,
h ∈ P because η(F ′, h) ∩D 6= ∅, a contradiction. It follows that the edge eF ′ is in D, and thus e
is dominated. Hence, D is an edge dominating set.

The previous lemma shows that it suffices to resolve certain instances of the Weighted Edge
Dominating Set problem on multigraphs. Therefore, we would like to use the following result:

Theorem 7.19 (Iwaide and Nagamochi [52]) Let G be a graph, w : E(G) → N+ a weight
function, and k ∈ N+. Then we can decide in O∗(2.2351k) time whether G has an edge dominating
set D with w(D) ≤ k.

This theorem extends immediately to multigraphs: parallel edges can be replaced by a single edge
with weight equal to the minimum of the weights of the parallel edges, and a self-loop e of a vertex
v can be replaced by adding a pendant vertex v′ and modifying e so that it is between v and v′.
Unfortunately, however, our weight functions wP might set the weight of certain edges of KP to 0.
Hence, the above theorem might not be directly applicable, as it assumes positive edge weights.
However, there is a straightforward workaround, inspired by a similar construction by Fernau [36,
Proposition 1] for a different problem.

Lemma 7.20 Let G be a graph, w : E(G) → Z a weight function, and k ∈ Z. Then in linear
time, we can construct a graph G′, a weight function w′ : E(G′) → N+ ∪ {∞}, and a k′ ∈ N+

such that G has an edge dominating set of weight at most k (under w) if and only if G′ has an
edge dominating set of weight at most k′ (under w′). In particular, k′ ≤ max{1, 1 + k − w(N)},
where N ⊆ V (G) denotes the set of edges in G of nonpositive weight (under w).

Proof: If k < w(N), then G has no edge dominating set of weight at most k, so we can return a
trivial “no”-instance (for example, a graph with a single edge of weight 2 and k′ = 1). So assume
that k ≥ w(N). If N = ∅, then we return G′ = G, w′ = w, k′ = k if k > 0, a trivial “yes”-instance
if E(G) = ∅ and k ≥ 0, and a trivial no-instance otherwise.

We then define G′ as follows. Let X denote the set of vertices in G incident on an edge of N .
We identify all vertices of X into a single vertex x, and remove any loops that arise (this includes
all edges of nonpositive weight). We then add two vertices s, t and edges (x, s) of weight 1 and
(s, t) of weight ∞. Note that this defines a weight function w′ on E(G′) that is the same for all
edges of E(G′) ∩ E(G). Finally, set k′ = 1 + k − w(N). Since k ≥ w(N), indeed k′ ∈ N+.

Suppose that G has an edge dominating set D with w(D) ≤ k. Since the edges of N have
nonpositive weight, we can assume that N ⊆ D. Then, we can also assume that D contains
no edges of E(G) \ N for which both endpoints are in X, which means that no edges of D \ N
will be removed by removing loops that arise in the construction of G′. We now claim that
D′ = {(x, s)}∪ (D \N) is an edge dominating set of G′ with w′(D′) ≤ k′. Suppose that e ∈ E(G′)
is not dominated by D′. Then e is not incident on x or s by the construction of D′, so e ∈ E(G)
and e is incident on two vertices in V (G) \ X. As D is an edge dominating set of G, there is
an edge f ∈ D incident on one of the endpoints of e. Moreover, f ∈ E(G′), since the endpoint
shared with e is not in X. Hence, f ∈ D′ and e is dominated, a contradiction. Therefore, D′

is an edge dominating set of G′. To see that it has weight at most k′, recall that k ≥ w(N),
N ⊆ D, and that D \N does not contain any edges for which both endpoints are in X, and thus
w′(D′) = 1 + w′(D \N) = 1 + w(D \N) ≤ 1 + k −W (N) = k′.
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Suppose that G′ has an edge dominating set D′ with w′(D′) ≤ k′. By the construction of G′

and w′, the edge (x, s) is in D′, but the edge (s, t) is not. We now claim that D = (D′\{(x, s)})∪N
is an edge dominating set of G with w(D) ≤ k. Indeed, w(D) = w(D′ \ {(x, s)}) + w(N) =
w′(D′ \ {(x, s)}) + w(N) ≤ k′ − 1 + w(N) = k. Suppose that e ∈ E(G) is not dominated by
D. Then e is not incident on a vertex of X, so e ∈ E(G′) and e is incident on two vertices of
V (G′) \ {x, s, t}. As D′ is an edge dominating set of G′, there is an edge f ∈ D′ incident on one
of the endpoints of e. Moreover, f ∈ E(G), since the endpoint shared with e is not in {x, s, t}.
Hence, f ∈ D and e is dominated, a contradiction. Therefore, D is an edge dominating set of G.

Corollary 7.21 Let G be a multigraph, w : E(G) → Z a weight function, and k ∈ Z. Then
we can decide in O∗(2.2351max{1,1+k−w(N)}) time whether G has an edge dominating set D with
w(D) ≤ k, where N ⊆ V (G) denotes the set of edges in G of nonpositive weight (under w).

We present an alternative algorithm, which gives an explicit bound on the polynomial factor and
(in the exponent) will yield an almost equally fast algorithm as the one through Corollary 7.21.

Lemma 7.22 Let G be a connected graph, let (H, η) be a purified strip-structure of nullity zero
for G such that 1 ≤ |F | ≤ 2 for each F ∈ E(H), let k be an integer, and let P ⊆ P(H). Then
we can decide in O(22k−|P | |V (KP )|3) time whether there is an edge dominating set D of KP of
smallest weight such that wP (D) ≤ k − kP and |D| ≤ k.

Proof: We adapt an algorithm of Fernau [36]. He essentially showed that a minimum-weight edge
dominating set of a graph can be found by enumerating all minimal vertex covers C of the graph,
computing a minimum-weight generalized edge cover with respect to each C, and then take the
generalized edge cover of smallest weight over all C as the solution. Here, a generalized edge cover
with respect to C is a subset of the edges of the graph such that each vertex of C is incident on
an edge of this subset.

To see that this approach is correct, observe the following. Let K be a graph and let w be an
edge-weight function E(K)→ N ∪ {∞}. If D is an edge dominating set of K of minimum weight
(with respect to w), then let C ′ denote the set of endpoints of D. Since D is an edge dominating
set of K, C ′ is a vertex cover of K, and thus there is a minimal vertex cover C ⊆ C ′. Clearly, D
is a generalized edge cover with respect to C. Conversely, if C is a (minimal) vertex cover of K,
then any generalized edge cover with respect to C is an edge dominating set of K.

In our context, we modify Fernau’s approach to limit the number of minimal vertex covers
that need to be enumerated. Again, let K be a graph and let w be an edge-weight function
E(K)→ N∪ {∞}. Suppose that K has an edge-dominating set of weight not ∞ and that no two
pendant vertices of K are adjacent. Then we claim that it suffices to enumerate all minimal vertex
covers C of K such that C does not contain a pendant vertex. Indeed, if D is an edge dominating
set of K of minimum weight (with respect to w), then let C ′ denote the set of endpoints of D. Since
D is an edge dominating set of K, C ′ is a vertex cover of K. Now remove all pendant vertices from
C ′ and call the resulting set C ′′. As pendant vertices are only present in C ′ if the edge incident
on them is in D and no two pendant vertices are adjacent, C ′′ is still a vertex cover of K. Then
there is a minimal vertex cover C ⊆ C ′′ of K that contains all neighbors of all pendant vertices
in C ′. Hence, D is still a generalized edge cover with respect to C. Moreover, by construction,
C does not contain a pendant vertex nor a vertex that is only incident on vertices of weight ∞.
This proves the claim.

Following the claim and the construction of KP , we can construct a set L of vertices that have
to be in any minimal vertex cover that we enumerate. To be precise, L contains all vertices vh
where h ∈ P (these vertices vh have a pendant neighbor, but are not pendant themselves, because
they are in P ), and all vertices v1F that are added in Case 2a (note that v2F is pendant). By the
claim, it suffices to enumerate all minimal vertex covers of KP that contain L.

Suppose that D has an edge dominating set D such that wP (D) ≤ k− kP and |D| ≤ k. Let C
be the minimal vertex cover that corresponds to D following the modified approach above. Then
|P | of the endpoints of D are of the type vh for h ∈ P , due to the presence of the edge (vh, v

′
h). It

follows that |C − L| ≤ 2k − |P |, because no vertices v′h for h ∈ P are in C.
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The final algorithm then enumerates all minimal vertex covers of KP \L of size at most 2k−|P |.
This takes O(|E(KP )|+k222k−|P |) time using an algorithm of Damaschke [23], and there are most
22k−|P | such vertex covers. If no such vertex cover is found, then there is no edge dominating set D
of KP such that wP (D) ≤ k − kP and |D| ≤ k. Otherwise, for each such minimal vertex cover
C found, we compute a minimum-weight generalized edge cover of KP with respect to C ∪ L,
which takes O(|V (KP )|3) time using an algorithm of Fernau [36] (this algorithm straightforwardly
extends to multigraphs). We output the smallest generalized edge cover found. The correctness
of this algorithm was argued above, and the run time is as claimed.

Using this lemma, we can finally prove the main result of this section.

Theorem 7.23 Let G be a claw-free graph with n vertices and m edges, and let k be an integer.
Then there is an algorithm that runs in 9k · O(n5) time and that correctly reports that either
γ(G) > k or returns a smallest dominating set of G.

Proof: We first preprocess the graph. We iteratively apply the following procedure. We check
whether G admits twins; this can be done in O(n+m) time by Theorem 3.3. If so, then following
Lemma 7.3, we can find a claw-free graph G′ with |V (G′)| < |V (G)| such that γ(G) = γ(G′) in
linear time, and continue to the next iteration with G = G′. Otherwise, G does not admit twins,
and we check whether G admits a proper W-join; this can be done in O(n2m) time by Theorem 3.2.
If so, then following Corollary 7.5, we can find a claw-free graph G′ with |V (G′)| < |V (G)| (note
that proper W-joins of twin-less graphs have at least three vertices by definition, and two vertices
remain after applying the corollary) such that γ(G) = γ(G′) in linear time, and continue to the
next iteration with G = G′. Since the number of vertices decreases in every iteration, there are at
most n iterations, and the run time of the procedure is O(n5). After the procedure finishes, we
end up with a claw-free graph that does not admit twins nor proper W-joins for which the size of
its smallest dominating set is unchanged. By abuse of notation, we call this graph G as well.

Suppose for now that G is connected. We test whether γ(G) ≤ 3 using the algorithm of
Lemma 7.6 in O(n4) time. If so, then the algorithm actually gives a dominating set of size
γ(G), and we are done. Now we may assume that γ(G) > 3. If α(G) ≤ 3, then γ(G) ≤ 3 by
Proposition 7.2, a contradiction. Hence, α(G) > 3.

We then apply the algorithm of Theorem 6.8 in O(n2m3/2) time. If it outputs that G is a
proper circular-arc graph, then we can compute γ(G) in linear time by Theorem 7.8. If it outputs
that G is a thickening of an XX-trigraph, then we can compute γ(G) in O(n4) time by Lemma 7.9.
It remains that it outputs that G admits a strip-structure such that for each strip (J, Z):

• (J, Z) is a trivial line graph strip, or

• (J, Z) is a stripe for which

– 1 ≤ |Z| ≤ 2, α(J) ≤ 3, and V (J) \N [Z] 6= ∅,
– |Z| = 1, J is a proper circular-arc graph, and either J is a (strong) clique or α(J) > 3,

– |Z| = 2, J is a proper interval graph, and either J is a (strong) clique or α(J) > 3, or

– (J, Z) is a thickening of a member of Z5.

We now determine the set P(H), which takes linear time. Then for each P ⊆ P(H), compute
the triple (KP , wP , kP ). Using Proposition 7.15 and Lemma 7.11, 7.12, 7.13, and 7.14, we can
compute a set D ⊆ V (J) \ Z of size γ(J \ (Q ∪ R) | N [R]) that dominates J \ (Q ∪ N [R]) for
any disjoint Q,R ⊆ Z for the strips (J, Z) of the strip-structure. Following these lemmas, we
can compute the triple (KP , wP , kP ) in O(n5) time. Note that the number of vertices of KP is
in the order of |E(H)|, which is O(n), because each strip contains at least one vertex of G that
is unique to it. Now, using Lemma 7.22, decide in O(22k−|P |n3) time whether there is an edge
dominating set D of KP of smallest weight such that wP (D) ≤ k− kP and |D| ≤ k. If so, then by
Lemma 7.18, γ(G) ≤ k. Moreover, since D is an edge dominating set of KP of smallest weight,
the transformation of Lemma 7.18 gives a smallest dominating set of G. If Lemma 7.22 returns
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for all P ⊆ P(H) that there is no edge dominating set D of KP such that wP (D) ≤ k − kP and
|D| ≤ k, then we can return a “no”-instance by Lemma 7.18. Since |P(H)| ≤ 2k by Lemma 7.17,
the run time is

O

|P(H)|∑
i=0

(
|P(H)|

i

)
(n5 + 22k−in3)

 = O

(
n5

2k∑
i=0

(
2k

i

)
22k−i

)
= 9k ·O(n5).

If G is not connected, then note that the above algorithm computes a smallest dominating set
of an n-vertex connected graph in time 9k ·O(n5) if it has size at most k, or correctly decides that
such a dominating set has size more than k. Therefore, we apply this algorithm to each connected
component of G in turn. If the algorithm answers that every dominating set of the component
has size more than k, then this answer is also true for G. Otherwise, we return the union of the
answers found for each component, which is indeed a smallest dominating set of G. The total run
time is 9k ·O(n5).

Corollary 7.24 Let G be a claw-free graph with n vertices, and let k be an integer. Then we can
decide in 9k ·O(n5) time whether γ(G) ≤ k.

Instead of relying on Lemma 7.22 in the above theorem, we could also apply the algorithm of
Corollary 7.21. This yields a slight improvement in the exponential factor.

Theorem 7.25 Let G be a claw-free graph with n vertices, and let k be an integer. Then we can
decide in O∗(8.9404k) time whether γ(G) ≤ k.

Note that the polynomial factor hidden in the O∗ is at least n5.

8 Fixed-Parameter Algorithm for Connected Dominating
Set

In this section, we prove that Connected Dominating Set parameterized by solution size is
fixed-parameter tractable on claw-free graphs. The general idea of how to establish this is similar
to the approach for Dominating Set on claw-free graphs.

Throughout the section, we rely on the following notation. Let G be a graph. We let γc(G)
denote the size of a smallest connected dominating set of G. Furthermore, for each subset A ⊆
V (G), let γc(G † A) denote the size of a smallest subset D of V (G) dominating V (G)\A such that
each connected component of G[D] contains at least one vertex of A. We also need the following
well-known relation between γ(G) and γc(G).

Proposition 8.1 For any graph G, γ(G) ≤ γc(G) ≤ 3 · γ(G)− 2.

