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Abstract—Deep cross-modal learning has successfully demon-
strated excellent performances in cross-modal multimedia re-
trieval, with the aim of learning joint representations between
different data modalities. Unfortunately, little research focuses
on cross-modal correlation learning where temporal structures
of different data modalities such as audio and lyrics are taken
into account. Stemming from the characteristic of temporal
structures of music in nature, we are motivated to learn the
deep sequential correlation between audio and lyrics. In this
work, we propose a deep cross-modal correlation learning ar-
chitecture involving two-branch deep neural networks for audio
modality and text modality (lyrics). Different modality data
are converted to the same canonical space where inter modal
canonical correlation analysis is utilized as an objective function
to calculate the similarity of temporal structures. This is the first
study on understanding the correlation between language and
music audio through deep architectures for learning the paired
temporal correlation of audio and lyrics. Pre-trained Doc2vec
model followed by fully-connected layers (fully-connected deep
neural network) is used to represent lyrics. Two significant
contributions are made in the audio branch, as follows: i) pre-
trained CNN followed by fully-connected layers is investigated
for representing music audio. ii) We further suggest an end-to-
end architecture that simultaneously trains convolutional layers
and fully-connected layers to better learn temporal structures
of music audio. Particularly, our end-to-end deep architecture
contains two properties: simultaneously implementing feature
learning and cross-modal correlation learning, and learning joint
representation by considering temporal structures. Experimental
results, using audio to retrieve lyrics or using lyrics to retrieve
audio, verify the effectiveness of the proposed deep correlation
learning architectures in cross-modal music retrieval.

Index Terms—Convolutional neural networks, deep cross-
modal models, correlation learning between audio and lyrics,
cross-modal music retrieval, music knowledge discovery

I. INTRODUCTION

Music audio and lyrics provide complementary information
in understanding the richness of human beings’ cultures and
activities [1]]. Musi is an art expression whose medium is
sound organized in time. LyricsE] as natural language represent
music theme and story, which are a very important element for
creating a meaningful impression of the music. Starting from
the late 2014, Google provides music search results containing
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Go g Ie another brick in the wall (part II)
Lyrics

We don't need no education

We don't need no thought control

No dark sarcasm in the classroom
Teachers leave them kids alone

Hey! Teachers! Leave them kids alone
All'in all it's just another brick in the wall
All'in all you're just another brick in the wall

We don't need no education

We don't need no thought control

No dark sarcasm in the classroom
Teachers leave those kids alone

Hey! Teachers! Leave those kids alone
Allin all you're just another brick in the wall
All'in all you're just another brick in the wall

"Wrong, do it again!"
"If you don't eat yer meat, you can't have any pudding
How can you have any pudding if you don't eat yer meat?"
"You! Yes, you behind the bike sheds, stand still laddy!"

Fig. 1. Google lyrics for song title “another brick in the wall (part II)”.

song lyrics as shown in Fig. [[| when given a specific song title.
However, searching lyrics in this way is insufficient because
sometimes people might lack exact song title but know a
segment of music audio instead, or want to search an audio
track with part of the lyrics. Then, a natural question arises:
how to retrieve the lyrics by a segment of music audio, and
vice versa?

Searching lyrics by audio was almost impossible years ago
due to the limited availability of large volumes of music audio
and lyrics. The profusion of online music audio and lyrics
from music sharing websites such as YouTube, MetroLyrics,
Azlyrics, and Genius shows the opportunity to understand
musical knowledge from content-based audio and lyrics by
leveraging large volumes of cross-modal music data aggre-
gated in Internet.

Motivated by the fact that audio content and lyrics are very
fundamental aspects for understanding what kind of cultures
and activities a song wants to convey to us, this research
pays attentions to deep correlation learning between audio and
lyrics for cross-modal music retrieval and considers two real-
world tasks: using audio to retrieve lyrics or using lyrics to
retrieve audio. Several contributions are made in this paper, as
follows:

i) To the best of our knowledge, this work is the first
research where a deep correlation learning architecture with
two-branch neural networks and correlation learning model is
studied for cross-modal music retrieval by using either audio
or lyrics as a query modality.

ii) Different music modality data are projected to the shared
space where inter modal canonical correlation analysis is



exploited as an objective function to calculate the similarity
of temporal structures. Fully-connected deep neural networks
(DNNs) and an end-to-end DNN are proposed to learn audio
representation, where the pre-trained Doc2vec model followed
by fully-connected layers is employed to extract lyrics feature.

iii) Extensive experiments confirm the effectiveness of our
deep correlation learning architecture for audio-lyrics music
retrieval, which are meaningful results and studies for attract-
ing more efforts on mining music knowledge structure and
correlation between different modality data.

The rest of this paper is structured as follows. Research
motivation and background are introduced in Sec[ll] Sec[I]|
gives the preliminaries of Convolutional Neural Networks
(CNNs) and Deep Canonical Correlation Analysis (DCCA).
Then, Sec[[V] presents why and how we exploit CNNs and
DCCA to build a deep correlation learning architecture for
audio-lyrics music retrieval. The task of cross-modal music
retrieval in our work is described in Sec[V] Experimental
evaluation results are shown in Sec[VI} Finally, conclusions
are pointed out in Sec[VII]

II. MOTIVATION AND BACKGROUND

Music has permeated our daily life, which contains different
modalities in real-world scenarios such as temporal audio
signal, lyrics with meaningful sentences, high-level semantic
tags, and temporal visual content. However, correlation learn-
ing between lyrics and audio for cross-modal music retrieval
has not been sufficiently studied. Previous works [2], [3],
[4] mainly focused on content-based music retrieval with
single modality. With the widespread availability of large-scale
multimodal music data, it brings us research opportunity to
tackle cross-modal music retrieval.

