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ABSTRACT
�e Knowledge graph (KG) uses the triples to describe the facts
in the real world. It has been widely used in intelligent analysis
and applications. However, possible noises and con�icts are in-
evitably introduced in the process of constructing. And the KG
based tasks or applications assume that the knowledge in the KG is
completely correct and inevitably bring about potential deviations.
In this paper, we establish a knowledge graph triple trustworthiness
measurement model that quantify their semantic correctness and
the true degree of the facts expressed. �e model is a crisscross-
ing neural network structure. It synthesizes the internal semantic
information in the triples and the global inference information of
the KG to achieve the trustworthiness measurement and fusion in
the three levels of entity level, relationship level, and KG global
level. We analyzed the validity of the model output con�dence
values, and conducted experiments in the real-world dataset FB15K
(from Freebase) for the knowledge graph error detection task. �e
experimental results showed that compared with other models, our
model achieved signi�cant and consistent improvements.
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1 INTRODUCTION
A knowledge graph (KG), aims to describe the various entities or
concepts and their relationships existing in the objective world [44],
which lays the foundation for the knowledge-based organization
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and intelligent application in the Internet age with its powerful
semantic processing capabilities and open organization capabilities.
It has a�racted increasing a�ention in academic and industrial
circles. It usually stores knowledge in the form of triples (head
entity, relationship, tail entity), which can be simpli�ed to (h, r , t).

�e construction of the preliminary KG has mainly relied on man-
ual annotation or expert supervision [8, 35]. �is way is extremely
labor-intensive and time-consuming, and can no longer meet the
speed of updating and growth of the real-world knowledge [8].
�erefore, an increasing number of researchers are commi�ed to
productively extracting information directly from unstructured
web text, such as ORE [2, 9, 19], NELL [7], and to automatically
constructing large-scale knowledge graphs, such as Freebase [3],
DBpedia [1], and Wikidata1. However, some noises and errors are
inevitably introduced in the process of automation. References [23]
and [14] verify the existence and problems of errors in the KG. Exist-
ing knowledge-driven learning tasks or applications [11, 13, 22, 27],
assume knowledge in the existing KG is completely correct and
therefore bring about potential errors [28, 43].

For a piece of knowledge in a KG, especially from a professional
�eld, it is di�cult to clearly determine whether it is true when
it is not tested in practice or is not strictly and mathematically
proven. �erefore, we introduce the concept of KG triple trustwor-
thiness, which indicates the degree of certainty that the knowledge
expressed by the triple is true. It’s value is set to be within the in-
terval [0, 1]. �e closer the value is to 0, the greater the probability
that the triple is in error. Based on this, we can �nd possible errors
in the existing KG and improve knowledge quality in the KG.

�ere are intricate relationships among the entities in the KG,
the same relationship can occur between di�erent entities, and mul-
tiple relationships can associate with the same entity at the same
time. It is a challenge to study how to use appropriate methods
to evaluate the trustworthiness for a knowledge triple. We pro-
pose a knowledge graph triple trustworthiness measurement model
(KGTtm), which is a crisscrossed neural network-based structure.
We measure the trustworthy probability from multiple levels, in-
cluding the entity level (correlation strength between an entity pair),
the relationship level (translation invariance of relation vectors),
and the KG global level (inference proof of triple related reachable
paths). Corresponding to di�erent levels, we generate three essen-
tial questions and focus on solving them by designing three kinds
of Estimators. Next, a comprehensive triple con�dence value is
output through a Fusioner.