8.1 Removing Twins and Proper W-joins

We first show how to remove twins and proper W-joins from a graph G without changing the
size of its smallest connected dominating set. The reductions are powerful enough to operate on
general graphs, while maintaining claw-freeness and connectivity.

Lemma 8.2 Let a, b be twins of a connected graph G, and let G′ = G \ a. Then G′ is connected
and γc(G) = γc(G \ a). Moreover, if G is claw-free, then so is G′.

Proof: Let D be a smallest connected dominating set of G. Since N [a] = N [b] (in particular, a
and b are adjacent) and D is a smallest connected dominating set of G, at most one of a, b belongs
to D. If a ∈ D, then replace a by b. Then the resulting set is still a connected dominating set of
G of the same size as D, and thus also a connected dominating set of G′ = G \ a.

Let D′ be a smallest connected dominating set of G′. Then D′ ∩N [b] 6= ∅. Since N [a] = N [b],
D′ is a connected dominating set of G as well.
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While removing twins has a similar effect for smallest connected dominating sets as for smallest
dominating sets, the situation for proper W-joins is somewhat different in the two problems. The
reason is that removing all edges crossing a W-join might disconnect the graph.

Lemma 8.3 Let (A,B) be a proper W-join of a connected graph G, and let G′ be the graph
obtained from G as follows:

1. remove A and B,

2. add vertices a, a′, b, b′, and

3. connect a, a′ to N(A) \B, b, b′ to N(B) \A, a to a′, b to b′, and a to b.

Then G′ is connected and γc(G) = γc(G
′). Furthermore, if G is claw-free, then so is G′.

Proof: Let D be a smallest connected dominating set of G. We first show that we can assume
that |D ∩ A| ≤ 1. For suppose that |D ∩ A| ≥ 2. Note that N [x] \ B is the same for each x ∈ A
and N [y] \A is the same for each y ∈ B. However, we cannot remove all but one vertex of D ∩A
from D, because this would lead to a smaller connected dominating set and thus a contradiction.
Therefore, the vertices of D ∩ A are the only vertices dominating B. But then we can replace a
vertex of D∩A by a vertex of B adjacent to a second vertex of D∩A. Such vertices exist because
the W-join (A,B) is proper. It follows that we can assume |D∩A| ≤ 1, and similarly, |D∩B| ≤ 1.

Now, since the W-join (A,B) is proper, no vertex of A (resp. B) dominates all of B (resp. A).
Hence, D ∩ (N [A] \ B) 6= ∅ and D ∩ (N [B] \ A) 6= ∅. Let D′ be the set containing all vertices of
D that belong to G′. Additionally, if D ∩A 6= ∅, then add a to D′, and if D ∩B 6= ∅, then add b
to D′. By construction, D′ is a connected dominating set of G′ and |D′| ≤ |D|.

Let D′ be a smallest connected dominating set of G′. From the definition of a W-join, recall
that every vertex of V (G) \ (A ∪ B) is either A-complete or A-anticomplete, and is either B-
complete or B-anticomplete. Furthermore, A and B are cliques. Let D be the set containing all
vertices of D′ that belong to G, and additionally,

• if D′ ∩ {a, a′} 6= ∅ and D′ ∩ {b, b′} 6= ∅, then also add any two adjacent vertices, one of A
and one of B, to D.

• otherwise, if one of a, a′ ∈ D′, then add any vertex of A to D, and if one of b, b ∈ D′, then
add any vertex of B to D.

Then D is a connected dominating set of G and |D| ≤ |D′|.
Finally, consider the case that G is claw-free. For the sake of contradiction, suppose that G′

has a claw {w;x, y, z} with center w. If at most one vertex of w, x, y, z belongs to {a, a′, b, b′},
then {w;x, y, z} directly corresponds to a claw in G, a contradiction. Because both {a, a′} and
{b, b′} form a clique, we have N [a] \ {b} = N [a′] and N [b] \ {a} = N [b′], and thus at most two of
w, x, y, z belong to {a, a′, b, b′}. If w ∈ V (G) ∩ V (G′), then assume without loss of generality that
x = a′ and y ∈ {b, b′}. But then we can replace x and y by any antiadjacent pair of vertices of
A and B to obtain a claw in G, a contradiction. Hence, w ∈ {a, a′, b, b′}. Then assume, without
loss of generality, that w = a and x = b. But then we can replace w and x by any adjacent pair
of vertices of A and B to obtain a claw in G, a contradiction. Therefore, G′ is indeed claw-free.

8.2 Connected Dominating Set in Basic Classes

Let G be a connected claw-free graph. Through the reductions of Lemma 8.2 and Lemma 8.3,
we may essentially assume that G admits no twins and proper W-joins. Consider the following
lemma.

Lemma 8.4 Let G be a graph and k an integer. Then in O(nk+1) time we can compute γc(G)
(resp. γc(G † A) for given A ⊆ V (G)) or correctly decide that γc(G) > k (resp. γc(G † A) > k).

The proof of the above lemma is similar to the proof of Lemma 7.6.
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Corollary 8.5 Let G be a graph such that α(G) ≤ 3. Then we can compute γc(G) in O(n8) time.

Proof: By Proposition 7.2 and 8.1, γc(G) ≤ 3γ(G) − 2 ≤ 3α(G) − 2 ≤ 7, and the result follows
from Lemma 8.4.

Intuitively, we may thus assume that the connected claw-free graph G admits no twins, admits
no proper W-joins, and satisfies α(G) > 3. Therefore, we can use the implications of Theorem 6.8
for G. (A formal proof of these facts follows later.)

First, we show that if G is a proper circular-arc graph or a thickening of an XX-trigraph, then
we can compute γc(G) in polynomial time.

Theorem 8.6 (Chang [3]) Let G be a circular-arc graph. Then γc(G) can be computed in linear
time.

Lemma 8.7 Let G be a graph that is a thickening of an XX-trigraph. Then γc(G) can be computed
in O(n5) time.

In order to show this lemma, we need the following auxiliary result, which is similar to Lemma 7.10.

Lemma 8.8 Let G be a graph that is thickening of a trigraph G′, and let G′′ be the graph obtained
from G′ by removing all semi-edges from G′. Then γc(G) ≤ γc(G′′).

Proof: Let W be a thickening of G′ to G, and let D′ be any connected dominating set of G′′.
Construct a set D ⊆ V (G) as follows: for each v′ ∈ D′, pick an arbitrary vertex v ∈ Wv′ . We
claim that D is a dominating set of G. Consider any w ∈ V (G) \D and let w′ ∈ V (G′) be such
that w ∈Ww′ . If w′ ∈ D′, then because Ww′ is a (strong) clique and Ww′ ∩D 6= ∅ by construction,
w is dominated by D. Otherwise, there is a u′ ∈ D′ ⊆ V (G′′) such that w′ and u′ are adjacent. By
the construction of G′′, this implies that w′ and u′ are strongly adjacent in G′. By the definition
of a thickening, each vertex of Wu′ is (strongly) complete to Ww′ . By construction, D ∩Wu′ 6= ∅,
and thus w is dominated by D. The claim follows. It remains to show that G[D] is connected.
Observe that if u′, v′ ∈ D′ are adjacent in G′′, then u′ and v′ are strongly adjacent in G′, and
thus each vertex of Wu′ is (strongly) complete to Wv′ . Therefore, the vertices u and v chosen in
D∩Wu′ and D∩Wv′ respectively are (strongly) adjacent. Hence, G[D] is indeed connected. Since
|D| = |D′|, γc(G) ≤ γc(G′′).

It is now straightforward to prove Lemma 8.7.

Proof: Consider an XX-trigraph G′ such that G is a thickening of G′. Remove all semi-edges
from G′ and call the resulting graph G′′. By the definition of XX-trigraphs, it follows that
{v1, v2, v3, v4} forms a connected dominating set of G′′. Hence, by Lemma 8.8, γc(G) ≤ γc(G′′) ≤
4. The result then follows from Lemma 8.4.

Intuitively, Theorem 8.6 and Lemma 8.7 imply that Theorem 6.8 yields a strip-structure.
Therefore, we turn to the basic classes of strips of Theorem 6.8. For reasons that will become
clear later, we need stronger results for strips (J, Z) than just being able to compute a smallest
connected dominating set. Intuitively, if we compute γc(J), then we enforce that any connected
dominating set that attains this bound contains a vertex in N(z) for each z ∈ Z. Sometimes
we might want to enforce this, but sometimes we do not. Hence, we should be able to compute
γc(J \ Q) for each Q ⊆ Z. Also, we sometimes do not want to enforce that the dominating set
is connected, but instead we want every component of the dominating set to contain a vertex of
N(Z), and therefore, we need to compute γc(J † N [Z]). We now do this for each strip type of
Theorem 6.8.

Lemma 8.9 Let (J, Z) be a stripe such that either J is a proper circular-arc graph and |Z| = 1,
or J is a proper interval graph and |Z| = 2. Then we can compute γc(J \Q) for each Q ⊆ Z and
γc(J † N [Z]) in O(nm) time, where n and m are the number of vertices and edges of J respectively.
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Proof: By Theorem 8.6, we can compute γc(J \Q) for each Q ⊆ Z in linear time.
Suppose that J is a proper circular-arc graph and |Z| = 1. Then γc(J † N [Z]) = γc(J) if

V (J) 6= N [Z], and γc(J † N [Z]) = 0 otherwise. Hence, we can compute γc(J † N [Z]) in linear
time by Theorem 8.6.

Suppose that J is a proper interval graph and |Z| = 2. Let Z = {z, z′}. First, find a set of
intervals I1, . . . , In of the line that represent J as a proper interval graph; such a representation
can be found in linear time [24]. Suppose that Iz and Iz′ are the intervals representing the vertices
z and z′ of Z. Since (J, Z) is a stripe, N [z] ∩ N [z′] = ∅. Hence, without loss of generality, the
right endpoint pr of Iz is to the left of the left endpoint pl of Iz′ .

Consider a smallest dominating set D of V (J) dominating V (J)\N [Z] such that each connected
component of J [D] contains at least one vertex of N [Z], i.e. |D| = γc(J † N [Z]). Assume that
V (J) \ N [Z] 6= ∅. Moreover, since N [z] and N [z′] are cliques, D has at most two connected
components: at most one (denoted C) that contains a vertex of N [z] and at most one (denoted
C ′) that contains a vertex of N [z′]. If D ∩N [z] = ∅, then γc(J † N [Z]) = γc(J \N [z]). Similarly,
if D ∩N [z′] = ∅, then γc(J † N [Z]) = γc(J \N [z′]). It remains the case that D contains a vertex
of both N [z] and N [z′].

Then either γc(J † N [Z]) = γc(J), or there is a point between pr and pl that is not covered by
any interval of D. In the latter case, C and C ′ exist, C 6= C ′, and in particular, there is a point p
between pr and pl such that each interval starting to the right of p is dominated by C ′, and each
interval starting to the left of p is dominated by C.

This analysis implies the following algorithm. For each point p between pl and pr, split J into
two induced subgraphs: one induced by the intervals with their left endpoint to the left of p and
one induced by the intervals with their left endpoint to the right of p. Using Theorem 8.6, we
can compute a smallest connected dominating set of both induced subgraphs in linear time, and
sum their sizes. Let M denote the smallest value over all points p. Since there are only O(n)
points p for which the split of J we made yields different induced subgraphs, computing M takes
O(nm) time. Then γc(J † N [Z]) is simply the minimum of M , γc(J \ N [z]), and γc(J \ N [z′])
if V (J) \ N [Z] 6= ∅ and 0 otherwise. Using Theorem 8.6, this implies that γc(J † N [Z]) can be
computed in O(nm) time.

Lemma 8.10 Let (J, Z) be a thickening of a stripe (J ′, Z ′) ∈ Z5 such that J is a graph. Then we
can compute γc(J \Q) for each Q ⊆ Z and γc(J † N [Z]) in O(n5) time.

Proof: Let J ′′ be the graph obtained from J ′ by removing all semi-edges. By the definition
of XX-trigraphs {v1, v2, v3, v4} forms a connected dominating set of J ′′. Hence, by Lemma 8.8,
γc(J) ≤ γc(J ′′) ≤ 4. Observe that γc(J † N [Z]) ≤ γc(J) by definition. The result then follows by
Lemma 8.4.

Lemma 8.11 Let (J, Z) be a stripe such that J is a graph with 1 ≤ |Z| ≤ 2, α(J) ≤ 3, V (J) \
N [Z] 6= ∅. Then we can compute γc(J \Q) for each Q ⊆ Z and γc(J † N [Z]) in O(n8) time.

Proof: By Proposition 7.2 and 8.1, γc(J) ≤ 3γ(J) − 2 ≤ 3α(J) − 2 ≤ 7. Observe that
γc(J † N [Z]) ≤ γc(J) by definition. The result then follows by Lemma 8.4.

The following lemma is immediate from the definition of trivial line graph strips (see Definition 6.2).

Lemma 8.12 Let (J, Z) be a trivial line graph strip such that J is a graph. Then we can compute
γc(J \Q) for each Q ⊆ Z and γc(J † N [Z]) in constant time.

We also rely on the following observation.

Proposition 8.13 Let (J, Z) be a strip such that J is a graph. There is a connected set D ⊆
V (J) \ Z of size γc(J \Q) for each Q ⊆ Z or γc(J † N [Z]) that respectively dominates V (J) \Q
or dominates V (J) \N [Z] while each component contains a vertex of N [Z].

Proof: Consider any z ∈ Z. By the definition of a strip, z is a simplicial vertex. Therefore, z can
be replaced by any vertex of N(z) without destroying the domination property or connectivity of
a connected set needed to attain γc(J \Q) for each Q ⊆ Z or γc(J † N [Z]).
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8.3 Stitching Connected Dominating Sets

We now describe a method to stitch connected dominating sets for individual strips of a strip-
structure together to form a connected dominating set of the entire graph. The main idea is
essentially the same as the one we employed for dominating set in the previous section, except
that the connectivity requirement makes the stitching significantly simpler.

Let G be a connected graph that is not a complete graph, let (H, η) be a purified strip-structure
of nullity zero for G such that 1 ≤ |F | ≤ 2 for each F ∈ E(H).

Definition 8.14 We say that P ⊆ P(H) (recall Definition 7.16) is covering if F ∩P 6= ∅ for each
F ∈ E(H) that corresponds to a stripe.

Now let P ⊆ P(H) be covering. We again define the triple (KP , wP , kP ) of a multigraph, an
edge-weight function, and an integer as follows. Initially, KP is empty and kP = 0. For each
h ∈ V (H), add a vertex vh to KP . If h ∈ P , then also add a vertex v′h to KP as well as an edge
between vh and v′h of weight ∞. For each F ∈ E(H), there are several cases:

Case 1: F = {h} for some h ∈ V (H).
Let (J, Z) be the strip corresponding to F . Note that (J, Z) is in fact a stripe. Since P is covering,
h ∈ P . Add vertices vF , v

′
F , an edge eF between vh and vF of weight γc(J † N [Z]), and an edge

e′F between vF and v′F of weight ∞ to KP .