A. Lyrics and Audio in Music

Recent research has shown that lyrics, audio, or the com-
bination of audio and lyrics are mainly applied to semantic
classification such as emotion or genre in music. For example,
authors in [5] proposed an unsupervised learning method
for mood recognition where Canonical Correlation Analysis
(CCA) was applied to identify correlations between lyrics and
audio, and the evaluation of mood classification was done
based on the valence-arousal space. An interesting corpus with
each song in the MIDI format and emotion annotation is in-
troduced in [6]. Coarse-grained classification for six emotions
is learned by support vector machines (SVM), and this work
showed that either textual feature or audio feature can be
used for emotion classification, and their joint use leads to
a significant improvement. Emotion lyrics datasets in English
[7] are annotated with continuous arousal and valence values.
Specific text emotion attributes are considered to complement
music emotion recognition. Experiments on the regression and
classification of music lyrics by quadrant, arousal, and valence
categories are performed. Application of hierarchical attention
network is proposed in [8] to handle genre classification of
intact lyrics. This network is able to pay attention to words,
lines, and segments of the song lyrics, where the importance
of words, lines, and segments in layer structure is learned.

Distinct from intensive research on music classification by
using lyrics and audio, our work focuses on audio-lyrics cross-
modal music retrieval: using audio to retrieve lyrics or vice
versa. This is a very natural way for us to retrieve lyrics
or audio on the Internet. However, no much research has
investigated this task.

B. Cross-modal Music Retrieval

Some existing researches on cross-modal music retrieval
intensively focus on investigating music and visual modal-
ities [91, [10], (111, [12], [13[, [14), [15], [16]. Similarity
between audio features extracted from music and image
features extracted from the album covers are trained by a
Java SOMToolbox framework in [11]]. Then, according to this
similarity, people can organize a music collection and make
use of album cover as visual content to retrieve a song over
multimodal music data. Based on multi-modal mixture models,
a statistical method to jointly modeling music, images, and text
[12] is used to support retrieval over a multimodal dataset.
To generate a soundtrack for the outdoor video, an effective
heuristic ranking method is suggested based on heterogeneous
late fusion by jointly considering venue categories, visual
scene, and user listening history [13l]. Confidence scores,
produced by SVM-hmm models constructed from geographic,
visual, and audio features, are combined to obtain different
types of video characteristics. To learn the semantic correlation
between music and video, a novel approach to selecting
features and statistical novelty based on kernel methods [14]]
is proposed for music segmentation. Co-occurring changes in
audio and video content of music videos can be detected,
where the correlations can be used in cross-modal audio-visual
music retrieval. Lyrics-based music attributes are utilized for
image representation in [[16]. Cross-modal ranking analysis is
suggested to learn semantic similarity between music and im-
age, with the aim of obtaining the optimal embedding spaces
for music and image. Distinct from intensive research on
considering the use of metadata for different music modalities
in cross-modal music retrieval, our work focuses on deep
architecture based on correlation learning between audio and
lyrics for content-based cross-modal music retrieval.

C. Deep Cross-modal Learning

We have witnessed several efforts devoted to investigating
cross-modal learning between different modalities, such as
(7], (18], [19], [20], [21], [22], to facilitate cross-modal
matching and retrieval. Most importantly, latest studies ex-
tensively pay attention to deep cross-modal learning between
image and textual descriptions such as [17], [19], [22], [23].
Most existing deep models with two-branch sub-networks
explore pre-trained convolutional neural network (CNN) [24]]
as image branch [19] and utilize pre-trained document-level
embedding model [25] or hand-crafted feature extraction such
as bag of words [17] as text branch. Image and text modalities
are converted to the joint embedding space calculating a
single ranking loss function by feed-forward way. Image-text
benchmarks such as [26]], [27] are applied to evaluate the
performances of cross-modal matching and retrieval. There



are two features for existing deep cross-modal retrieval: 1)
cross-modal correlation between image and text is learned
without considering temporal sequences. ii) Pre-trained models
are directly applied to represent image or text. Distinct from
existing deep cross-modal retrieval architectures, this work
takes into account temporal sequences to learn the correlation
between audio and lyrics for facilitating audio-lyrics cross-
modal music retrieval, where sequential audio and lyrics are
converted to the canonical space. A neural network with two-
branch sequential structures for audio and lyrics is trained.

III. PRELIMINARIES

We focus on developing a two-branch deep architecture for
learning the correlation between audio and lyrics in the cross-
modal music retrieval, where several variants of deep learning
models are investigated for processing audio sequence while
pre-trained Doc2vec [25] is used for processing lyrics. A brief
review of CNNs and DCCA exploited in this work is addressed
in the following.

A. Convolutional Neural Networks (CNNs)

CNNs have been exploited to handle not only various tasks
in the field of computer vision and multimedia [28]], [29], but
also the tasks of music information retrieval such as genre clas-
sification [30], acoustic event detection [31]], automatic music
tagging [32]. Generally speaking, when lacking computational
power and large annotated datasets, it is preferred to directly
use pre-trained CNNs such as VGG16 [28]] to extract features
[20][31], or further combine it with fully-connected layers to
extract semantic features [[19][23]][31].