�e main contributions of this work include: (1) We propose a
knowledge graph triple trustworthiness measurement method that
makes comprehensive use of the triple semantic information and

1h�ps://www.wikidata.org/wiki/Wikidata
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Figure 1: �e triple trustworthinessmeasurementmodel for
KG.

globally inferring information. We can achieve three levels of mea-
surement and an integration of con�dence value at the entity level,
relationship level, and the knowledge graph global level. (2) We
empirically verify the e�ectiveness of the triple trustworthiness on
benchmark data created from a real-world, large-scale KG Freebase.
Experimental results show that the error or noise instances are
assigned low con�dence values, meanwhile, high trustworthiness
for true triples. (3) �e trustworthiness calculated by the KGTtm
could be utilized in knowledge graph construction or improvement.
We evaluate the model on the knowledge graph error detection
task. Experimental results show that the KGTtm can e�ectively
detect the error triples and achieve promising performances.

2 RELATEDWORK
�e concept of Trustworthiness has been applied to knowledge
graph related tasks to some extent. Reference [43] proposed a triple
con�dence awareness knowledge representation learning frame-
work, which improved the knowledge representation e�ect. �ere
were three kinds of triple credibility calculation methods using
the internal structure information of the KG. �is method used
only the information provided by the relationship, ignoring the
related entities. �e NELL [7] constantly iterated the extracting
template and kept learning new knowledge. It used heuristics to
assign con�dence values to candidate relations and continuously
updated the values through the process of learning. �is method
was relatively simple but lacked semantic considerations. Dong
et al. [8] constructed a probabilistic knowledge base (Knowledge
Vault), where the reliable probability of a triple was a fusion of
some estimators. Several extractors provided a reliability value;
meanwhile, a probability could be computed by many prior models
which were ��ed with existing knowledge repositories in Freebase.
�is method was tailored for their knowledge base construction and
did not have good generalization capabilities. Li et al. [22] used the
neural network method to embed the words in ConceptNet and pro-
vide con�dence scores to unseen tuples to complete the knowledge
base. �is method considered only the triples themselves, ignoring
the global information provided by the knowledge base. �e above
models used the trustworthiness to solve various speci�c tasks. It
shows that the triple trustworthiness is important for applications

and research. However, there is a lack of systematic research on
the knowledge triple trustworthiness calculation method at present.
Our work is devoted to this basic research and proposes a uni�ed
measurement model that could facilitate a variety of tasks.

In this work, we verify the e�ect of the triple trustworthiness on
the knowledge graph error detection task. �e Knowledge graph
error detection task is dedicated to identifying whether a triple in
the KG is in error. �e existence of noise and errors in the KG is un-
avoidable. �erefore, error detection is especially important for KG
construction and application. �e error detection can actually be re-
garded as a special case of the trustworthiness measurement, which
is divided into two kinds of Boolean value types: “true (trusted)”
and “error (untrusted)”. Traditional methods [7, 14, 16, 21] were
still based on manual detection, and the cost was considerable.
Recently, some people have begun to study automatic KG error
detection methods [8, 23, 31, 36]. In particular, embedding-based
methods [5, 22, 39] have gained a signi�cant amount of a�ention.
we can e�ciently measure the semantic correlations of entities and
relations in the vector space. Whether two entities have a poten-
tial relationship could be predicted by matrix-vector operations of
their corresponding embeddings. �ey have good e�ciency and
prospect. Furthermore, the Knowledge representation learning
(KRL) technology is used to project the entities and relations in
the KG into a dense, real-valued and low-dimensional semantic
embeddings. �e main methods include TransE [5], TransH [42],
TransR [25], TransD [18], PTransE [24], ComplEx [40] and others.

3 THE TRIPLE TRUSTWORTHINESS
MEASUREMENT MODEL

�e triple trustworthiness measurement (KGTtm) Model for knowl-
edge graph is presented based on a crisscrossing neural network
structure, as shown in �gure 1. Longitudinally, it can be divided
into two levels. �e upper is a pool of multiple trustworthiness
estimate cells (Estimator). �e output of these Estimators forms the
input of the lower-level fusion device (Fusioner). �e Fusioner is a
Multi-layer perceptron to generate the �nal trustworthiness value
for each triple. Viewed laterally, for a given triplet (h, r , t), we con-
sider the triple trustworthiness from three progressive levels and
correspondingly answer three hierarchical questions. 1) Is there a
possible relationship between entity pairs (h, t)? 2) Can a certain
relationship r occur between entity pairs (h, t)? 3) From a global
perspective, can other relevant triples in the KG infer that the triple
is trustworthy? For answering these questions we designed three
kinds of Estimators, as described below.

