
ANCHOR: logically-centralized security for Software-Defined Networks ∗

This is a subtitle†

DIEGO KREUTZ, SnT, University of Luxembourg, Luxembourg

JIANGSHAN YU, SnT, University of Luxembourg, Luxembourg

FERNANDO M. V. RAMOS, LaSIGE/FCUL, University of Lisboa, Portugal

PAULO ESTEVES-VERISSIMO, SnT, University of Luxembourg, Luxembourg

Software-defined networking (SDN) decouples the control and data planes of traditional networks, logically
centralizing the functional properties of the network in the SDN controller. While this centralization brought advantages
such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against
different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific
works concerning non-functional properties like ‘security’ or ‘dependability’. Though addressing the latter in an ad-hoc,
piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems.

We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic
approach. We further advocate, for its materialization, the re-iteration of the successful formula behind SDN –
‘logical centralization’. As a general concept, we propose anchor, a subsystem architecture that promotes the logical
centralization of non-functional properties. To show the effectiveness of the concept, we focus on ‘security’ in this
paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate
security mechanisms, in a global and consistent manner. anchor sets to provide essential security mechanisms such
as strong entropy, resilient pseudo-random generators, secure device registration and association, among other crucial
services.

We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing
us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding
devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property
enforcement mechanisms; and finally, better foster the resilience of the architecture itself. We discuss design and
implementation aspects, and we prove and evaluate our algorithms and mechanisms.

CCS Concepts: • Security and privacy → Systems security; • Networks → Network security;

Additional Key Words and Phrases: Software-defined networking, SDN, non-functional properties, control plane,
security, perfect forward secrecy, post-compromise security, post-compromise recovery, post-quantum secure

∗This is a titlenote
†Subtitle note

This work is partially supported by the Fonds National de la Recherche Luxembourg (FNR) through PEARL grant
FNR/P14/8149128.
Authors’ addresses: D. Kreutz, J. Yu, P. Veríssimo, SnT, University of Luxembourg, Campus Belval, 6, avenue de la Fonte,
L-4364 Esch-sur-Alzette; email: {name.surname}@uni.lu; F. M. V. Ramos, LaSIGE/FCUL, University of Lisboa, Campo
Grande, Lisboa, 1749-016; email: fvramos@ciencias.ulisboa.pt .
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Kreutz, D. et al

ACM Reference Format:
Diego Kreutz, Jiangshan Yu, Fernando M. V. Ramos, and Paulo Esteves-Verissimo. 2017. ANCHOR: logically-
centralized security for Software-Defined Networks . 1, 1, Article 1 (November 2017), 38 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION

Software-defined networking (SDN) has moved the control function out of the forwarding devices, leading to
a logical centralization of functional properties. This decoupling between control and data plane leads to
higher flexibility and programmability of network control, enabling fast innovation. Network applications
are now deployed on a software-based logically centralized controller, providing the agility of software
evolution rather than hardware one. Moreover, as the forwarding devices are now directly controlled by a
centralized entity, it is straightforward to provide a global network view to network applications. In spite
of all these benefits, this decoupling, associated with a common southbound API (e.g., OpenFlow), has
removed an important natural protection of traditional networks. Namely, the heterogeneity of different
solutions, the diversity of configuration protocols and operations, among others. For instance, an attack
on traditional forwarding devices would need to compromise different protocol interfaces. Hence, from a
security perspective, SDN introduces new attack vectors and radically changes the threat surface [Dacier
et al. 2017; Kreutz et al. 2013; Scott-Hayward et al. 2016].

So far, the SDN literature has been mostly concerned with functional properties, such as improved
routing and traffic engineering [Alvizu et al. 2017; Jain et al. 2013]. However, gaps in the enforcement of
non-functional properties are critical to the deployment of SDN, especially at infrastructure/enterprise
scale. For instance: insecure control plane associations or communications, network information disclosure,
spoofing attacks, and hijacking of devices, can easily compromise the network operation; performance crises
can escalate to globally affect QoS; unavailability and lack or reliability of controllers, forwarding devices,
or clock synchronization parameters, can considerably degrade network operation [Akhunzada et al. 2015;
Kloti et al. 2013; Scott-Hayward et al. 2016].

Addressing these problems in an ad-hoc, piecemeal way, may work, but will inevitably lead to efficiency and
effectiveness problems. Although several specific works concerning non-functional properties have recently
seen the light e.g., in dependability [Berde et al. 2014; Botelho et al. 2016; Katta et al. 2015; Kreutz et al.
2015; Ros and Ruiz 2014] or security [Porras et al. 2012; Scott-Hayward et al. 2016; Shin et al. 2013, 2014],
enforcement of non-functional properties as a pillar of SDN robustness calls, in our opinion, for a systemic
approach. As such, in this paper we claim for a re-iteration of the successful formula behind SDN – ‘logical
centralization’ – for its materialization.

In fact, the problematic scenarios exemplified above can be best avoided by the logical centralization of
the system-wide enforcement of non-functional properties, increasing the chances that the whole architecture
inherits them in a more balanced and coherent way. The steps to achieve such goal are to: (a) select the
crucial properties to enforce (dependability, security, quality-of-service, etc.); (b) identify the current gaps
that stand in the way of achieving such properties in SDNs; (c) design a logically-centralized subsystem
architecture and middleware, with hooks to the main SDN architectural components, in a way that they can
Manuscript submitted to ACM

https://doi.org/0000001.0000001

ANCHOR: logically-centralized security for Software-Defined Networks 3

inherit the desired properties; (d) populate the middleware with the appropriate mechanisms and protocols
to enforce the desired properties/predicates, across controllers and devices, in a global and consistent manner.

Generically speaking, it is worth emphasizing that centralization has been proposed as a means to address
different problems of current networks. For instance, the use of centralized cryptography schemes and
centralized sources of trust to authenticate and authorize known entities has been pointed out as a solution
for improving the security of Ethernet networks [Kiravuo et al. 2013]. Similarly, recent research has suggested
network security as a service as a means to provide the required security of enterprise networks [Scott-
Hayward et al. 2016]. However, centralization has its drawbacks, so let us explain why centralization of
non-functional property enforcement brings important gains to software-defined networking. We claim,
and justify ahead in the paper, that it allows to define and enforce global policies for those properties,
reduce the complexity of networking devices, ensure higher levels of robustness for critical services, foster
interoperability of the non-functional enforcement mechanisms, and better promote the resilience of the
architecture itself.

The reader will note that this design philosophy concerns non-functional properties in abstract. To
prove our point, in this paper, we have chosen security as our use case and identified at least four gaps
that stand in the way of achieving the former in current SDN systems: (i) security-performance gap; (ii)
complexity-robustness gap; (iii) global security policies gap; and (iv) resilient roots-of-trust gap. The security-
performance gap comes from the frequent conflict between mechanisms enforcing those two properties. The
complexity-robustness gap represents the conflict between the current complexity of security and crypto
implementations, and the negative impact this has on robustness and hence correctness. The lack of global
security policies leads to ad-hoc and discretionary solutions creating weak spots in architectures. The lack of
a resilient root-of-trust burdens controllers and devices with trust enforcement mechanisms that are ad-hoc,
have limited reach and are often sub-optimal. We further elaborate in the paper on the reasons behind
these gaps, their negative effects in SDN architectures, and how they can possibly be mitigated through a
logically-centralized security enforcement architecture.

To achieve our goals, we propose anchor, a subsystem architecture that does not modify the essence of
the current SDN architecture with its payload controllers and devices, but rather stands aside, ‘anchors’
(logically-centralizes) crucial functionality and properties, and ‘hooks’ to the latter components, in order
to secure the desired properties. In this particular case study, the architecture middleware is populated
with specific functionality whose main aim is to ensure the ‘security’ of control plane associations and of
communication amongst controllers and devices.

In addition, in this paper we give first steps in addressing a long-standing problem, the fact that a single
root-of trust — like anchor, but also like any other standard trusted-third-party, like e.g., CAs in X.509
PKI or the KDC in Kerberos — is a single point failure (SPoF). There is nothing wrong with SPoFs, as long
as they do not fail often, and/or the consequences of failure can be mitigated, which is unfortunately not
the common case. As such, we start by carefully promoting reliability in the design of anchor, endowing it
with robust functions in the different modules, in order to reduce the probability of failure/compromise.
Moreover, the proposed architecture only requires symmetric key cryptography. This not only ensures a very
high performance, but also makes the system secure against attacks by a quantum computer. Thus, the
system is also post-quantum secure [Bernstein 2009]. Second, we mitigate the consequences of successful
attacks, by protecting past, pre-compromise communication, and ensuring the quasi-automatic recovery of

Manuscript submitted to ACM

4 Kreutz, D. et al

anchor after detection, even in the face of total control by an adversary, achieving respectively, perfect
forward secrecy (PFS) and post-compromise security (PCS). Third, our architecture promotes resilience, or
the continued prevention of failure/compromise by automatic means such as fault and intrusion tolerance.
Though out of the scope of this paper, this avenue is part of our plans for future work, and the door is open
by our design, since it definitely plugs the SPoF problem, as is well known from the literature, which we
debate in Section 7.

To summarize, the key contributions of our work include the following:

(1) The concept of logical centralization of SDN non-functional properties provision.
(2) The blueprint of an architectural framework based on middleware composed of a central ‘anchor’,

and local ‘hooks’ in controllers and devices, hosting whatever functionality needed to enforce these
properties.

(3) A gap analysis concerning barriers in the achievement of non-functional properties in the security
domain, as a proof-of-concept case study.

(4) Definition, design and implementation of the mechanisms and algorithms to populate the middleware
in order to fill those gaps, and achieve a logically-centralized security architecture that is reliable
and highly efficient, post-quantum secure, and provides perfect forward secrecy and post-compromise
security.

(5) Evaluation of the architecture.

We show that, compared to the state-of-the-art in SDN security, our solution preserves at least the same
security functionality, but achieves higher levels of implementation robustness, by vulnerability reduction,
while providing high performance. Whilst we try to prove our point with security, our contribution is generic
enough to inspire further research concerning other non-functional properties (such as dependability or
quality-of-service). It is also worth emphasizing that the architectural concept that we propose in this
paper would require a greater effort to be deployed in traditional networks, due to the heterogeneity of the
infrastructure and its vertical integration. This will be made clear throughout the paper.

We have structured the paper as follows. Section 2 gives the rationale and presents the generic logically-
centralized architecture for the system-wide enforcement of non-functional properties, and explains its
benefits and limitations. In Section 3, we discuss the challenges and requirements brought by the current
gaps in security-related non-functional properties. Section 4 describes the logically-centralized security
architecture that we propose, along with its mechanisms and algorithms. Then, in Sections 5 and 6, we
discuss design and implementation aspects of the architecture, and present evaluation results. In Sections 7
and 8, we give a brief overview of related work, discuss some challenges and justify some design options of
our architecture. Finally, in Section 9, we conclude.

2 THE ANCHOR ARCHITECTURE

In this section we introduce anchor, a general architecture for logically-centralized enforcement of non-
functional properties, such as ‘security’, ‘dependability’, or ‘quality-of-service’ (Figure 1). The logical
centralization of the provision of non-functional properties allows us to: (1) define and enforce global policies
for those properties; (2) reduce the complexity of controllers and forwarding devices; (3) ensure higher levels
of robustness for critical services; (4) foster interoperability of the non-functional property enforcement
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 5

mechanisms; and finally (5) better promote the resilience of the architecture itself. Let us explain the
rationale for these claims.

Define and enforce global policies for non-functional properties. One can enforce non-functional properties
through piece-wise, partial policies. But it is easier and less error-prone, as attested by SDN architectures
with respect to the functional properties, to enforce e.g., security or dependability policies, from a central
trust point, in a globally consistent way. Especially when one considers changing policies during system
lifetime.

Reduce the complexity of controllers and forwarding devices. One of the most powerful ideas of SDN was
exactly to simplify the construction of devices, by stripping them of functionality, centralized on controllers.
We are extending the scope of the concept, by relieving both controllers and devices from ad-hoc and
redundant implementations of sophisticated mechanisms that are bound to have a critical impact on the
whole network.

Ensure higher levels of robustness for critical services. Enforcing non-functional properties like dependabil-
ity or security has a critical scope, as it potentially affects the entire network. Unfortunately, the robustness
of devices and controllers is still a concern, as they are becoming rather complex, which leads to several
critical vulnerabilities, as amply exemplified in [Scott-Hayward et al. 2016]. For these reasons, a single device
or controller may become a single point of failure for the network. A centralized concept as we advocate might
considerably improve on the situation, exactly because the enforcement of non-functional properties would
be achieved through a specialized susbsystem, minimally interfering with the SDN payload architecture. A
dedicated implementation, carefully designed and verified, would be re-usable, not re-implemented, by the
payload components.

Foster interoperability of the non-functional property enforcement mechanisms. Different controllers require
different configurations today, and a potential lack of interoperability in terms of non-functional properties
arises. Global policies and mechanisms for non-functional property enforcement would also mean an easy
path to foster controller and device interoperability (e.g., East and Westbound APIs) in what concerns
the former. This way, mechanisms can be modified or added, and have a global repercussion, without the
challenge of having to implement such services in each component.

Better promote the resilience of the architecture itself. Having a specialized subsystem architecture already
helps for a start, since for example, its operation is not affected by latency and throughput fluctuations of
the (payload) control platforms themselves. However, the considerable advantage of both the decoupling
and the centralization, is that it becomes straightforward to design in security and dependability measures
for the architecture itself, such as advanced techniques and mechanisms to tolerate faults and intrusions
(and in essence overcome the main disadvantage of centralization, the potential single-point-of-failure risk).

The general outline of our reference architecture is depicted in Figure 1. The “logically-centralized”
perspective of non-functional property enforcement is materialized through a subsystem architecture relying
on a centralized anchor of trust, a specific middleware whose main aim is to ensure that certain properties –
for example, the security of control plane associations and of communication amongst controllers and devices
– are met throughout the architecture.

anchor stands aside the payload SDN architecture, with its payload controllers and devices, not modifying
but rather adding to it. It ‘anchors’ crucial functionality and properties, and ‘hooks’ to the former components,

Manuscript submitted to ACM

6 Kreutz, D. et al

Net	App	Net	App	

SDN Controller

Network		
Opera,ng	System	

Net	App	Net	App	

FLOW	TABLES	

Net	App	Net	App	

SDN Forwarding Device

ANCHOR

Fig. 1. anchor general architecture

in order to secure the desired properties. So, on the devices, we just need the local counterparts to the
anchor middleware mechanisms and protocols, or hooks, to interpret and follow the anchor’s instructions.

After having made the case for logically-centralized non-functional property enforcement in software-
defined networking, and presenting the outline of our general architecture, in the next two sections we
introduce the use case we elected to show in this paper, i.e., logically-centralized security. We start with a
gap analysis that establishes the requirements for the architecture functionality in Section 3, and then, in
Section 4, we show how to populate anchor with the necessary mechanisms and protocols to meet those
requirements.

3 CHALLENGES AND REQUIREMENTS FOR SECURITY

To elaborate on our ‘security’ case study, in this section we discuss, with more detail, the challenges brought in
by the previously mentioned gaps — (i) security-performance; (ii) complexity-robustness; (iii) global security
policies; and (iv) resilient roots-of-trust — as well as the requirements they put on a logically-centralized
approach to enforcing security, as a non-functional system property.

3.1 Security 𝑣𝑠 performance

The security-performance gap comes from the conflict between ensuring high performance and using
secure primitives. This gap affects directly the control plane communication, which is the crucial link
between controllers and forwarding devices, allowing remote configuration of the data plane at runtime.
Control channels need to provide high performance (high throughput and low latency) while keeping the
communication secure.

