
Understanding Conditional Compilation Through Integrated
Representation of Variability and Source Code

David Baum
Christina Sixtus
Lisa Vogelsberg

Ulrich Eisenecker
david.baum@uni-leipzig.de

wir13dvx@studserv.uni-leipzig.de
ges11eso@studserv.uni-leipzig.de
eisenecker@wifa.uni-leipzig.de

Leipzig University
Leipzig, Germany

ABSTRACT
�e C preprocessor (CPP) is a standard tool for introducing variabil-
ity into source programs and is o�en applied either implicitly or
explicitly for implementing a So�ware Product Line (SPL). Despite
its practical relevance, CPP has many drawbacks. Because of that
it is very di�cult to understand the variability implemented using
CPP. To facilitate this task we provide an innovative analytics tool
which bridges the gap between feature models as more abstract
representations of variability and its concrete implementation with
the means of CPP. It allows to interactively explore the entities of a
source program with respect to the variability realized by condi-
tional compilation. �us, it simpli�es tracing and understanding
the e�ect of enabling or disabling feature �ags.

CCS CONCEPTS
•Human-centered computing→Visual analytics; Information
visualization; •So�ware and its engineering→ Maintaining so�-
ware;

KEYWORDS
conditional compilation, variablity, so�ware visualization, visual
analytics, Getaviz, preprocessor, so�ware prodect line

ACM Reference format:
David Baum, Christina Sixtus, Lisa Vogelsberg, and Ulrich Eisenecker. 2019.
Understanding Conditional Compilation �rough Integrated Representation
of Variability and Source Code. In Proceedings of 23rd International Systems
and So�ware Product Line Conference, Paris, France, 9–13 September, 2019
(SPLC’19), 4 pages.
DOI: 10.1145/3307630.3342387

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’19, Paris, France
© 2019 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/3307630.3342387

1 INTRODUCTION
Conditional compilation is a way of introducing variability to C
source code immediately before compile time. �e CPP can be used
to include or exclude source code components, which change the
structure and behavior of the resulting program. O�en Boolean
feature �ags are used to design complete SPLs. �e complexity
created by the numerous variants is challenging. Although fea-
ture models help to describe the variability, they are of limited
use when working with the source code directly, e.g., during bug
�xing. In general, bugs that lead to unwanted runtime behavior are
o�en more di�cult to detect and to �x than compile time errors.
�is applies even more if a bug only occurs under certain feature
con�gurations. For this reason, the developer needs support for
answering the following questions, that appear regularly during
development: Q1: What e�ect does the activation of a feature have
on the structure of a program? Q2: Which elements are contained
in the source code given a certain feature con�guration? With these
questions in mind we developed an interactive analytics tool that
provides the following functionality:

(1) It provides an overview over the structure of the system,
i.e., all functions, global variables, and complex types that
can be part of any variant.

(2) �e user can de�ne a set of �ags and explore the structure
of the resulting variant. �is includes method calls, read
and write operations, as well as the original C code.

(3) �e analysis runs fully automated without any manual
preparation steps.

A demo is available online1. Additionally, the usage of the tool is
demonstrated in a screencast2. We �rst examine how existing tools
support the presented use case, followed by a presentation of our
tool. We will address several design choices, including variability
extraction, and the visualizations the user interface is based on. A
small application scenario based on the online demo is presented
in chapter 5. Finally, we will discuss our previous experiences with
the tool and future development.

1h�p://so�vis.wifa.uni-leipzig.de/splc2019
2h�p://so�vis.wifa.uni-leipzig.de/splc2019screencast

ar
X

iv
:1

90
8.