3.1 Is there a possible relationship between the
entity pairs?

We use the association strength between a given entity pair (h, t) to
measure the likelihood of an undetermined relationship occurring
between the pair. If a pair of entities has heavily weak relevance, it
seems to be hopeless that there is a relationship between the entity
pairs. �e trustworthiness of the triples formed by the entity pair
will be greatly compromised. As shown in �gure 2, there are dense
edges (relationships) from node (entity) A to node E, that is, there
is a high association strength about (A,E). We can easily guess that
there is a relationship between entity pair (A,E). However, it is
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Figure 2: �e graph of resource alloca-
tion in the ResourceRank algorithm.
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Figure 4: �e inference instances for
triple trustworthiness.

impossible to reach F from G following the directed edges. We can
also guess that there is no a relationship between (G, F ).

We propose an algorithm named ResourceRank, to character-
ize the association strength between an entity pair according to the
idea of Resource allocation [24, 26, 43, 46]. �e algorithm assumes
that the association between entity pairs (h, t) will be stronger, and
more resource is passed from the head h through all associated
paths to the tail t in a graph. �e amount of resource aggregated
into t ingeniously indicates the association strength from h to t .

�e ResourceRank algorithm mainly includes three steps: 1) Con-
structing a directed graph centered on the head entityh. 2) Iterating
the �ow of resources in the graph until it converges and calculates
the resource retention value of the tail entity t . 3) Synthesizing
other features and output the likelihood of (h, ?, t).

Speci�c details are described below: Each entity is abstracted
into a node. If there is a relationship from the entities e1 to e2, a
directed edge will exist from node e1 to e2. �erefore, the KG can
be mapped as a directed graph. �is graph is weakly connected,
but starting from h each node in the graph can be reached. In the
initial state, the resource amount of h is 1, others is 0, and the sum
of all nodes is always 1. If a node does not exist in the graph, then
its resource is always 0. Moreover, there may be multiple relations
between an entity pair (e1, e2) but only one directed edge from e1 to
e2 in the graph. Depending on the number of these relations, each
edge will have a di�erent bandwidth. �e larger the bandwidth is,
the more resource �ows through the edge.

�e resource owned by node h will �ow through all associated
paths to each other nodes in the entire graph. We simulate the
�ow of resource �owing until distribution steady based on the
PageRank [6, 33] algorithm. �e value of the resource on the tail
entity is R (t | h), it is calculated as follows:

R (t | h) = (1 − θ )
∑

ei ∈Mt

R (ei | h) · BWei t

OD (ei )
+
θ

N
. (1)

Where, Mt is the set of all nodes that have outgoing links to the
node t , OD (ei ) is the out-degree of the node ei and the BWei t is
the bandwidth from the ei to t . �us, for each node ei in Mt , the
resource transferred from ei to t should be R(ei |h)·BWei t

OD(ei ) . Because
the KG noises, the graph is imperfect. And there may be closed
loops a�ecting the resources �owing. In order to improve the model
fault-tolerance, we assume that the resource �ow from each node
may directly jump to a random node with the same probability θ .
�is part of resource that �ows to t randomly is 1

N , and N is the
total number of nodes.