Different from plain spatial convolutional operation, CNN
tries to use different kernels (filters) to capture different
local patterns, and this will generate multiple intermediate
feature maps (called channels). Specifically, the convolutional
operation in one convolutional layer is defined as

K-1
@l = [ H" @s" +d), (1)
k=0

where the superscripts j, k are channel indices, s* is the
k-th channel input, =/ is the j-th channel output, ® is the
convolutional operation, H 7k is the convolutional kernel (or
the filter) that associates the k-th input channel with the j-
th output channel, a’ is the bias for j-th channel, and f(-)
is a non-linear activation function. All weights that define a
convolutional layer are represented as a 4-dimensional array
with a shape of (h, !, K, J), where h and [ determine the kernel
size, and K and J are the number of input and output channels,
respectively. When mel-spectrogram is used as the input of the
first convolutional layer, it only has one channel.

A 2D convolutional kernel H jk, as a common filter, is
applied to the whole input channel. This kernel is shifted
along both (frequency and time) axes and a local correlation
is computed between the kernel and input. The kernels are
trained to find local salient patterns that maximize the overall
objective. As a kernel sweeps the input, it generates a new

output in order, which preserves the spatiality of the input,
i.e., the frequency and time constraint of the spectrogram.

Convolutional layers are often followed by pooling layers,
which reduce the size of feature map by down sampling them.
The max function is a typical pooling operation. This selects
the maximal value from a pooling region, instead of keeping
all information in the region. This pooling operation also
enables distortion and translation invariances by discarding
the original location of the selected value, and the capability
of such invariance within each pooling layer is determined
by the pooling size. With a small pooing size, the network
does not have enough distortion invariance, while a too large
pooling size may completely loose the location of a salient
feature. Instead of using a large pooling size in one layer,
using multiple small pooling sizes at different pooling layers
will enable the system to gradually abstract the features to be
more compact and more semantic.

B. Deep Canonical Correlation Analysis (DCCA)

CCA has been a very popular method for embedding
multimodal data in a shared space. Before presenting our deep
multimodal correlation learning between audio and lyrics, we
first give an overview of CCA and DCCA.

Let * € R™ (e.g., audio feature) and y € R" (e.g.,
textual feature) be zero mean random (column) vectors with
covariances C,,, Cy, and cross-covariance C,.,. When a
linear projection is performed, CCA [33] tries to find two
canonical weights w, and w,, so that the correlation between
the linear projections u = wl « and v = w] y is maximized.

(wy,wy) = argmaxcorr('wfw,wgy)
(wz,wy)
T
w;, C,w
= argmax z TV Y . 2

(we,wy) | JwTCppw, ~w17;nywy

One of the known shortcoming of CCA is that its linear
projection may not well model the nonlinear relation between
different modalities.

DCCA [34] tries to calculate non-linear correlations be-
tween different modalities by a combination of DNNs (deep
neural networks) and CCA. Different from KCCA which
relies on kernel functions (corresponding to a logical high
dimensional (sparse) space), DNN has the extra capability
of compressing features to a low dimensional (dense) space,
and then CCA is implemented in the objective function.
The DNNs, which realize the non-linear mapping (¢, (-) and
©y(+)), and the canonical weights (w, and w, that model the
CCA between ¢, (x) and ¢, (y)), are trained simultaneously
to maximize the correlation after the non-linear mapping, as
follows.

argmax corr(wfgom(w)7w5gpy(y)).
(wszy7Wm7¢y)
(3)

(wzawya Pz @y) =



IV. DEEP AUDIO-LYRICS CORRELATION LEARNING

We develop a deep cross-modal correlation learning ar-
chitecture that predicts latent alignment between audio and
lyrics, which enables audio-to-lyrics or lyrics-to-audio music
retrieval. In this section, we explain how our deep architecture
is learned. Specifically, we investigate different deep network
models for correlation analysis and different deep learning
methods for audio feature extraction.

A. Learning Strategy

On one hand, lyrics as natural language express semantic
music theme and story; on the other hand, music audio con-
tains some properties such as tonality and temporal over time
and frequency. They are correlated in the semantic sense. How-
ever, audio and lyrics belong to different modality and cannot
be compared directly. Therefore, we extract their features
separately, and then map them to the same semantic space for
a similarity comparison. Because linear mapping in CCA does
not work well, we design deep networks to realize non-linear
mapping before CCA. Consequently, deep correlation models
for learning temporal structures are considered for representing
lyrics branch and audio branch.

We investigate two deep network architectures. i) Separate
feature extraction, completely independent of the following
DCCA analysis. Text branch follows this architecture, where
the pre-trained Doc2vec [25] model is used to compute a
compact textual feature vector. As for audio, directly using
the pre-trained CNN model [32] belongs to this architecture
as well. ii) Joint training of audio feature extraction and
DCCA analysis between audio and lyrics. In this way, feature
extraction is also correlated with the subsequent DCCA. Here,
for the audio branch, a CNN model is trained from the ground
together with the following fully-connected layers, based on
an end-to-end learning procedure. It is expected that this CNN
is adapted to the DNN so as to extract more meaningful audio
features.

B. Network Architecture

Figure [2] shows an end-to-end deep convolutional DCCA
network, which aims at simultaneously learning the feature
extraction and the deep correlation between audio and lyrics.
This model is degenerated to a simple DCCA network, when
the CNN model marked in pink dashed line is replaced by a
pre-trained model.