08
37

5v
1 

 [
cs

.S
E

] 
 2

0 
A

ug
 2

01
9

http://softvis.wifa.uni-leipzig.de/splc2019
http://softvis.wifa.uni-leipzig.de/splc2019screencast


SPLC’19, 9–13 September, 2019, Paris, France David Baum, Christina Sixtus, Lisa Vogelsberg, and Ulrich Eisenecker

2 RELATEDWORK
Most work on SPLs and variability either focuses on automatic
checks at compile time or provides abstract models without a direct
connection to the source code. In the area of C code refactoring
numerous works can be found, that take preprocessor statements
into account [4, 7, 15, 22, 25]. Feature models are o�en used to
prepare the extracted information. Badros and Notkin have wri�en
a tool that analyzes unpreprocessed C source code with simple
scripts [1]. �e SPL community o�ers a number of tools for visual-
ization and for be�er understanding variability points and variants.
For example, two Eclipse plugins visualize feature models and per-
form type checking of preprocessor code [17, 23]. With the help of
Meta Programming System (MPS) di�erent views for editing and
understanding SPL source code can be provided to developers [5].
Other tools generally support the development of SPLs without the
need for speci�c focus on C source code. Feigenspan et al. have
developed an Eclipse plugin that enables highlighting of feature
code [6]. Nestor et al. have created visualizations for the con�gura-
tion of SPLs [20], but they do not provide a direct connection to the
source code. �e Feature Relation Graph presents possible feature
combinations depending on a selected feature [16]. Illescas et al. as
well as Urli et al. show di�erent visualization models for feature
combinations but without a connection to the source code [9, 24].
Many works are based on the same extraction tools such as Feature-
CoPP [12], SuperC [8], TypeChef [10], and Yacfe [21]. We are not
aware of any tool that supports the presented use case satisfactorily.
In the area of SPLs, the focus of research is on the representation of
variability points and legal combinations of features. In most cases
links to the underlying source code are not presented.

In contrast, some tools are aimed at improving the developer’s
understanding of the code. Livadas and Small have created an
integrated development environment (IDE) extension that can be
accessed by clicking a macro expansion. It shows where a macro has
been de�ned and how the macro is expanded [14]. Also Kullbach
and Riediger visualize macro expansion and conditional compilation
with an IDE extension by so-called folding. When clicking on a
preprocessor instruction, the corresponding precompiled source
code is collapsed [13]. However, these tools are only useful for local
contexts and do not address systemwide variability.

3 VARIABLITY EXTRACTION
Comprehensive preprocessing of the C code and the CPP statements
is required to provide answers to the questions that have been raised.
Our requirements on such a parser can be summarized as follows:

(1) �e result of the parsing must contain all the linguistic
means of the C standard. �is includes translation units,
functions, elementary types, complex types, information
about function calls as well as reading and writing of global
variables.

(2) �e parser should consider the included �les to handle
declarations correctly.

(3) Macro expansions should be performed before parsing
since the content of the macros may in�uence feature de-
tection and location.

(4) �e result of the parsing should contain information about
the conditional compilation, including the CPP directives

extracted from the source code. Even more useful would
be an evaluation of nested conditions and an explicit repre-
sentation of alternatives as distinct branches in the result.

�ere exist various tools with di�erent scopes to analyze code
with conditional compilation. We came to the conclusion that Type-
Chef meets our requirements best, although it is signi�cantly slower
than, e.g., SuperC. �e goal of the developers of TypeChef was to
create a complete and solid parser that can parse C code without
manual preprocessing. It uses an LL parser to create an abstract
syntax tree (AST) which contains all of the variability information
we need. We modi�ed TypeChef to serialize the complete AST to an
XML �le for further processing with jQAssistant. �is is a program
for analyzing and visualisizing so�ware artifacts [18]. It is built
on top of Neo4j, a graph database. We implemented a plugin for
TypeChef to include C code and feature �ags. �e result is a graph
containing all code entities, method calls, read and write accesses,
features, and their dependencies.

4 USER INTERFACE
Getaviz 3 is an open source toolkit for visual so�ware analytics [3].
It uses jQAssistant as information source and supports the auto-
matic generation of visualizations for di�erent use cases [2]. Getaviz
comes with a highly con�gurable browser-based user interface for
viewing and interacting with a visualization. Getaviz can be easily
expanded to support new visualization types and interaction com-
ponents. Hence, we used Getaviz as starting point and customized
it to �t our requirements.