Di�erent states of nodes in the graph re�ect information of
entity. Considering the following six characteristics: 1) R (t | h); 2)
In-degree of head node ID(h); 3) Out-degree of head node OD(h);
4) In-degree of tail node ID(t); 5) Out-degree of tail node OD(t);
6)�e depth from head node to tail node Dep, we can construct a
feature vector V . A�er being activating, the vector is transformed
into a probability value as RR (h, t), indicating the likelihood that
there may be one or more relationships between the head entity h
and the tail entity t . �is transformation is:{

u = α (W1V + b1)
RR (h, t) =W2u + b2

(2)

Here, α is a nonlinear activation function,Wi and bi are parameter
matrices that can be trained during model training. �e RR (h, t)
is within the range [0, 1]. �e closer it is to 1, the more likely it
is that there is a relationship between h and t , which answer the
questions shown in the title in the entity layer.

3.2 Can the determined relationship r occur
between the entity pair (h, t) ?

�e above Estimator can only measure the likelihood that one
undetermined relationship occurring between the entity pair, but
not what kind of relationship. We next calculate the possibility
of such a relation r occurring between the entity pair (h, t) by the
Translation-based energy function (TEF) algorithm.

Inspired by the translation invariance phenomenon in the word
embedding space [29, 30], the relationship in the KG is regarded
as a certain translation between entities; that is, the relational
vector r is as the translating operations between the head entity
embedding h and the tail entity embedding t [5]. As illustrated
in �gure 3, in the vector space, the same relational vector can be
mapped to the same plane and freely translated in the plane to
remain unchanged. �e triples (BinLaden, Religion, Islam) and
(Obama, Religion, Protestantism) should be all correct. However,
according to translational invariance of relation vectors, (BinLaden,
Religion, Protestantism) must be wrong. �erefore, An trustworthy
triple (h, r , t), should satisfy h+r ≈ t. �e energy function is de�ned
as E(h, r , t) = ‖h + r − t‖. �e higher the degree of �t between h, r ,
and t , the smaller the value of E(h, r , t) will be. We believe that the
smaller the E(h, r , t) value is, the probability that the relationship r
is established between the entity pair (h, t) will be greater, and the
trustworthiness of (h, r , t) will be be�er, and vice versa.

�e TEF algorithm operates as follows: Firstly, knowledge repre-
sentation learning technology is used to implement a low-dimensional
distributed representation for entities or relations, and we compute



E(h, r , t) for each triple. �en, a modi�ed sigmoid function is used
to convert E(h, r , t) into the probability that the entity pair (h, t)
constitutes the relationship r . �e conversion formula is as follows:

P(E(h, r , t)) = 1
1 + e−λ(δr−E(h,r,t ))

(3)

Here, δr is a threshold related to the relationship r . When E(h, r , t)
= δr , the probability value P is 0.5. If E(h, r , t) ¡ δr , then P ¿ 0.5. �e
λ is a hyperparameter used for smoothing and can be adjusted dy-
namically along with the model training. �e P(E(h, r , t)) answers
the second question in the relation layer.

3.3 Can the relevant triples in the KG infer
that the triple is trustworthy?

Inspired by “social identity” theory [17, 41], we make an metaphor:
regarding the KG as a social group, where each triple is an indi-
vidual. �e degree of acknowledgements from other individuals to
the targeted individual (target triple) re�ects whether the targeted
individual can properly integrate into the society (i.e., the KG). We
believe that only a true triple can achieve popular recognition. Vice
versa, if a triple is well accepted, we tend to believe that it is trust-
worthiness. �erefore, the answer is yes to the question in the title.
How to infer the credibility of the target triple by evaluating the
acknowledgements of the relevant triples in the KG?