From the sequence of words in the lyrics, textual feature is
computed, more specifically, by a pre-trained Doc2vec model.
Music audio signal is represented as a 2D spectrogram, which
preserves both its spectral and temporal properties. However,
it is difficult to directly use this for the DCCA analysis, due to
its high dimension. Therefore, we investigate two variants for
the dimension reduction. (i) Audio feature is extracted by a
pre-trained convolutional model, and we study the pure effect
of DCCA in analyzing the correlation. i.e., sub DNNs with
fully connected layers are trained to maximize the correlation
between audio and textual features. (ii) An end-to-end deep
network for audio branch that integrates convolutional layers

| CCAEmbedding |

1 1

| | Fully-connected layers |

I Fully-connected layers

‘ | Convolutional layers | : | Doc2vec |

MFCC feature sequence

Fig. 2. Deep correlation learning between audio and lyrics.

for feature extraction and non-linear mapping for correlation
learning together, is trained. In the future work, we will also
consider the integration of Doc2Vec with its subsequent DNN.

1) Audio feature extraction: The audio signal is represented
as a spectrogram. We mainly focus on mel-frequency cepstral
coefficients (MFCCs), because MFCCs are very efficient fea-
tures for semantic genre classification [35] and music audio
similarity comparison [36]. We will also compare MFCC with
Mel-spectrum, which contains more detailed information. To
compute a single feature vector for correlation analysis, we
successively apply convolutional layers with different kernels
to capture local salient features, and use pooling layers to
reduce the dimension.

By inserting the pooling layer between adjacent convo-
lutional layers, a kernel in the late layer corresponds to a
larger kernel in the previous layer, and has more capacity in
representing semantic information. Then, using small kernels
in different convolutional layers can achieve the function of
a large kernel in one convolutional layer, but is more robust
to scale variance. In this sense, a combination of successive
convolutional layers and pooling layers can capture features at
different scales, and the kernels can learn to represent complex
patterns.

For each audio signal, a slice of 30s is resampled to
22,050Hz with a single channel. With frame length 2048 and
step 1024, there are 646 frames. For the end-to-end learning,
a sequence of MFCCs (20x646) are computed. By initial
experiments we found that our approach is not very sensitive to
the time resolution. Therefore, we decimate the spectrogram
into 4 sub sequences, each with 161 frames and associated
with the same lyrics.

For implementing an end-to-end deep learning, the configu-
ration of CNN used for audio branch in this work is shown in
Table[l} It consists of 3 convolutional layers and 3 max pooling
layers, and outputs a feature vector with a size of 1536. We
tried to add more convolutional layer but see no significant
difference. Rectified linear unit (ReLLU) is used as an activation
function in each convolutional layer except the last one. Batch



TABLE I
CONFIGURATION OF CNNS FOR AUDIO BRANCH

MFCC: 20x646/4
Convolution, 3x3x48
Max-pooling (2,2), output 10x80x48
Convolution: 3x3x96
Max-pooling (3,3), output 3x26x96
Convolution: 3x3x192
Max-pooling (3,3), output 1536

TABLE 11
STRUCTURE OF SUB-DNNS

Sub-DNN1 (Audio) | Sub-DNN2 (Text)
Ist layer 1024, sigmoid 1024, sigmoid
2nd layer 1024, sigmoid 1024, sigmoid
3rd layer (output) D, linear D, linear

normalization is used before activation. Convolutional kernels
(3x3) are used in every convolutional layer. These kernels help
to learn local spectral-tempo structures. In this way, CNN
converts an audio feature sequence (a 2D matrix) to a high
dimensional vector, and retains some astonishing properties
such as tempo invariances, which can be very helpful for
learning musical features in semantic correlation learning
between lyrics and audio.

With the input spectrogram s, the feature output by the
convolutional layers is & = f3(H3z ® fo(Hy ® fi(H1 ® s+
ai) + az) + as), where H,;, a; and f; are the convolutional
kernel, bias, and activation function in the ith layer.

As for the pre-trained model, we apply the pre-trained
CNN model in [32f], which has 5 convolutional layers, each
with either average pooling or standard deviation pooling,
generating a 30-dimension vector per layer. Concatenating all
of them together generates a feature vector of 320 dimension.

2) Textual feature extraction: Lyrics text of each song
is tokenized by using coreNLP [37], and passed to the in-
fer_vector module of the Doc2Vec model [25], generating a
300-dimensional feature for each song. We use the pretrained
apnews_dbow weightsﬂ in the experiment.

3) Non-linear mapping of features: Audio features and
textual features are further converted into low dimensional
features in a shared D-dimensional semantic space by using
different sub DNNs composed of fully connected layers.

The details of sub DNNs are shown in Table [[Il These two
sub DNNs (each with 3 fully connected layers) implement the
non-linear mapping of DCCA. The audio feature generated
by the feature extraction part is denoted as € R™ (m
varies with each method) and deep textual feature is denoted as
y € R30. The overall functions of sub-DNNs are denoted as
o(x) = g3(P3-92(P2- g1 (¥12+b1) +by) + b3), where ¥;
and b; are the weight matrix and bias for the ith layer and g;(-)
is the activation function. And ¢, (y) is computed in a similar
way. Then, ¢, (x) is the overall result of the convolutional
layer and its subsequent DNN, given the input spectrogram s.

4) Objective function of CCA: Assume the batch size in
the training is N, X € RP*N and Y € RP*N are the
outputs of sub DNN of the two batches, corresponding to audio

3https://ibm.ent.box.com/s/9ebs3c759qqo1d8i7ed323i6shv2js7e

(pz(x)) and lyrics (py(y) ), respectively. Let covariance of
¢ (x) and @, (y) be Cxx, Cyy and their cross-covariance
be C'xy. With the linear projection matrices W x and Wy,
the correlation between the canonical components (W§X
and WLY') can be computed. This correlation indicates the
association between the two modalities and is used as an
overall objective function, which is maximized to find all
parameters (convolutional kernels H (-), non-linear projections
@z (-) and @, (-), linear projection matrices W x and Wy).