Figure 1 shows the default view containing a visualization of the
structure (I), a search bar (II), the FeatureExplorer (III), and the Code-
Viewer (IV). To understand the structure and the included variablity
it is useful to get an overview of the complete system �rst. �ere-
fore, we visualize the structure in such a way that it can be fully
grasped at a glance. �is view contains all code entities that could
be potentially compiled. Our prototype is based on the Recursive
Disk (RD) metaphor [19]. It is designed to visualize the structure of
imperative programming languages, with an emphasis on object-
oriented languages, especially Java. As the name indicates, an RD
visualization consists of nested disks, where each disk represents a
package or a class in Java. In order to apply the visualization to C
code, we had to make several changes. We chose translation units
as top level elements replacing packages. �ey are depicted as gray
disks as shown in Figure 2. A translation unit can contain multiple
structs, unions, enums, global variables, and functions. Functions
are depicted as blue segments. �e area of a blue segment is propor-
tional to the lines of code of the corresponding function. Variables
are depicted as yellow segments that have a �xed size. Structs,
enums, and unions are depicted as purple disks. �ey can contain
further elements according to the content of the C entities. We
have retained the original layout algorithm. All disks are ordered
by size and then placed spiral-shaped clockwise around the largest
disk. Although at �rst glance it seems chaotic, the emerging visual
pa�erns and empty spaces give each disk a unique appearance and
help the user to recognize speci�c disks.

�e visualization is interactive, so the developer can easily ex-
plore it. �e FeatureExplorer contains all extracted feature �ags of
3h�ps://github.com/so�vis-research/Getaviz



Understanding Conditional Compilation SPLC’19, 9–13 September, 2019, Paris, France

Figure 1: Screenshot of Getaviz visualisizing the structure of BusyBox

the system. �e developer can select or deselect individual �ags
and the visualization gets updated accordingly. If the code entity is
to be excluded by the CPP, then the graphical representation will
be displayed transparently. In this way, the user can explore and
understand the impact of the di�erent �ags to answer Q2 without
having to jump from source �le to source �le and manually evaluate
macros.

Detail information is provided as tooltip. In Figure 1, the method
obj_load is selected and therefore highlighted orange. �e red
lines represent method calls and variable accesses of this method.
Nevertheless, the source code is still of great interest for the devel-
oper since it is the main artifact to work with. To provide more
context it is possible to view the source code directly in Getaviz.
�e CodeViewer on the right side displays the source code of the
selected entity.

5 APPLICATION
To demonstrate the usefulness of our tool we chose BusyBox 1.18.5
since it is a highly customizable system. It contains several hun-
dreds of explicitly declared Boolean compile-time con�guration
options with complex dependencies [11]. One of these feature �ags
is CONFIG_DESKTOP which a�ects the macros ENABLE_DESKTOP,
IF_DESKTOP, and IF_NOT_DESKTOP. �ey are used in 75 out of
354 translation units. �erefore, enabling this feature �ag poten-
tially changes behavior of more than 20% of the system in a variety
of locations that can not be easily traced by the developer. Our tool
takes the a�ected macros into account automatically and visualizes
the in�uence of the feature �ag on the structure with just one click.

Figure 2 shows the structure of the translation unit find.c with
three di�erent con�gurations. Our tool improves the developers
understanding of the resulting structur and behavior by making
the commonalities and di�erences explicit.

6 DISCUSSION
With our prototype we focus on the visualization design to support
developers when exploring so�ware systems which are making
use of conditional compilation. We have therefore placed more
emphasis on usability than on feature completeness. �e appli-
cation scenario demonstrates how the visualization supports the
developer’s usual work�ow and eliminates time-consuming steps.
Q2 can already be answered completely. Q1 can only be answered
partially since not all feature locations are visually detectable. �e
necessary information is already available, but is not yet accessi-
ble in the user interface. For example, when selecting a feature, it
would be possible to highlight all methods a�ected by the feature. It
would also be helpful to support saving and loading con�gurations
for subsequent analyses as well as comparing complete con�gura-
tions visually. As soon as these features are implemented, we will
compare our tool with existing solutions.