The latency experienced by control plane communication is particularly critical for SDN operation. The
increased latency is a problem per se, in terms of reduced responsiveness, but may also limit control plane
scalability, which can be particularly problematic in large datacenters [Benson et al. 2010a]. Most of the
existing commercial switches already have low control plane performance on TCP (e.g., a few hundred
flows/s [Kreutz et al. 2015], see Section V.A.). Adding crypto worsens the problem: previous works have
demonstrated that the use of cryptographic primitives has a perceivable impact on the latency of sensitive
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 7

communication, such as VoIP [Shen et al. 2012] (e.g., TLS incurs in 166% of additional CPU cycles compared
to TCP), network operations protocols such as SNMP [Schonwalder and Marinov 2011], NTP [Dowling
et al. 2016], OpenFlow-enabled networks [Kreutz et al. 2017a,b], and HTTPS connections [Naylor et al.
2014]. Perhaps not surprisingly, the number of SDN controllers and switching hardware supporting TLS
(the protocol recommended by ONF to address security of control plane communication [ONF 2014, 2015])
is still reduced [Abdullaziz et al. 2016; Scott-Hayward et al. 2016]. Recent research has indeed suggested
that one of the reasons for the slow adoption to be related with the security-performance trade-off [Kreutz
et al. 2017b].

Ideally, we would have both security robustness and performance on control plane channels. Considering
the current scenario of SDN, it therefore seems clear the need to investigate lightweight alternatives for
securing control plane communication. In the context of the security-performance gap, some directions that
we point to in our architectural proposal ahead are, for instance, the careful selection of cryptographic
primitives [Kreutz et al. 2017b], and the adoption of cryptographic libraries exhibiting a good performance-
security tradeoff, such as NaCl [Bernstein et al. 2012], or of mechanisms allowing per-message one-time-key
distribution, such as iDVV [Kreutz et al. 2017a,b]. We return to these mechanisms later.

3.2 Complexity 𝑣𝑠 robustness

The complexity-robustness gap represents the conflict between the current complexity of security and crypto
implementations, and the negative impact this has on robustness and hence correctness, hindering the
ultimate goal.

In the past few years, studies have recurrently shown several critical misuse issues of cryptographic
APIs of different TLS implementations [Buhov et al. 2015; Egele et al. 2013; Razaghpanah et al. 2017].
One of the main root causes of these misuse issues is the inherent complexity of traditional cryptographic
APIs and the knowledge required to use them without compromising security. For instance, more than
80% of the Android mobile applications make at least one mistake related to cryptographic APIs. Recent
studies have also found different vulnerabilities in TLS implementations and have shown that longstanding
implementations, such as OpenSSL1, including its extensive cryptography, is unlikely to be completely
verified in a near future [Beurdouche et al. 2015; Fan et al. 2016]. To address this issue, a few projects,
such as miTLS [Bhargavan et al. 2013] and Everest [Bhargavan et al. 2017], propose new and verified
implementations of TLS. However, several challenges remain to be addressed before having a solution ready
for wide use [Bhargavan et al. 2017].

While the problem persists, the number of alarming occurrences proliferates. Recent examples include
vulnerabilities that allow to recover the secret key of OpenSSL at a low cost [Yarom and Benger 2014],
and timing attacks that explore vulnerabilities in both PolarSSL and OpenSSL [Arnaud and Fouque
2013; Brumley and Tuveri 2011]. On the other hand, failures in classical PKI-based authentication and
authorisation subsystems have been persistently happening [Cromwell 2017; Hill 2013; PwC, CSO magazine
and CERT/CMU 2014], with the sheer complexity of those systems being considered one of the root causes
behind these problems.

1OpenSSL suffers from different fundamental issues such as too many legacy features accumulated over time, too many
alternative modes as result of tradeoffs made in the standardization, and too much focus on the web and DNS names.

Manuscript submitted to ACM

8 Kreutz, D. et al

Considering the widely acknowledged principle that simplicity is key to robustness, especially for secure
systems, we advocate and try to demonstrate in this paper, that the complexity-robustness gap can be
significantly closed through a methodic approach toward less complex but equally secure alternative solutions.
NaCl [Bernstein et al. 2012], which we mentioned in the previous section, can be rightly called again in
this context: it is one of the first attempts to provide a less complex, efficient, yet secure alternative to
OpenSSL-like implementations. Mechanisms simplifying key distribution, authentication and authorization,
such as iDVVs [Kreutz et al. 2017b], could help mitigate PKIs’ problems. By following this direction, we are
applying the same principle of vulnerability reduction used in other systems, such as unikernels, where the
idea is to reduce the attack surface by generating a smaller overall footprint of the operating system and
applications [Williams and Koller 2016].

3.3 Global security policies

The impact of the lack of global security policies can be illustrated with different examples. Although ONF
describes data authenticity, confidentiality, integrity, and freshness as fundamental requirements to ensure the
security of control plane communication, it does so in an abstract way, and these measures are often ignored,
or implemented in an ad-hoc manner [Scott-Hayward et al. 2016]. Another example is the lack of strong
authentication and authorisation in the control plane. Recent reports show that widely used controllers, such
as Floodlight and OpenDaylight, employ weak network authentication mechanisms [Scott-Hayward et al.
2016; Wan et al. 2017]. This leads to any forwarding device being able to connect to any controller. However,
fake or hostile controllers or forwarding devices should not be allowed to become part of the network, in
order to keep the network in healthy operation.

From a security perspective, it is non-controversial that device identification, authentication and au-
thorization should be among the forefront requirements of any network. All data plane devices should
be appropriately registered and authenticated within the network domain, with each association request
between any two devices (e.g., between a switch and a controller) being strictly authorized by a security
policy enforcement point. In addition, control traffic should be secured, since it is the fundamental vehicle
for network control programmability. This begs the question: why aren’t these mechanisms employed in
most deployments?

A strong reason for the current state of affairs is the lack of global guiding and enforcement policies.
It is necessary to define and establish global policies, and design, or adopt, the necessary mechanisms to
enforce them and meet the essential requirements in order to fill the policy gap. With policies put in place,
it becomes easier to manage all network elements, with respect to registration, authentication, authorization,
and secure communication.

3.4 Resilient roots-of-trust

A globally recognized, resilient root-of-trust, could dramatically improve the global security of SDN, since
current approaches to achieve trust are ad-hoc and partial [Abdullaziz et al. 2016]. Solving that gap would
assist in fostering global mechanisms to ensure trustworthy registration and association between devices, as
discussed previously, but the benefits would be ampler. For instance, a root-of-trust can be used to provide
fundamental mechanisms (e.g., sources of strong entropy or pseudo-random generators), which would serve
as building blocks for specific security functions.
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 9

As a first example, modern cryptography relies heavily on strong keys and the ability to keep them secret.
The core feature that defines a strong key is its randomness. However, the randomness of keys is still a
widely neglected issue [Vassilev and Hall 2014], and not surprisingly, weak entropy, and weak random number
generation have been the cause of several significant vulnerabilities in software and devices [Albrecht et al.
2015; Hastings et al. 2016; Heninger et al. 2012; Kim et al. 2013]. Recent research has shown that there are
still non-negligible problems for hosts and networking devices [Albrecht et al. 2015; Hastings et al. 2016;
Heninger et al. 2012]. For instance, a common pattern found in low-resource devices, such as switches, is
that the random number generator of the operating system may lack the input of external sources of entropy
to generate reliable cryptographic keys. Even long-standing cryptographic libraries such as OpenSSL have
been recurrently affected by this problem [Kim et al. 2013; OpenSSL.org 2016].

Similarly, as a second example, sources of accurate time, such as the local clock and the network time
protocol, have to be secured to avoid attacks that can compromise network operation, since time manipulation
attacks (e.g., NTP attack [Malhotra et al. 2015; Stenn 2015]) can affect the operation of controllers and
applications. For instance, a controller can be led to deliberately disconnect forwarding devices if it wrongly
perceives the expiration of heartbeat message timeouts.

It is worth emphasizing that the resilient roots-of-trust gap lies exactly in the relative trust that can be put
in partial, local, ad-hoc implementations of critical functions by controller developers and manufacturers of
forwarding devices, in contrast to a careful, once-and-for-all architectural approach that can be reinstantiated
in different SDN deployments. The list not being exhaustive, we claim that strong sources of entropy, resilient,
indistinguishable-from-random number generators, and accurate, non-forgeable global time services, are
fitting examples of such critical functions to be provided by logically-centralized roots-of-trust, helping close
the former gap.

4 LOGICALLY-CENTRALIZED SECURITY

In this section we introduce the specialization of the anchor architecture for logically-centralized security
properties enforcement (Figure 2), guided by the conclusions from the previous section. Our main goal is to
provide security properties such as authenticity, integrity, and confidentiality for control plane communication.
To achieve this goal, the anchor provides mechanisms (e.g., registration, authentication, a source of
strong entropy, a resilient pseudo random number generator) required to fulfill some of the major security
requirements of SDNs.

As illustrated in Figure 2, we “anchor” the enforcement of security properties on anchor, which provides
all the necessary mechanisms and protocols to achieve the goal. It is also a central point for enforcing security
policies by means of services such as device registration, device association, controller recommendation, or
global time, thereby reducing the burden on controllers and forwarding devices, which just need the local
hooks, protocol elements that interpret and follow the anchor’s instructions.

Next, we review the components and essential security services provided by anchor. We first illustrate, in
Section 4.1, how we implement our strategy of improving the robustness of anchor as a single root-of-trust,
by hardening anchor in the face of failures. Next, we propose a source of strong entropy (Section 4.2)
and a resilient pseudo random generator (PRG) (Section 4.3) for generating security-sensitive materials.
These are crucial components, as attested by the impact of vulnerabilities discovered in the recent past, in
sub-optimal implementations of the former in several software packages [Bernstein et al. 2016; Mimoso 2016;

Manuscript submitted to ACM

10 Kreutz, D. et al

FLOW	TABLES	

SDN Device

Crypto	

iDVV	

FLOW	TABLES	

SDN Device

Crypto	

iDVV	

Net	App	Net	App	

SDN Controller

Network	
Opera/ng	
System	

Net	App	Net	App	

FLOW	TABLES	

Net	App	Net	App	

SDN Device

Device	Registra/on	

Device	Associa/on	

Controller	
Recommenda/on	

ANCHOR

Crypto	

Crypto	

iDVV	

iDVV	

Crypto	

iDVV	

NOVA	FIG	2!!!!	18MAI17	

Global	Time	

Fig. 2. Logically-centralized Security

Schneier 2012; ZETTER 2015]. We implement and evaluate the robustness of these mechanisms. We also
leverage on a recently proposed mechanism, the integrated device verification value (iDVV), to simplify
authentication, authorization and key generation amongst SDN components [Kreutz et al. 2017b], which
we review and put in the context of anchor (Section 4.4). Namely, the iDVV protocol runs between the
anchor, and the hooks in controllers and switching devices. We implement and evaluate iDVV generators
for OpenFlow-enabled control plane communication. Next, we present three essential services for secure
network operation — device registration (Section 4.6) , device association (Section 4.7), and controller
recommendation (Section 4.8) — and we describe how the above mechanisms interplay with our secure
device-to-device communication approach (Section 4.9).

Concerning the mitigation of possible (though expectedly infrequent) security failures, across the explana-
tion of the algorithms we observe how several robustness measures work, like for example the achievement
of PFS, protecting pre-compromise communications in the presence of successful attacks. Finally, in Section
4.10, we see the capstone of these measures, explaining how to re-establish secure communication channels
in a semi-automatic way, after anchor has been reinstated in the sequel of compromise.

The roster of services of anchor is not closed, and one can think of other functionalities, not described here,
including keeping track of forwarding devices association, generating alerts in case of strange behaviors (e.g.,
recurrent reconnections, connections with multiple controllers), and so forth. These ancillary management
tasks are important to keep track of the network operation status. In what follows, we describe the above
components in detail.

4.1 Hardening anchor

The compromise of a root-of-trust is of great concern, since crucial services normally depend on it being
secure and dependable. As we stated in the introduction, we have a long-term strategy towards the resilience
of anchor, which starts, in the context of this paper, by improving the inherent reliability of its simplex
(non-replicated) version, by hardening it in the face of failures, namely, by still providing some security
guarantees even when anchor has been compromised. In particular, we propose protocols to achieve two
security properties guaranteeing respectively, the security of past (pre-compromise) communications, and
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 11

of future (post-recovery) communications. This provides a significant improvement over other existing
root-of-trust infrastructures.

The first security property is perfect forward secrecy (PFS), namely, the assurance that the compromise
of all secrets in a current session does not compromise the confidentiality of the communications of the past
sessions. The enforcement of PFS is systematically approached in the algorithms we present next.

The second property is post-compromise security (PCS). While PFS considers how to protect the past
communications, PCS considers how to automatically reinstate and re-establish the secure communication
channels, for future communications. This security property has so far been considered only in the specific
scenario of secure messaging [Yu and Ryan 2015], and only limited works [Yu et al. 2017a,b] are available. In
particular, we consider that when anchor has been compromised by an attacker (e.g., through the exploitation
of software vulnerabilities), and has been reinstated by the operator (e.g., by applying software patches
and rebuilding servers), the system should have a way to automatically re-establish secure communications
between anchor and all other participants, without having to reinstate these components (controllers and
forwarding devices in this case, whose shared secrets became compromised).

In summary, even though anchor is a single root-of-trust in our system, we mitigate the associated risks
by guaranteeing:

∙ PFS: the compromise of anchor in the current session does not expose past communications;
∙ PCS: when anchor is compromised and reinstated, anchor can automatically re-establish secure

communication channels with all other participants in the system to protect the security of future
communications.

As a side note, since our system only uses symmetric key cryptography, it will stand up even against an
attacker with quantum computers. In other words, our infrastructure will be post-quantum secure (PQS).

4.2 A source of strong entropy

Entropy still represents a challenge for modern computers because they have been designed to behave
deterministically [Vassilev and Hall 2014]. Sources of true randomness can be difficult to use because they
work differently from a typical computer.

To avoid the pitfalls of weak sources of entropy, in particular in networking devices, anchor provides a
source of strong entropy to ensure the randomness required to generate seeds, pseudorandom values, secrets,
among other cryptographic material. The strong source of entropy, implemented by Algorithm 1, has the
following property:

Strong Entropy - Every value entropy returned by the function entropy_get is indistinguishable-from-
random.

Algorithm 1 shows how the external (from other devices) and internal (from the local operating system)
sources of entropy are kept updated and used to generate random bytes per function call (entropy_get()).
The state of the internal and external entropy is initially set by calling the entropy_setup(data). This
function requires an input data, which can be a combination of current system time, process number, bytes
from special devices, among other things, and random bytes (rand_bytes()) from a local (deterministic)
source of entropy (e.g., /dev/urandom) to initialize the state of the entropy generator. As we cannot assume

Manuscript submitted to ACM

12 Kreutz, D. et al

Algorithm 1: Source of strong entropy
1: entropy_setup(data)
2: e_entropy ← rand_bytes() ⊕ H(data)
3: i_entropy ← rand_bytes() ⊕ e_entropy

4: entropy_update()
5: e_entropy ← H(𝑃𝑖||𝑃𝑗) ⊕ i_entropy
6: E_counter ← 0

7: entropy_get()
8: if E_counter >= MAX_LONG call entropy_update()
9: i_entropy ← H(rand_bytes() || E_counter)

10: entropy ← e_entropy ⊕ i_entropy

anything regarding the predictability of the input data, we use it in conjunction with a rand_bytes() function
call (line 2). A call to rand_bytes() is assumed to return (by default) 64 bytes of random data.

Function entropy_update() uses as input the statistics of external sources and the anchor’s own packet
arrival rate to update the external entropy. The noise (events) of the external sources of entropy is stored
in 32 pools (𝑃0, 𝑃1, 𝑃2, 𝑃3, ..., 𝑃31), as suggested by previous work [Ferguson et al. 2011]. Each pool has
an event counter, which is reset to zero once the pool is used to update the external entropy. At every
update, two different pools of noise (𝑃𝑖 and 𝑃𝑗) are used as input of a hashing function 𝐻. The two pools
of noise can be randomly selected, for instance. The output of this function is XORed with the internal
entropy to generate the new state of the external entropy. It is worth emphasizing that entropy_update() is
automatically called when E_counter (the global event counter) reaches its maximum value and whenever
needed, i.e., the user can define when to do the function call.

The resulting 64 bytes of entropy, indistinguishable-from-random bytes (entropy_get()), are the outcome
of an XOR operation between the external and internal entropy. While the external entropy provides the
unpredictability required by strong entropy, the internal source provides a good, yet predictable [Vassilev
and Hall 2014], continuous source of entropy. At each time the entropy_get() function is called, the internal
entropy is updated by using a local source of random data, which is typically provided by a library or by
the operating system itself, and the global number of events currently in the 32 pools of noise (𝐸_𝑐𝑜𝑢𝑛𝑡𝑒𝑟).
These two values are used as input of a hashing function 𝐻.