Case 2: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a stripe.
Let Z = {z, z′}, where z corresponds to h and z′ to h′. Since P is covering, h ∈ P or h′ ∈ P .
There are several cases:

Case 2a: h, h′ ∈ P .
Add an edge eF between vh and vh′ of weight γc(J)− γc(J † N [Z]); additionally, increase kP by
γc(J † N [Z]).

Case 2b: h ∈ P , h′ 6∈ P .
Add vertices vF , v

′
F , an edge eF between vh and vF of weight γc(J \ z′), and an edge e′F between

vF and v′F of weight ∞ to KP .

Case 2c: h 6∈ P , h′ ∈ P .
Add vertices vF , v

′
F , an edge eF between vh and vF of weight γc(J \ z), and an edge e′F between

vF and v′F of weight ∞ to KP .

Case 3: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a spot.
Add an edge eF between vh and vh′ of weight 1.

Since 1 ≤ |F | ≤ 2 for each F ∈ E(H) and (H, η) is purified, the cases are exhaustive. Moreover,
kP ≥ 0 by construction and each edge of KP has received nonnegative weight.

Now recall that a connected edge dominating set of a graph G is an edge dominating set
D ⊆ E(G) such that G[D] is connected. Here, we use G[D] as a shorthand for the subgraph G′ of
G with V (G′) equal to the set of endpoints of the edges in D and with E(G′) = D.

Lemma 8.15 Let G be a connected graph that is not a complete graph, let (H, η) be a purified
strip-structure of nullity zero for G such that 1 ≤ |F | ≤ 2 for each F ∈ E(H), and let k be an
integer. Then γc(G) ≤ k if and only if there is a P ⊆ P(H) such that P is covering and there is
a connected edge dominating set D of KP such that wP (D) ≤ k − kP . Moreover, such a set D
satisfies |D| ≤ k.

Proof: Suppose that there is a P ⊆ P(H) such that P is covering and there is a connected edge
dominating set D of KP such that wP (D) ≤ k − kP . We construct a set D′ ⊆ V (G) of size at
most k as follows (and later show that it is in fact a connected dominating set of G). Initially,
D′ = ∅. For each F ∈ E(H), we consider the same cases as before:

Case 1: F = {h} for some h ∈ V (H).
Let (J, Z) be the strip corresponding to F . By construction, eF ∈ D. Add a smallest set B ⊆
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V (J) \ Z to D′ such that B dominates all vertices of V (J) \ N [Z] and each component of J [B]
contains a vertex of N [Z]—note that the weight of eF is equal to the size of the set added to D′

(using Proposition 8.13).

Case 2: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a stripe.
Let Z = {z, z′}, where z corresponds to h and z′ to h′. Since P is covering, h ∈ P or h′ ∈ P .
There are several cases:

Case 2a: h, h′ ∈ P .
If eF ∈ D, then add a smallest connected subset of V (J) \ Z to D′ that dominates all vertices of
V (J)—note that the weight of eF is γc(J)− γc(J † N [Z]) and kP was increased by γc(J † N [Z])
in the construction; the sum is equal to the size of the set added to D′ (using Proposition 8.13).
If eF 6∈ D, then add a smallest set B ⊆ V (J) \ Z to D′ such that B dominates all vertices of
V (J) \N [Z] and each component of J [B] contains a vertex of N [Z]—note that kP was increased
by γc(J † N [Z]) in the construction, which is equal to the size of the set added to D′ (using
Proposition 8.13).

Case 2b: h ∈ P , h′ 6∈ P .
By construction, eF ∈ D. Add a smallest connected subset of V (J) \ Z to D′ that dominates all
vertices of V (J) \ z′—note that the weight of eF is equal to the size of the set added to D′ (using
Proposition 8.13).

Case 2c: h 6∈ P , h′ ∈ P .
By construction, eF ∈ D. Add a smallest connected subset of V (J) \ Z to D′ that dominates all
vertices of V (J) \ z — note that the weight of eF is equal to the size of the set added to D′ (using
Proposition 8.13).

Case 3: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a spot.
If eF ∈ D, then add the vertex of J \ Z to D′—note that the weight of eF is 1, which is equal to
the size of the set added to D′. If eF 6∈ D, then do nothing.

From the construction of D′ and the analysis in each of the above cases, it follows that |D′| =
wP (D) + kP ≤ k.

We now show that D′ is a dominating set of G. Let v be an arbitrary vertex of G. Since (H, η)
is a strip-structure for G, by definition there is an F ∈ E(H) such that v ∈ η(F ). Let (J, Z) be
the strip corresponding to F . Then v ∈ N(Z) or v ∈ V (J)\N [Z]. If v ∈ V (J)\N(Z), then (J, Z)
is not a spot, and regardless of in which of the above subcases of Case 1 and 2 that F falls, v will
be dominated by the dominating set that is added to D′ for F . So assume that v ∈ N(z) for some
z ∈ Z and let h ∈ V (H) correspond to z. If (J, Z) is a spot, then we have a choice in z (and thus
also in h): we prefer that h ∈ P if possible.

If h 6∈ P , then F cannot fall into Case 1, since P is covering. If F falls into Case 2, then
regardless of in which of the above subcases of Case 2 F falls, N(z) and thus v will be dominated
by the dominating set that is added to D′ for F . If F falls into Case 3, then let h′ denote the single
element of F \ {h}. Since we preferred h to h′, h′ 6∈ P . By the construction of KP , there is an
edge between vh and vh′ corresponding to F . Moreover, since h, h′ 6∈ P and by the construction of
KP , every edge incident with vh and vh′ corresponds to an edge introduced for a spot in Case 3.
Therefore, since D is a (connected) edge dominating set of KP , there is an edge in D that is
incident with vh or v′h which corresponds to an F ′ ∈ E(H) (possibly F = F ′) with h ∈ F ′ or
h′ ∈ F ′ such that F ′ corresponds to a spot. By the construction of D′, the single vertex of η(F ′)
is in D′, that is, η(F ′) ⊆ D′. Assume without loss of generality that h ∈ F ′. Then v is dominated,
because η(F ′, h) = η(F ′) ⊆ D′ and thus η(h) ∩D′ 6= ∅, v ∈ η(F, h) ⊆ η(h), and η(h) is a clique.

If h ∈ P , then due to the presence of the edge e between vh and v′h, there is an edge e′ incident
with vh that is in D. Since e has weight ∞, e′ 6= e. Hence, there is an F ′ ∈ E(H) (possibly
F ′ = F ) with h ∈ F ′ such that an edge associated with F ′ in the construction is in D. In
particular, we can choose F ′ such that |F ′| = 1 and η(F ′) \ η(F ′, h) 6= ∅ or |F ′| = 2, since G is
not a complete graph. Then, by inspecting the above cases (Case 1, 2a, 2b, 2c, 3) for the strip
(J ′, Z ′) corresponding to F ′, there is a vertex of D′ in N(z′), where z′ is the vertex of Z ′ that
corresponds to h. In other words, η(F ′, h)∩D′ 6= ∅, and thus η(h)∩D′ 6= ∅. Since η(h) is a clique
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and η(F ′, h) ⊆ η(h), each vertex in η(h) is dominated, and in particular each vertex in η(F, h) is
dominated. As v ∈ N(z) = η(F, h), v is dominated. Hence, D′ is a dominating set of G of size at
most k.

It remains to prove that G[D′] is connected. Observe that in the construction of KP , we add
exactly one edge eF to KP for each F ∈ E(H) (and possibly an edge e′F of weight ∞). Moreover,
if eF ∈ D for some F ∈ E(H), then G[D′ ∩ η(F )] is connected and D′ contains a vertex of η(F, h)
for each h ∈ F by the construction of D′.

Now let v, v′ ∈ D′, where v ∈ η(F ) and v′ ∈ η(F ′) for F, F ′ ∈ E(H). If eF , eF ′ ∈ D, then v
and v′ are connected in G[D′] by the above observation and the fact that D is a connected edge
dominating set. Suppose that eF ∈ D and eF ′ 6∈ D. This only happens if F ′ falls into Case 2a.
Moreover, there is a connected component of the set of vertices added to D′ for F ′ that contains
both v′ and a vertex of η(F ′, h) for some h ∈ F ′ by construction. Since D is an edge dominating
set and an edge (vh, v

′
h) exists in KP , there is an edge eF ′′ ∈ D for some F ′′ ∈ E(H). Hence,

by the above observation, there is a vertex w ∈ η(F ′′, h) ∩ D′. Thus, w and v are in the same
connected component of G[D′]. But then v and v′ are in the same connected component of G[D′],
as η(h) is a clique. It follows that G[D′] is connected. Similar arguments can be made if eF ∈ D
and eF ′ 6∈ D or if eF , eF ′ 6∈ D. Hence, D′ is a connected dominating set of G of size at most k.

Suppose that γc(G) ≤ k. Let D′ be a smallest connected dominating set of G; hence, |D′| ≤ k.
Let P be such that h ∈ P if and only if h ∈ P(H) and there is an F ∈ E(H) with h ∈ F and
D′ ∩ η(F, h) 6= ∅. Then P is covering. Indeed, suppose that F ∩ P 6= ∅ for some F ∈ E(H) that
corresponds to a stripe, then η(h)∩D′ = ∅ for each h ∈ F , and thus there is a vertex of η(F ) that
is not dominated by D′ or D′ has at least two connected components.

We construct a set D ⊆ E(KP ) of weight at most k− kP that is a connected edge dominating
set of KP . Initially, D = ∅. For each F ∈ E(H), we consider the following cases.

Case 1: F = {h} for some h ∈ V (H).
Let (J, Z) be the strip corresponding to F . Add eF to D—note that the weight of eF is
γc(J † N [Z]), which is at most |D′ ∩ η(F )|.

Case 2: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a stripe.
Let Z = {z, z′}, where z corresponds to h and z′ to h′. Since P is covering, h ∈ P or h′ ∈ P .
There are several cases:

Case 2a: h, h′ ∈ P .
If G[D′∩η(F )] is connected, η(F ′, h)∩D′ 6= ∅, and η(F ′, h′)∩D′ 6= ∅, then add eF to D—note that
the weight of eF is γc(J)− γc(J † N [Z]), which is at most |D′ ∩ η(F )| − γc(J † N [Z]). Otherwise,
do nothing.

Case 2b: h ∈ P , h′ 6∈ P .
Add eF to D — note that the weight of eF is γc(J \ z′), which is at most |D′ ∩ η(F )|, since
η(h) \ η(F, h) 6= ∅ and h′ 6∈ P .

Case 2c: h 6∈ P , h′ ∈ P .
Add eF to D—note that the weight of eF is γc(J \ z), which is at most |D′ ∩ η(F )|, since η(h′) \
η(F, h′) 6= ∅ and h 6∈ P .

Case 3: F = {h, h′} for some h, h′ ∈ V (H). The strip (J, Z) corresponding to F is a spot.
If the vertex of J \ Z is in D′, then add eF to D — note that the weight of eF is |D′ ∩ η(F )|.

From the construction of D and the analysis in each of the above cases, it follows that wP (D) ≤
|D| − kP ≤ k − kP . To see that |D| ≤ k, observe that when we add an edge eF to D for some
F ∈ E(H), we can map it to a unique vertex of η(F ) ∩D′.

We now show that D is an edge dominating set of KP . Let e ∈ E(KP ). If e is incident on a
vertex vh with h ∈ P , then there is an F ∈ E(H) with h ∈ F such that η(F, h) ∩D′ 6= ∅. Note
that it is possible to choose F such that G[D′ ∩ η(F )] is connected and η(F, h′) ∩D′ 6= ∅ for each
h′ ∈ F . For this F , by going through the above cases, an edge incident on vh will be added to
D and e is dominated. If e is not incident on any vertex vh for h ∈ V (H), then e is an edge e′F
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of the construction of Case 1 or 2. Then, by the construction of D, e is dominated. We can now
assume that e is incident only on vertices of vh for h ∈ V (H) \P . By the construction of KP , this
implies that e was added in Case 3 due to an F ∈ E(H) that corresponds to a spot. Hence, there
is an F ′ ∈ E(H) (possibly F = F ′) such that h ∈ F ′ or h′ ∈ F ′, and respectively η(F ′, h)∩D 6= ∅
or η(F ′, h′) ∩ D 6= ∅. Assume it is the former. Note that F ′ corresponds to a spot; otherwise,
h ∈ P because η(F ′, h) ∩D 6= ∅, a contradiction. It follows that the edge eF ′ is in D, and thus e
is dominated. Hence, D is an edge dominating set.

It remains to show that KP [D] is connected. Define L ⊆ V (H) such that h ∈ L if and only
if η(h) ∩ D′ 6= ∅. Note that P ⊆ L. By the construction of D, it follows that eF ∈ D for some
F ∈ E(H) if and only if η(F, h)∩D′ 6= ∅ for each h ∈ F ∩L and G[D′∩η(F )] is connected. Hence,
KP [D] is connected, because G[D′] is connected.

The previous lemma shows that it suffices to resolve certain instances of the Weighted Con-
nected Edge Dominating Set problem on multigraphs. Fortunately, this problem is fixed-
parameter tractable. We need the following auxiliary result.

Theorem 8.16 Let G be a connected graph on n vertices, w : E(G) → N+ a weight function,
and k ∈ N+. Then we can find in O∗(16kW ) time a connected edge dominating set D of smallest
weight with |D| ≤ k, or correctly decide that no such set D exists, where W = maxe∈E(G){w(e)}.

Proof: We adapt the algorithm of Lemma 7.22. Recall that, given a graph G and a set S ⊆ V (G),
a Steiner tree of S is a connected subgraph of G that contains all vertices of S.

Suppose that G has a connected edge dominating set D ⊆ V (G) with |D| ≤ k. Then G has a
minimal vertex cover C with |C| ≤ 2k, by taking (a subset of) the endpoints of the edges in D.
Moreover, D forms a Steiner tree of C. Conversely, if C ⊆ V (G) is a vertex cover of G, then any
Steiner tree of C forms a connected edge dominating set of G.

This suggests the following algorithm. Enumerate all minimal vertex covers of G of size at
most 2k. This takes O(|E(G)|+ k222k) time using an algorithm of Damaschke [23], and there are
most 22k such vertex covers. If no such vertex cover is found, then there is no connected edge
dominating set D of G with |D| ≤ k. Otherwise, for each such minimal vertex cover C found, we
compute a minimum-weight Steiner tree of C, which takes O∗(22kW ) time using an algorithm of
Nederlof [71]. We output the smallest-weight Steiner tree found. The correctness of this algorithm
was argued above, and the run time is as claimed.