As for many so�ware visualizations scalability is a critical point
and necessary to use the tool in practice. �e generation process
took one day on a conventional notebook. We can visualize systems
with up to four million lines of code without any problems. If the
visualization becomes too complex, performance may decrease.
However, the visualization framework still o�ers a lot of potential
to improve performance to visualize larger systems.



SPLC’19, 9–13 September, 2019, Paris, France David Baum, Christina Sixtus, Lisa Vogelsberg, and Ulrich Eisenecker

(a) All find speci�c features are enabled (b) All find speci�c features are en-
abled except FEATURE_FIND_EXEC and
FEATURE_FIND_XDEV

(c) All find speci�c features are disabled

Figure 2: Visualizing the structure of BusyBox’s “�nd.c” with three di�erent con�gurations

7 CONCLUSION
Our tool supports the developer to explore variability implemented
with CPP, especially in the context of SPLs. It simpli�ces tracing
and understanding the e�ect of enabling or disabling these �ags
with respect to the code compiled subsequently. �us, it bridges
the gap between feature models and diagrams as more abstract
representations of variability and its concrete implementation with
the means of CPP. However, some features are still missing for use
in practice that need to be addressed in future work.

REFERENCES
[1] Greg J. Badros and David Notkin. 2000. A framework for preprocessor-aware C

source code analyses. So�ware: Practice and Experience 30, 8 (2000), 907–924.
[2] David Baum, Jens Dietrich, Craig Anslow, and Richard Müller. 2018. Visualising

Design Erosion : How Big Balls of Mud are Made. In IEEE VISSOFT 2018.
[3] David Baum, Jan Schilbach, Pascal Kovacs, Ulrich Eisenecker, and Richard Müller.

2017. GETAVIZ : Generating Structural, Behavioral, and Evolutionary Views of
So�ware Systems for Empirical Evaluation. In IEEE VISSOFT 2017.

[4] Ira D. Baxter and Michael Mehlich. 2001. Preprocessor conditional removal by
simple partial evaluation. In Proceedings Eighth Working Conference on Reverse
Engineering. 281–290.

[5] Benjamin Behringer, Jochen Palz, and �orsten Berger. 2017. PEoPL: projectional
editing of product lines. In 2017 IEEE/ACM 39th International Conference on
So�ware Engineering (ICSE). 563–574.

[6] Janet Feigenspan, Christian Kästner, Mathias Frisch, Raimund Dachselt, and
Sven Apel. 2010. Visual support for understanding product lines. In 2010 IEEE
18th International Conference on Program Comprehension. 34–35.

[7] Alejandra Garrido and Ralph Johnson. 2005. Analyzing multiple con�gurations
of a C program. In 21st IEEE International Conference on So�ware Maintenance
(ICSM’05). 379–388.

[8] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the
Preprocessor. Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation - PLDI ’12 (2012), 323. h�ps://doi.org/10.
1145/2254064.2254103

[9] Sheny Illescas, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2016. Towards
visualization of feature interactions in so�ware product lines. In 2016 IEEE
Working Conference on So�ware Visualization (VISSOFT). 46–50.

[10] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and �orsten Berger. 2011. Variability-aware parsing in the presence
of lexical macros and conditional compilation. ACM SIGPLAN Notices 46, 10
(2011), 805. h�ps://doi.org/10.1145/2076021.2048128

[11] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A variability-
aware module system. ACM SIGPLAN Notices 47, 10 (2012), 773. h�ps://doi.org/
10.1145/2398857.2384673

[12] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and �omas
Leich. 2016. FeatureCoPP: compositional annotations. (2016), 74–84. h�ps:
//doi.org/10.1145/3001867.3001876

[13] Bernt Kullbach and Volker Riediger. 2001. Folding: An approach to enable
program understanding of preprocessed languages. In Proceedings Eighth Working
Conference on Reverse Engineering. 3–12.