Such sources of strong entropy can be achieved in practice by combining different sources of noise, such as
the unpredictability of network traffic [Greenberg et al. 2009], the unpredictability of idleness of links [Benson
et al. 2010b], packet arrival rate of network controllers, and sources of entropy provided by operating systems.
We provide implementation details in Section 5.1. A discussion about the correctness of Algorithm 1 can be
found in appendix A.

4.3 Pseudorandom generator (PRG)

A source of entropy is necessary but not sufficient. Most cryptographic algorithms are highly vulnerable
to the weaknesses of random generators [Dodis et al. 2013]. For instance, nonces generated with weak
pseudo-random generators can lead to attacks capable of recovering secret keys. Different security properties
need to be ensured when building strong pseudo-random number generators (PRG), such as resilience,
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 13

forward security, backward security and recovering security. In particular, the latter was recently proposed
as a measure to recover the internal state of a PRG [Dodis et al. 2013]. We propose a PRG that uses our
source of strong entropy and implements a refresh function to increase its resilience and recovering capability.
The pseudo-random number generator, implemented by Algorithm 2, has the following property:

Robust PRG - Every value nprd returned by the function PRG_next is indistinguishable-from-random.
A robust PRG needs three well-defined constructions, namely setup(), refresh() (or re-seed), and next(),

as described in Algorithm 2. The internal state of our PRG is represented by three variables, the 𝑠𝑒𝑒𝑑, the
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and the next pseudo-random data 𝑛𝑝𝑟𝑑. The setup process generates a new seed, by using our
strong source of entropy, which is used to update the internal state. In line 3, we initialize the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

by calling the 𝑙𝑜𝑛𝑔_𝑢𝑖𝑛𝑡 function, which returns a long unsigned int value that will be used to re-seed
and to generate the next pseudorandom value. In line 4, we call 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑢𝑝𝑑𝑎𝑡𝑒 to make sure that the
external entropy gets updated before calling one more time the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑔𝑒𝑡 function. The first 𝑛𝑝𝑟𝑑 is the
outcome of an XOR operation between the newly generated seed and a second call to our source of entropy.
It is worth emphasizing that the set up of the initial state of the PRG does not require any intervention
or interaction with the end user. We provide strong and reliable entropy to set up the initial values of all
three variables. This ensures that our PRG is non-sensitive to the initial state. For instance, in a tradicional
PRG the user could provide an initial seed, or other setup values, that could compromise the quality of
the generator’s output. The 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, which is concatenated with the 𝑛𝑝𝑟𝑑 (lines 9 and 13), gives the idea
of an unbounded state space [Stark 2017]. This is possible because we are using cryptographically strong
primitives such as a hash function H and the MAC function HMAC. Thus, in theory, we have unbounded
state spaces, i.e., we can keep concatenating values to the input of these primitives.

The PRG_refresh() function updates the internal state, i.e., the 𝑠𝑒𝑒𝑑, the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and the 𝑛𝑝𝑟𝑑. It uses
H to update the state of the 𝑛𝑝𝑟𝑑. Finally, the PRG_next() function outputs a new, indistinguishable-from-
random stream of bytes, applying HMAC on the internal state. In this function, the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is decremented
by one. The idea is for it to start with a very large unsigned 8-bytes value, which is used until it reaches
zero. At this point, the PRG_refresh() function will be called to update the internal state of the generator.
The newly generated 𝑛𝑝𝑟𝑑 is the outcome of an HMAC function with a dimension of 128 bits.

Algorithm 2: Pseudo-random number generator
1: PRG_setup()
2: seed ← entropy_get()
3: counter ← long_uint(entropy_get())
4: call entropy_update()
5: nprd ← seed ⊕ entropy_get()

6: PRG_refresh()
7: seed ← entropy_get()
8: counter ← long_uint(entropy_get())
9: nprd ← H(seed ‖ nprd ‖ counter)

10: PRG_next()
11: counter ← counter - 1
12: if counter <= 0 call PRG_refresh()
13: nprd ← HMAC(seed, nprd ‖ counter)

Manuscript submitted to ACM

14 Kreutz, D. et al

The main motivation for having a PRG along with a strong source of entropy is speed. Studies have shown
that entropy generation for local use can be rather slow, such as 1.5 seconds to 2 minutes for generating
128 bits of entropy [Mahu et al. 2015]. Our source of entropy uses external entropy and random bytes from
special devices, whereas the PRG uses an HMAC function, in order to have a fast and reliable generation of
pseudo-random values.

In spite of the fact that we could use any good PRG to generate crypto material (e.g. keys, nonce), it is
worth emphasizing that we introduce a PRG that works in a seamless way with our strong source of entropy,
improving its quality. In Section 5.2, we discuss the specifics of the implementation. We also evaluate the
robustness and level of confidence of our algorithms in Section 6.1. A discussion about the correctness of
Algorithm 2 can be found in appendix B.

4.4 Integrated device verification value

The design of our logically-centralized security architecture also includes the integrated device verification
value (iDVV) component [Kreutz et al. 2017b]. The iDVV idea was inspired by the iCVVs (integrated
card verification values) used in credit cards to authenticate and authorize transactions in a secure and
inexpensive way. In [Kreutz et al. 2017b] the concept was applied to SDN, proposing a flexible method of
generating iDVVs that can be safely used to secure communication between any two devices. As a result,
iDVVs can be used to partially address two gaps of non-functional properties, security-performance and
complexity-robustness.

An iDVV is a unique value generated by device A (e.g., forwarding device) which can be verified by device
B (e.g., controller). An iDVV generator has essentially two interfaces. First, idvv_setup (seed, secret), which
is used to set up the generator. It receives as input two secret, random and unique values, the seed and the
(higher-level protocol dependent) secret. The source of strong entropy and the robust PRG are, amongst
other things, used to bootstrap and keep the iDVV generators fresh. Second, the idvv_next() interface
returns the next iDVV. This interface can be called as many times as needed.

So, iDVVs are sequentially generated to authenticate and authorize requests between two networking
devices, and/or protect communication. Starting with the same seed and secret, the iDVV generator will
generate, for example, at both ends of a controller-device association, the exact same sequence of values. In
other words, it is a deterministic generator of authentication or authorization codes, or one-time keys, which
are, however, indistinguishable from random. The main advantages of iDVVs are their low cost, which makes
them even usable on a per-message basis, and the fact that they can be generated off-line, i.e., without
having to establish any previous agreement.

Correctness. The randomness and performance of the iDVV algorithm as deterministic generator of au-
thentication or authorization codes, or one-time keys which are however indistinguishable from random, have
been analyzed, and its properties proved, in [Kreutz et al. 2017b]. The performance study is complemented
in Section 6.2. Overall, these analyses show that iDVVs are robust, achieve a high level of confidence and
outperform traditional key generation and derivation functions without compromising the security.

4.5 System roles and setup

Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 15

Let us assume the roles of system administrator, controlling the operation of central services such as
anchor, and network administrator, controlling the operation of network devices. Each time a new network
device (a forwarding device or a controller) is added to the network, it must first be registered, before being
able to operate.

In the current practice, the device registration is a manual process triggered by a network administrator
through an out-of-band channel. This process would involve manual work from both the system and the
network administrators. Given the potentially large number of network devices in SDN, such a manual
process is unsatisfactory.

Thus, we propose a protocol, described below, to fulfill the desire of a semi-automated device registration
process, which is efficient, secure, and requires the least involvement of anchor. The anchor is first setup
by the system admin. Next, each network device is set up by anchor. Devices just need that a key shared
with their overseeing network admin is set up initially, at first use. The set up of this key and the registration
of devices is described in Section 4.6. Then, devices can be registered automatically.

For simplicity and without loss of generality, in what follows we denote 𝐸𝑋𝑌 () an encryption using
encryption key 𝐾𝑒𝑋𝑌 , and we denote [],HMAC𝑋𝑌 , respectively a message field inside [], followed by an
HMAC over the whole material within [], using MAC key 𝐾ℎ𝑋𝑌 , where 𝑋, 𝑌 ∈ {𝐴, 𝐷𝑖, 𝑀, 𝐶, 𝐹}. When
𝑋 = 𝐴, we omit 𝑋 for simplicity. For example, we use 𝐸𝑀 (msg) to refer 𝐸𝐴𝑀 (msg), and they both denote
the ciphertext of encrypting 𝑚𝑠𝑔 under key 𝐾𝑒𝐴𝑀 . In what follows, anchor can generate strong keys
using a suitable key derivation function (KDF) based on the high entropy random material described in the
previous sections.

Now we present the set up required for anchor, network admin, and device. After that, we describe the
device registration and association algorithms, respectively Algorithms 3 and 4.

AnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchor setup. The anchor needs two master recovery keys, namely the master recovery encryption key
𝐾𝑒𝑟𝑒𝑐 and master recovery MAC key 𝐾ℎ𝑟𝑒𝑐, fundamental for the post-compromise recovery steps described
ahead. However, these two master recovery keys, in possession of the authority overseeing anchor (the
system administrator), must never appear in the anchor server (if they are to recover from a possible full
server compromise), being securely stored and used only in an offline manner 2.

As we will present later, the master recovery keys are only used in two cases, namely (a) when a new
network admin is registered with anchor (i.e. the network admin setup process); and (b) when anchor was
compromised and is reinstated into a trustworthy state (i.e. the post-compromise recovery process presented
in §4.10). When either case occurs, the anchor authority only needs to use the master recovery keys once,
to recursively compute the recovery keys of all devices and network admins. The output of the calculation
will be imported into the anchor server through an out-of-band channel (e.g. by using a USB).

Network admin setup. Each network administrator (or manager, denoted 𝑀) with identity M_ID is
registered with anchor manually. This is the only manual process to initialize a new network administrator.
Afterwards all devices managed by this administrator can be registered with anchor through our device
registration protocol.

2Just to give a real feel, one possible implementation of this principle is: a pristine anchor server image is created; it boots
offline in single user mode; it generates 𝐾𝑒𝑟𝑒𝑐 and 𝐾ℎ𝑟𝑒𝑐 through a strong KDF as discussed above; keys are written into a
USB device, and then deleted; first online boot proceeds.

Manuscript submitted to ACM

16 Kreutz, D. et al

During the network admin registration phase, anchor locally generates encryption key 𝐾𝑒𝐴𝑀 and MAC
key 𝐾ℎ𝐴𝑀 to be shared with 𝑀 , and they are manually imported into 𝑀 through an out-of-band channel
(again, by using a USB, for example).

Further, 𝑀 recovery keys 𝐾𝑟𝑒𝐴𝑀 = H(𝐾𝑒𝑟𝑒𝑐||M_ID) and 𝐾𝑟ℎ𝐴𝑀 = H(𝐾ℎ𝑟𝑒𝑐||M_ID) are also com-
puted by anchor offline. 𝑀 recovery keys live essentially offline, since 𝑀 needs to perform only infrequent
operations with these keys (e.g. upon device registration). Note that anchor does not store 𝐾𝑟𝑒𝐴𝑀 or
𝐾𝑟ℎ𝐴𝑀 as well, but can recompute them offline when the post-compromise recovery process is triggered, as
we detail in Section 4.10.

Device setup. A device with identity 𝐷𝑖 is either a forwarding device (F) or a controller (C), but we do not
differentiate them during the set up and registration processes. The first operation to be made after a device
is first brought to the system is the setup, which, in the context of this paper, concerns the establishment of
credentials, for secure management access by the network administrator.

Upon request from 𝑀 , anchor locally generates a pair of keys for each device 𝐷𝑖 being set up , 𝐾𝑒𝑀𝐷𝑖
and

𝐾ℎ𝑀𝐷𝑖
, to be respectively the encryption and MAC key to be shared between 𝑀 and 𝐷𝑖, for management.

They are sent to 𝑀 under the protection of 𝐾𝑒𝐴𝑀 and 𝐾ℎ𝐴𝑀 . Then, they are manually imported by the
network admin into each 𝐷𝑖 through an out-of-band channel.
4.6 Device registration

The device registration protocol is presented in Algorithm 3. We assume that 𝐾𝑒𝑀𝐷𝑖
and 𝐾ℎ𝑀𝐷𝑖

described
above are in place.

The first part concerns the bootstrap of the registration of a batch of devices with anchor (𝐴), by a
network admin 𝑀 . Let {𝐷𝑖}𝑛𝑖=1 be the set of 𝑛 device identities that the admin wants to register. 𝑀 requests
(line 1) the registration to 𝐴, accompanying each 𝐷𝑖 with a nonce 𝑥𝑖

𝑚. 𝐴 computes its own nonce 𝑥𝑖
𝑎, and

keys 𝐾𝑒𝐴𝐷𝑖
, 𝐾ℎ𝐴𝐷𝑖

, for each 𝐷𝑖, and returns them encrypted to 𝑀 (lines 2,3). The random nonces 𝑥𝑖
𝑚

and 𝑥𝑖
𝑎 are used to prevent replay attacks.

The process then follows for each device 𝐷𝑖. First, the device recovery key is created (line 4), using 𝑀 ’s
recovery key 𝐾𝑟𝐴𝑀 . Then 𝑀 sends 𝐷𝑖 the relevant crypto keys (line 5). Device 𝐷𝑖 follows-up confirmation
to 𝐴, which closes the loop with 𝑀 , using the original nonce from 𝐴 (lines 6,7). 𝐴 then performs a set
of operations (lines 8-11) to commit the registration of 𝐷𝑖, namely by inserting it into the controller or
forwarding device list, respectively CList or FList, and updating several keys.

Note that in Algorithm 3, the update of several shared keys (i.e., lines 11, 15, 17, 18) at the end of the
registration steps at 𝐴, 𝑀 , and 𝐷𝑖, is used to provide PFS. When a key is updated, the old one is destroyed.
Continuing, in line 12 𝑀 closes the loop with 𝐷𝑖, using the original nonce from 𝐴, finally confirming 𝐷𝑖’s
registration. Upon this step, both 𝑀 and 𝐷𝑖 perform the key update just mentioned.

Note that the generation process of the recovery key 𝐾𝑟𝐴𝐷𝑖
lies with 𝑀 (line 4), though using its recovery

key shared with anchor, 𝐾𝑟𝐴𝑀 . This reduces the number of uses of the master recovery key. However,
as we will see, albeit not knowing 𝐾𝑟𝐴𝐷𝑖

and 𝐾𝑟𝐴𝑀 , anchor can easily compute them offline, if needed.
Second, 𝐾𝑟𝐴𝑀 possessed by the network admin is only used when new devices need to be registered. So,
𝐾𝑟𝐴𝑀 can be usually stored offline. This provides an extra layer of security.

Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 17

Algorithm 3: Device registration

{Bootstrap for devices 𝐷1 −𝐷𝑛 }

1. M → A [Reg, M_ID, 𝐸𝑀 ({𝐷𝑖, 𝑥𝑖
𝑚}𝑛𝑖=1)], HMAC𝑀

2. A for each 𝐷𝑖, generate 𝐾𝑒𝐴𝐷𝑖
, 𝐾ℎ𝐴𝐷𝑖

, 𝑥𝑖
𝑎

3. A → M [Reg, M_ID, 𝐸𝑀 ({(𝐷𝑖, 𝑥𝑖
𝑚, 𝑥𝑖

𝑎, 𝐾𝑒𝐴𝐷𝑖
,

𝐾ℎ𝐴𝐷𝑖
)}𝑛𝑖=1)], HMAC𝑀

{For each device 𝐷𝑖}

4. M 𝐾𝑟𝐴𝐷𝑖
← H(𝐾𝑟𝐴𝑀 ||𝐷𝑖)

5. M → 𝐷𝑖 [Reg, 𝐸𝑀𝐷𝑖
(𝑥𝑖

𝑎, 𝐾𝑒𝐴𝐷𝑖
, 𝐾ℎ𝐴𝐷𝑖

, 𝐾𝑟𝐴𝐷𝑖
)],

HMAC𝑀𝐷𝑖

6. 𝐷𝑖 → A [M_ID, 𝐷𝑖, 𝐸𝐷𝑖
(𝑥𝑖

𝑎)], HMAC𝐷𝑖

7. A → M [M_ID, 𝐷𝑖, 𝐸𝑀 (𝑥𝑖
𝑎)], HMAC𝑀

8. A tag(𝐷𝑖) = registered;
9. for 𝑡 ∈ {𝐶, 𝐹}, if Type(𝐷𝑖)==t, then 𝑡𝐿𝑖𝑠𝑡 = 𝑡𝐿𝑖𝑠𝑡 ∪

{𝐷𝑖}
10. ∀𝑖 ∈ 1, 𝑛, if tag(𝐷𝑖) == registered is True
11. 𝐾𝑒𝐴𝑀 = H(𝐾𝑒𝐴𝑀); 𝐾ℎ𝐴𝑀 = H(𝐾ℎ𝐴𝑀).