This theorem extends immediately to multigraphs: parallel edges can be replaced by a single edge
with weight equal to the minimum of the weights of the parallel edges, and a self-loop e of a vertex
v can be replaced by adding a pendant vertex v′ and modifying e so that it is between v and v′.
Unfortunately, our weight functions wP might set the weight of certain edges of KP to 0. Hence,
the above theorem might not be directly applicable, as it assumes positive edge weights. However,
there is a straightforward workaround.

Lemma 8.17 Let G be a graph, w : E(G)→ Z a weight function, and k ∈ Z. Then in linear time,
we can construct a graph G′, a weight function w′ : E(G′)→ N+∪{∞}, and a k′ ∈ N+ such that G
has a connected edge dominating set of weight at most k (under w) if and only if G′ has a connected
edge dominating set of weight at most k′ (under w′). In particular, k′ ≤ max{1, 1 + k − w(N)},
where N ⊆ V (G) denotes the set of edges in G of nonpositive weight (under w).

Proof: If k < w(N), then G has no connected edge dominating set of weight at most k, so we can
return a trivial “no”-instance (for example, a graph with a single edge of weight 2 and k′ = 1).
So assume that k ≥ w(N). If N = ∅, then we return G′ = G, w′ = w, k′ = k if k > 0, a trivial
“yes”-instance if E(G) = ∅ and k ≥ 0, and a trivial “no”-instance otherwise. Now recall that
the contraction of an edge (u, v) ∈ E(G) removes u and v, adds a vertex x that is adjacent to all
neighbors of u and of v, and removes self-loops (but not parallel edges). We call u and v contracted
vertices and x a fused vertex. Note that connectivity is maintained under contraction.

We now define G′ as follows. Starting with G, contract all edges of N , and let X ⊆ V (G′)
denote the set of fused vertices and Y ⊆ V (G) the set of contracted vertices. For each x ∈ X, add
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two vertices sx, tx and edges (x, sx) of weight 0 and (sx, tx) of weight ∞. For exactly one x ∈ X,
we set the weight of (x, sx) to 1. Note that this defines a weight function w′ on E(G′) that is
the same for all edges of E(G′) ∩ E(G). Finally, set k′ = 1 + k − w(N). Since k ≥ w(N), indeed
k′ ∈ N+.

Suppose that G has a connected edge dominating set D with w(D) ≤ k. Since the edges of N
have nonpositive weight, we can assume that N ⊆ D. Then, we can also assume that D contains
no edges of E(G) \ N for which both endpoints are in the same connected component of G[N ],
which means that no edges of D will be removed by removing loops that arise in the construction
of G′. We now claim that D′ = {(x, sx) | x ∈ X} ∪ (D \ N) is a connected edge dominating
set of G′ with w′(D′) ≤ k′. Suppose that e ∈ E(G′) is not dominated by D′. Then e is not
incident on x or sx for any x ∈ X by the construction of D′, so e ∈ E(G) and e is incident on
two vertices in V (G) \ Y . As D is an edge dominating set of G, there is an edge f ∈ D incident
on one of the endpoints of e. Moreover, f ∈ E(G′), since the endpoint shared with e is not in Y .
Hence, f ∈ D′ and e is dominated, a contradiction. Therefore, D′ is an edge dominating set of
G′. To see that it has weight at most k′, recall that k ≥ w(N), N ⊆ D, and that D \N does not
contain any edges for which both endpoints are in the same connected component of G[N ], and
thus w′(D′) = 1 +w′(D \N) = 1 +w(D \N) ≤ 1 + k−W (N) = k′. Finally, G′[D′] is connected,
because N ⊆ D and D′ can be obtained from D by contracting all edges of N and by adding edges
incident on the fused vertices, which retains connectivity.

Suppose that G′ has an edge dominating set D′ with w′(D′) ≤ k′. By the construction of G′

and w′, the edges (x, sx) for each x ∈ X are in D′, but the edges (sx, tx) are not. We now claim that
D = (D′ \ {(x, sx) | x ∈ X})∪N is a connected edge dominating set of G with w(D) ≤ k. Indeed,
w(D) = w(D′\{(x, sx) | x ∈ X})+w(N) = w′(D′\{(x, sx) | x ∈ X})+w(N) ≤ k′−1+w(N) = k.
Suppose that e ∈ E(G) is not dominated by D. Then e is not incident on Y , so e ∈ E(G′) and
e is incident on two vertices of V (G′) \ {x, sx, tx | x ∈ X}. As D′ is an edge dominating set of
G′, there is an edge f ∈ D′ incident on one of the endpoints of e. Moreover, f ∈ E(G), since
the endpoint shared with e is not in {x, sx, tx | x ∈ X}. Hence, f ∈ D and e is dominated, a
contradiction. Therefore, D is an edge dominating set of G. Finally, G[D] is connected, because
N ⊆ D and D is obtained from D′ by uncontracting all edges of N , which retains connectivity
since the uncontracted edge is added to D.

Corollary 8.18 Let G be a multigraph, w : E(G) → Z a weight function, and k ∈ Z. Then we
can decide in O∗(16max{1,1+k−w(N)}W ) time whether G has a connected edge dominating set D
with w(D) ≤ k, where N ⊆ V (G) denotes the set of edges in G of nonpositive weight (under w)
and W = maxe∈E(G){w(e)}.

Theorem 8.19 Let G be a connected claw-free graph with n vertices and let k be an integer. Then
there is an algorithm that runs in O∗(64k) time and that either correctly reports that γc(G) > k
or returns a smallest connected dominating set of G.

Proof: We first preprocess the graph. We iteratively apply the following procedure. We check
whether G admits twins; this can be done in O(n+m) time by Theorem 3.3. If so, then following
Lemma 8.2, we can find a connected claw-free graph G′ with |V (G′)| < |V (G)| such that γc(G) =
γc(G

′) in linear time, and continue to the next iteration with G = G′. Otherwise, G does not
admit twins, and we check whether G admits a proper W-join; this can be done in O(n2m) time
by Theorem 3.2. If so, the following Lemma 8.3, we can find a connected claw-free graph G′

with |E(G′)| < |E(G)| (note that proper W-joins have at least two edges by definition, and one
remains after applying the lemma) such that γc(G) = γc(G

′) in linear time, and continue to the
next iteration with G = G′. Since the number of edges decreases in every iteration, there are at
most m iterations, and the run time of the procedure is O(n6). After the procedure finishes, we
end up with a connected claw-free graph that does not admit twins nor proper W-joins for which
the size of its smallest dominating set is unchanged. By abuse of notation, we call this graph G
as well.

We test whether γc(G) ≤ 7 using the algorithm of Lemma 8.4 in O(n8) time. If so, then the
algorithm actually gives a connected dominating set of size γc(G), and we are done. Otherwise,
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if α(G) ≤ 3, then γc(G) ≤ 7 by Proposition 7.2 and Proposition 8.1, a contradiction. Hence,
α(G) > 3.

We then apply Theorem 6.8 in O(n2m3/2) time. If it outputs that G is a proper circular-
arc graph, then we can compute γc(G) in linear time by Theorem 8.6. If it outputs that G is
a thickening of an XX-trigraph, then we can compute γc(G) in O(n5) time by Lemma 8.7. It
remains that it outputs that G admits a strip-structure such that for each strip (J, Z):

• (J, Z) is a trivial line graph strip, or

• (J, Z) is a stripe for which

– 1 ≤ |Z| ≤ 2, α(J) ≤ 3, and V (J) \N [Z] 6= ∅,
– |Z| = 1, J is a proper circular-arc graph, and either J is a (strong) clique or α(J) > 3,

– |Z| = 2, J is a proper interval graph, and either J is a (strong) clique or α(J) > 3, or

– (J, Z) is a thickening of a member of Z5.

We now determine the set P(H), which takes linear time. Then for each P ⊆ P(H) such that P
is covering, compute the triple (KP , wP , kP ). Using Proposition 8.13 and Lemma 8.9, 8.10, 8.11,
and 8.12, we can to compute a set D ⊆ V (J) \ Z of size γc(J \Q) that dominates J \Q for any
Q ⊆ Z and a set D ⊆ V (J)\Z of size γc(J † N [Z]) that dominates J \N [Z] and that has for each
component a vertex of N(Z) for the strips (J, Z) of the strip-structure. Hence, we can compute
the triple (KP , wP , kP ) in O(n8) time. Note that the number of vertices of KP is in the order of
|E(H)|, which is O(n), because each strip contains at least one vertex of G that is unique to it.
Moreover, the weight of each edge of KP under wP is nonnegative and at most k+O(1) = O(n), or
we can answer “no”. Then, using Corollary 8.18, we can decide in O∗(16k) time whether KP has
a connected edge dominating set D of smallest weight such that wP (D) ≤ k − kP . If so, then by
Lemma 8.15, γc(G) ≤ k. Moreover, since D is a connected edge dominating set of KP of smallest
weight, the transformation of Lemma 8.15 gives a smallest dominating set of G. If Corollary 8.18
returns for all P ⊆ P(H) that are covering that there is no connected edge dominating set D of
KP with |D| ≤ k, then we can answer NO by Lemma 8.15. Since |P(H)| ≤ 2k by Lemma 7.17,
the run time is O∗(22k16k) = O∗(64k).

Note that the polynomial factor hidden in the O∗ is at least n8. Also observe that the above
algorithm can be modified to take into account that in Corollary 8.18/Theorem 8.16 we are only
interested in minimal vertex covers that contain every vertex vh for h ∈ P . This can be argued
in a manner similar to Lemma 7.22. Hence, we only need to enumerate minimal vertex covers of
size 2k − |P | in Theorem 8.16. Then the run time improves to

2k∑
i=0

(
2k

i

)
22k−i22k = 22k

2k∑
i=0

(
2k

i

)
22k−i = 22k32k.

Corollary 8.20 Let G be a connected claw-free graph and let k be an integer. Then we can decide
in O∗(36k) time whether γc(G) ≤ k.

9 Polynomial Kernel for Dominating Set

We show that Dominating Set has a polynomial kernel on claw-free graphs. The basic idea
of our kernel is to replace each stripe of the strip-structure given in Theorem 6.7 by a stripe of
size at most constant or linear in k. We show how to do this in Sect. 9.1. We then reduce the
strip-structure itself to have polynomial size in Sect. 9.2. We combine these ideas in Sect. 9.3 to
give the actual kernel.
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9.1 Reducing Stripes

In this subsection, we show how to reduce the stripes of a strip-structure for a claw-free graph
to have small size, and essentially provide a kernel for individual stripes. These kernels preserve
the value of γ(J \ (Q ∪ R) | N [R]) for any disjoint Q,R ⊆ Z, in line with the ideas behind the
algorithm described in Sect. 7. We show that each ‘stripe kernel’ has linear size, and often even
constant size.

In order to actually find and use such kernels, we need the following lemmas. The first lemma
shows that we can replace one stripe with another that, when appropriately chosen, yields an
equivalent instance of Dominating Set.

Lemma 9.1 Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G, and
let F ∈ E(H) correspond to a stripe (J, Z). Let (J ′, Z ′) be a claw-free stripe and k′ ≥ 0 be an
integer such that Z = Z ′ and γ(J \ (Q ∪R) | N [R]) = γ(J ′ \ (Q ∪R) | N [R]) + k′ for any disjoint
Q,R ⊆ Z. Let G′ be obtained from G by replacing the vertices of η(F ) = V (J) \ Z by those of
V (J ′) \ Z and let k be an integer. Then G′ has a purified strip-structure (H ′, η′) of nullity zero
such that G′ and (H ′, η′) have the following properties:

• V (H) = V (H ′), E(H) = E(H ′), F ′ in H is equal to F ′ in H ′ for each F ′ ∈ E(H) = E(H ′),

• η′(F ′) = η(F ′) for each F ′ ∈ E(H) \ {F} and η′(F ) = V (J ′) \ Z,

• γ(G) ≤ k if and only if γ(G′) ≤ k − k′, and

• if G is claw-free, then so is G′.

Proof: The statements about the existence of (H ′, η′) are straightforward. Hence, we focus on
proving the final two statements of the lemma.

Let D be a smallest dominating set of G, and assume |D| ≤ k. We first construct two disjoint
sets Q,R ⊆ Z. Initially, Q = R = ∅. Consider each h ∈ F and let z ∈ Z correspond to h. If
D ∩ η(h) = ∅, then add z to Q. If D ∩ η(h) 6= ∅ and D ∩ η(F, h) = ∅, then add z to R.

Observe that the construction of Q,R implies that if a set S ⊆ V (J) \ Z dominates V (J) \
(Q ∪N [R]), then (D \ η(F )) ∪ S is a dominating set of G. Indeed, let h ∈ F with corresponding
z ∈ Z. If D ∩ η(h) = ∅, then S dominates η(F, h) = N(z). If D ∩ η(h) 6= ∅ and D ∩ η(F, h) = ∅,
then S does not necessarily dominate η(F, h) = N(z), because it is already dominated by a vertex
in D ∩ (η(h) \ η(F, h)) 6= ∅. Otherwise, the vertex z ensures that N(z) contains a vertex of S. All
other vertices are straightforwardly dominated by D \ η(F ) or S. It is important to note that this
observation holds regardless of the inner structure of (J, Z).

Since D is a smallest dominating set of G, the above observation implies that |D ∩ η(F )| ≤
γ(J \ (Q ∪ R) | N [R]). A similar argument as in the above observation also implies that if
S′ ⊆ V (J ′) \ Z dominates V (J ′) \ (Q ∪ N [R]), then (D \ η(F )) ∪ S′ is a dominating set of G′.
Using this with a set S′ that attains γ(J ′ \ (Q ∪R) | N [R]) implies that

γ(G′) ≤ |(D\η(F ))∪S′| ≤ γ(G)−γ(J\(Q∪R) | N [R])+γ(J ′\(Q∪R) | N [R]) ≤ γ(G)−k′ ≤ k−k′ .

For the converse, we apply the same argument. Since η(h) is a clique for each h ∈ V (H), it follows
immediately from the fact that J ′ is claw-free that G′ is claw-free if G is.

We also need the following definition in order to simplify the algorithms that find ‘stripe kernels’.

Definition 9.2 Let (J, Z) be a stripe that is a thickening W of a stripe (J ′, Z ′) such that J is
a graph. Then (J, Z) is called semi-thickened if Wv′ ∪Ww′ does not contain twins in J for any
v′, w′ ∈ V (J ′) \ Z ′ (possibly v′ = w′) that are not incident on a semi-edge in J ′.

Note that this definition implies in particular that v′, w′ ∈ V (J ′) \ Z ′ are not twins in J ′ if v′, w′

are not incident on a semi-edge.
We now show that we get this property essentially for free for stripes that arise in a graph that

does not admit twins.
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Lemma 9.3 Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G, and
let F ∈ E(H) correspond to a stripe (J, Z) such that J is a graph and (J, Z) is a thickening W of
a stripe (J ′, Z ′). If G does not admit twins, then (J, Z) is semi-thickened.