(W Wy prpy) = argmar  corr(WEX, W),
(H1WX ,WY#P:m‘Py)

At first, with H,@,, ¢, being fixed, Wx and Wy are
computed by

WLCxyW
(Wx,Wy) = argmax e :
(Wx.Wy) \/W;QCXXWX WICyyWy

This can be rewritten in the trace-form

(W x,Wy) iawrgn;gx)tr(WQCXYWy), 4)
X Y

subjectto : Wg;CXXWX = W3T/C’yyWy =1I.

Here, covariance C'x x, C'yy and cross-covariance C' xy are
computed as follows

1 AT

=—XX I
Cxx N1 +rl, )
Cyy = —— Vv 401 6)
YY—ﬁ rL, (

1 A AT

C =—XY 7
XY = 5 ; (7

X=X-X,Y=Y-Y

where X and Y are average of ¢, (x) and ¢, (y) within the
batch, and r is a small positive constant used to ensure the
positive definiteness of C'x x and Cyy.

By defining T' £ C}%QCXyC;;/Q and performing sin-
gular value decomposition on T as T = UDVT, W x and
Wy can be computed by [34]

Wy = CU, Wy = YV, ®)
Then, Eq.(d) can be rewritten as

tT’((Wgw(nyWy)T . W§nyWy) = t?"(TTT). (9)

Accordingly, the gradient of the correlation with respect to X
is given by
1

——(2Vxx X + VxyY),

N1 (10)

1 _
Vxx = —§CX1)§2UDUTCX§§2,



Vxy = CYYUVTCy/”.

And the gradient of the correlation with respect to Y can be
computed in a similar way.

Then, the gradients are back propagated, first in the sub
DNN, where ¢, (x) and ¢,(y) are updated. As for the
audio branch, the gradients are further back propagated to the
convolutional layers, and the kernel filters H are updated. The
whole procedure is shown in Algorithm

Algorithm 1 Joint training of CNN and DCCA
1: procedure JOINTTRAIN(A, L) > A: audio, L: lyrics
2: Initialize convolutional net, sub-networks for mapping
3 Compute MFCC spectrogram from audio A, — Q4
4 Compute textual feature from lyrics L, — €2,
5: for each epoch do
6: Randomly divide 2 4, 2} to batches
7
8
9

for each batch (w4, wy) of audio and lyrics do
for each pair (s,l) € (wa,wr) do
s — x by convolutions

10: l — y by pretrained Doc2Vec model

11 x — @, (x) by non-linear mapping

12: y — ¢y (y) by non-linear mapping

13: end for

14: Get converted batch (X,Y")

15: Apply CCA on (X,Y) to compute W x, Wy
16: Compute the gradient with respect to X,Y
17: Back propagate to the sub network

18: Back propagate to the convolutional network
19: end for

20: end for

21: end procedure

V. MUSIC CROSS-MODAL RETRIEVAL TASKS

Two kinds of retrieval tasks are defined to evaluate the
effectiveness of our algorithms: instance-level and category-
level. Instance-level cross-modal music retrieval is to retrieve
lyrics when given music audio as input or vice versa. Category-
level cross-modal music retrieval is to retrieve lyrics or audio,
searching most similar audio or lyrics with the same mood
category.

With a given input (either audio slice or lyrics), its canonical
component is computed, and its similarity with the canonical
components of the other modality in the database is computed
using the cosine similarity metric, and the results are ranked
in the decreasing order of the similarity score.

VI. EXPERIMENTS

The performances of the proposed DCCA variants are
evaluated and compared with some baselines such as variants
of CCA and deep multi-view embedding approach [38].

A. Experiment Setting

Proposed methods. As discussed in Sec. two vari-
ants of DCCA in combination with CNN are investigated:
1) PretrainCNN-DCCA (the application of DCCA on the
pretrained CNN model [32]), 2) JointTrain-DCCA (the joint
training of CNN and DCCA).

Baseline methods include some shallow correlation learn-
ing methods (without fully connected layers between feature
extraction and CCA), such as 3) Spotify-CCA (which ap-
plies CCA on the 65-dimensional audio features provided by
Spotifyﬂ), 4) PretrainCNN-CCA (which applies CCA on the
features extracted by the pretrained CNN model), and multi-
view methods such as 5) Spotify-MVE (Spotify feature with
deep multi-view embedding method similar to [38] where
arbitrary mappings of two different views are embedded in the
joint space based on considering matched pairs with minimal
distance and mismatched pairs with maximal distance), 6)
PretrainCNN-MVE. We also evaluated 7) Spotify-DCCA. In
all these methods, the lyrics branch uses the features extracted
by the pretrained Doc2vec model.

Besides MFCC, we also evaluate the feature of Mel-
spectrum. The dimension for Mel-spectrum is 96 per frame,
and there are four convolutional layers, where each of the
first three is followed by a max pooling layer, and the
final output is 3072 dimension. As for the MVE methods,
both branches share the same parameters (activation function,
number of neurons and so on) and both have 3 fully connected
layers (with 512, 256, and 128 neurons respectively). Batch
normalization is used before each layer and tanh activation
function is applied after each layer.