[14] Panos E. Livadas and David T. Small. 1994. Understanding code containing
preprocessor constructs. In Proceedings 1994 IEEE 3rd Workshop on Program
Comprehension-WPC’94. 89–97.

[15] M. Vi�ek. 2003. Refactoring browser with preprocessor. In Seventh European
Conference onSo�ware Maintenance and Reengineering, 2003. Proceedings. 101–110.
h�ps://doi.org/10.1109/CSMR.2003.1192417

[16] Jabier Martinez, Tew�k Ziadi, Raul Mazo, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. 2014. Feature relations graphs: A visualisation paradigm
for feature constraints in so�ware product lines. In 2014 Second IEEE Working
Conference on So�ware Visualization. 50–59.

[17] Flávio Medeiros, �iago Lima, Francisco Dalton, Márcio Ribeiro, Rohit Gheyi,
and B. ANDFONSECA. 2013. Colligens: A Tool to Support the Development
of Preprocessor-Based So�ware Product Lines in C. In Proc. áBrazilian Conf.
áSo�ware: �eory and Practice (CBSo�).

[18] Richard Müller, Dirk Mahler, Michael Hunger, Jens Nerche, and Markus Harrer.
2018. Towards an Open Source Stack to Create a Uni�ed Data Source for So�ware
Analysis and Visualization. In Proceedings - 6th IEEE Working Conference on
So�ware Visualization, VISSOFT 2018. 107–111. h�ps://doi.org/10.1109/VISSOFT.
2018.00019

[19] Richard Müller and Dirk Zeckzer. 2015. �e Recursive Disk Metaphor – A Glyph-
based Approach for So�ware Visualization. In Proceedings of the 6th International
Conference on Information Visualization �eory and Applications (IVAPP ’15).
SciTePress, Setúbal, 171–176. h�ps://doi.org/10.5220/0005342701710176

[20] Daren Nestor, Ste�en �iel, Goetz Bo�erweck, Ciarán Cawley, and Patrick Healy.
2008. Applying visualisation techniques in so�ware product lines. In Proceedings
of the 4th ACM symposium on So�ware visualization. 175–184.

[21] Yoann Padioleau. 2009. Parsing C/C++ Code without Pre-processing. In Compiler
Construction, Oege de Moor and Michael I Schwartzbach (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 109–125.

[22] Diomidis Spinellis. 2010. CScout: A refactoring browser for C. Science of Computer
Programming 75, 4 (2010), 216–231.

[23] �omas �üm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and �omas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented so�ware development. Science of Computer Programming 79 (2014),
70–85. h�ps://doi.org/10.1016/j.scico.2012.06.002

[24] Simon Urli, Alexandre Bergel, Mireille Blay-Fornarino, Philippe Collet, and
Sébastien Mosser. 2015. A visual support for decomposing complex feature
models. In 2015 IEEE 3rd Working Conference on So�ware Visualization (VISSOFT).
76–85.

[25] Daniel G. Waddington and Bin Yao. 2005. High-�delity C/C++ code transforma-
tion. Electronic Notes in �eoretical Computer Science 141, 4 (2005), 35–56.

https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1145/2076021.2048128
https://doi.org/10.1145/2398857.2384673
https://doi.org/10.1145/2398857.2384673
https://doi.org/10.1145/3001867.3001876
https://doi.org/10.1145/3001867.3001876
https://doi.org/10.1109/CSMR.2003.1192417
https://doi.org/10.1109/VISSOFT.2018.00019
https://doi.org/10.1109/VISSOFT.2018.00019
https://doi.org/10.5220/0005342701710176
https://doi.org/10.1016/j.scico.2012.06.002

	Abstract
	1 Introduction
	2 Related Work
	3 Variablity Extraction
	4 User Interface
	5 Application
	6 Discussion
	7 Conclusion
	References