Proof: Suppose that G does not admit twins. Let v′, w′ ∈ V (J ′) \ Z ′ (possibly v′ = w′) that are
not incident on a semi-edge in J ′. Suppose that Wv′ ∪Ww′ contains two vertices v, w that form
twins in J . Since v′, w′ 6∈ Z ′, v, w ∈ V (G), and the definition of a strip-structure implies that G
admits twins v, w, a contradiction. Hence, (J, Z) is semi-thickened.

We now show a basic operation to reduce the size of certain stripes. This operation preserves
claw-freeness and semi-thickedness.

Lemma 9.4 Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G, and
let F ∈ E(H) correspond to a stripe (J, Z) such that J is a graph and (J, Z) is a thickening W of
a stripe (J ′′, Z ′′). Then in linear time, we can compute a graph G′ and a purified strip-structure
(H ′, η′) of nullity zero such that:

• V (H) = V (H ′), E(H) = E(H ′), F ′ in H is equal to F ′ in H ′ for each F ′ ∈ E(H) = E(H ′),

• η′(F ′) = η(F ′) for each F ′ ∈ E(H) \ {F},

• γ(G) = γ(G′),

• the stripe (J ′, Z ′) corresponding to F under η′ is a thickening W ′ of (J ′′, Z ′′),

• |W ′w′′ | = 1 if w′′ ∈ V (J ′′) is not incident on a semi-edge in J ′′,

• |W ′v′′ |+ |W ′w′′ | ≤ 3 if v′′, w′′ ∈ V (J ′′) are semiadjacent in J ′′,

• if G is claw-free, then so is G′, and

• if J is semi-thickened, then so is J ′.

It is important to note that this lemma crucially relies on knowing both (J ′′, Z ′′) and the thickening
W, and we assume them to be given as input to the algorithm.

Proof: Let w′′ ∈ V (J ′′) \ Z ′′ and suppose that w′′ is not incident on a semi-edge. If |Ww′′ | ≥ 2,
then any two vertices of Ww′′ form twins in G. Using Lemma 7.3, we can remove one of these
vertices from G without changing the size of the smallest dominating set and without disturbing
the absence of claws.

Let v′′, w′′ ∈ V (J ′′) \ Z ′′ and suppose that v′′ and w′′ are semiadjacent. Since J is a graph,
(Wv′′ ,Ww′′) is a W-join in G. Using Lemma 7.4, we can remove vertices of this W-join from G
without changing the size of the smallest dominating set and without disturbing the absence of
claws.

By applying this to all w′′ ∈ V (J ′′) \ Z ′′ that are not incident on a semi-edge, and to all
v′′, w′′ ∈ V (J ′′) \ Z ′′ that are semiadjacent, we arrive at the requested graph G′. Using the
definition of a thickening, it is straightforward to see that G′ has a purified strip-structure (H ′, η′)
of nullity zero such that G′ and (H ′, η′) have the required properties. Moreover, Lemma 7.3 and 7.4
imply that G′ and (H ′, η′) can be computed in linear time. Since we only delete vertices, if G is
claw-free, then so is G′. The construction implies straightforwardly that (J ′, Z ′) is a thickening
of (J ′′, Z ′′). Hence, if J is semi-thickened, then so is J ′.

This lemma leads to the following definition.

Definition 9.5 Let G be a graph, let (H, η) be a purified strip-structure of nullity zero for G, and
let F ∈ E(H) correspond to a stripe (J, Z) such that J is a graph and (J, Z) is a thickening W
of a stripe (J ′′, Z ′′). Then (J, Z) is reduced if |Ww′′ | = 1 when w′′ ∈ V (J ′′) is not incident on a
semi-edge in J ′′ and |W ′v′′ |+ |W ′w′′ | ≤ 3 when v′′, w′′ ∈ V (J ′′) are semiadjacent in J ′′.

We now describe how to find ‘stripe kernels’ and consider stripes (J, Z) with |Z| = 1 and |Z| = 2
separately.
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9.1.1 |Z| = 1

Stripes (J, Z) with |Z| = 1 are reasonable straightforward to reduce to an equivalent stripe (in
the sense of Lemma 9.1) of constant size.

Lemma 9.6 Let (J, Z) be a stripe such that J is a graph and |Z| = 1. Given the values of
γ(J \ (Q ∪ R) | N [R]) for any disjoint Q,R ⊆ Z, we can compute in constant time a claw-free
stripe (J ′, Z ′) and an integer k′ ≥ 0 such that Z = Z ′, |V (J ′)| ≤ 4, and γ(J \ (Q ∪ R) | N [R]) =
γ(J ′ \ (Q ∪R) | N [R]) + k′ for any disjoint Q,R ⊆ Z.

Proof: Let Z = {z}. First, we observe that γ(J \ Z | N [Z]) ≤ γ(J \ Z) ≤ γ(J). The first
inequality holds by definition. To see the second inequality, recall that N [Z] is a (strong) clique.
Consider any dominating set D of J . If z ∈ D, then replace it by any vertex in N(z). The resulting
set is still a dominating set of J , and by construction, also of J \ Z.

Second, observe that 0 ≤ γ(J) − γ(J \ Z | N [Z]) ≤ 1, because any dominating set of J \ Z
where N [Z] does not need to be dominated can be made into a dominating set of J by simply
adding z to it.

From the above observations, there are three cases to consider. First, suppose that γ(J \ Z |
N [Z])+1 = γ(J\Z) = γ(J). Let J ′ be a two-vertex path with z as one of its ends and let Z ′ = {z}.
Let k′ = γ(J \Z | N [Z]). Note that γ(J ′) = γ(J ′ \Z ′) = 1 and that γ(J ′ \Z ′ | N [Z ′]) = 0. Hence,
(J ′, Z ′) is as required by the lemma statement.

Suppose that γ(J \ Z | N [Z]) = γ(J \ Z) = γ(J) − 1. Let J ′ be a four-vertex path with
z as one of its ends and let Z ′ = {z}. Let k′ = γ(J \ Z | N [Z]) − 1. Note that γ(J ′) = 2
and that γ(J ′ \ Z ′ | N [Z ′]) = γ(J ′ \ Z ′) = 1. Moreover, k′ ≥ 0, because γ(J \ Z) < γ(J),
implying that any smallest dominating set D for J \ Z satisfies D ∩ N(Z) = ∅, even though the
vertices in the nonempty set N(Z) have to be dominated. Therefore, V (J) \N [Z] 6= ∅, and thus
γ(J \ Z | N [Z]) > 0. Hence, (J, Z ′) is as required by the lemma statement.

Finally, suppose that γ(J \Z | N [Z]) = γ(J \Z) = γ(J). Let J ′ be a three-vertex path with z
as one of its ends and let Z ′ = {z}. Let k′ = γ(J)− 1. Note that γ(J ′ \Z ′ | N [Z ′]) = γ(J ′ \Z ′) =
γ(J ′) = 1. Moreover, γ(J) ≥ 1 as N(z) is nonempty, and thus k′ ≥ 0. Hence, (J, Z ′) is as required
by the lemma statement.

Given the values of γ(J \ (Q ∪R) | N [R]) for any disjoint Q,R ⊆ Z, we can trivially compute
the (J ′, Z ′) prescribed by the three above cases in constant time.

9.1.2 |Z| = 2

Stripes (J, Z) with |Z| = 2 are significantly harder to reduce, because it seems infeasible to provide
the generic construction like we provided for the case |Z| = 1: there would be too many different
cases to deal with. Therefore, we consider the stripes with |Z| = 2 that can occur in Theorem 6.7,
and find an explicit ‘stripe kernel’ for each of them.

Lemma 9.7 Let (J, Z) be a stripe such that J is a proper interval graph and |Z| = 2. Then we
can compute in linear time a claw-free stripe (J ′, Z ′) such that Z = Z ′, |V (J ′)| ≤ 18 γ(J) + 2, and
γ(J \ (Q ∪R) | N [R]) = γ(J ′ \ (Q ∪R) | N [R]) for any disjoint Q,R ⊆ Z.

Proof: We find a proper interval representation of J ; this takes linear time [24]. From now on, we
will not distinguish between the vertices and their corresponding intervals. Number the intervals
in order of their left endpoints: v1, . . . , vn, where n = |V (J)|. We make two crucial claims.

Claim 9.7.1 γ(J \ (Q ∪R) | N [R]) = γ(J \ (Q ∪N [R])) for any disjoint Q,R ⊆ Z.

Proof: Let D ⊆ V (J)\(Q∪R) be a smallest set dominating V (J)\(Q∪N [R]) that (among all such
smallest dominating sets) has the least number of vertices in N(R). Suppose that D ∩N(R) 6= ∅,
and let vi ∈ N(R)∩D. By the choice of D, vi must have a neighbor vj that is not in N [R], nor in
the dominating set, nor dominated by D \N [R]; otherwise, either D is not smallest or D ∩N(R)
is not smallest, a contradiction. We will show that we can replace vi by vj . Let vk 6= vj be any
neighbor of vi that is not in N [R], nor in the dominating set, nor dominated by D \N [R]. Note
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that any such vk is uniquely dominated by vi, and might not be dominated by vj . Since vj , vk
are not in N(R) and J is a proper interval graph, j, k > i or j, k < i. Assume without loss of
generality that it is the former. Then i < j < k or i < k < j, and thus the fact that J is a proper
interval graph implies that vj and vk are adjacent. Hence, (D \ {vi}) ∪ {vj} is also a smallest
subset of V (J)\ (Q∪R) dominating V (J)\ (Q∪R), but with a strictly smaller number of vertices
in N(R), contradicting the choice of D. Therefore, D ∩N(R) = ∅, and the claim follows. 4

Claim 9.7.2 The following greedy algorithm finds a smallest dominating set of a proper interval
graph: consider the leftmost still undominated vertex v and add the rightmost neighbor of v to
the dominating set. Moreover, the algorithm runs in linear time.

Proof: Straightforward by induction using that the graph is a proper interval graph. 4

We now show the following. Consider arbitrary disjoint Q,R ⊆ Z. Let D denote a smallest
dominating set for J \ (Q∪N [R]) as found by the strategy of Claim 9.7.2. Let Du denote the set
of leftmost undominated vertices as considered by the strategy. For any A ⊆ V (J), consider the
graph (J [A∪D∪Du])\ (Q∪N [R]). Observe that the vertices in A are irrelevant to the algorithm
of Claim 9.7.2, because the algorithm only uses the vertices in Du to compute D. Therefore,
γ((J [A ∪D ∪Du]) \ (Q ∪N [R])) = γ(J \ (Q ∪N [R])).

We now construct J ′ as follows. For each disjoint Q,R ⊆ Z, it follows from Claim 9.7.1 that
γ(J \ (Q ∪ R) | N [R]) = γ(J \ (Q ∪ N [R])). Using the algorithm of Claim 9.7.2, find a smallest
dominating set D for J \ (Q∪N [R]). Let Du be as in the above paragraph. Add D and Du to J ′.
Also ensure that the vertices of Z are added to J ′ and set Z ′ = Z. The observation of the previous
paragraph together with Claim 9.7.1 now implies that γ(J\(Q∪R) | N [R]) = γ(J ′\(Q∪R) | N [R])
for any disjoint Q,R ⊆ Z. Moreover, the neighborhood of each z ∈ Z is nonempty in J ′ by
construction. Hence, J ′ is a claw-free stripe. Finally, since there are nine choices for Q,R, it
follows that |V (J ′)| ≤ 18 γ(J) + 2.

Lemma 9.8 Let (J, Z) be a reduced stripe such that (J, Z) is a thickeningW of a member (J ′′, Z ′′)
of Z2, J is a graph, and (J, Z) is semi-thickened. Then we can compute in linear time a claw-free
stripe (J ′, Z ′) such that Z = Z ′, |V (J ′)| ≤ 26, and γ(J \ (Q∪R) | N [R]) = γ(J ′ \ (Q∪R) | N [R])
for any disjoint Q,R ⊆ Z.

Proof: Let n, a0, b0, A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn}, and X be as in
the definition of Z2. As in Lemma 4.2, we may assume without loss of generality that a1, b1 are
semiadjacent (and thus c1 ∈ X), that a2, c2 are semiadjacent (and thus b2 ∈ X), and that b3, c3
are semiadjacent (and thus a3 ∈ X). Moreover, the analysis of Lemma 4.2 implies that without
loss of generality |X ∩ {ai, bi, ci}| ∈ {1, 3} for i = 1, 2, 3.

Throughout the remainder of the proof, let i, i′ ∈ {1, . . . , n}. Suppose that ai, ai′ 6∈ X and
bi, bi′ , ci, ci′ ∈ X. Then i, i′ ≥ 4 and Wai

∪Wai′ is a homogenous clique, which contradicts that
(J, Z) is semi-thickened, because ai and ai′ are not incident on a semi-edge in J ′. Hence, there is
at most one i ≥ 4 such that ai 6∈ X, bi, ci ∈ X, and Wai

6= ∅, and for such a value of i, |Wai
| ≤ 1

because ai is not incident on a semi-edge and (J, Z) is reduced. Similar observations apply if
bi 6∈ X and ai, ci ∈ X, or ci 6∈ X and ai, bi ∈ X.

Suppose that ai, ai′ , bi, bi′ 6∈ X and ci, ci′ ∈ X. Observe that any vertex in Wai
combined with

any vertex in Wbi′ dominates J , but no single vertex of Wai
, Wai′ , Wbi , or Wbi′ does. Hence,

we can remove all vertices of Wai′′ and Wbi′′ for any i′′ ≥ 4 with i′′ 6= i, i′, ai′′ , bi′′ 6∈ X, and
ci′′ ∈ X. Without loss of generality, i′ ≥ 4. Since neither ai′ nor bi′ are incident on a semi-
edge, |Wai′ |, |Wbi′ | = 1, because (J, Z) is reduced. If i ≥ 4, then we can similarly observe that
|Wai

|, |Wbi | = 1. Otherwise, i = 1. Since a1 and b1 are semiadjacent, |Wa1
∪Wb1 | ≤ 3, because

(J, Z) is reduced. Similar reductions apply if ai, ai′ , ci, ci′ 6∈ X and bi, bi′ ∈ X, or bi, bi′ , ci, ci′ 6∈ X
and ai, ai′ ∈ X. (Note that in these cases, for example, Wai

combined with Wci′ dominates J
except one vertex from Z; however, this does not influence the correctness of the reduction rule
that is applied here.)