Audio-lyrics dataset. Currently, there is no large audio/lyrics
dataset publically available for cross-modal music retrieval.
Therefore, we build a new audio-lyrics dataset. Spotify is a
music streaming on-demand service, which provides access
to over 30 million songs, where songs can be searched by
various parameters such as artist, playlist, and genre. Users can
create, edit, and share playlists on Spotify. Initially, we take 20
most frequent mood categories (aggressive, angry, bittersweet,
calm, depressing, dreamy, fun, gay, happy, heavy, intense,
melancholy, playful, quiet, quirky, sad, sentimental, sleepy,
soothing, sweet) [9] as playlist seeds to invoke Spotify APIL
For each mood category, we find the top 500 popular English
songs according to the popularity provided by Spotify, and
further crawl 30s audio slices of these songs from YouTube,
while lyrics are collected from Musixmatch. Altogether there
are 10,000 pairs of audio and lyrics.

Evaluation metric. In the retrieval evaluation, we use mean
reciprocal rank 1 (MRRI) and recall@N as the metrics.
Because there is only one relevant audio or lyrics, MRRI1 is
able to show the rank of the result. MRRI1 is defined by

1 Qg

MRR1 = — —
N, ; rank;(1)’

(1)

where N, is the number of the queries and rank;(1) corre-
sponds to the rank of the relevant item in the :th query. We

“https://developer.spotify.com/web-api/get-audio-features/
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Fig. 3. MRRI with respect to the numbers of epochs (Using audio as query

to search lyrics, #CCA-component=30)

also evaluate recall@N to see how often the relevant item is
included in the top of the ranked list. Assume S, is the set of
its relevant items (|S,| = 1) in the database for a given query
and the system outputs a ranked list K, (|K,| = N). Then,
recall is computed by

541Ky

recall =
|54

(12)
and is averaged over all queries.

We use 8,000 pairs of audio and lyrics as the training
dataset, and the rest 2,000 pairs for the retrieval testing.
Because we generate 4 sub-sequences from each original
MFCC sequence, there are 32,000 pairs of audio/lyric pairs
in JoinTrain. In each run, the split of audio-lyrics pairs into
training/testing is random, and a new model is trained. All
results are averaged over 5 runs (cross-validations). In the
batch-based training, the batch size is unified to 1000 samples
in all methods, and the training takes 200 epochs for Joint-
Train and 400 epochs for other DCCA methods. Furthermore,
training MVE requires the presence of non-paired instances.
To this end, we randomly selected 1 non-paired instance for
each song in the dataset. The margin hyper-parameter was set
to 0.3, according to our preliminary experiments. Then, we
trained MVE for 1280 epochs.

Experiment environment. The evaluations are performed on
a Centos7.2 server, which is configured with two E5-2620v4
CPU (2.1GHz), three GTX 1080 GPU (11GB), and DDR4-
2400 Memory (128G). Moreover, it contains CUDAS.0,
Conda3-4.3 (python 3.5), Tensorflow 1.3.0, and Keras 2.0.5.

B. Performance under Different Numbers of Epochs

Fig. shows the MRRI1 results of Spotify-DCCA,
PretrainCNN-DCCA, JointTrain-DCCA with MFCC and
JointTrain-DCCA with Mel-spectrum, under different numbers
of epochs. In all methods, MRR1 increases with the number
of epochs, but with different trend. It is clear that MFCC
has similar performance as Mel-spectrum, converging much
fast than the other two methods and achieving higher MRR1.
Hereafter, we only use MFCC as the raw feature for JointTrain.

C. Impact of the Numbers of CCA Components

Here, we evaluate the impact of the number of CCA/MVE
components, which affects the performance of both the base-
line methods and the proposed methods. The number of
CCA/MVE components is adjusted from 10 to 100. The results
of MRR1 and recall of Spotify-CCA are marked as N/A
when the number of CCA components is greater than 65, the
dimension of Spotify feature.

The MRRI results, with audio feature as query to search
lyrics, are shown in Table Clearly, with the linear CCA,
Spotify-CCA and PretrainCNN-CCA have poor performance,
although the performance increases with the number of CCA
components. In comparison, with DCCA, the MRRI results
are much improved in Spotify-DCCA and PretrainCNN-
DCCA. The MRR1 performance increases with the number
of CCA components, and approaches a constant value in
PretrainCNN-DCCA. MRR1 decreases a little in Spotify-
DCCA when the number of CCA components gets greater
than 65, the dimension of Spotify feature. Using MVE, the
peak performance of Spotify-MVE and PretrainCNN-MVE
lies between that of CCA and DCCA. With the end-to-
end training, the MRR1 performance is further improved in
JointTrain-DCCA, and is almost insensitive to the number of
CCA components. But a further increase in the number of
CCA components will lead to the SVD failure in CCA.

Table shows the MRRI1 results achieved using lyrics as
query to search audio in the database, which has a similar
trend as in Table Generally, when audio and lyrics are
converted to the same semantic space, they share the same
statistics, and can be retrieved mutually.

Table [V] and Table [VI] show the results of recall@1 and
result@5. Recall@N in these tables is only a little greater
than MRR1 in Table [II] and Table which indicates that
for most queries, its relevant item either appears at the first
place, or not in the top-n list at all. This infers that for some
songs, lyrics and audio, even after being mapped to the same
semantic space, are not similar enough.

Table and Table show the MRRI results per
category, where the first item with the same mood category
as the query is regarded as relevant. Compared with the
instance-level retrieval, the MRR1 result per category is about
12% larger in all methods, but cannot be improved more by
increasing the number of CCA/MVE components. Because
there are 20 mood categories, and some mood categories have
similar meaning, this increases the difficulty of distinguishing
songs in the category level.