12. M → 𝐷𝑖 [𝐷𝑖, 𝐸𝑀𝐷𝑖
(𝑥𝑖

𝑎)], HMAC𝑀𝐷𝑖

13. M tag(𝐷𝑖) = registered;
14. destroys (𝐾𝑒𝐴𝐷𝑖

, 𝐾ℎ𝐴𝐷𝑖
, 𝐾𝑟𝐴𝐷𝑖

);
15. 𝐾𝑒𝑀𝐷𝑖

= H(𝐾𝑒𝑀𝐷𝑖
); 𝐾ℎ𝑀𝐷𝑖

= H(𝐾ℎ𝑀𝐷𝑖
);

16. ∀𝑖 ∈ 1, 𝑛, if tag(𝐷𝑖) == registered is True
17. 𝐾𝑒𝐴𝑀 = H(𝐾𝑒𝐴𝑀); 𝐾ℎ𝐴𝑀 = H(𝐾ℎ𝐴𝑀).

18. 𝐷𝑖 𝐾𝑒𝑀𝐷𝑖
= H(𝐾𝑒𝑀𝐷𝑖

); 𝐾ℎ𝑀𝐷𝑖
= H(𝐾ℎ𝑀𝐷𝑖

).

4.7 Device association

The association service is required for authorizing control plane channels between any two devices, such as a
forwarding device and a controller. A forwarding device has to request an association with a controller it
wishes to communicate with. This association is mediated by the anchor.

The association process between two devices is performed by the sequence steps detailed in Algorithm 4.
Registered controllers and forwarding devices are inserted in CList and FList, respectively. Notation: As
explained above, the registration process set in place shared secret keys between anchor (A) and any
controller C or forwarding device F.

The device association implemented by Algorithm 4, has the following properties:
Controller Authorization - Any device F can only associate to a controller C authorized by the anchor.
Device Authorization - Any device F can associate to some controller, only if F is authorized by the

anchor.
Association ID Secrecy - After termination of the algorithm, the association ID (𝐴𝑖𝐷) is only known to F

and C.
Manuscript submitted to ACM

18 Kreutz, D. et al

Algorithm 4: Device association
{Of forwarding device 𝐹 with controller 𝐶}

1. F → A [𝑥𝑔, F, GetCList],HMAC𝐹

2. A → F [𝑥𝑔, F, 𝐸𝐹 (CList(F), 𝑥𝑔)],HMAC𝐹

3. F → C 𝑥𝑔, GetAiD, F, C, 𝐸𝐹 (GetAiD, F, C, 𝑥𝑓 , 𝑥𝑔)
4. C → A [𝑥𝑔, GetAiD, F, C, 𝐸𝐹 (GetAiD, F, C, 𝑥𝑓 , 𝑥𝑔),

𝐸𝐶(GetAiD, F, C, 𝑥𝑐, 𝑥𝑔)],HMAC𝐶

5. A → C [𝑥𝑔, 𝐸𝐹 (𝑥𝑓 , AiD), 𝐸𝐶(𝑥𝑐, AiD)],HMAC𝐶

6. A destroys (𝐴𝑖𝐷)
7. C → F 𝑥𝑔, 𝐸𝐹 (𝑥𝑓 , AiD), 𝐸𝐴𝑖𝐷(SEED, 𝑥𝑔)
8. F → C 𝑥𝑔, 𝐸𝐴𝑖𝐷(SEED ⊕ 𝑥𝑔)
9. A, F 𝐾𝑒𝐴𝐹 = H(𝐾𝑒𝐴𝐹); 𝐾ℎ𝐴𝐹 = H(𝐾ℎ𝐴𝐹)
10. A, C 𝐾𝑒𝐴𝐶 = H(𝐾𝑒𝐴𝐶); 𝐾ℎ𝐴𝐶 = H(𝐾ℎ𝐴𝐶)

Seed Secrecy - After termination of the algorithm, the seed (𝑆𝐸𝐸𝐷) is only known to F and C.
The algorithm coarse structure follows the line of the Needham-Schroeder (NS) original authentication

and key distribution algorithm [Needham and Schroeder 1978], but contemplates anti-replay measures such
as including participant IDs, and a global initial nonce as suggested in [Otway and Rees 1987]. Unlike NS, it
uses encrypt-then-mac to further prevent impersonation. Furthermore, it is specialized for device association,
managing authorization lists, and distributing a double secret in the end (association ID and seed). Secure
communication protocols running after association can, as explained below in Section 4.9, use iDVVs on a
key-per-message or key-per-session basis, rolling from the initial seed and secret association ID.

The association process starts with a forwarding device (F) sending an association request to the anchor
(A) (line 1 in Algorithm 4). This request contains a nonce 𝑥𝑔, the identification of the device and the
operation request 𝐺𝑒𝑡𝐶𝐿𝑖𝑠𝑡 (get list of controllers). The request also contains an HMAC to avoid device
impersonation attacks. The anchor checks if F is in FList (registered devices), and if so, it replies (line 2)
with a list of controllers (CList(F)) which F is authorized to associate with. The list of controllers (and
the nonce 𝑥𝑔) is encrypted using a key (set up during registration) shared between A and F. This protects
the confidentiality of the list of controllers, and 𝑥𝑔 ensures that the message is fresh, providing protection
against replay attacks. A message authentication code also protects the integrity of the anchor’s reply,
avoiding impersonation attacks. Next, F sends an association request to the chosen controller C (line 3). The
request contains a message that is encrypted using a key shared between F and A. This message contains
the get association id (𝐺𝑒𝑡𝐴𝑖𝐷) request, the identity of the principals involved (F,C), a nonce 𝑥𝑓 , and binds
to the nonce 𝑥𝑔. The controller forwards this message to A (line 4), adding its own encrypted association
request field, similar to F’s, but containing C’s own nonce𝑥𝑐 instead. This prevents the impersonation of the
controller since only it would be able to encrypt the freshly generated 𝑥𝑔. In line 5, C trusts that A’s reply
is fresh because it contains 𝑥𝑔. The controller also trusts that it is genuine (from A) because it contains 𝑥𝑐.
As such, C endorses F as an authorized device and 𝐴𝑖𝐷 as the association key for F. Future compromise of
A should not represent any threat to established communication between C and F. To achieve this goal, A
immediately destroys the 𝐴𝑖𝐷 (line 6) and C and F further share a seed not known by A (line 7).
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 19

C forwards both the encrypted 𝐴𝑖𝐷 message and its seed to F (line 7). The forwarding device trusts
that this message is fresh and correct because it contains 𝑥𝑔, and 𝑥𝑓 under encryption, together with the
𝐴𝑖𝐷, only know to F and C, which it endorses then as the association key. F trusts that C is the correct
correspondent, otherwise A would not have advanced to step 5. That being true, future interactions will
use 𝐴𝑖𝐷. F believes that the 𝑆𝐸𝐸𝐷 is genuine, as random entropy for future interactions, because it is
encapsulated by 𝐴𝑖𝐷, known only to C and F. The forwarding device also trusts that the message is fresh
because it contains 𝑥𝑔 . Finally (line 8), C trusts it is associated with F (as identified in step 3 and confirmed
by A in step 5), when F replies showing it knows both the 𝐴𝑖𝐷 and the 𝑆𝐸𝐸𝐷, by encrypting the 𝑆𝐸𝐸𝐷

XOR’ed with the current nonce 𝑥𝑔, with 𝐴𝑖𝐷. Replay and impersonation attacks are avoided because all
encrypted interactions are dependent on nonces, so will become void in the future. At the end of each device
association protocol, all keys shared between a device (F or C) and anchor will be updated to the hash
value of this key (lines 9, 10). Again, this is used to provide perfect forward secrecy. All nonces are random,
i.e., not predictable.

A discussion of the correctness of Algorithm 4 can be found in Appendix C.

4.8 Controller recommendation

Similarly to moving target defense strategies [Wang et al. 2014], devices (e.g., controllers) are hidden by
default, i.e., only registered and authenticated devices can get information about other devices. Even if a
forwarding device finds out the IP of a controller, it will be able to establish a connection with the controller
only after being registered and authorized by the anchor.

Controllers can be recommended to forwarding devices using different parameters, such as latency, load,
or trustworthiness. When a forwarding device requests an association with one or more controllers, the
anchor sends back a list of authorized controllers to connect with. The forwarding device will be restricted
to associate itself with any of the controllers on the list. In other words, forwarding devices will not be
allowed to establish connections with other (e.g., hostile or fake) controllers. Similarly, fake forwarding
devices will be, by default, forbidden to set up communication channels with non-compromised controllers.

4.9 Device-to-device communication

Communication between any two devices happens only after a successful association. Consider the end of
an association establishment, as per Algorithm 4, e.g. between a controller C and a forwarding device F:
at this point, both sides, and only them, have the secret and unique material 𝑆𝐸𝐸𝐷, 𝐴𝑖𝐷 (as proved in
Appendix C). Using them, they can bootstrap the iDVV protocol (see Section 4.4 above), which from now
on can be used at will by any secure communication primitives. As explained earlier, iDVV generation is
flexible and low cost, to allow the generation: (a) on a per message basis; (b) for a sequence of messages; (c)
for a specific interval of time; or (d) for one communication session.

NaCl [Bernstein et al. 2012], as mentioned in previous sections, is a simple, efficient, and provably secure
alternative to OpenSSL-like implementations, and is thus our choice for secure communication amongst
controllers and devices.

Researchers have shown that NaCL is resistant to side channel attacks [Almeida et al. 2013] and that
its implementation is robust [Bernstein et al. 2012]. Different from other crypto libraries, NaCL’s API and
implementation is kept very simple, justifying its robustness. Through anchor, the SDN communication

Manuscript submitted to ACM

20 Kreutz, D. et al

channels are securely encrypted using symmetric key ciphers provided by NaCl, with the strong cryptographic
material required by the ciphers generated by our mechanisms, allowing secret codes per packet, session,
time interval, or pre-defined ranges of packets.

4.10 Post-compromise recovery

As previously mentioned, after anchor has been reinstated in the sequel of a compromise, it is crucial
to have a way to automatically re-establish the secure communication channels between anchor and all
participants.

Algorithm 5 presents how to re-establish the secure communication channels when anchor is compromised.
Intuitively, since anchor’s master recovery keys 𝐾𝑒𝑟𝑒𝑐 and 𝐾ℎ𝑟𝑒𝑐 are stored securely offline, these keys are
unknown to the attacker who has stolen all secrets from the anchor server. As described before, all 𝑀 and
all 𝐷𝑖 recovery keys can be recursively computed from the master keys, offline (line 1). Once this done, the
operator imports those keys into the anchor server. To continue the recovery process, anchor generates
new random keys to be shared with all 𝑀s, and all 𝐷𝑖 (line 2).

Now anchor can send to each 𝑀 (line 3) a recovery message to re-share keys (contained in 𝑀𝑘) both
between that manager and the devices controlled by it. The messages are secured by using the according
recovery keys. The new shared keys will be used to protect future communications. Each 𝑀 implements the
operation with each of the devices it manages (line 4).

The new keys replace the possibly compromised keys at 𝑀 and each 𝐷𝑖 (lines 5-6, and 9). Likewise, when
the recovery process has been completed, the recovery keys will be updated to their hash value (lines 7-8,
and 10-11). As mentioned previously, this key update is used to provide perfect forward secrecy (PFS).

Note that at line 3, an additional MAC value on the entire message under the current MAC key 𝐾ℎ𝐴𝑀 is
created. Since the recovery keys are stored offline, without having this additional MAC value, the manager
will have to perform the verification offline manually. This MAC value prevents possible DoS attacks where
an attacker creates and sends fake recovery messages to network managers, as this additional MAC value
can be verified online efficiently, and it cannot be created without having access to the current MAC key
𝐾ℎ𝐴𝑀 .

Algorithm 5: anchor recovery.

{For each manager 𝑀 and its associated devices {𝐷𝑖}𝑛𝑖=1}}
1. A computes 𝐾𝑟𝑒𝐴𝑀 , 𝐾𝑟ℎ𝐴𝑀 , 𝐾𝑟𝑒𝐴𝐷𝑖

, 𝐾𝑟ℎ𝐴𝐷𝑖
;

2. generates 𝑀𝑘 = 𝐾𝑒′
𝐴𝑀 , 𝐾ℎ′

𝐴𝑀 , {𝐾𝑒′
𝐴𝐷𝑖

, 𝐾ℎ′
𝐴𝐷𝑖
}𝑛𝑖=1.

3. A → M Recovery, A, M_ID, 𝐸𝐾𝑟𝑒𝐴𝑀
𝑀𝑘, HMAC𝐾𝑟ℎ𝐴𝑀

, HMAC𝑀 .
{For each device 𝐷𝑖}

4. M → 𝐷𝑖 Recovery, A, M_ID, 𝐷𝑖, 𝐸𝐾𝑟𝑒𝐴𝐷𝑖
𝐾𝑒′

𝐴𝐷𝑖
, 𝐾ℎ′

𝐴𝐷𝑖
, HMAC𝐾𝑟ℎ𝐴𝐷𝑖

.
5. M destroys 𝐾𝑒′

𝐴𝐷𝑖
, 𝐾ℎ′

𝐴𝐷𝑖
;

6. 𝐾𝑒𝐴𝑀 = 𝐾𝑒′
𝐴𝑀 ; 𝐾ℎ𝐴𝑀 = 𝐾ℎ′

𝐴𝑀 ;
7. 𝐾𝑟𝑒𝐴𝑀 = H(𝐾𝑟𝑒𝐴𝑀); 𝐾𝑟ℎ𝐴𝑀 = 𝐻𝐾𝑟ℎ𝐴𝑀);
8. 𝐾𝑒𝑀𝐷𝑖

= H(𝐾𝑒𝑀𝐷𝑖
); 𝐾ℎ𝑀𝐷𝑖

= H(𝐾ℎ𝑀𝐷𝑖
).

9. 𝐷𝑖 𝐾𝑒𝐴𝐷𝑖
= 𝐾𝑒′

𝐴𝐷𝑖
; 𝐾ℎ𝐴𝐷𝑖

= 𝐾ℎ′
𝐴𝐷𝑖

;
10. 𝐾𝑟𝑒𝐴𝐷𝑖

= H(𝐾𝑟𝑒𝐴𝐷𝑖
); 𝐾𝑟ℎ𝐴𝐷𝑖

= H(𝐾𝑟ℎ𝐴𝐷𝑖
);

11. 𝐾𝑒𝑀𝐷𝑖
= H(𝐾𝑒𝑀𝐷𝑖

); 𝐾ℎ𝑀𝐷𝑖
= H(𝐾ℎ𝑀𝐷𝑖

).

Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 21

In case of compromise of a manager 𝑀 , once it has recovered, it can also re-establish its shared secrets
with anchor and associated devices in a similar way as described above. 𝐴 recovery is excluded, and the
next steps are made only for a single 𝑀 instead of all 𝑀 , and with some differences: 𝑀 gets the recovery
keys (line 1) from anchor through an out-of-band channel, 𝐾𝑟𝑒𝐴𝑀 , 𝐾𝑟ℎ𝐴𝑀 , and all 𝐾𝑟𝑒𝐴𝐷𝑖

, 𝐾𝑟ℎ𝐴𝐷𝑖

from 𝑖 = 1𝑡𝑜𝑛. These keys remain the same, but 𝑀 had lost them, having been rebuilt from scratch. Then,
in lines 2-3, 𝑀 will get (generated by 𝐴) the 𝐾𝑒′

𝑀𝐷𝑖
, 𝐾ℎ′

𝑀𝐷𝑖
keys for managing all devices, instead of

𝐾𝑒′
𝐴𝐷𝑖

, 𝐾ℎ′
𝐴𝐷𝑖

, which do not need to be changed. In line 4, the former are sent to each 𝐷𝑖, instead of the
latter.