Suppose that ai, ai′ , bi, bi′ , ci, ci′ 6∈ X. Then i, i′ ≥ 4. Again, any vertex in Wai
combined with

any vertex in Wbi′ dominates J , but no single vertex of Wai
, Wai′ , Wbi , or Wbi′ does. Hence, we
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h6

h1h2 h2h3 h3h4 h4h5

h2h6 h3h6

Figure 8: On the left: A graph H that follows the constraints of the definition of Z3 with one
vertex adjacent to h2 and h3. On the right: A line trigraph of H. In particular, this is a member
of Z3. The thick dotted edge is an edge or a semi-edge. The thin dotted edge is a semi-edge or a
non-edge.

can remove all vertices of Wai′′ and Wbi′′ for any i′′ ≥ 4 with i′′ 6= i, i′ and ai′′ , bi′′ , ci′′ 6∈ X. Since
ai, ai′ , bi, bi′ , ci, ci′ are all not incident on a semi-edge, |Wai

|, |Wai′ |, |Wbi |, |Wbi′ |, |Wci |, |Wci′ | = 1,
because (J, Z) is reduced.

Let J ′ denote stripe that remains after applying the above reduction operations, and let Z ′ = Z.
From the above reductions, |V (J ′)| ≤ 15 + 9 + 2 = 26. Moreover, it is straightforward to see that
(J ′, Z ′) is still a thickening of a member of Z2. Finally, γ(J\(Q∪R) | N [R]) = γ(J ′\(Q∪R) | N [R])
for any disjoint Q,R ⊆ Z by construction.

Lemma 9.9 Let (J, Z) be a reduced stripe such that (J, Z) is a thickeningW of a member (J ′′, Z ′′)
of Z3, J is a graph, and (J, Z) is semi-thickened. Then we can compute in linear time a claw-free
stripe (J ′, Z ′) such that Z = Z ′, |V (J ′)| ≤ 23, and γ(J \ (Q∪R) | N [R]) = γ(J ′ \ (Q∪R) | N [R])
for any disjoint Q,R ⊆ Z.

Proof: Let H, h1, . . . , h5 be as in the definition of Z3, and let P = {h1, . . . , h5}. Recall that J ′′ is a
line trigraph of H, where the vertex corresponding to the edge h2h3 and the vertex corresponding
to the edge h3h4 are made strongly antiadjacent or semiadjacent. By the assumptions of the
lemma, we know H and P .

Claim 9.9.1 Without loss of generality, no two vertices of P are adjacent to more than one vertex
of V (H) \ P of degree 2.

Proof: Let T denote the set of vertices in V (H) \ P that have degree two and that are adjacent
to h2 and h3 (see Fig. 8). Suppose that |T | ≥ 2. Let E denote the set of edges in H incident on h2
and a vertex of T , and let F denote the set of edges in H incident on h3 and a vertex of T . Note
that |E| = |F | = |T | ≥ 2. Moreover, since h2 and h3 both have degree at least 3, no semi-edge of
(J ′′, Z ′′) is incident on exactly one vertex corresponding to an edge of E or F .

We provide a modified member (J ′′′, Z ′′′) of Z3 and a modified thickening W ′′′ to (J, Z).
Initially, (J ′′′, Z ′′′) is equal to (J ′′, Z ′′) and W ′′′ = W, and in particular, H ′′′ and H are the
same. Now add a new vertex v to H ′′′ and make it adjacent to h2 and h3. Let e and f denote
the corresponding edges. Make e and f semiadjacent in J ′′′. Now set W ′′′e =

⋃
a∈E Wa and

W ′′′f =
⋃

a∈F Wa. Remove E, F , and T from H and blank W ′′′a for each a ∈ E ∪ F . Since each
a ∈ E is adjacent in J ′′ to exactly one b ∈ E and vice versa, it follows from the assumption that
|E| = |F | ≥ 2 that W ′′′e is neither complete nor anticomplete to W ′′′f . By construction, (J ′′′, Z ′′′)
is a member of Z3 based on H ′′′, and (J, Z) is the thickening W ′′′ of (J ′′′, Z ′′′).

Similar arguments can be made with respect to h2 and h4, and h3 and h4. 4

Note that the above modification could possibly destroy the property that (J, Z) is reduced.
However, then we simply apply Lemma 9.4. Therefore, we may assume that (J, Z) is reduced and
that no two vertices of P are adjacent to more than one vertex of V (H) \ P of degree 2.

The fact that (J, Z) is reduced now implies that vertices of V (H)\P of degree 2 are responsible
for at most 3 · 3 = 9 vertices of V (J). Also observe that if v, v′ ∈ V (H) \ P are of degree 1, then
any two vertices from We ∪ We′ would imply the existence of twins in J (where e, e′ are the
edges of H incident on v, v′ respectively), which contradicts that (J, Z) is semi-thickened. Hence,
these vertices of V (H) \ P are responsible for at most 3 vertices of V (J). Also observe that
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h2h3 and h3h4 are antiadjacent in J ′′, and therefore, the fact that (J, Z) is reduced implies that
|Wh2h3 |+ |Wh3h4 | ≤ 3.

Now observe that any vertex from Wh2h3
and any vertex from Wh3h4

together dominate J .
Hence, if T is the set of vertices of V (H) \ P of degree 3 and there exists a T ′ ⊆ T of size 2, then
We can be removed for any e incident on a vertex of T \ T ′. Indeed, if for some disjoint Q,R ⊆ Z
a dominating set D that attains γ(J \ (Q ∪ R) | N [R]) contains a vertex v from We where e is
incident on a vertex of T \T ′, then there is a vertex v′ from We′ that is not dominated by v where
e′ is an edge incident on a vertex of T ′. Hence, |D| ≥ 2, and any vertex from Wh2h3

and any vertex
from Wh3h4

combined would form an equally small dominating set. After applying this reduction,
vertices of V (H) \ P of degree 3 are responsible for at most 2 · 3 = 6 vertices of V (J).

Let J ′ denote stripe that remains after applying the above reduction operations, and let Z ′ = Z.
From the above reductions, |V (J ′)| ≤ 23. Moreover, it is straightforward to see that (J ′, Z ′) is
still a thickening of a member of Z2. Finally, γ(J \ (Q ∪ R) | N [R]) = γ(J ′ \ (Q ∪ R) | N [R]) for
any disjoint Q,R ⊆ Z by construction.

Lemma 9.10 Let (J, Z) be a reduced stripe such that (J, Z) is a thickening W of a member
(J ′′, Z ′′) of Z4 and J is a graph. Then we can compute in constant time a claw-free stripe (J ′, Z ′)
such that Z = Z ′, |V (J ′)| ≤ 11, and γ(J \ (Q ∪ R) | N [R]) = γ(J ′ \ (Q ∪ R) | N [R]) for any
disjoint Q,R ⊆ Z.

Proof: It suffices to observe that (J ′, Z ′) has 9 vertices and two semi-edges. Since (J, Z) is
reduced, it follows that |V (J)| ≤ 11. Hence, we simply output J ′ = J and Z ′ = Z.

Lemma 9.11 Let (J, Z) be a reduced stripe such that (J, Z) is a thickening W of a member
(J ′′, Z ′′) of Z5 and J is a graph. Then we can compute in constant time a claw-free stripe (J ′, Z ′)
such that Z = Z ′, |V (J ′)| ≤ 14, and γ(J \ (Q ∪ R) | N [R]) = γ(J ′ \ (Q ∪ R) | N [R]) for any
disjoint Q,R ⊆ Z.

Proof: It suffices to observe that (J ′, Z ′) has at most 13 vertices and one semi-edge. Since (J, Z)
is reduced, it follows that |V (J)| ≤ 14. Hence, we simply output J ′ = J and Z ′ = Z.

9.2 Reducing the Number of Strips

Throughout this subsection, let G be a connected claw-free graph that has a purified strip-structure
(H, η) of nullity zero such that 1 ≤ |F | ≤ 2 for each F ∈ E(H). Let k be an integer.

Observe that the strip-graph H can be seen as a multigraph (with self-loops) with vertex set
V (H) and edge set E(H). Indeed, each F ∈ E(H) with |F | = 2 can be seen as a normal edge,
and each F ∈ E(H) with |F | = 1 can be seen as a self-loop.

Definition 9.12 Let Ĥ denote the multigraph obtained from H (seen as a multigraph) by adding
a self-loop to each h ∈ P(H). We call these self-loops force edges.

Recall Definition 7.16 for the definition of P(H).

Now recall that ρ(Ĥ) is the size of a smallest edge dominating set of Ĥ. The following lemma
will be very helpful to reduce the number of strips of (H, η).

Lemma 9.13 If γ(G) ≤ k, then ρ(Ĥ) ≤ k.

Proof: Let D be a dominating set of G of size at most k. Let L denote the set of all F ∈ E(H) ⊆
E(Ĥ) for which D∩η(F ) 6= ∅. By construction, |L| ≤ |D|. We claim that L is an edge dominating

set of Ĥ. For sake of contradiction, let F ∈ E(Ĥ) not share an endpoint with an edge of L. We
consider two cases, and obtain a contradiction in both, proving the claim and thus the lemma.

Suppose that F is a force edge, incident on h ∈ V (H). By definition, there exists an F ′ ∈ E(H)
such that h ∈ F ′ and F ′ corresponds to a stripe. By assumption, η(h)∩D = ∅ and η(F ′)∩D = ∅.
However, since F ′ corresponds to a stripe, it follows by the definition of stripes and strip-structures
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that every vertex of G that is adjacent to a vertex of η(F ′, h) is in η(h) ∪ η(F ′). Hence, every
vertex of η(F ′, h) is not dominated by D, a contradiction.

Suppose that F ∈ E(H). By assumption, η(F ) ∩ D = ∅ and η(h) ∩ D = ∅ for each h ∈ F .
However, it follows by the definition of strip-structures that every vertex of G that is adjacent to
a vertex of η(F ) is in η(F ) ∪

⋃
h∈F η(h). Hence, the vertices of η(F ) are not dominated by D, a

contradiction.

The preceding lemma enables the transfer of ideas from polynomial kernels for Edge Dominating
Set [36, 81]. Note that the presence of stripes makes a direct application of these kernels infeasible.
Although it is possible to use the basic ideas from any one of these kernels1, we will in fact use
a simplification of the ideas in the kernel by Xiao et al. [81]. For this, we need the following

straightforward corollary of Lemma 9.13. Recall that ν(Ĥ) denotes the size of a largest matching

of Ĥ.

Corollary 9.14 If γ(G) ≤ k, then ν(Ĥ) ≤ 2k.

Proof: Let L denote an edge dominating set of Ĥ of size at most k; L exists by Lemma 9.13.
Let M be a largest matching of Ĥ. If F ∈ M , then at least one of the endpoints must be shared
with an F ′ ∈ L. Hence, |M | ≤ 2|L| ≤ 2k.

Given a set M ⊆ E(Ĥ), let M denote the set of endpoints of the edges of M . Note that M ⊆ V (H).

Definition 9.15 Let M = M(Ĥ) be any largest matching of Ĥ. Let V(H) be the union of

M and any inclusion-wise minimal set B of vertices of Ĥ such that each v ∈ M has at least
min{2k + 1, |NĤ(v)|} neighbors in Ĥ in the set M ∪ B. Let E(H) denote the set of F ∈ E(Ĥ)

such that F ⊆ V(Ĥ). The strip-graph induced by V(H) and E(H) is denoted H. The restriction
of η to E(H) is denoted ζ. Let G be the graph obtained from G by removing each vertex of η(F )
for each F ∈ E(H) \ E(H).

We make the following observation.

Proposition 9.16 Let M = M(Ĥ). For any F ∈ E(H), if |F | = 2, then F ∩M 6= ∅. If F
corresponds to a stripe, then F ∈ E(H). Finally, (H, ζ) is a purified strip-structure of nullity zero
for G with η(F ) = ζ(F ) for any F ∈ E(H).

Proof: For the first part, since M is a largest matching of Ĥ, there is no F ∈ E(H) with F∩M = ∅
and |F | = 2.

For the second part, note that since M is a largest matching of Ĥ, the force edges ensure
that P(H) ⊆ M . Hence, if F ∈ E(H) corresponds to a stripe, then F ⊆ P(H) ⊆ M , and thus
F ∈ E(H).

For the third part, it suffices to observe that for any h ∈ V(H), there are distinct F, F ′ ∈ E(H)
with h ∈ F ∩ F ′. This is indeed true, because F ′′ ∈ E(H) \ E(H) if and only if there is a h ∈ F ′′
such that h 6∈ V(H). Then we note that for any h ∈ V (H), there are distinct F, F ′ ∈ E(H) with
h ∈ F ∩ F ′ by the definition of a strip-structure.

We now prove two interesting consequences of Definition 9.15.

Lemma 9.17 γ(G) ≤ k if and only if γ(G) ≤ k.

Proof: Let M = M(Ĥ). Suppose that γ(G) ≤ k. Let D denote a dominating set of G of size at
most k. We construct a dominating set D′ of G of size at most |D|. Consider each v ∈ D in turn.
Suppose that v ∈ η(F ) for some F ∈ E(H). Then add v to D′. Suppose that v ∈ η(F ) for some

1In the conference version of this paper, we relied on the kernel of Fernau [36]. Using the ideas from the kernel
by Xiao et al. [81], we end up with a slightly smaller bound on the size of the kernel, as well as a slightly easier
description.
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F ∈ E(H)\E(H). If F ∩V(H) = ∅, then |F | = 1; otherwise, by Proposition 9.16, F ∩M 6= ∅, which
using the fact that M ⊆ V(H) would contradict the assumption that F ∩ V(H) = ∅. However,
if |F | = 1, then F corresponds to a stripe, and by Proposition 9.16, F ∈ E(H), a contradiction.
It follows that F ∩ V(H) 6= ∅. Since F would be in E(H) if F ⊆ V(H), |F | = 2. Hence, by
Proposition 9.16, F ∩M 6= ∅. Let F = {h, h′}, and assume without loss of generality that h ∈M .
Add v′ to D′, where v′ is any vertex of η(F ′, h) and F ′ satisfies F ′ ∈ E(H) and h ∈ F ′. Indeed,
v only dominates vertices in η(h) ∪ η(h′) ∪ η(F ). However, h′ 6∈ V(H), and thus, by construction,
F ′′ 6∈ E(H) for each F ′′ ∈ E(H) for which h′ ∈ F ′′. Hence, (η(h′) ∪ η(F )) ∩ V (G) = ∅. Since
η(h) is a clique, v′ dominates η(h), and thus the resulting set D′ is indeed a dominating set of G.
Therefore, γ(G) ≤ k.