D. Impact of the number of training samples

Here we investigate the impact of the number of training
samples, by adjusting the percentage of samples for training
from 20% to 80%. The percentage of samples for the retrieval
test remains 20%, and the number of training samples is
chosen in such a way that there are the same number of songs
per mood category.

Fig. 4] and Fig. [5] show the MRR1 results in the instance-
level retrieval. Spotify-CCA and PretrainCNN-CCA do not
benefit from the increase of the training samples. Spotify-MVE



TABLE III
INSTANCE-LEVEL MRR1 WITH RESPECT TO DIFFERENT NUMBERS OF CCA/MVE COMPONENTS (USING AUDIO AS QUERY)

#CCA/MVE | Spotify-CCA | PretrainCNN-CCA | Spotify-MVE | PretrainCNN-MVE | Spotify-DCCA | PretrainCNN-DCCA | JointTrain-DCCA
10 0.023 0.022 0.121 0.166 0.125 0.189 0.247
20 0.029 0.040 0.134 0.187 0.168 0.225 0.254
30 0.034 0.054 0.095 0.158 0.183 0.236 0.256
40 0.039 0.069 0.084 0.115 0.183 0.239 0.256
50 0.039 0.078 0.067 0.107 0.178 0.237 0.256
60 0.040 0.085 0.065 0.094 0.177 0.240 0.257
70 N/A 0.090 0.061 0.085 0.174 0.239 0.256
80 N/A 0.094 0.056 0.080 0.171 0.237 0.257
90 N/A 0.098 0.054 0.063 0.164 0.238 0.257
100 N/A 0.099 0.043 0.072 0.154 0.237 0.257

TABLE IV
INSTANCE-LEVEL MRR1 WITH RESPECT TO DIFFERENT NUMBERS OF CCA/MVE COMPONENTS (USING LYRICS AS QUERY)

#CCA/MVE | Spotify-CCA | PretrainCNN-CCA | Spotify-MVE | PretrainCNN-MVE | Spotify-DCCA | PretrainCNN-DCCA | JointTrain-DCCA
10 0.022 0.022 0.114 0.157 0.124 0.190 0.248
20 0.029 0.038 0.119 0.179 0.168 0.225 0.254
30 0.034 0.053 0.083 0.147 0.184 0.236 0.256
40 0.038 0.065 0.067 0.100 0.183 0.240 0.254
50 0.041 0.076 0.056 0.097 0.180 0.236 0.256
60 0.041 0.083 0.053 0.082 0.176 0.241 0.257
70 N/A 0.089 0.049 0.074 0.174 0.240 0.256
80 N/A 0.094 0.048 0.068 0.170 0.237 0.257
90 N/A 0.099 0.044 0.053 0.163 0.239 0.256
100 N/A 0.102 0.035 0.062 0.152 0.237 0.256

TABLE V
INSTANCE-LEVEL RECALL @ N WITH RESPECT TO DIFFERENT NUMBERS OF CCA COMPONENTS (USING AUDIO AS QUERY)
Spotify@1 PretrainCNN@1 | JointTrain@1 Spotity @5 PretrainCNN@5 | JointTrain@5

CCA DCCA | CCA DCCA DCCA CCA DCCA | CCA DCCA DCCA

10 | 0.006  0.094 | 0.007 0.160 0.233 0.025  0.150 | 0.025 0.217 0.257

20 | 0.010  0.138 | 0.020  0.204 0.243 0.034  0.193 | 0.047 0.243 0.262

30 | 0.014  0.155 | 0.031 0.217 0.245 0.043 0205 | 0.068 0.252 0.263

40 | 0.019  0.155 | 0.045 0.221 0.245 0.047  0.205 | 0.085 0.255 0.262

50 | 0.020 0.150 | 0.053 0.220 0.246 0.049 0200 | 0.095 0.250 0.262

60 | 0.020 0.151 | 0.060  0.222 0.246 0.051  0.197 | 0.102 0254 0.263

70 N/A 0.147 | 0.065 0.222 0.246 N/A 0.197 | 0.107 0.253 0.263

80 N/A 0.144 | 0.068 0.220 0.246 N/A 0.191 | 0.112  0.250 0.264

90 N/A 0.137 | 0.071 0.220 0.247 N/A 0.186 | 0.120  0.253 0.263

100 | N/A 0.129 | 0.073 0.220 0.246 N/A 0.175 | 0.121 0.251 0.263

TABLE VI
INSTANCE-LEVEL RECALL @ N WITH RESPECT TO DIFFERENT NUMBERS OF CCA COMPONENTS (USING LYRICS AS QUERY)
Spotify@1 PretrainCNN@1 | JointTrain@1 Spotify@5 PretrainCNN@5 | JointTrain@5