5 DESIGN AND IMPLEMENTATION

A prototype of anchor has been implemented as envisioned in Figure 2. Our implementation, using the
NOX controller and CBench3 (OpenFlow switches emulator), has approximately 2k lines of Python code
and 700 lines of C code (integration with CBench). It uses Google’s protobuf [Google 2017] for defining the
communication protocols and efficiently serializing the data. In this section we give an overview of some
important system implementation details. The evaluation of the different components of the architecture is
presented in Section 6.

5.1 A source of strong entropy

Each external source of noise (e.g., forwarding device, controller) sends heartbeats to the anchor. Each
heartbeat carries statistics of the current network traffic, idleness of links, and number of packets received
by a controller within a specific time frame.

Recall from Algorithm 1 that for setting up the external entropy, the bytes read from the local source
are combined (through an XOR operation) with the output of hashing function H(𝑑𝑎𝑡𝑎). We have chosen
SHA512 as our strong hashing function 𝐻 [Dang 2010]. After that, a second read of local random bytes is
XORed with the external entropy to setup the internal entropy.

For implementing the entropy_update(), one can use the pools of noise in a circular approach (e.g., 𝑃0
and 𝑃1, 𝑃2 and 𝑃3, and so forth), in a combined circular and random way (𝑃0 and 𝑃7, 𝑃1 and 𝑃31, and so
forth), or in a completely random fashion, for instance. Ergo, using several pools of events, we create enough
data to make it nearly impractical for an attacker to enumerate the possible values for the events used to
update the generator’s internal state [Ferguson et al. 2011]. In other words, the attacker will arguably be
unable to rebuild the internal state of the source of strong entropy.

Even if an attacker is controlling two or more external sources in a timely manner, it will be hard to
guess the new state of the external entropy. First, the attacker needs to enumerate the events of the pools
being used on each update. This, by itself, is something hard to achieve since the attacker does not know
the update sequence of these pools, i.e., which external sources are being used, in which sequence, to update
each pool. In other words, he/she would have to know all sources of noise, and the sequence in which they
are being used to update the pools. It is also worth emphasizing that the external sources need to have
a pre-defined maximum rate for sending the heartbeats, i.e., compromised sources cannot send data at a
higher frequency to influence subsequent updates of the external entropy. Second, the attacker would need
3CBench is the default and most widely used tool for benchmarking control plane performance [Khattak et al. 2014; Shalimov
et al. 2013; Zhao et al. 2015].

Manuscript submitted to ACM

22 Kreutz, D. et al

to have additional knowledge regarding the internal entropy, which is a result of two combined values, as
explained in the following paragraph.

Pools of noise. The 32 pools of events are feed by four different sources, (1) incoming packet rate sent
by controllers; (2) incoming packet rate of anchor; (3) network statistics of forwarding devices; and (4)
random bytes from local systems. Each of the source feeds the pools in its own way. For instance, sources
(1) and (3) use round-robin, while sources (2) and (4) use a random approach to select the next pool to
put the new event in. In this way, we have a diversity of approaches for feeding the pools of noise, making
the “guessing task” of an attacker even harder. Each pool needs to store only a single value, the digest of a
hashing function (e.g., SHA512). The current digest and the newly arrived events are used as input of the
hashing function. Lastly, once the pool has been used by the source of strong entropy, it is reset to a new
initial state, which consists of the digest of a hash function using as input random bytes of a local entropy
source such as /dev/urandom.

5.2 Pseudorandom generator (PRG)

Our PRG, as was shown in Algorithm 2, combines the strengths of different solutions such as the PRF of
SPINS [Perrig et al. 2002] (which is based on an HMAC function), provably secure constructions for building
robust PRGs [Dodis et al. 2013; Ferguson et al. 2011], and unbounded state spaces through cryptographic
primitives [Stark 2017].

As HASH function we have chosen SHA512. As HMAC function, we have chosen the one time authentication
function crypto_onetimeauth() from NaCl [Bernstein et al. 2012]. It ensures security and performance while
generating outputs of 16 bytes that are indistinguishable from random.

PRG at the controller. As the controller might not have a source of strong entropy, we implemented a
slightly modified version of Algorithm 2. Essentially, we replace the entropy_get() function by entropy-
_remote(). This function makes an entropy request to the anchor. This means that the recovering security
by refreshing, which makes a PRG more resilient, is using our source of strong entropy. With this approach,
we are strengthening the controller’s PRG.

5.3 iDVV generators

Based on the algorithm proposed in [Kreutz et al. 2017b], we have implemented an iDVV generator that
supports seven different cryptographic primitives. In this case, the idvv_next(primitive_id) also has an
input, which is the id of the primitive to be used. In the implementation, we used the following primitives to
generate the iDVVs: MD5, SHA1, SHA512, SHA256, poly1305aes_ authenticate, crypto_onetimeauth, and
crypto_hash. While the first four functions are provided by OpenSSL, the last three are provided by an
independent implementation of Poly1305-AES and NaCl. As MD5 and SHA1 are deprecated, we use them
only for performance comparison purposes.

6 EVALUATION

In this section we evaluate the essential security mechanisms and services of our architecture.
For the performance measurements, we used machines with two quad-core Intel Xeon E5620 2.4GHz,

with 2x4x256KB L2 / 2x12MB L3 cache, 32GB SDIMM at 1066MHz, with hyper-threading enabled. These
machines were interconnected by a Gigabit Ethernet switch and ran Ubuntu Server 14.04 LTS.
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 23

6.1 Source of entropy and PRGs

We empirically evaluate both the source of strong entropy and PRGs through statistical methods and tools,
following state of the art recommendations [Bassham et al. 2010]. To achieve our goal, we used NIST’s
test suite [NIST 2017]. We generated one file containing 50MB of random bits per generator. These files
were used as input for the test suite tool STS [NIST 2017]. In the end, our generators passed the absolute
majority of tests and sub-tests: they failed only 2 sub-tests out of 188 (passed 146 out of 148 non-overlapping
template matching), as summarized in Table 1. This gives a very high level of confidence to our generators.

Test Result

Frequency ✓
Block Frequency ✓
Cumulative Sums (forward) ✓
Cumulative Sums (backward) ✓
Runs ✓
Longest Run of Ones ✓
Binary Matrix Rank ✓
Discrete Fourier Transform ✓
Non-overlapping Template Matching 146/148
Approximate Entropy ✓
Random Excursions 8/8
Random Excursions Variant 18/18
Serial (first) ✓
Serial (second) ✓
Linear Complexity ✓

Table 1. STS: results of the single tests

6.2 iDVV generators

In this section, we analyze the performance of our iDVV generator implementation, which is essential to
provide low latency and high throughput control plane communication at a low cost.

Key derivation functions (KDFs) are used to generate secure cryptographic keys, i.e., keys that can resist
to different types of attacks such as brute force and exhaustive key search attacks [Yao and Yin 2005].
KDFs have common design characteristics, such as strong hash functions to compute digests for the raw key
material.

A secure KDF can be defined as 𝐻𝑐(𝑝||𝑠||𝑐) [Yao and Yin 2005]. 𝐻 is a strong hash function such as
SHA256 or SHA512. The exponent 𝑐 represents the number of iterations used to make the task of the
attackers harder. A common value for 𝑐 is 216. This exponent is particularly necessary if the entropy of
the input 𝑝 (e.g., password, seed, key) is unknown. In practice, the input of the KDF is likely to be of
low-entropy [Yao and Yin 2005]. While in some use cases a high exponent 𝑐 might be necessary to increase
the cost of an attack trying to recover the key, it also significantly increases the cost of the key derivation
function for high performance latency-sensitive applications.

Differently from a traditional key derivation use case, our implementation of the iDVV generator in the
context of anchor uses high-entropy values. In other words, we do not need to recur to the exponent 𝑐

Manuscript submitted to ACM

24 Kreutz, D. et al

as a means to compensate a potentially low-entropy 𝑝. By using by default two 32 bytes indistinguishable-
from-random values in our iDVV generator, we make the task of an attacker very hard. It is also worth
mentioning that iDVVs are essentially used in an association basis, i.e., they have a relatively short lifetime.

Figure 3 shows the latency of the seven cryptographic primitives we used with an iDVV generator.
We tested each primitive by generating iDVVs of different sizes (16, 32, 64, and 128 bytes). The best
performance is achieved by the implementations based on SHA1 and MD5, as expected. However, these two
implementations have also the worst serial correlation coefficient, as shown in [Kreutz et al. 2017b]. The
iDVV generator using SHA512 or Poly-OTP has good performance, achieving a good security-performance
tradeoff.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

CRYPTO-H SHA512 SHA256 POLY-OTP SHA1 MD5

T
i
m
e

(
i
n

m
s
)

Latency to generate one iDVV

128B

64B

32B

16B

Fig. 3. Latency of different iDVV generators

6.3 Device-to-device communication performance

Connection establishment. While a TLS connection takes around 19 ms to be established, a device association
using the anchor takes less than 0.06 ms. In other words, our connection setup process outperforms the
TLS handshake because we have only half the number of steps, namely, we don’t incur the cost of exchanging
data to generate the session keys, and we use NaCl for secure and fast ciphering.

Communications overhead. Figure 4 shows the results of communication between OpenSSL, TCP, and
our proposal. For communication of up to 128 forwarding devices, sending 10k control messages each, our
solution requires (while offering stronger security guarantees - see below) only half of the resources and time
of an OpenSSL-based implementation using AES256-SHA, the most widely available cipher suite — adopted
by most IT providers.

In Figure 4, we can also observe the overhead of confidentiality (TCP-iDVV-EMAC). In comparison with
providing only authenticity and integrity (TCP-iDVV-MAC), confidentiality incurs in an overhead of 15%.
Out-of-band control channels are one example scenario where confidentiality of control plane communications
might not be always required.
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 25

It is worth emphasizing that we achieved these results by ensuring also much stronger security, as we
generated one iDVV (i.e., one secret) per packet. On the other hand, the OpenSSL-based implementation
used a single key (for the symmetric ciphering) for the entire communication session.

 0.1

 1

 10

 100

2 4 8 16 32 64 128

* *

A
c
c
u
m
u
l
a
t
e
d

l
a
t
e
n
c
y

(
s
)

Number of forwarding devices

TCP-ONLY

TCP-iDVV-MAC

TCP-iDVV-EMAC

OpenSSL-AES256

Fig. 4. Control plane communication costs

6.4 Traditional solutions 𝑣𝑒𝑟𝑠𝑢𝑠 anchor

In Table 2 we provide a summarised comparison between a traditional solution and our anchor. As traditional
solutions we considered the EJBCA (http://www.ejbca.org/) and OpenSSL, two popular implementations
of PKI and TLS, respectively. As we have shown before, our bootstrap process (device registration and
association) is much faster and our connection latency is also significantly lower. An interesting take away is
that our solution has nearly one order of magnitude less LOC and uses four times less external libraries and
only four programming languages. This makes a difference from a security and dependability perspective. For
instance, to formally prove more than 717k LOC (EJBCA + OpenSSL) is by itself a tremendous challenge.
And it gets considerably worse if we take into account eighty external libraries and eleven programming
languages.

In conclusion, our proposed architecture offers a functionally equivalent level of security (with respect to
security properties such as authenticity, integrity and confidentiality) to traditional alternatives by combining
NaCl, our anchor, and the iDVV mechanism. Additionally, our anchor offers a higher level of security by
providing post-compromise security (PCS) and post-quantum security (PQS). While the former is ensured
through post-compromise recovery (see Section 4.10), the latter is a consequence of using only symmetric
cryptography. Further, the lightweight nature of our mechanisms, such as the iDVV, make them amenable
to be used on a per message basis to secure communication, increasing cryptographic robustness. Moreover,
by having less LOC, we significantly reduce the threat surface.

Finally, it is worth emphasizing that the perfect forward secrecy (*) of traditional solutions, such as those
provided by the different implementations of TLS, is not easy or simple to enforce. First, in spite of TLS
providing ciphers that offer PFS, in practice, different cipher suites do not feature it [Sheffer et al. 2015].

Manuscript submitted to ACM

http://www.ejbca.org/

26 Kreutz, D. et al

This means that not all implementations and deployments of TLS offer PFS or provide it with very low
encryption grade [DigiCert Inc 2017; Huang et al. 2014; Namecheap.com 2015]. To give an example, widely
deployed web servers, such as Apache and Nginx, may suffer from weak PFS configuration [DigiCert Inc
2017]. Second, research results have recurrently shown that most DHE- and ECDHE-enabled servers use
weak DH parameters or practices that greatly reduce the protection afforded by PFS, such as private value
reuse, TLS session resumption, and TLS session tickets, i.e., provide a false sense of security [Adrian et al.
2015; Huang et al. 2014; Springall et al. 2016].

Table 2. Traditional solutions 𝑣𝑒𝑟𝑠𝑢𝑠 anchor

Functionality Traditional solutions AnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchor

Typical Software EJBCA (PKI) + OpenSSL (TLS) anchor + iDVV + NaCl

Device Identifica-
tion

based on certificates; costs = issue a certifi-
cate

based on unique IDs controlled by the anchor;
costs = register the device (assign a unique
ID)

Device Registration based on certificates; costs = certificate in-
stallation + security control policy/service

registration protocol; costs = register the de-
vice + iDVV bootstrap

Device Association
& KeyGen

12 step mutual handshake + DH for session
keys (incl. certificate validation - any two de-
vice can establish an association)

6 step trust establishment with anchor +
iDVVs per message, session, interval of time,
... (anchor has to authorize association)

Security Properties

Authenticity ✓ ✓

Integrity ✓ ✓

Confidentiality ✓ ✓

PFS ✓(*) ✓

PCS ✗ ✓

PQS ✗ ✓

Communications symmetric cryptography (cipher: AES256-
SHA)

symmetric cryptography (cipher: Salsa20)

TLS stack highly configurable and complex (717k LOC) easy to use, simple (85k LOC), and efficient

7 RELATED WORK IN SDN SECURITY

Most attacks to SDN exploit different vulnerabilities of the control plane, such as the lack of authentication,
authorization and other essential security properties (e.g., integrity, confidentiality and data freshness) [An-
tikainen et al. 2014; Kreutz et al. 2013; Scott-Hayward et al. 2016]. As a consequence, the absolute majority
of the works on security of SDN are related to the controller, applications, forwarding devices, or a set of
specific attacks (e.g. DDoS, IP and MAC spoofing, eavesdropping on the data plane) [Aseeri et al. 2017;
Porras et al. 2012; Scott-Hayward et al. 2013; Shin and Gu 2013; Shin et al. 2013, 2014; Wan et al. 2017].
However, not much attention has been paid to the security requirements of control plane associations and
communication between devices (see [Dacier et al. 2017; Kreutz et al. 2015; Scott-Hayward et al. 2016] for
broad surveys), one of the aspects we address in this paper.

TLS and IPSec are examples of protocols that can be used to secure the communication between
forwarding devices and controllers. While TLS is the one recommended by ONF, recent research discusses
the strengths and weaknesses of these protocols as a mean to provide authenticated and encrypted control
channels [Samociuk 2015]. While the of use these protocols gives important security properties, they have an
impact on control plane performance. Additionally, the complexity of existing software has been recurrently
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 27

pointed out as one of the main cause for a high number of reported vulnerabilities, that in many cases have
led to security attacks [Hoepman and Jacobs 2007; Markowsky 2013; McGraw 2004; Zhou and Jiang 2012].
By logically-centralizing crucial security mechanisms, our anchor removes complexity from both controllers
and switches, enhancing the robustness of the infrastructure, without significant compromise in performance.

Recently, the use of lightweight information hiding based authentication (by means of secrecy through
obscurity) has been proposed as one way of protecting SDN controllers from DoS attacks [Abdullaziz et al.
2016]. The idea is to use a specific field in the IP protocol to hide the switch authentication ID. In order for
the scheme to be workable, it is assumed that a look-up table and unique IDs are shared among devices
through existing key distribution protocols. While such lightweight technique can indeed be used to mitigate
DoS attacks, it does not address the security issues of control plane communications – such as authenticity,
integrity, confidentiality, and data freshness – we address here.