Suppose that γ(G) ≤ k. Let D denote a dominating set of G of size at most k. We claim
that D is also a dominating set of G. To this end, it suffices to prove that any w ∈ η(F ) for any
F ∈ E(H)\E(H) has a neighbor in D. First, observe that the force edges ensure that P(H) ⊆M .
Hence, F does not correspond to a stripe; otherwise, since F ⊆ P(H) ⊆M ⊆ V(H), F ∈ E(H), a
contradiction. It follows that F corresponds to a spot. Second, observe that by Proposition 9.16,
M ∩ F 6= ∅. Let h ∈ M ∩ F . By assumption, there is an h′ ∈ F \ V(H). Since h′ 6∈ V(H), it

follows from the construction of V(H) that at least 2k + 1 neighbors of h in Ĥ are in V(H). Let
N denote this set of neighbors of h, and let F denote the set of F ∈ E(H) with F ⊆ N ∪ {h}.
Call h′ ∈ N marked if D ∩ η(h′) 6= ∅ or if η(F ′) ∩ D 6= ∅ for some F ′ ∈ F with h′ ∈ F ′. Since
|F ′| ≤ 2 for each F ′ ∈ E(H), at most 2|D| ≤ 2k neighbors in N can be marked, and in particular,
there is a h′ ∈ N that is unmarked. Consider any F ′ ∈ F with h′ ∈ F ′; note that F ′ is indeed
well-defined. Since h′ is unmarked, D ∩ η(h′) 6= ∅ and η(F ′) ∩ D 6= ∅. Hence, h ∈ F ′ and the
vertices of η(F ′) are dominated by a vertex of η(h); that is, η(h) ∩D 6= ∅. Since F corresponds
to a spot, η(F ) = η(F, h) ⊆ η(h). As η(h) is a clique, η(F ) is dominated by D. Therefore, D is a
dominating set of G.

Lemma 9.18 Let M = M(Ĥ). If γ(G) ≤ k, then |V(H)| ≤ |V(H)| ≤ (2k + 2)|M | ≤ 8k(k + 1),
|{F | F ∈ E(H), h ∈ F}| ≤ |V(H)| ≤ 8k(k + 1) for any h ∈ M , and |{F | F ∈ E(H)}| ≤
(|M |+ 1) |V(H)| ≤ 8k(4k + 1)(k + 1).

Proof: Since γ(G) ≤ k, it follows from Corollary 9.14 that |M | ≤ 2k, and thus |M | ≤ 4k. For

each v ∈M , mark min{2k + 1, |NĤ(v)|} neighbors of v in Ĥ that are in V(H). Let B denote the

set used in the construction of V(H). Then at most (2k + 1) |M | vertices of B are marked, and
since B is inclusion-wise minimal, |B| ≤ (2k + 1) |M |. Hence, |V(H)| ≤ (2k + 2)|M | ≤ 8k(k + 1).

The bound on |{F | F ∈ E(H), h ∈ F}| for each h ∈ M is immediate from the definition of
E(H).

By Proposition 9.16, F ∩M 6= ∅ for every F ∈ E(H) with |F | = 2. The bound on |{F | F ∈
E(H)}| is immediate from the bound on |{F | F ∈ E(H), h ∈ F}| for each h ∈M .

Note that this lemma does not yet bound |E(H)|; this requires a more careful argument that we
make in the next subsection when we present the final kernel.

9.3 The Kernel

We are now ready to present the kernel.

Theorem 9.19 Let G be a connected claw-free graph with n vertices and m edges, and let k be
an integer. Then there is an algorithm that runs in O(n5) time and that returns a graph G′ with
O(k3) vertices and an integer k′ such that γ(G) ≤ k if and only if γ(G′) ≤ k′.

Proof: We first preprocess the graph as in Theorem 7.23. In O(n5) time, this returns a graph
that has no twins and no proper W-joins, which we call G as well by abusing notation.

We test whether γ(G) ≤ 3 using the algorithm of Lemma 7.6 in O(n4) time. If so, then the
algorithm actually determines γ(G); hence, we return a graph G′ that consists of a single vertex
and an integer k′ that is 1 if γ(G) ≤ k and that is 0 otherwise. This is clearly correct. Now we
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may assume that γ(G) > 3. If α(G) ≤ 3, then γ(G) ≤ 3 by Proposition 7.2, a contradiction.
Hence, α(G) > 3.

We then apply the algorithm of Theorem 6.7 in O(n2m3/2) time. If it outputs that G is a
proper circular-arc graph, then we can compute γ(G) in linear time by Theorem 7.8. We return
a graph G′ that consists of a single vertex and an integer k′ that is 1 if γ(G) ≤ k and that is 0
otherwise. If it outputs that G is a thickening of an XX-trigraph, then we can compute γ(G) in
O(n4) time by Lemma 7.9. Again, we return a graph G′ that consists of a single vertex and an
integer k′ that is 1 if γ(G) ≤ k and that is 0 otherwise. It remains that it outputs that G admits
a strip-structure (H, η) such that for each strip (J, Z) satisfies the condition that:

• (J, Z) is a trivial line graph strip, or

• (J, Z) is a stripe for which J is connected and

– |Z| = 1, α(J) ≤ 3, and V (J) \N [Z] 6= ∅,
– |Z| = 1, J is a proper circular-arc graph, and either J is a strong clique or α(J) > 3,

– |Z| = 2 and J is a proper interval graph,

– |Z| = 1, α(J) = 4, and V (J) \N [Z] 6= ∅, or

– |Z| = 2 and (J, Z) is a thickeningW of a member (J ′, Z ′) of Z2∪Z3∪Z4∪Z5. Moreover,
we know W, (J ′, Z ′), and the class that (J ′, Z ′) belongs to.

We now determine the set P(H) and the multigraph (with self-loops) Ĥ, which takes linear time.

Then we can determine M(Ĥ), V(H), E(H), G, H, and ζ. By Proposition 9.16, (H, ζ) is a purified
strip-structure of nullity zero for G. Moreover, since V(H) ⊆ V (H), E(H) ⊆ E(H), and ζ is
the restriction of η to E(H), it is immediate from Proposition 9.16 that each strip of (H, ζ) still
satisfies the above condition.

We provide a slight modification of H. For any F, F ′ ∈ E(H) with F = F ′ and |F | = |F ′| = 2
such that ζ(F ) and ζ(F ′) are a disjoint union of two cliques, remove F ′ from E(H) and add ζ(F ′)
to ζ(F ). This replacement is indeed correct, because both F and F ′ correspond to a thickening
of a stripe in Z3; this follows immediately from the definition of Z3. In fact, both stripes are
a thickening of a four-vertex path where the middle edge is a semi-edge (see also the proof of
Lemma 4.3). Now let F = {h, h′}. Observe that ζ(F, h) ⊆ ζ(h) and ζ(F ′, h) ⊆ ζ(h), and thus
ζ(F, h) is complete to ζ(F ′, h), because ζ(h) is a clique. The same observation holds mutatis
mutandis with respect to h′. Hence, ζ(F )∪ ζ(F ′) is a disjoint union of two cliques, and therefore,
the stripe resulting from the previous replacement is a thickening of a member of Z3. Moreover,
we know this thickening and the corresponding member of Z3. We perform the above replacement
operation iteratively. Since it takes linear time to determine which stripes are a disjoint union
of two cliques, the replacement operation can be performed in linear time in total. By abuse of
notation, we still use the notation E(H) and (H, ζ) for the resulting set and strip-structure; note
that the graph G has remained unchanged.

To obtain the kernel, we distinguish between stripes (J, Z) of (H, ζ) with |Z| = 1 and those with
|Z| = 2. Let k′′ = 0. If |Z| = 1, then we only consider those stripes for which V (J) \N [Z] 6= ∅.
Then either α(J) ≤ 4, or J is a proper circular-arc graph and either J is a strong clique or
α(J) > 3. Hence, using a straightforward extension of Lemma 7.13 or Lemma 7.11 respectively,
we can compute γ(J \ (Q ∪ R) | N [R]) in O(n5) time for any disjoint Q,R ⊆ Z. Then we apply
the reduction of Lemma 9.6 to J , which takes linear time and reduces the size of the stripe to
have at most four vertices. Add the value k′ computed by the algorithm of Lemma 9.6 to k′′. The
fact that this reduction is safe follows from Lemma 9.1.

If |Z| = 2, then either J is a proper interval graph or (J, Z) is a thickening W of a member
(J ′, Z ′) of Z2 ∪ Z3 ∪ Z4 ∪ Z5. Suppose that J is a proper interval graph. Then we compute γ(J)
in linear time using Theorem 7.8. If γ(J) > k, then we know that γ(G) > k; hence, we return a
graph G′ that consists of a single vertex and an integer k′ = 0. Otherwise, we apply the reduction
of Lemma 9.7 to J , which takes linear time and reduces the size of the stripe to have at most
18k + 2 vertices. The fact that this reduction is safe follows from Lemma 9.1.
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Suppose that (J, Z) is a thickeningW of a member (J ′, Z ′) of Z2∪Z3∪Z4∪Z5. By assumption,
we knowW, (J ′, Z ′), and the class that (J ′, Z ′) belongs to. Lemma 9.3 and the fact that G does not
admit twins imply that (J, Z) is semi-thickened. We then apply Lemma 9.4 to ensure that (J, Z)
is reduced. Note that the algorithm of Lemma 9.4 runs in linear time and preserves that (J, Z) is
semi-thickened. Depending on the class that (J ′, Z ′) belongs to, we then apply Lemma 9.8, 9.9,
9.10, or 9.11. This takes linear time and reduces the size of the stripe to have at most 26 vertices.
The fact that these reductions are safe follows from Lemma 9.1.

Let G′ be the resulting graph. By Lemma 9.1, we know that γ(G) ≤ k if and only if γ(G′) ≤
k − k′′, so let k′ = k − k′′. It thus suffices to bound the number of vertices in G′. To this end, we
distinguish several types of strips (J, Z) of (H, ζ):

Case 1: (J, Z) is a stripe with |Z| = 1 and V (J) \N [Z] = ∅.
Suppose that for some h ∈ V(H) there are F, F ′ ∈ E(H) with F = F ′ = {h} such that F, F ′

correspond to a stripe of this type. Then any pair of vertices in ζ(F ) ∪ ζ(F ′) forms twins in G, a
contradiction. Hence, each such stripe has size at most 2 and there at most |V(H)| = O(k2) such
stripes in total by Lemma 9.18. Hence, O(k2) vertices exist in such stripes.

Case 2: (J, Z) is a stripe with |Z| = 2 and V (J) \N [Z] = ∅.
Observe that any such stripe is a disjoint union of two cliques. By the above modification of
(H, ζ), there is at most one F ∈ E(H) that corresponds to such a stripe with F = {h, h′} for each
h, h′ ∈ V (H). By Lemma 9.18, there are O(k3) such stripes in total. As observed previously, any
such stripe is a thickening of a member of Z3, and therefore, these stripes are reduced to have size
at most 23 by Lemma 9.9. Hence, O(k3) vertices remain in such stripes.

Case 3: (J, Z) is a stripe with V (J) \N [Z] 6= ∅.
Let D be a dominating set of G. Then D contains at least one vertex of V (J)\Z by the definition
of a strip-structure. Hence, if γ(G) ≤ k, then there can be at most k such stripes. Moreover, after
the above reduction, each such stripe has only O(k) vertices remaining. Hence, O(k2) vertices
remain in such stripes.

Case 4: (J, Z) is a spot.
Suppose that for some h, h′ ∈ V(H) there are F, F ′ ∈ E(H) with F = F ′ = {h, h′} such that F, F ′

correspond to a spot. Then the pair of vertices in ζ(F )∪ ζ(F ′) forms twins in G, a contradiction.
Hence, there O(k3) spots by Lemma 9.18. Hence, O(k3) vertices exist in spots.

These four cases are exhaustive, and imply that G′ has O(k3) vertices.

Corollary 9.20 Dominating Set on claw-free graphs has a kernel with O(k3) vertices.

Part III – Hardness Results and Lower Bounds

10 Hardness Results and Lower Bounds

In this section, we show that various generalizations and improvements of the parameterized and
kernelization algorithms in this paper are unlikely to exist. In particular, we show that:

• Dominating Set and Connected Dominating Set are W[1]-hard on K1,4-free graphs;

• Weighted Dominating Set and Weighted Connected Dominating Set are W[2]-
hard on co-bipartite graphs, and thus also on claw-free graphs;

• Connected Dominating Set on line graphs (and thus also on claw-free graphs) has no
polynomial kernel, unless the polynomial hierarchy collapses to the third level, contrasting
the polynomial kernel we saw for Dominating Set;

• Dominating Set and Connected Dominating Set on line graphs (and thus also on claw-
free graphs) have no subexponential-time algorithm, unless the Exponential Time Hypothesis
fails.
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We prove each of these results in turn.
Recall that to prove the hardness of a parameterized problem P , one can give a parameterized

reduction from a W[·]-hard problem P ′ to P so that every instance I ′ of P ′ with parameter k′

is mapped to an instance I of P with parameter k ≤ g(k′) for some computable function g. We
demand that I can be computed in f(k′) · |I ′|O(1) time for some computable function f , and that
I is a “yes”-instance if and only if I ′ is a “yes”-instance. If f and g are polynomials, then the
reduction is called a polynomial parameter transformation.

10.1 Hardness on K1,4-free Graphs

We show that Dominating Set is W[1]-hard when restricted to K1,4-free graphs. Our hardness
result is obtained by the so-called Multicolored Clique reduction technique, introduced and
explained in [35]. The problem from which we reduce in this technique is defined as follows:

Multicolored Clique

Input: A graph H and a vertex coloring c : V (H)→ {1, 2, . . . , k} of H.
Parameter: k
Question: Does (H, c) have a multicolored clique (a set K ⊆ V (H) such that {u, v} ∈ E(H)

and c(u) 6= c(v) for all distinct u, v ∈ K) of size k?

Theorem 10.1 ([35]) Multicolored Clique is W[1]-complete.

The general idea in the Multicolored Clique reduction technique is to organize gadgets
into three categories: vertex selection, edge selection, and validation. The role of the first two is
to encode the selection of k vertices and

(
k
2

)
edges that together form the k-multicolored clique in

the instance of the Multicolored Clique problem. The task of the validation gadget is, as its
name suggests, to validate the selection of vertices and edges. In other words, it makes sure that
the edges selected are in fact incident to the selected vertices.

We now use this technique to prove that Dominating Set on K1,4-free graphs is W[1]-hard.

Theorem 10.2 Dominating Set on K1,4-free graphs is W[1]-hard.

Proof: Consider an instance (H, c, k) of Multicolored Clique. We construct an instance
(G, k′) of Dominating Set as follows: The graph G consists of three big cliques, each one
corresponding to a different gadget (i.e. vertex selection, edge selection, and validation), and some
additional dummy vertices. The vertex selection clique is formed by the vertices A := {av : v ∈
V (H)}, the edge selection clique is formed by B := {b{u,v} : {u, v} ∈ E(H)}, and the validation
clique by C := {c(u,v), c(v,u) : {u, v} ∈ E(H)}. Note that there are two “directed” validation
vertices, c(u,v) and c(v,u), for each edge {u, v} ∈ E(H). The dummy vertices will be denoted by
X := {xi : 1 ≤ i ≤ k} and Y := {y{i,j} : 1 ≤ i < j ≤ k}. These are all the vertices of G,
i.e. V (G) := A ∪B ∪ C ∪X ∪ Y .

We next describe the edges connecting the vertices of G. The first three sets of edges connect
each pair of vertices in the same clique:

• E1 :=
{
{au, av} : au, av ∈ A and u 6= v

}
.