CCA DCCA | CCA DCCA DCCA CCA DCCA | CCA DCCA DCCA

10 | 0.005  0.090 | 0.007 0.160 0.235 0.024  0.151 | 0.022  0.219 0.257

20 | 0.009 0.138 | 0.019  0.204 0.242 0.034  0.193 | 0.048 0.242 0.261

30 | 0.014  0.157 | 0.031 0.219 0.245 0.042 0205 | 0.064 0250 0.263

40 | 0.018 0.155 | 0.040 0.223 0.244 0.048  0.205 | 0.081 0.252 0.261

50 | 0.021 0.154 | 0.050  0.218 0.246 0.051  0.199 | 0.092  0.250 0.262

60 | 0.021 0.150 | 0.057 0.224 0.247 0.051  0.197 | 0.101 0.254 0.263

70 N/A 0.147 | 0.064  0.224 0.245 N/A 0.196 | 0.108 0.252 0.263

80 N/A 0.144 | 0.069  0.221 0.247 N/A 0.190 | 0.113 0.250 0.264

90 N/A 0.137 | 0.072  0.222 0.246 N/A 0.186 | 0.119  0.253 0.263

100 | N/A 0.126 | 0.077 0.221 0.247 N/A 0.172 | 0.121 0.249 0.262

and PretrainCNN-MVE benefits a little. In comparison, when
DCCA is used, the increase of training samples enables the
system to learn more diverse aspect of audio/lyric features,
and the MRRI1 performance almost linearly increases. In the
future, we will try to crawl more data for training a better
model to improve the retrieval performance.

The MRRI result, with lyrics as query to search audio, as

shown in Fig. [5] has a similar trend as that in Fig.

Fig. [0 and Fig. [7] show the MRR1 results when the retrieval
is performed in the category level. This has a similar trend as
the result of instance-level retrieval.

VII. CONCLUSION

Understanding the correlation between different music
modalities is very useful for content-based cross-modal music



TABLE VII

CATEGORY-LEVEL MRR1 WITH RESPECT TO DIFFERENT NUMBERS OF CCA/MVE COMPONENTS (USING AUDIO AS QUERY)

#CCA/MVE | Spotify-CCA | PretrainCNN-CCA | Spotify-MVE | PretrainCNN-MVE | Spotify-DCCA | Pretrain-DCCA | JointTrain-DCCA
10 0.177 0.172 0.249 0.286 0.260 0.313 0.364
20 0.180 0.187 0.265 0.313 0.296 0.344 0.367
30 0.182 0.199 0.230 0.284 0.307 0.349 0.372
40 0.187 0.212 0.222 0.246 0.307 0.356 0.368
50 0.189 0.218 0.211 0.237 0.304 0.358 0.370
60 0.188 0.225 0.206 0.230 0.302 0.355 0.373
70 N/A 0.230 0.203 0.221 0.298 0.358 0.370
80 N/A 0.234 0.196 0.215 0.294 0.352 0.370
90 N/A 0.235 0.192 0.203 0.294 0.356 0.370
100 N/A 0.233 0.188 0.208 0.282 0.354 0.374
TABLE VIII
CATEGORY-LEVEL MRR1 WITH RESPECT TO DIFFERENT NUMBERS OF CCA/MVE COMPONENTS (USING LYRICS AS QUERY)
#CCA/MVE | Spotify-CCA | PretrainCNN-CCA | Spotify-MVE | PretrainCNN-MVE | Spotify-DCCA | Pretrain-DCCA | JointTrain-DCCA
10 0.178 0.170 0.246 0.277 0.256 0.314 0.366
20 0.176 0.188 0.249 0.304 0.294 0.344 0.368
30 0.179 0.198 0.222 0.273 0.305 0.351 0.372
40 0.185 0.208 0.204 0.235 0.307 0.358 0.365
50 0.191 0.220 0.199 0.228 0.306 0.355 0.373
60 0.190 0.223 0.195 0.221 0.302 0.356 0.374
70 N/A 0.231 0.190 0.208 0.298 0.360 0.371
80 N/A 0.236 0.191 0.205 0.290 0.354 0.370
90 N/A 0.237 0.186 0.194 0.288 0.356 0.369
100 N/A 0.238 0.180 0.203 0.280 0.355 0.375
0.3 Spotify-CCA Spotify-DCCA 03 Spotify-CCA Spotify-DCCA
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Fig. 4. Instance-level MRR1 under different percentages of training samples ~ Fig. 5. Instance-level MRR1 under different percentages of training samples

(Using audio as query to search text lyrics, #CCA-component=30, 20% for
testing)

retrieval and recommendation. Audio and lyrics are most
interesting aspects for storytelling music theme and events.
In this paper, a deep correlation learning between audio and
lyrics is proposed to understand music audio and lyrics.
This is the first research for deep cross-modal correlation
learning between audio and lyrics. Some efforts are made to
give a deep study on i) deep models for processing audio
branch are investigated such as pre-trained CNN with or
without being followed by fully-connected layers. ii) An
end-to-end convolutional DCCA is further proposed to learn
correlation between audio and lyrics where feature extrac-
tion and correlation learning are simultaneously performed
and joint representation is learned by considering temporal
structures. iii) Extensive evaluations show the effectiveness
of the proposed deep correlation learning architecture where
convolutional DCCA performs best when considering retrieval

(Using text lyrics as query to search audio signal, #CCA-component=30, 20%
for testing)

accuracy and converging time. More importantly, we apply our
architecture to the bidirectional retrieval between audio and
lyrics, e.g., searching lyrics with audio and vice versa. Cross-
modal retrieval performance is reported at instance level and
mood category level.

This work mainly pays attention to studying deep models
for processing music audio while keeping pre-trained Doc2vec
for processing lyrics in correlation learning. We are collecting
more audio-lyrics pairs to further improve the retrieval per-
formance, and will integrate different music modality data to
implement personalized music recommendation. In the future
work, we will investigate some deep models for processing
lyrics branch. Lyrics contain a hierarchical composition such
as verse, chorus, bridge. We will extend our deep architec-
ture to complement musical composition (given music audio)
where Long Short Term Memory (LSTM) will be applied for
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learning lyrics dependencies.
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