We design a Reachable paths inference (RPI) algorithm to
meet it. �ere are many substantial multi-step paths from head
entities to tail entities, which indicate the semantic relevance and
the complex inference pa�erns among triples [34]. �ese reachable
paths will be important evidences for judging the triple trustworthi-
ness. For example, as shown in �gure 4, there are multiple reachable
paths between entity pairs “Bin Laden” and “Saudi Arabia”. Ac-

cording to the path “Bin Laden
BornInCity
→ Riyadh

CityOf Country
→

Saudi Arabia”, we can �rmly infer the fact triple (Bin Laden, Nation-
ality, Saudi Arabia). In addition, we suppose there is a pseudo-triple
(Bin Laden, Religion, Christianity) in the KG. �e related paths will
be very few and illogical, and we should doubt the credibility of
this tuple. In contrast, we can �nd the correct triple (Bin Laden,
Religion, Islam) because it gets good acknowledgements depend-
ing on multiple reachable paths. To exploit the reachable paths
for inferring triple trustworthiness, we need to address two key
challenges:

3.3.1 Reachable Paths Selection. In a large-scale KG, the num-
ber of reachable paths associated with a triple may be enormous.
It is consuming to weigh all the paths. meanwhile, not all paths
are meaningful and reliable. For example, the path “Bin Laden
DeathInPlace→ Pakistan

DiplomaticCountry
→ Saudi Arabia” provided

only scarce evidence to reason about the credibility of the triple
(Bin Laden, Nationality, Saudi Arabia). �erefore, it is necessary to
choose the most e�cient reachable paths to use. Previous works
believed that the paths that led to lots of possible tail entities
were mostly unreliable for the entity pair. �ey proposed a path-
constraint resource allocation algorithm to select relation paths [24,
43]. Such a method ignored the semantic information of the paths.
However, we �nd that the reliability of the reachable path is actu-
ally a consideration of the semantic relevance of the path with the

target triple. �erefore, we propose a Semantic distance-based
path selection algorithm, which is described as Algorithm 1.

3.3.2 Reachable Paths Representation. A�er the paths are se-
lected, it is necessary to map each path to a low-dimensional vector
for subsequent calculations. �e previous methods [24, 43] merely
considered the relations in the paths. Here, we consider whole
triple in the paths, including not only relations but also the head,
tail entities, since the entities can also provide signi�cant seman-
tic information. �e embeddings of the three elements of each
triple are concatenated as a unit s . �erefore, a path is transformed
into an ordered sequence S =

{
s1, s2, ..., sn

}
. We use the recurrent

neural networks (RNNs) [15], which are good at capturing tem-
poral semantics of a sequence, to learn the semantic information
contained in the path. �e RNN layer encodes st by considering
forward information from s1 to st . We use the output vector ht of
the last time to represent the semantic information of each path.
We stitch the output ht of theTopK paths together to form a vector.
�e vector is nonlinear transformed (using the method in eq(2).)
into a recognition value as RP((h, r , t)) , indicating the recognition
degree that the relevant triples in the KG infer the target triple
being credible.

Algorithm 1 Reachable Paths Selecting Algorithm
Require:

�e knowledge graph (KG); A given target triple (h, r , t).
Ensure:

Multiple reachable paths most relevant to target triple.
1: Search the reachable paths from h to t in the KG and store in

P(h,r,t ) =
{
p1, ...,pn

}
;

2: For each pi =
{
(h, l1, e1), (e1, l2, e2), ..., (en−1, ln , t)

}
, calculate

1) the semantic distance between the r and all relations in pi ,
as, SD(pi (l), r ) = 1

n
∑
lj ∈pi (l )

r ·lj
‖r ‖‖lj ‖ ;

2) the semantic distance between the t and all head entities in
pi , as, SD(pi (e), t) = 1

n
∑
ej ∈pi (e)

t ·ej
‖t ‖‖ej ‖ ;

3) the semantic distance between the h and all tail entities in
pi , as, SD(pi (e),h) = 1

n
∑
ej ∈pi (e)

h ·ej
‖h ‖‖ej ‖ ;

3: Calculate the average distance
¯SD(pi ) = 1

3 (SD(pi (e), t) + SD(pi (l), r ) + SD(pi (e),h));
4: Select �rst TopK paths with the highest ¯SD(pi ) scores.
5: Return

{
pi | 1 6 i 6 TopK , Sort( ¯SD(pi ),descend)