• E2 :=
{
{b{u,v}, b{u′,v′}} : b{u,v}, b{u′,v′} ∈ B and {u, v} 6= {u′, v′}

}
.

• E3 :=
{
{c(u,v), c(u′,v′)} : c(u,v), c(u′,v′) ∈ C and (u, v) 6= (u′, v′)

}
.

The next two sets of edges connect the dummy vertices to vertices in the selection gadgets. These
edges will ensure that exactly k vertices will be chosen from the vertex selection gadget, one for
each color, and exactly

(
k
2

)
vertices will be chosen from the edge selection gadget, one for each

pair of colors.

• E4 :=
{
{xi, av} : xi ∈ X, av ∈ A, and c(v) = i

}
.
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Figure 9: A graphical example of the construction used in the reduction. Here vertices u and v
are adjacent vertices in H from different color classes, i.e. c(u) 6= c(v). Note that c(u,v) and c(v,u)
are not adjacent to b{u,v}, but are adjacent to all other vertices of B.

• E5 :=
{
{y{i,j}, b{u,v}} : y{i,j} ∈ Y, b{u,v} ∈ B, and {c(u), c(v)} = {i, j}

}
.

Finally, we add the two sets of edges which connect vertices in the selection gadgets to vertices in
the validation gadget:

• E6 :=
{
{av, c(v,u)} : av ∈ A and c(v,u) ∈ C

}
.

• E7 :=
{
{b{u,v}, c(u′,v′)} : b{u,v} ∈ B, c(u′,v′) ∈ C, {c(u), c(v)} = {c(u′), c(v′)}, and {u, v} 6=

{u′, v′}
}

.

Setting E(G) :=
⋃

1≤i≤7Ei, and k′ := k +
(
k
2

)
, completes the description of our construction.

See Fig. 9 below for a illustrative example. Since the size of G is polynomial in the size of H and
k and k′ is polynomial in k, this reduction is a parameterized reduction. Furthermore, observe
that G is indeed K1,4-free since the neighborhood of each vertex can be partitioned into at most
three cliques. Thus, to complete our argument, we show that (H, c) has a multicolored clique of
size k if and only if G has dominating of size k′.

Suppose that (H, c) has a multicolored clique K of size k. Then for any i ∈ {1, . . . , k}, there is
some v ∈ K with c(v) = i, and for any distinct u, v ∈ K, we have {u, v} ∈ E(H). We argue that
D := {av : v ∈ K} ∪ {b{u,v} : u, v ∈ K,u 6= v} is a dominating set in G. Indeed, all vertices of A
and B are dominated by some av ∈ D and some b{u,v} ∈ D. For any i ∈ {1, . . . , k}, the dummy
vertex xi is dominated by av ∈ D, where v ∈ K and c(v) = i, and for any distinct i, j ∈ {1, . . . , k},
the vertex y{i,j} is dominated by a{u,v} ∈ D, where u, v ∈ K and {c(u), c(v)} = {i, j}. Finally,
take any vertex c(u,v) ∈ C. If u ∈ K, then au ∈ D dominates c(u,v), and otherwise, the vertex
b{u′,v′} ∈ D with {c(u′), c(v′)} = {c(u), c(v)} dominates c(u,v). Hence, G has a dominating set of
size k′.

Conversely, suppose that G has a dominating set D of size k′. Then it is not difficult to see that
due to the dummy vertices, for each i ∈ {1, . . . , k}, there is exactly one vertex av ∈ D with c(v) = i,
and for each distinct i, j ∈ {1, . . . , k}, exactly one vertex b{u,v} ∈ D with {c(u), c(v)} = {i, j}.
Furthermore, there are no other vertices in D. Let K := {u : au ∈ D}. Observe that by the above
arguments, K has exactly one vertex for each color i ∈ {1, . . . , k}, and so it remains to argue
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that K forms a clique in H. For this, it is enough to show that for any pair of distinct vertices
u, v ∈ K, we must have b{u,v} ∈ D. Suppose that this is not the case, and let u and v denote two
vertices in K with b{u,v} /∈ D. Let b{u′,v′} be the vertex in D such that {c(u′), c(v′)} = {c(u), c(v)}.
Then {u′, v′} 6= {u, v}, so, without loss of generality,u′ 6= u and u′ 6= v. But then, by construction,
the validation vertex c(u′,v′) is not dominated by D. Thus, we get that b{u,v} ∈ D for any pair
of distinct vertices u, v ∈ K, which implies that {u, v} ∈ E(H) for any pair of distinct vertices
u, v ∈ K. Hence, (H, c) has a multicolored clique of size k.

Theorem 10.3 Connected Dominating Set on K1,4-free graphs is W[1]-hard.

Proof: We slightly modify the construction of Theorem 10.2. Consider again an instance (H, c, k)
of Multicolored Clique, and construct the instance (G, k′) of Dominating Set as in Theo-
rem 10.2. Recall that G was K1,4-free, as the neighborhood of each vertex in G is a union of at
most three cliques. Let A,B be as in that construction. Now add two new vertices v and w, make
v complete to A and B, and make w adjacent to v. Call the resulting graph G′. Observe that the
neighborhood of each vertex in G′ is still a union of at most three cliques, and thus G′ is K1,4-free.
Moreover, any (connected) dominating set of G′ must contain v. Then the same arguments as in
Theorem 10.2 can be used to show that G′ has a connected dominating set of size k′ + 1 if and
only if H has a multicolored clique of size k.

10.2 Hardness of the Weighted Case on Claw-Free Graphs

We define the weighted version of Dominating Set as follows:

Weighted Dominating Set
Input: A graph G′, a weight function w′ : V (G)→ N, an integer k′, and an integer K ′.
Parameter: k′ +K ′

Question: Does G′ have a dominating set D′ ⊆ V (G′) of size at most k′ such that w(D′) =∑
d′∈D′ w(d′) ≤ K ′ ?

We can similarly define Weighted Connected Dominating Set, by insisting that G′[D′]
is connected. We show that both problems are unlikely to be fixed-parameter tractable on co-
bipartite graphs, and thus also on claw-free graphs.

Theorem 10.4 Weighted Dominating Set and Weighted Connected Dominating Set
on co-bipartite graphs are W[2]-hard.

Proof: We give a polynomial parameter transformation from Dominating Set on general graphs,
which is known to be W[2]-hard [26]. Let (G, k) be an instance of Dominating Set. Consider
two copies V1 and V2 of V (G), and define the graph G′ with vertex set V1 ∪ V2 and edges such
that V1 and V2 each form a clique, and v ∈ V1 is adjacent to u ∈ V2 if and only if u ∈ NG[v].
Observe that G′ is indeed co-bipartite. Define a weight function w′ such that w′(v) = 1 for each
v ∈ V1 and w′(v) = k + 1 for each v ∈ V2. Finally, define K ′ = k and k′ = k. This completes the
instance (G′, w′, k′,K ′) of Weighted Dominating Set. It suffices to observe that (G, k) is a
“yes”-instance if and only if (G′, w′, k′,K ′) is.

Observe that the same reduction also yields the transformation for Weighted Connected
Dominating Set.

10.3 Polynomial Kernel for Connected Dominating Set on Claw-Free
Graphs Unlikely

In contrast to Dominating Set, which has a polynomial kernel on claw-free graphs, Connected
Dominating Set is unlikely to have a polynomial kernel on claw-free graphs. In fact, we show
an even stronger result.

We need to define the following problems:
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Connected Vertex Cover
Input: A graph G and an integer k.
Parameter: k
Question: Does G have a connected vertex cover (a set C ⊆ V (G) such that G[C] is

connected, and u ∈ C or v ∈ C for each edge {u, v} ∈ E(G)) of size at most k?

Connected Edge Dominating Set
Input: A graph G and an integer k.
Parameter: k
Question: Does G have a connected edge dominating set (a set D ⊆ E(G) such that G[D]

= ({v | {u, v} ∈ D}, D) is connected and D contains an edge incident on u or v
for any edge {u, v} ∈ E(G)) of size at most k?

Theorem 10.5 Connected Dominating Set on line graphs has no polynomial kernel, unless
the polynomial hierarchy collapses to the third level.

Proof: We provide a polynomial parameter transformation from Connected Vertex Cover,
which is known to not have a polynomial kernel on general graphs unless the polynomial hierarchy
collapses to the third level [25].

As an intermediate problem, consider Connected Edge Dominating Set. To see a polyno-
mial parameter transformation from Connected Vertex Cover to Connected Edge Dom-
inating Set, we claim that G has a connected vertex cover of size at most k if and only if G has
a connected edge dominating set of size at most k− 1. Indeed, if C is a connected vertex cover of
G, then the edges of any spanning tree of G[C] form a connected edge dominating set of G of size
|C| − 1. Conversely, if D is a connected edge dominating set of G, then V (G[D]) is a connected
vertex cover of G of size at most |D|+ 1.

The polynomial parameter transformation from Connected Edge Dominating Set to Con-
nected Dominating Set on line graphs is straightforward, asG has a connected edge dominating
set of size at most k if and only if L(G) has a connected dominating set of size at most k.

Note that the same proof also implies that Connected Dominating Set is NP-hard on line
graphs, even on line graphs of planar graphs of maximum degree four, as Connected Vertex
Cover is NP-hard already on planar graphs of maximum degree four [40]. We remark here
that NP-hardness of Connected Dominating Set on line graphs was independently proven by
Munaro [69, Lemma 45] and that Connected Vertex Cover is also NP-hard on line graphs [69,
Lemma 36].

10.4 Subexponential-Time Algorithms on Claw-Free Graphs Unlikely

We now show that it will be hard to substantially improve our parameterized algorithms on claw-
free graphs under the so-called Exponential Time Hypothesis [50, 37]. We require it in the following
formulation: no algorithm can decide instances of 3-SAT in 2o(m) time, where m is the number
of clauses of the instance.

Theorem 10.6 Unless the Exponential Time Hypothesis fails, no algorithm can decide Edge
Dominating Set instances (G, k) in 2o(k)poly(|G|) time, even if G is bipartite.

Proof: It suffices to observe that the NP-hardness reduction for Edge Dominating Set on
bipartite graphs by Yannakakis and Gavril [82, Theorem 2] implies a transformation from an
instance of 3-SAT with m clauses to an instance of Edge Dominating Set where G is bipartite
and k = O(m).

Corollary 10.7 Unless the Exponential Time Hypothesis fails, no algorithm can decide Dom-
inating Set instances (G, k) in 2o(k)poly(|G|) time, even if G is the line graph of a bipartite
graph.
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Theorem 10.8 Unless the Exponential Time Hypothesis fails, no algorithm can decide Con-
nected Edge Dominating Set instances (G, k) in 2o(k)poly(|G|) time.

Proof: We observe that the NP-hardness reduction for Vertex Cover by Garey and Johnson [41,
Theorem 3.3] implies a transformation from an instance of 3-SAT with m clauses to an instance
(G, k) of Vertex Cover where k = O(m). Let G′ be the graph obtained from G by adding a new
vertex v that is adjacent to all vertices of G, and then adding a new vertex that is only adjacent
to v. Then (G, k) is a “yes”-instance of Vertex Cover if and only if (G′, k + 1) is a “yes”-
instance of Connected Vertex Cover. It remains to observe that the polynomial parameter
transformation from Connected Vertex Cover to Connected Edge Dominating Set of
Theorem 10.5 is in fact linear. Hence, we obtain a transformation from an instance of 3-SAT
with m clauses to an instance of Connected Edge Dominating Set with k = O(m).

Corollary 10.9 Unless the Exponential Time Hypothesis fails, no algorithm can decide Con-
nected Dominating Set instances (G, k) in 2o(k)poly(|G|) time, even if G is a line graph.
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étoile”, Discrete Mathematics 29:1 (1980), pp. 53–76.

[78] Stauffer, G., personal communication.

[79] Tarjan, R.E., “Efficiency of a Good But Not Linear Set Union Algorithm”, Journal of the
ACM, 22:2 (April 1975), pp. 215–225.

[80] Williams, V.V., “Multiplying matrices faster than Coppersmith-Winograd” in Karloff, H.J.
and Pitassi, T. (eds.) Proc. STOC 2012, ACM, 2012, pp. 887–898.

[81] Xiao, M., Kloks, T., Poon, S., “New parameterized algorithms for the edge dominating set
problem”, Theoretical Computer Science 511 (2013), pp. 147–158.

[82] Yannakakis, M., Gavril, F., “Edge Dominating Sets in Graphs”, SIAM Journal on Applied
Mathematics 38:3 (1980), pp. 364–372.

88

http://arxiv.org/abs/1501.05775

	1 Introduction
	2 Definitions
	2.1 Trigraphs and Basic Definitions
	2.2 Twins and Joins
	2.3 Strips and Stripes
	2.4 Special Trigraphs
	2.5 Special Stripes

	3 Algorithms to Find Twins and Joins
	3.1 Finding 0-joins, Proper W-joins, and Twins
	3.2 Finding 1-joins
	3.3 Finding 2-joins

	4 Recognizing Thickenings of Z2, Z3, Z4, and Z5
	4.1 Recognizing Thickenings of Z2
	4.2 Recognizing Thickenings of Z3
	4.3 Recognizing Thickenings of Z4
	4.4 Recognizing Thickenings of Z5

	5 Towards a Modified Decomposition Theorem for Claw-Free Graphs
	5.1 Twins and Proper W-Joins
	5.2 Circular and Linear Interval Trigraphs
	5.3 The Union of Two Strong Cliques
	5.4 The Union of Three Strong Cliques
	5.5 Almost-Unbreakable Stripes and Indecomposable Members
	5.6 Stability Numbers
	5.7 Supporting Lemma

	6 An Algorithmic Decomposition for Claw-Free Graphs
	6.1 Finding a Strip-Structure
	6.2 Decomposing Line Graphs
	6.3 Auxiliary Algorithm
	6.4 Main Theorems

	7 Fixed-Parameter Algorithm for Dominating Set
	7.1 Removing Twins and W-joins
	7.2 Dominating Set in Basic Classes
	7.3 Stitching Dominating Sets

	8 Fixed-Parameter Algorithm for Connected Dominating Set
	8.1 Removing Twins and Proper W-joins
	8.2 Connected Dominating Set in Basic Classes
	8.3 Stitching Connected Dominating Sets

	9 Polynomial Kernel for Dominating Set
	9.1 Reducing Stripes
	9.1.1 |Z|=1
	9.1.2 |Z|=2

	9.2 Reducing the Number of Strips
	9.3 The Kernel

	10 Hardness Results and Lower Bounds
	10.1 Hardness on K1,4-free Graphs
	10.2 Hardness of the Weighted Case on Claw-Free Graphs
	10.3 Polynomial Kernel for Connected Dominating Set on Claw-Free Graphs Unlikely
	10.4 Subexponential-Time Algorithms on Claw-Free Graphs Unlikely