To our knowledge, an architectural approach as the one we propose here (which ultimately led to following
the SDN philosophy of “logical centralization”) was lacking. Importantly, this approach allowed us to gain a
global perspective of the relevant gaps in SDN and the limitations of existing solutions to the problem. This
first step gave insight into one of the most relevant problems of SDN (as noted by the ONF or MEF security
groups [MEF 2017; ONF 2017]): the security of the associations and communications between devices—
which jointly with the architecture itself, is one of the main contributions of our paper.

8 DISCUSSION

We briefly discuss how we filled the gaps identified in Section 3, with our specialization of the logically
centralized anchor architecture for ‘security’. Incidentally, we also show, in Appendix D, to which extent
these solutions cover ONF’s security requirements. We conclude the section with a critique of our choices
and results.

8.1 Meeting the challenges

Security 𝑣𝑠 performance? Control channels need to provide high performance (high throughput and low
latency) while keeping the communication secure. However, as it has been shown, security primitives have a
non-negligible impact on performance. To mitigate this problem, we selected the most appropriate crypto-
graphic primitives (SHA512) and libraries (NaCl) to ensure the security of control plane communications.
Additionally, the proposed integrated device verification values (iDVVs) allow systematic refreshing of crypto
material with high performance, while further improving cryptographic robustness. By logically centralizing
the fundamental aspects of these mechanisms in the anchor, the performance overhead introduced in
forwarding devices and controllers is limited, as they require only minimal functionality to ‘hook’ to the
anchor instructions.

Complexity 𝑣𝑠 robustness? Traditional implementations of SSL/TLS, such as OpenSSL, have a large,
complex code base, that recurrently leads to vulnerabilities been discovered. Similar problems are observed
in PKI subsystems. It is well know that an effective means to achieve robustness is by reducing complexity.
Hence our choice for the NaCl and iDVV mechanisms to help filling this gap, since they are respectively
lightweight (small code base), efficient, yet secure alternatives to OpenSSL-like implementations. As such,
they are a robust solution to provide authentication and authorisation material for the secure communications
protocols we propose. They are also amenable to verification mechanisms aimed to assure correctness, which

Manuscript submitted to ACM

28 Kreutz, D. et al

are much harder to employ in very large code bases. Again, the centralization of the nuclear parts of the
non-functional mechanisms introduced in our solution is the key to reduce complexity of networking devices,
improving their robustness.

Global security policies? We have argued that controllers and network devices often employ suboptimal
network authentication and secure communication mechanisms, despite recommendations from ONF and
other such organizations for the opposite. This problem is very similar in nature to the state of affairs
in networking before SDN. In traditional networks, enforcing relatively “simple” policies such as access
control rules [Casado et al. 2007] or traffic engineering mechanisms [Jain et al. 2013] was either very
hard or even impossible in practice. Given the current undesirable state of affairs, we believe the same
to be true to non-functional properties, with security as a prominent example. Our logically centralized
anchor architecture addresses this gap by providing a means for making centralized policy rules (e.g., about
registration, authentication and association of network devices) and the necessary mechanisms to enforce
them, permeating the SDN architecture in a global and coherent way.

Resilient roots-of-trust? We debated that there is a (probably reduced) number of functions which should
not be left to ad-hoc implementations, due to their criticality on system correctness. The list is not closed,
but we hope to have shown that strong sources of entropy, resilient indistinguishable-from-random number
generators, and accurate, non-forgeable global time services, are clear examples of difficult-to-get-right
mechanisms that benefit from such logically centralized approach. anchor addresses this issue, by providing
the motivation to design and verify careful and resilient once-and-for-all implementations of such root-of-trust
mechanisms, which can then be reinstantiated in different SDN deployments.

8.2 Devil’s advocate analysis

Doesn’t the logical centralization of non-functional properties create a single point of failure?
As mentioned in the introduction, we have a long-term strategy towards this problem. The results of this

paper already go a long way improving robustness of a single root-of-trust, compared to the state of the
art: lowering failure probability; mitigating and recovering from the consequences of failure. The logical
next step would be to try and prevent failures in the first place. However, the failure of a simplex system of
reasonable complexity cannot be prevented. Nevertheless, note that logical centralization is not necessarily
physical centralization.

Our plan for future work (and the way we drafted our architecture paved the way) is to leverage state-
of-the-art security and dependability mechanisms using replication. For instance, to achieve tolerance of
crash and Byzantine faults and attacks, we can readily enhance anchor by replication, taking advantage of
state machine replication libraries such as BFT-SMaRt [Bessani et al. 2014], replicating and diversifying
components to prevent failure of this logically central point, with the desired confidence. These concepts
have been applied to root-of-trust like configurations similar to anchor [Cachin and Samar 2004; Kreutz
et al. 2014; Zhou et al. 2002]. Furthermore, systems designed with state machine replication in mind can also
handle different types of threats, such as DoS and resource exhaustion, without compromising the operation
of the service [Kreutz et al. 2016].

Won’t the natural hardware evolution be by itself enough to reduce the penalty imposed by cryptographic
primitives? The recent reality seems to contradict this assertion – hardware evolution does not seem
enough, for several reasons. First, new hardware architectures can (potentially) benefit different existing
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 29

software-based solutions. For instance, both NaCl and OpenSSL take advantage of hardware-based AES
accelerators. Second, and as is well known, the fixed price of advancements in hardware seems to be coming
to an end [IEEE Spectrum 2015]. Third, most of the major IT companies, such as Google and Microsoft,
have been redesigning existing software to make it more usable, efficient, secure, and robust [Livshits et al.
2015]. In short, hardware will not be the panacea.

Aren’t traditional PKI and TLS implementations enough? Following what is becoming recurrently
advocated by many in the industry and in the security community, we have tried to argue that the simplicity
and size of software and IT infrastructure matters [Cisco 2014; Verizon 2015]. Higher complexity has been
shown to lead inevitably to an increased likelihood of bugs and security incidents in software. Indeed,
different implementations of PKI and TLS have been recently used as powerful “weapons” for cyber-attacks
and cyber-espionage [BOCEK 2015; PwC, CSO magazine and CERT/CMU 2014], leading to concerns
about their robustness. Contrary to what this argument may suggest, that does not mean PKI and TLS are
“broken”. We believe they remain fundamental to various IT infrastructures. However, as the main challenges
of securing SDN are usually relatively constrained to within a network domain, we have come to understand
that simpler, domain-specific solutions seem to be preferable in this environment when compared to complex
infrastructures such as the PKI, and large code bases as OpenSSL.

Wouldn’t the use of out-of-band control channels solve most problems? Out-of-band channels may be useful
in some contexts, but they are not “intrinsically” secure. It is a recurrent mistake to consider physical isolation,
per se, as a form of security. Several studies have indeed argued the opposite: that out-of-band channels
worsen the problem, by making control plane management more complex and less flexible, endangering
control plane communications [Edwards 2014; Manousakis and Ellinas 2015]. We do not take a stance in
this discussion, but the fact is that real incidents, such as NSA sniffing of Google’s cables between data
centers [Schneier 2015], seem clear examples that out-of-band channels are not, per se, enough.

9 CONCLUDING REMARKS

In this paper, we proposed a solution to the problem of enforcing non-functional properties in SDN, such
as security or dependability. Re-iterating the successful philosophy behind the inception of SDN itself,
we advocate the concept of logical centralization of SDN non-functional properties provision, which we
materialize in terms of the blueprint of an architectural framework, anchor.

Taking ‘security’ as a proof-of-concept use case, we have shown the effectiveness of our proposal. We
made a gap analysis of security in SDN, and populated the anchor middleware with crucial mechanisms
and services to fill those gaps and enhance the security of SDN.

We evaluated the architecture, especially focusing on the security-performance analysis tradeoff, giving
proofs of the algorithms, cryptographic robustness analyses, and experimental performance evaluations. By
resorting to recent primitives, lightweight albeit secure, like NaCl and iDVV, we outperform the most widely
used encryption of OpenSSL by 50%, with a higher level of security. Our solution also fulfills eleven of the
security requirements recommended by ONF.

The mechanisms we propose are certainly not the final answer to SDN security problems. That is not
our claim. We however believe, and hope to have justified in the paper, that an architecture that logically
centralizes the non-functional properties of an SDN to have the potential to address some of the most

Manuscript submitted to ACM

30 Kreutz, D. et al

prement unsolved problems regarding the robustness of the infrastructure. We thus hope our work to trigger
an important discussion on these fundamental architectural aspects of SDN.

REFERENCES
O. I. Abdullaziz, Y. J. Chen, and L. C. Wang. 2016. Lightweight Authentication Mechanism for Software Defined Network

Using Information Hiding. In 2016 IEEE Global Communications Conference (GLOBECOM). 1–6. https://doi.org/10.
1109/GLOCOM.2016.7841954

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM, New York, NY,
USA, 5–17. https://doi.org/10.1145/2810103.2813707

Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan, Muhammad Imran, and Sghaier Guizani. 2015.
Securing software defined networks: taxonomy, requirements, and open issues. IEEE Communications Magazine 53, 4
(2015), 36–44.

Martin R Albrecht, Davide Papini, Kenneth G Paterson, and Ricardo Villanueva-Polanco. 2015. Factoring 512-bit RSA
moduli for fun (and a profit of $9,000). (2015).

J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Barbara Vieira. 2013. Formal verification of side-channel
countermeasures using self-composition. Science of Computer Programming 78, 7 (2013), 796 – 812. https://doi.org/
10.1016/j.scico.2011.10.008 Special section on Formal Methods for Industrial Critical Systems (FMICS 2009 + FMICS
2010) & Special section on Object-Oriented Programming and Systems (OOPS 2009), a special track at the 24th ACM
Symposium on Applied Computing.

R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, and C. Cavazzoni. 2017. Comprehensive survey on
T-SDN: Software-defined Networking for Transport Networks. IEEE Communications Surveys Tutorials PP, 99 (2017),
1–1. https://doi.org/10.1109/COMST.2017.2715220

Markku Antikainen, Tuomas Aura, and Mikko SÃďrelÃď. 2014. Spook in Your Network: Attacking an SDN with a
Compromised OpenFlow Switch. In Secure IT Systems, Karin Bernsmed and Simone Fischer-HÃĳbner (Eds.). Springer
International Publishing, 229–244. https://doi.org/10.1007/978-3-319-11599-3_14

Cyril Arnaud and Pierre-Alain Fouque. 2013. Timing Attack against Protected RSA-CRT Implementation Used in PolarSSL.
In Topics in Cryptology - CT-RSA 2013, Ed Dawson (Ed.). Lecture Notes in Computer Science, Vol. 7779. Springer
Berlin Heidelberg, 18–33. https://doi.org/10.1007/978-3-642-36095-4_2

Ahmad Aseeri, Nuttapong Netjinda, and Rattikorn Hewett. 2017. Alleviating Eavesdropping Attacks in Software-defined
Networking Data Plane. In Proceedings of the 12th Annual Conference on Cyber and Information Security Research
(CISRC ’17). ACM, New York, NY, USA, Article 1, 8 pages. https://doi.org/10.1145/3064814.3064832

Lawrence E. Bassham, III, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E. Smid, Elaine B. Barker, Stefan D.
Leigh, Mark Levenson, Mark Vangel, David L. Banks, Nathanael Alan Heckert, James F. Dray, and San Vo. 2010.
SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. Technical Report. Gaithersburg, MD, United States.

Theophilus Benson, Aditya Akella, and David A. Maltz. 2010a. Network Traffic Characteristics of Data Centers in the Wild.
In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement (IMC ’10). ACM, New York, NY,
USA, 267–280. https://doi.org/10.1145/1879141.1879175

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2010b. Understanding Data Center Traffic Characteristics.
SIGCOMM Comput. Commun. Rev. 40, 1 (Jan. 2010), 92–99. https://doi.org/10.1145/1672308.1672325

Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor,
Pavlin Radoslavov, William Snow, et al. 2014. ONOS: towards an open, distributed SDN OS. In Proceedings of the third
workshop on Hot topics in software defined networking. ACM, 1–6.

DanielJ. Bernstein, Tanja Lange, and Peter Schwabe. 2012. The Security Impact of a New Cryptographic Library. In Progress
in Cryptology - LATINCRYPT 2012, Alejandro Hevia and Gregory Neven (Eds.). Lecture Notes in Computer Science,
Vol. 7533. Springer Berlin Heidelberg, 159–176. https://doi.org/10.1007/978-3-642-33481-8_9

Daniel J. Bernstein. 2009. Introduction to post-quantum cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–14.
https://doi.org/10.1007/978-3-540-88702-7_1

Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. 2016. Dual EC: a standardized back door. In The New
Codebreakers. Springer, 256–281.

Manuscript submitted to ACM

https://doi.org/10.1109/GLOCOM.2016.7841954
https://doi.org/10.1109/GLOCOM.2016.7841954
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1109/COMST.2017.2715220
https://doi.org/10.1007/978-3-319-11599-3_14
https://doi.org/10.1007/978-3-642-36095-4_2
https://doi.org/10.1145/3064814.3064832
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1672308.1672325
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-540-88702-7_1

ANCHOR: logically-centralized security for Software-Defined Networks 31

A. Bessani, J. Sousa, and E. E. P. Alchieri. 2014. State Machine Replication for the Masses with BFT-SMART. In
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 355–362. https:
//doi.org/10.1109/DSN.2014.43

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
Pierre-Yves Strub, and Jean Karim Zinzindohoue. 2015. A messy state of the union: Taming the composite state machines
of TLS. In 2015 IEEE Symposium on Security and Privacy. IEEE, 535–552.

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin
Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, et al. 2017. Everest: Towards a Verified, Drop-in Replacement of
HTTPS. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. 2013. Implementing
TLS with verified cryptographic security. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 445–459.

KEVIN BOCEK. 2015. Infographic: How an Attack by a Cyber-espionage Operator Bypassed Security Controls. (Jan. 2015).
https://www.venafi.com/blog/post/infographic-cyber-espionage-operator-bypassed-security-controls/

Fábio Botelho, Tulio A Ribeiro, Paulo Ferreira, Fernando MV Ramos, and Alysson Bessani. 2016. Design and Implementation
of a Consistent Data Store for a Distributed SDN Control Plane. In Dependable Computing Conference (EDCC), 2016
12th European. IEEE, 169–180.

BillyBob Brumley and Nicola Tuveri. 2011. Remote Timing Attacks Are Still Practical. In Computer Security - ESORICS
2011, Vijay Atluri and Claudia Diaz (Eds.). Lecture Notes in Computer Science, Vol. 6879. Springer Berlin Heidelberg,
355–371. https://doi.org/10.1007/978-3-642-23822-2_20

D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova. 2015. Network Security Challenges in Android Applications.
In 2015 10th International Conference on Availability, Reliability and Security. 327–332. https://doi.org/10.1109/ARES.
2015.59

C. Cachin and A. Samar. 2004. Secure distributed DNS. In International Conference on Dependable Systems and Networks,
2004. 423–432. https://doi.org/10.1109/DSN.2004.1311912

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker. 2007. Ethane: Taking
Control of the Enterprise. In Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM ’07).

Cisco. 2014. Annual Security Report. (2014). https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
Bob Cromwell. 2017. Massive Failures of Internet PKI. (2017). http://cromwell-intl.com/cybersecurity/pki-failures.html

http://cromwell-intl.com/cybersecurity/pki-failures.html.
M. C. Dacier, H. Konig, R. Cwalinski, F. Kargl, and S. Dietrich. 2017. Security Challenges and Opportunities of Software-

Defined Networking. IEEE Security Privacy 15, 2 (March 2017), 96–100. https://doi.org/10.1109/MSP.2017.46
Quynh Dang. 2010. Recommendation for Existing Application-Specific Key Derivation Functions. NIST Special Publication

800 (Dec 2010), 135. http://www.nist.gov/manuscript-publication-search.cfm?pub_id=907520
DigiCert Inc. 2017. Enabling Perfect Forward Secrecy. (2017). https://www.digicert.com/ssl-support/

ssl-enabling-perfect-forward-secrecy.htm https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm.
Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergniaud, and Daniel Wichs. 2013. Security Analysis

of Pseudo-random Number Generators with Input: /Dev/Random is Not Robust. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’13). ACM, New York, NY, USA, 647–658.
https://doi.org/10.1145/2508859.2516653

Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. 2016. Authenticated Network Time Synchronization. In 25th
USENIX Security Symposium (USENIX Security 16). USENIX Association, Austin, TX, 823–840. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/dowling

Chris Edwards. 2014. Researchers probe security through obscurity. Commun. ACM 57, 8 (2014), 11–13.
Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An Empirical Study of Cryptographic

Misuse in Android Applications. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’13). ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/2508859.2516693

Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. 2016. Attacking OpenSSL Implementation of ECDSA with a Few Signatures.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 1505–1515.