}

3.4 Fusing the Estimators
We designed a Fusioner based on a multi-layer perceptron [12]
to output the �nal triples trustworthiness values. A simple way
to combine the above Estimators is to splice their outputs into a
feature vector f (s) for each triple s = (h, r , t) and,

f (s) =
[
RR(h, t),p(E(s)),RP(s)

]
(4)

�e vector f (s) will be inpu�ed into the Fusioner and transformed
passing multiple hidden layers. �e output layer is a binary classi�er
by assigning a label of y = 1 to true tuples and a label of y = 0 to
fake ones. A nonlinear activation function (logistic sigmoid) is used



to calculate p(y = 1| f (s)) as,{
hi = σ (Whi f (s) + bhi )

p(y = 1 | f (s)) = φ(Woh + bo )
(5)

Where hi is the ith hidden layer, Whi and bhi are the parameter
matrices to be learned in the ith hidden layer, andWo and bo are
the parameter matrices of the output layer.

4 EXPERIMENTS
4.1 Experimental Settings
We focus on Freebase [4], which is one of the most popular real-
world large-scale knowledge graphs, and we perform our experi-
ments on the FB15K [5], which is a typical benchmark knowledge
graph extracted from Freebase. As for the FB15K, there are 1,345 re-
lations and 14,951 entities and the corresponding 592,213 triples. We
use all of the 592,213 triples to construct graphs which are described
in Section 3.1. Each head entity is the core of a graph, so we can
construct 14,951 graphs. �ese graphs are used for ResourceRank
algorithm and Reachable paths inference algorithm.

�ere are no explicit labelled errors in the FB15K. Considering
the experience that most errors in real-world KGs derive from the
misunderstanding between similar entities, we use the methods
described in [43] to generate fake triples as negative examples auto-
matically where the picked entity should once appear at the same
position. For example, (Newton, Nationality, American) is a poten-
tial negative example rather than the obvious irrational (Newton,
Nationality, Google), given a true triple (Newton, Nationality, Eng-
land), as England and American are more common as the tails of
Nationality. We assure that the number of negative examples is
equal to that of positive examples. In a random but quantitatively
balanced manner, one of the three kinds of fake triples may be con-
structed for each true triple: one by replacing head entity, one by
replacing relationship, and one by replacing tail entity. We assign
a label of 1 to positive examples and 0 to negative examples. �ere-
fore, we build a corpus for our experiments which contains double
592,213 triples. It is separated for training (double 483,142 triples),
valid (double 50,000 triples), and testing (double 59,071 triples)

We implement the neural network using the Keras library23.
�e dimension of the entity and relation embeddings is 100. �e
batch size is �xed to 50. We use early stopping [10] based on the
performance on the validation set. �e number of RNN units is 100.
Parameter optimization is performed with the Adam optimizer [20],
and the initial learning rate is 0.001. In addition, to mitigate over-
��ing, we apply the dropout method [38] to regularize our model.

In addition, there are some adjustable parameters during the
model training. θ is the probability that the resource �ow from a
node directly jumps to a random node. According to the value in
the PageRank algorithm [6, 33], we set θ = 0.15. We set K = 4
and TopK = 3. If the two parameters are set too large, the con-
sumption of model training will be greatly increased. If they are
set too small, the related algorithm will be a�ected. �us this is the
trade-o� a�er repeated a�empts. �e relation-speci�c threshold δr
can be searched via maximizing the classi�cation accuracy on the
validation triples, which belong to the relation r .

2h�ps://github.com/keras-team/keras
3�e code can be obtained from h�ps://github.com/TJUNLP/TTMF.
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Figure 5: (a) �e scatter plot of the triple con�dence values
distribution. (b) �e various value cures of precision and re-
call with the triple con�dence values.

4.2 Interpreting the Validity of the Trustworth-
iness

To verify whether the triple trustworthiness outputs from KGTtm
is valid, we do the following analysis on the test set.

We display the triple con�dence values in a centralized coor-
dinate system, as shown in �gure 5(a). �e le� area shows the
distribution of the values of the negative examples, while the right
area shows that of the positive examples. It can be seen that the
con�dence values of the positive examples are mainly concentrated
in the upper region (¿ 0.5)4. In contrast, the values of the negative
examples are mainly concentrated in the lower region (¡ 0.5). It is
consistent with the natural law of judging triple trustworthiness,
proving that the triple con�dence values output from our model
are meaningful.

In addition, by dynamically se�ing the threshold for the triple
con�dence values (only if the value of a triple is higher than the
threshold can it be considered trustworthy.), we can measure the
curves of the precision and recall of the output, as shown in �g-
ure 5(b). As the threshold increases, the precision continues to
increase, and the recall continues to decrease. When the threshold
is adjusted within the interval [0, 0.5], there is no obvious change in
the recall, and it remains at a high level. However, if the threshold
is adjusted within the interval [0.5, 1] , the recall tends to decline.
In particular, the closer the threshold is to 1, the greater the decline
rate will be. �ese show that the positive examples universally
have higher con�dence values (¿ 0.5). Moreover, the precision has
remained at a relatively high level, even when the threshold is set
to a small value, which indicates that our model can identify the
negative instances well and assign them a small con�dence value.

4.3 Comparing With Other Models on�e
Knowledge Graph Error Detection Task

�e Knowledge graph error detection task is to detect possible er-
rors in the KG according to their triple trustworthy scores. Exactly,
it aims to predict whether a triple is correct or not, which could be
viewed as a triple classi�cation task [37].

We give several evaluation results. (1) �e accuracy of classi�ca-
tion. �e decision strategy for classi�cation is that if the con�dence

4�e output-layer of our model is a binary classi�er, and the con�dence value of a
triple is the probability that the triple is predicted as label=1, therefore we choose a
threshold of 0.5.



Table 1: Evaluation results on the Knowledge graph error detection.

Models MLP Bilinear TransE TransH TransD TransR PTransE Ours TransE Ours PTransE Ours TransH
Accuracy 0.833 0.861 0.868 0.912 0.913 0.902 0.941 0.977 0.978 0.981
F1-score 0.846 0.869 0.876 0.913 0.913 0.904 0.942 0.975 0.979 0.982

Table 2: Evaluation results of the three type noises.

Models (h, r , ?) (h, ?, t) (?, r , t)
Recall �ality Recall �ality Recall �ality

MLP 0.970 0.791 0.912 0.735 0.978 0.844
Bilinear 0.936 0.828 0.904 0.807 0.973 0.907
TransE 0.960 0.796 0.927 0.759 0.959 0.786
TransH 0.935 0.826 0.927 0.811 0.955 0.850
TransD 0.942 0.838 0.909 0.804 0.954 0.853
TransR 0.964 0.872 0.921 0.829 0.972 0.868
PTransE 0.944 0.841 0.973 0.888 0.957 0.863
Ours 0.987 0.943 0.977 0.923 0.994 0.959

Table 3: Evaluation results of each single estimator on the
Knowledge graph error detection.

Models TEF(TransE) ResourceRank RPI KGTtm
Accuracy 0.868 0.811 0.881 0.977

value of a testing triple (h, r , t) is below the threshold 0.5, it is
predicted as negative, otherwise, it is positive. (2) �e maximum
F1-score when the given threshold is at [0, 1].