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. 2011. Cryptography engineering: design principles and practical
applications. John Wiley & Sons.

Google. 2017. Protocol Buffers. (2017). https://developers.google.com/protocol-buffers/
Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz,

Parveen Patel, and Sudipta Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. SIGCOMM Comput.
Commun. Rev. 39, 4 (Aug. 2009), 51–62. https://doi.org/10.1145/1594977.1592576

Manuscript submitted to ACM

https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://www.venafi.com/blog/post/infographic-cyber-espionage-operator-bypassed-security-controls/
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1109/ARES.2015.59
https://doi.org/10.1109/ARES.2015.59
https://doi.org/10.1109/DSN.2004.1311912
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://cromwell-intl.com/cybersecurity/pki-failures.html
http://cromwell-intl.com/cybersecurity/pki-failures.html
https://doi.org/10.1109/MSP.2017.46
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=907520
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://doi.org/10.1145/2508859.2516653
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dowling
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dowling
https://doi.org/10.1145/2508859.2516693
https://developers.google.com/protocol-buffers/
https://doi.org/10.1145/1594977.1592576

32 Kreutz, D. et al

Marcella Hastings, Joshua Fried, and Nadia Heninger. 2016. Weak Keys Remain Widespread in Network Devices. In
Proceedings of the 2016 ACM on Internet Measurement Conference. ACM, 49–63.

Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2012. Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices. In Proceedings of the 21st USENIX Conference on Security Symposium
(Security’12). USENIX Association, Berkeley, CA, USA, 35–35. http://dl.acm.org/citation.cfm?id=2362793.2362828

Brad Hill. 2013. Failures of Trust in the Online PKI Marketplace Cannot be Fixed by "Raising the Bar" on Certificate
Authority Security. (2013). http://csrc.nist.gov/groups/ST/ca-workshop-2013/cfp-submissions/hill_failures_to_trust.pdf

Jaap-Henk Hoepman and Bart Jacobs. 2007. Increased Security Through Open Source. Commun. ACM 50, 1 (Jan. 2007),
79–83. https://doi.org/10.1145/1188913.1188921

L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson. 2014. An Experimental Study of TLS Forward Secrecy Deployments.
IEEE Internet Computing 18, 6 (Nov 2014), 43–51. https://doi.org/10.1109/MIC.2014.86

IEEE Spectrum. 2015. SPECIAL REPORT: 50 YEARS OF Moore’s LAW. (2015). http://spectrum.ieee.org/static/
special-report-50-years-of-moores-law

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: experience with a globally-
deployed software defined wan. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM (SIGCOMM

’13). ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/2486001.2486019
Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. 2015. Ravana: Controller Fault-tolerance in Software-

defined Networking. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’15).

Z. K. Khattak, M. Awais, and A. Iqbal. 2014. Performance evaluation of OpenDaylight SDN controller. In 2014 20th IEEE
International Conference on Parallel and Distributed Systems (ICPADS). 671–676. https://doi.org/10.1109/PADSW.
2014.7097868

Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. 2013. Predictability of Android OpenSSL’s Pseudo Random Number
Generator. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security (CCS

’13). ACM, New York, NY, USA, 659–668. https://doi.org/10.1145/2508859.2516706
Timo Kiravuo, Mikko Sarela, and Jukka Manner. 2013. A survey of ethernet lan security. IEEE Communications Surveys &

Tutorials 15, 3 (2013), 1477–1491.
Rowan Kloti, Vasileios Kotronis, and Paul Smith. 2013. Openflow: A security analysis. In Network Protocols (ICNP), 2013

21st IEEE International Conference on. IEEE, 1–6.
D. Kreutz, A. Bessani, E. Feitosa, and H. Cunha. 2014. Towards Secure and Dependable Authentication and Authorization

Infrastructures. In 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing. 43–52. https:
//doi.org/10.1109/PRDC.2014.14

Diego Kreutz, Oleksandr Malichevskyy, Eduardo Feitosa, Hugo Cunha, Rodrigo da Rosa Righi, and Douglas D.J. de Macedo.
2016. A cyber-resilient architecture for critical security services. Journal of Network and Computer Applications 63
(2016), 173 – 189. https://doi.org/10.1016/j.jnca.2015.09.014

D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig. 2015. Software-Defined
Networking: A Comprehensive Survey. Proc. IEEE 103, 1 (Jan 2015), 14–76. https://doi.org/10.1109/JPROC.2014.2371999

Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. 2013. Towards Secure and Dependable Software-defined Networks.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN

’13). ACM, New York, NY, USA, 55–60. https://doi.org/10.1145/2491185.2491199
D. Kreutz, J. Yu, P. Esteves-Verissimo, C. Magalhaes, and F. M. V. Ramos. 2017a. The KISS principle in Software-Defined

Networking: a framework for secure communications. IEEE Security & Privacy (2017). Accepted for publication.
D. Kreutz, J. Yu, P. Esteves-Verissimo, C. Magalhaes, and F. M. V. Ramos. 2017b. The KISS principle in Software-Defined

Networking: An architecture for Keeping It Simple and Secure. ArXiv e-prints (Nov. 2017). arXiv:cs.NI/1702.04294
Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z.

Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto.
Commun. ACM 58, 2 (Jan. 2015), 44–46. https://doi.org/10.1145/2644805

D. Mahu, V. Dumitrel, and F. Pop. 2015. Secure Entropy Gatherer. In 2015 20th International Conference on Control
Systems and Computer Science. 185–190. https://doi.org/10.1109/CSCS.2015.74

Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg. 2015. Attacking the Network Time Protocol. IACR
Cryptology ePrint Archive 2015 (2015), 1020.

Konstantinos Manousakis and Georgios Ellinas. 2015. Attack-aware planning of transparent optical networks. Optical
Switching and Networking 0 (2015), –. https://doi.org/10.1016/j.osn.2015.03.005

G. Markowsky. 2013. Was the 2006 Debian SSL Debacle a system accident?. In 2013 IEEE 7th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Vol. 02. 624–629. https://doi.org/10.1109/

Manuscript submitted to ACM

http://dl.acm.org/citation.cfm?id=2362793.2362828
http://csrc.nist.gov/groups/ST/ca-workshop-2013/cfp-submissions/hill_failures_to_trust.pdf
https://doi.org/10.1145/1188913.1188921
https://doi.org/10.1109/MIC.2014.86
http://spectrum.ieee.org/static/special-report-50-years-of-moores-law
http://spectrum.ieee.org/static/special-report-50-years-of-moores-law
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1109/PADSW.2014.7097868
https://doi.org/10.1109/PADSW.2014.7097868
https://doi.org/10.1145/2508859.2516706
https://doi.org/10.1109/PRDC.2014.14
https://doi.org/10.1109/PRDC.2014.14
https://doi.org/10.1016/j.jnca.2015.09.014
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/2491185.2491199
http://arxiv.org/abs/cs.NI/1702.04294
https://doi.org/10.1145/2644805
https://doi.org/10.1109/CSCS.2015.74
https://doi.org/10.1016/j.osn.2015.03.005
https://doi.org/10.1109/IDAACS.2013.6663000
https://doi.org/10.1109/IDAACS.2013.6663000

ANCHOR: logically-centralized security for Software-Defined Networks 33

IDAACS.2013.6663000
G. McGraw. 2004. Software security. IEEE Security Privacy 2, 2 (Mar 2004), 80–83. https://doi.org/10.1109/MSECP.2004.

1281254
MEF. 2017. MEF. (2017). https://www.mef.net/
Michael Mimoso. 2016. GPG PATCHES 18-YEAR-OLD LIBGCRYPT RNG BUG. (2016). https://threatpost.com/

gpg-patches-18-year-old-libgcrypt-rng-bug/119984/
Namecheap.com. 2015. Cipher Suites Configuration (and forcing Perfect Forward Se-

crecy). (2015). https://www.namecheap.com/support/knowledgebase/article.aspx/9601/
/cipher-suites-configuration-and-forcing-perfect-forward-secrecy https://www.namecheap.com/support/knowledgebase/
article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy.

David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Maurizio Munafo, Konstantina
Papagiannaki, , and Peter Steenkiste. 2014. The Cost of the "S" in HTTPS. In Proceedings of the Tenth ACM Conference
on Emerging Networking Experiments and Technologies (CoNEXT ’14). ACM, New York, NY, USA, 7.

Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Authentication in Large Networks of Computers.
Commun. ACM 21, 12 (Dec. 1978).

NIST. 2017. NIST Statistical Test Suite. (2017). http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
ONF. 2014. OpenFlow Switch Specification (Version 1.5.0). (Dec. 2014). https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
ONF. 2015. Principles and Practices for Securing Software-Defined Networks. Technical Report. Open Networking

Foundation. https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_
and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf ONF TR-511.

ONF. 2017. Open Networking Foundation. (2017). https://www.opennetworking.org/
OpenSSL.org. 2016. OpenSSL Security Advisory [10 Nov 2016]. (Nov. 2016). https://www.openssl.org/news/secadv/20161110.

txt
Dave Otway and Owen Rees. 1987. Efficient and Timely Mutual Authentication. SIGOPS Oper. Syst. Rev. 21, 1 (Jan.

1987).
Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E. Culler. 2002. SPINS: Security Protocols for Sensor

Networks. Wirel. Netw. 8, 5 (Sept. 2002), 521–534. https://doi.org/10.1023/A:1016598314198
Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei Gu. 2012. A security enforcement

kernel for OpenFlow networks. In HotSDN. ACM, 6. https://doi.org/10.1145/2342441.2342466
PwC, CSO magazine and CERT/CMU. 2014. US cybercrime: Rising risks, reduced readiness. Technical Report. PwC. 21

pages. http://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Johanna Amann, and Phillipa

Gill. 2017. Studying TLS Usage in Android Apps. In Proceedings of the 13th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’17). ACM, New York, NY, USA, 7.

Francisco Javier Ros and Pedro Miguel Ruiz. 2014. Five nines of southbound reliability in software-defined networks. In
Proceedings of the third workshop on Hot topics in software defined networking. ACM, 31–36.

Dominik Samociuk. 2015. Secure communication between OpenFlow switches and controllers. AFIN 2015 (2015), 39.
Bruce Schneier. 2012. Lousy Random Numbers Cause Insecure Public Keys. (Feb 2012). https://www.schneier.com/blog/

archives/2012/02/lousy_random_nu.html
Bruce Schneier. 2015. Data and Goliath: The hidden battles to collect your data and control your world. WW Norton &

Company.
J. Schonwalder and V. Marinov. 2011. On the Impact of Security Protocols on the Performance of SNMP. Network and

Service Management, IEEE Transactions on 8, 1 (March 2011), 52–64. https://doi.org/10.1109/TNSM.2011.012111.00011
S. Scott-Hayward, S. Natarajan, and S. Sezer. 2016. A Survey of Security in Software Defined Networks. IEEE Communications

Surveys Tutorials 18, 1 (Firstquarter 2016), 623–654. https://doi.org/10.1109/COMST.2015.2453114
S. Scott-Hayward, G. O’Callaghan, and S. Sezer. 2013. SDN Security: A Survey. In Future Networks and Services (SDN4FNS),

2013 IEEE SDN for. 1–7. https://doi.org/10.1109/SDN4FNS.2013.6702553
Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan Smeliansky. 2013. Advanced Study of

SDN/OpenFlow Controllers. In Proceedings of the 9th Central and Eastern European Software Engineering Conference
in Russia (CEE-SECR ’13). ACM, New York, NY, USA, Article 1, 6 pages. https://doi.org/10.1145/2556610.2556621

Y. Sheffer, R. Holz, and P. Saint-Andre. 2015. Recommendations for Secure Use of Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS). RFC 7525. (May 2015). https://tools.ietf.org/html/rfc7525

C. Shen, E. Nahum, H. Schulzrinne, and C. P. Wright. 2012. The Impact of TLS on SIP Server Performance: Measurement
and Modeling. Networking, IEEE/ACM Transactions on 20, 4 (Aug 2012), 1217–1230. https://doi.org/10.1109/TNET.
2011.2180922

Manuscript submitted to ACM

https://doi.org/10.1109/IDAACS.2013.6663000
https://doi.org/10.1109/IDAACS.2013.6663000
https://doi.org/10.1109/MSECP.2004.1281254
https://doi.org/10.1109/MSECP.2004.1281254
https://www.mef.net/
https://threatpost.com/gpg-patches-18-year-old-libgcrypt-rng-bug/119984/
https://threatpost.com/gpg-patches-18-year-old-libgcrypt-rng-bug/119984/
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/
https://www.openssl.org/news/secadv/20161110.txt
https://www.openssl.org/news/secadv/20161110.txt
https://doi.org/10.1023/A:1016598314198
https://doi.org/10.1145/2342441.2342466
http://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
https://www.schneier.com/blog/archives/2012/02/lousy_random_nu.html
https://www.schneier.com/blog/archives/2012/02/lousy_random_nu.html
https://doi.org/10.1109/TNSM.2011.012111.00011
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://doi.org/10.1145/2556610.2556621
https://tools.ietf.org/html/rfc7525
https://doi.org/10.1109/TNET.2011.2180922
https://doi.org/10.1109/TNET.2011.2180922

34 Kreutz, D. et al

Seungwon Shin and Guofei Gu. 2013. Attacking Software-defined Networks: A First Feasibility Study. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN ’13). ACM, New York,
NY, USA, 165–166. https://doi.org/10.1145/2491185.2491220

Seugwon Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and Mabry Tyson. 2013. FRESCO: Modular
Composable Security Services for Software-Defined Networks. In Internet Society NDSS.

Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip Porras, Vinod Yegneswaran, Jisung
Noh, and Brent Byunghoon Kang. 2014. Rosemary: A Robust, Secure, and High-performance Network Operating System.
In Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS). To appear.

Drew Springall, Zakir Durumeric, and J. Alex Halderman. 2016. Measuring the Security Harm of TLS Crypto Shortcuts.
In Proceedings of the 2016 Internet Measurement Conference (IMC ’16). ACM, New York, NY, USA, 33–47. https:
//doi.org/10.1145/2987443.2987480

Philip B. Stark. 2017. Don’t Bet on your Random Number Generator. (Mar 2017). https://github.com/pbstark/pseudorandom/
blob/master/prngLux17.ipynb

Harlan Stenn. 2015. Securing Network Time Protocol. Commun. ACM 58, 2 (Jan. 2015), 48–51. https://doi.org/10.1145/
2697397

Apostol Vassilev and Timothy A. Hall. 2014. The Importance of Entropy to Information Security. Computer 47, 2 (2014),
78–81. https://doi.org/10.1109/MC.2014.47

Verizon. 2015. 2015 Data Breach Investigations Report. Technical Report. Verizon. http://www.verizonenterprise.com/
DBIR/2015/

T. Wan, A. Abdou, and P. C. van Oorschot. 2017. A Framework and Comparative Analysis of Control Plane Security of
SDN and Conventional Networks. ArXiv e-prints (March 2017). arXiv:cs.NI/1703.06992

Huangxin Wang, Quan Jia, Dan Fleck, Walter Powell, Fei Li, and Angelos Stavrou. 2014. A moving target DDoS defense
mechanism. Computer Communications 46, 0 (2014), 10 – 21. https://doi.org/10.1016/j.comcom.2014.03.009

Dan Williams and Ricardo Koller. 2016. Unikernel monitors: extending minimalism outside of the box. In 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16). USENIX Association.