As shown in table 1, our model has be�er results in terms of
accuracy and the F1-score than the other models. �e Bilinear
model [22] [32] [45] and Multi layer perceptron (MLP) model [8] [22]
have been widely applied to the KG related tasks. �ey can cal-
culate a score for the validity of triples through operations, such
as tensor decomposition and nonlinear transformation. Here we
convert the scores to the con�dence values using the sigmoid func-
tion. Compared with the Bilinear and MLP models, our model
shows improvements of more than 10% in the two evaluation in-
dicators. We use the TEF algorithm (as illustrated in Section 3.2)
to transform the output of the embedding-based models of TransE,
TransH, TransD, TransR, and PTransE into triple con�dence val-
ues. �ese embedding-based models are be�er than the traditional
method, but their results are a�ected by the quality of the embed-
dings. In comparison, our model does not rely on word embeddings.
We introduce di�erent embeddings into our model, as shown by
Ours TransE, Ours TransH, and Ours PTransE, which have very
subtle e�ects. Since our model makes full use of the internal seman-
tic information of the triple and the global inference information of
the knowledge graph, it is more robust to achieve the three-level
measure of trustworthiness.

4.4 Analyzing the ability of models to tackle
the three type noises.

�ree types of errors or noises are generated by replacing the head
entity, tail entity, or relation in the triples. We measure the ability
of the models to recall positive cases from candidate triples doped
with a large number of noises.

We select only true triples (positive examples) in test set and
divide them into three categories: all pairs of head and relation
(h, r , ?), all pairs of head and tail (h, ?, t), and all pairs of tail and
relation (?, r , t). �en complement all empty positions with the
objects in entity set or relationship set. In this way, for a certain pair
of head and relation or a pair of tail and relation, 14,951 candidate
triples can be constructed respectively. Similarly, for a pair of head
and tail entities, 1,345 candidate triples can be generated. As for
a complemented triple (h, r , t), we calculate its con�dence value.
When the value is higher than the threshold (¿ 0.5), we judge it to be
correct. Two evaluation metrics are conducted as: (1) �e recall of
true triples in the test set (Recall). (2) �e average trustworthiness
values across each set of true triples (�ality) [22].

By analyzing the results in table 2, we �nd that our model
achieves a higher recall on the three types of test sets compared to
other models, it shows that our model can more accurately �nd the
right from noisy triples. �e average trustworthiness values of our
model is higher than that of others, which show that our model can
be�er identify the correct instances and with high con�dence val-
ues. In addition, our model achieves the best results on the (?, r , t)
set, but the worst among the (h, ?, t) set. It can be found that the
output of almost all models satis�es this phenomenon. It is di�cult
to judge the relation types of an entity pair, because there may be
various relations between a certain entity pair, which increases the
di�culty of model judgment.

4.5 Analyzing the E�ects of Single Estimators
To measure the e�ect of single Estimators, we separate each Esti-
mator as an independent model to calculate the con�dence values
for triples. �e results in the knowledge graph error detection are
shown in table 3. It can be found that the accuracy obtained by each
model is above 0.8, which proves the e�ectiveness of each Estimator.
Among them, the Reachable paths inference (RPI) based method
achieves be�er results than the other two Estimators. A�er combin-
ing all the Estimators, the accuracy obtained by the global model
(KGTtm) has been greatly improved, which shows that our model
has good �exibility and scalability. It can well integrate multiple
aspects of information to obtain a more reasonable trustworthiness.

It is worth emphasizing that our model is �exible and easy to
extend. �e newly added estimators can train their parameters
together with the model frame. In addition, the con�dence value
generated by a single estimator can be extended to the feature
vector f (s) straightly.



5 CONCLUSION
In this paper, to eliminate the deviation caused by the errors in
the KG to the knowledge-driven learning tasks or applications,
we establish a knowledge graph triple trustworthiness measure-
ment model (KGTtm) to detect and eliminate errors in the KG. �e
KGTtm is a crisscrossing neural network structure, it evaluates the
trustworthiness of the triples from three perspectives and syntheti-
cally uses the triple semantic information and the global inference
information of the knowledge graph. Experiments were conducted
on the popular knowledge graph Freebase. �e experimental re-
sults con�rmed the capabilities of our model. In the future, we will
explore adding more estimators to the model to further improve
the e�ectiveness of the trustworthiness. We will also try to apply
the trustworthiness to more knowledge-based applications.
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