FrancesF. Yao and YiqunLisa Yin. 2005. Design and Analysis of Password-Based Key Derivation Functions. In Topics
in Cryptology - CT-RSA 2005, Alfred Menezes (Ed.). Lecture Notes in Computer Science, Vol. 3376. Springer Berlin
Heidelberg, 245–261. https://doi.org/10.1007/978-3-540-30574-3_17

Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache Side-channel
Attack. IACR Cryptology ePrint Archive 2014 (2014), 140.

Jiangshan Yu, Mark Ryan, and Cas Cremers. 2017a. DECIM: Detecting Endpoint Compromise In Messaging. Cryptology
ePrint Archive, Report 2015/486. (2017). http://eprint.iacr.org/2015/486.

Jiangshan Yu, Mark Ryan, and Cas Cremers. 2017b. DECIM: Detecting Endpoint Compromise In Messaging. IEEE Trans.
Information Forensics and Security (2017).

Jiangshan Yu and Mark Dermot Ryan. 2015. Device Attacker Models: Fact and Fiction. In Security Protocols XXIII - 23rd
International Workshop, Cambridge, UK, March 31 - April 2, 2015, Revised Selected Papers. 158–167.

KIM ZETTER. 2015. Researchers Solve Juniper Backdoor Mystery; Signs Point to NSA. (Dec 2015). https://www.wired.
com/2015/12/researchers-solve-the-juniper-mystery-and-they-say-its-partially-the-nsas-fault/

Y. Zhao, L. Iannone, and M. Riguidel. 2015. On the performance of SDN controllers: A reality check. In 2015 IEEE
Conference on Network Function Virtualization and Software Defined Network (NFV-SDN). 79–85. https://doi.org/10.
1109/NFV-SDN.2015.7387410

Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. 2002. COCA: A Secure Distributed Online Certification Authority.
ACM Trans. Comput. Syst. 20, 4 (Nov. 2002), 329–368. https://doi.org/10.1145/571637.571638

Y. Zhou and X. Jiang. 2012. Dissecting Android Malware: Characterization and Evolution. In 2012 IEEE Symposium on
Security and Privacy. 95–109. https://doi.org/10.1109/SP.2012.16

Manuscript submitted to ACM

https://doi.org/10.1145/2491185.2491220
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/2987443.2987480
https://github.com/pbstark/pseudorandom/blob/master/prngLux17.ipynb
https://github.com/pbstark/pseudorandom/blob/master/prngLux17.ipynb
https://doi.org/10.1145/2697397
https://doi.org/10.1145/2697397
https://doi.org/10.1109/MC.2014.47
http://www.verizonenterprise.com/DBIR/2015/
http://www.verizonenterprise.com/DBIR/2015/
http://arxiv.org/abs/cs.NI/1703.06992
https://doi.org/10.1016/j.comcom.2014.03.009
https://doi.org/10.1007/978-3-540-30574-3_17
http://eprint.iacr.org/2015/486
https://www.wired.com/2015/12/researchers-solve-the-juniper-mystery-and-they-say-its-partially-the-nsas-fault/
https://www.wired.com/2015/12/researchers-solve-the-juniper-mystery-and-they-say-its-partially-the-nsas-fault/
https://doi.org/10.1109/NFV-SDN.2015.7387410
https://doi.org/10.1109/NFV-SDN.2015.7387410
https://doi.org/10.1145/571637.571638
https://doi.org/10.1109/SP.2012.16

ANCHOR: logically-centralized security for Software-Defined Networks 35

A CORRECTNESS OF ALGORITHM 1

Correctness. We argue about the properties of Algorithm 1, as a source of strong entropy.

Lemma 1. If the initial values of rand_bytes() and H(data) are indistinguishable from random, then the
resulting initial external entropy (e_entropy - line 2) is indistinguishable from random. Then, the initial
internal entropy (i_entropy - line 3) will be also indistinguishable from random.

Proof: Assuming that rand_bytes() uses one of the strongest pools of entropy of an operating system, such
as /dev/urandom, the outcome of this function call will be indistinguishable from random. Assuming that
H is a cryptographically strong hashing function, the output of H(data) will be indistinguishable from
random for every different input data. Consequently, the XOR operation between rand_bytes() and H(data)
will result in an indistinguishable-from-random initial e_entropy. Following, the XOR operation between
rand_bytes() and e_entropy will result in an indistinguishable-from-random initial i_entropy. In other
words, both internal and external entropy are initialized with indistinguishable-from-random values. □

Lemma 2. If 𝑃𝑖, 𝑃𝑗 , and i_entropy are indistinguishable from random, then the updated external entropy
(e_entropy - line 5) will be indistinguishable from random.

Proof: As discussed before, the pools of entropy 𝑃𝑖 and 𝑃𝑗 contain unpredictable events of external sources
of entropy, such as network traffic and idleness of links. Thus, assuming that H is a cryptographically strong
hashing function, then the output of H(𝑃𝑖||𝑃𝑗) will be indistinguishable from random. Lemma 1 shows that the
internal entropy (𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦) is indistinguishable from random. In consequence, the updated external entropy
(𝑒_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 - line 5), which is the output of an XOR operation between two indistinguishable-from-random
values, will be indistinguishable from random. □

Lemma 3. If the initial value of rand_bytes() is indistinguishable from random, then the resulting internal
entropy (i_entropy - line 7) is indistinguishable from random.

Proof: The proof of Lemma 1 establishes that the output of 𝑟𝑎𝑛𝑑_𝑏𝑦𝑡𝑒𝑠 is indistinguishable from random.
Additionally, 𝐸_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is an internal counter not known by external entities. Therefore, assuming that H
is a cryptographically strong hashing function, then 𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 output by H(𝑟𝑎𝑛𝑑_𝑏𝑦𝑡𝑒𝑠||𝐸_𝑐𝑜𝑢𝑛𝑡𝑒𝑟) will
be indistinguishable from random. □

Theorem 1. If e_entropy and i_entropy are indistinguishable from random, then the resulting entropy
returned by entropy_get (line 8) will be indistinguishable from random.

Proof: Lemmata 1 and 2 show that the initial and updated external entropy are indistinguishable from
random. Lemma 3 has shown that the internal entropy generated in line 7 is indeed indistinguishable from
random. As a consequence, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦, as the output of an XOR operation between 𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 and 𝑒_𝑒𝑛𝑡𝑟𝑜𝑝𝑦

(line 8) will be indistinguishable from random. This proves that Algorithm 1 satisfies property Strong
Entropy. □

B CORRECTNESS OF ALGORITHM 2

Correctness. We argue about the properties of Algorithm 2, as a source of indistinguishable-from-random
pseudo-random values.

Manuscript submitted to ACM

36 Kreutz, D. et al

Lemma 4. If entropy_get() returns an indistinguishable-from-random value, then the initial 𝑠𝑒𝑒𝑑 (line 2),
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (line 3) and pseudo random value (𝑛𝑝𝑟𝑑 - line 4) will be indistinguishable from random.

Proof: Theorem 1 establishes that the output of 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑔𝑒𝑡 is indistinguishable from random. Thus, both
the 𝑠𝑒𝑒𝑑 and the first 𝑛𝑝𝑟𝑑 will be indistinguishable from random. Similarly, the function 𝑙𝑜𝑛𝑔_𝑢𝑖𝑛𝑡 (using
as input 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑔𝑒𝑡 - line 3), which, on most architectures, uses 64 bits to represent an unsigned long int,
will return the value 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, indistinguishable from random. □

Lemma 5. If entropy_get() returns a value indistinguishable from random, then the refreshed PRG
internal state (lines 6-8) will lead to indistinguishable from random values for 𝑠𝑒𝑒𝑑, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and 𝑛𝑝𝑟𝑑.

Proof: The proof follows the same argumentation of the proof of Lemma 4, for 𝑠𝑒𝑒𝑑 and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟. As for
𝑛𝑝𝑟𝑑, assuming that neither the seed or counter are known outside the PRG, and assuming that H is a
cryptographically strong hashing function, then the output of H, having as input a concatenation of the new
𝑠𝑒𝑒𝑑, current 𝑛𝑝𝑟𝑑, and new 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, will be indistinguishable from random. □

Theorem 2. If seed and nprd are indistinguishable-from-random values, then the next nprd returned by
PRG_next (line 12) will be indistinguishable from random.

Proof: Lemmata 4 and 5 established that both the 𝑠𝑒𝑒𝑑 and 𝑛𝑝𝑟𝑑 are always indistinguishable from random,
since the initial state. Assuming that HMAC is a cryptographically strong message authentication code
primitive, and that the counter is not known outside of the PRG, then the output of HMAC, keyed by
𝑠𝑒𝑒𝑑 and having as input a concatenation of 𝑛𝑝𝑟𝑑 and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, will be indistinguishable from random. This
proves that Algorithm 2 satisfies property Robust PRG. □

C CORRECTNESS OF ALGORITHM 4

Correctness. We now formalize and prove the properties of Algorithm 4.
As a result of the registration process, anchor keeps lists of registered devices and controllers, and lists

of the controllers each device is authorized to associate with.

Proposition 1. Any device F can only associate to a controller C authorized by the anchor.

Proof: Forwarding devices will be able to associate only to controllers listed in the CList(F) provided by
A (step 2 of Algorithm 4), since if F tries to associate with a non-authorized controller (for F), A will
not proceed past step 4 after being contacted by that controller, aborting the association. On the other
hand, a rogue controller posing to F as authorised in reply to step 3, cannot jump to step 6 and invent an
association key 𝐴𝑖𝐷 that convinces F, since it does not know 𝑥𝑓 . This proves that Algorithm 4 satisfies
property Controller Authorization. □

Proposition 2. Any device F can associate to some controller, only if F is authorized by the anchor.

Proof: Only if a device F is legitimate, i.e. it is in the list of registered devices, will it be able to associate
to some registered controller. A will not proceed past step 1 of Algorithm 4 after being contacted by a
rogue device, aborting the association. On the other hand, a rogue device posing to C as legitimate and
authorised in step 3, will make C proceed with step 4, indeed, but the request will be rejected by A, since
𝐸𝐹 is not recognisable by A, corresponding to no shared key with a legitimate device. The replay of an old
Manuscript submitted to ACM

ANCHOR: logically-centralized security for Software-Defined Networks 37

(but legitimate) encrypted 𝐸𝐹 request in step 3 will also fail, since it is bound to the (current) nonces. This
proves that Algorithm 4 satisfies property Device Authorization. □

Proposition 3. At the end of Algorithm 4 execution, the association ID (𝐴𝑖𝐷) is only known to F and
C.

Proof: A creates 𝐴𝑖𝐷 in step 5, and forgets about it after sending it to C (see Section 4.7). 𝐴𝑖𝐷 is sent from
A to C, encrypted both by 𝐾𝑒𝐴𝐹 and 𝐾𝑒𝐴𝐶 , keys shared by A only with F and C respectively. C trusts
it came from A, due to the HMAC, so the two encrypted blocks should contain the same 𝐴𝑖𝐷 value, and
sends the 𝐴𝑖𝐷 under 𝐾𝑒𝐴𝐹 encryption to F. So, at the end of the execution of the algorithm, both F and
C, and only them, hold 𝐴𝑖𝐷. This proves that Algorithm 4 satisfies property Association ID Secrecy. □

Proposition 4. At the end of Algorithm 4 execution, the seed (𝑆𝐸𝐸𝐷) is only known to F and C.

Proof: C creates 𝑆𝐸𝐸𝐷 in step 7. 𝑆𝐸𝐸𝐷 is sent from C to F, encrypted by 𝐾𝐴𝑖𝐷, association key known
only to C and F, as per Proposition 3. C trusts that F, and only F, has the same 𝑆𝐸𝐸𝐷 sent, when it
receives back from F the XOR of 𝑆𝐸𝐸𝐷 with the current nonce 𝑥𝑔 encrypted with 𝐴𝑖𝐷, since (as per
Proposition 3) only F could have opened the encryption of 𝑆𝐸𝐸𝐷 with 𝐴𝑖𝐷 in the first place, and encrypt
the reply. This proves that Algorithm 4 satisfies property Seed Secrecy. □

D ONF’S SECURITY REQUIREMENTS

Several security requirements should be fulfilled in control plane communications. Most of these requirements
are enumerated in ONF’s best practice recommendations [ONF 2015]. In this appendix we go through the
eleven (out of twenty four) such requirements that are addressed by the anchor, iDVV and NaCl.

Both communicating devices should be authenticated (REQ 4.1.1). Using our anchor, all devices have to
be properly registered and authenticated before proceeding any other operation.

Operations (e.g., association) of components should be authorized (REQ 4.1.2). The anchor needs to
explicitly authorize associations between any two devices. Each association has a unique identification.

Devices should agree upon the security (e.g., key materials) associations (REQ 4.1.3). By using the
anchor and its mechanisms, such as the source of strong entropy, we ensure strong key materials. The
iDVV mechanism is initialized by the two communicating devices once the association has been authorized
by the anchor.

Integrity of packets should be ensured (REQ 4.1.4). We provide integrity and authenticity of packets
through message authentication codes. By default, we generate one iDVV per packet, providing stronger
security.

Each device should have a unique ID and other devices should be able to verify the identity (REQ 4.2.1).
Devices are uniquely identified by the anchor. The unique IDs are associated to the devices as soon as they
are registered within the anchor.

Issues related to the lifecycle of IDs should be managed, such as generation, distribution, maintenance,
and revocation (REQ 4.2.2). The anchor provides the services required for managing device IDs. IDs are
assigned to devices during the registration phase. Revocation can be done by network administrators at any
time.

Manuscript submitted to ACM

38 Kreutz, D. et al

Devices should be able to verify the integrity of each message (REQ 4.4.4). Any two communicating
devices are able to verify the integrity of each message through message authentication codes.

Amplification effects should be taken into account, i.e., attackers should not be able to perform reflection
attacks (REQ 4.4.5). We use requests and replies of the same size between devices and the anchor, which
avoids reflection attacks.

Automated key/credential management should be implemented by default, allowing generation, distribution,
and revocation of security credentials (REQ 4.8.3). We have in place automated mechanisms for refreshing
credentials, such as refresh the iDVV’s seed using the anchor’s source of strong entropy.

Data confidentiality, integrity, freshness and authenticity are ensured by the integrated device verification
value. iDVVs are used to encrypt data and generate message authentication codes. Additionally, iDVVs can
also be used as nonces, ensuring data freshness.

Availability is ensured by recommending multiple controllers to the forwarding devices. This is one of the
essential tasks of the anchor.

Lastly, it is also worth mentioning that whilst we do not meet all security requirements of ONF’s guidelines,
we do meet the fundamental ones with regard to security. For instance, requirements such as REQ 4.4.2,
REQ 4.4.3, REQ 4.7.1, REQ 4.7.2, and REQ 4.7.3 [ONF 2015] are not yet covered by our architecture and
protocols. However, most of these requirements are related to rate control of messages, additional signaling
messages for dealing with future network attack types, and accountability and traceability. Such kind of
requirements can be added (in the future) without impairing our conceptual architecture. In fact, some of
these requirements, such as rate control of messages, are technical, rather than conceptual, which can be
addressed with the right amount of engineering.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 The anchor Architecture
	3 Challenges and requirements for security
	3.1 Security vs performance
	3.2 Complexity vs robustness
	3.3 Global security policies
	3.4 Resilient roots-of-trust

	4 Logically-centralized security
	4.1 Hardening anchor
	4.2 A source of strong entropy
	4.3 Pseudorandom generator (PRG)
	4.4 Integrated device verification value
	4.5 System roles and setup
	4.6 Device registration
	4.7 Device association
	4.8 Controller recommendation
	4.9 Device-to-device communication
	4.10 Post-compromise recovery

	5 Design and Implementation
	5.1 A source of strong entropy
	5.2 Pseudorandom generator (PRG)
	5.3 iDVV generators

	6 Evaluation
	6.1 Source of entropy and PRGs
	6.2 iDVV generators
	6.3 Device-to-device communication performance
	6.4 Traditional solutions versus anchor

	7 Related Work in SDN security
	8 Discussion
	8.1 Meeting the challenges
	8.2 Devil's advocate analysis

	9 Concluding remarks
	References
	A Correctness of Algorithm 1
	B Correctness of Algorithm 2
	C Correctness of Algorithm 4
	D ONF's security requirements

