
HAL Id: hal-01880774
https://hal.science/hal-01880774v1

Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Theoretical and Numerical Analysis of the Worst-Case
Size of Reduced Ordered Binary Decision Diagrams

Jim E Newton, Didier E Verna

To cite this version:
Jim E Newton, Didier E Verna. A Theoretical and Numerical Analysis of the Worst-Case Size of
Reduced Ordered Binary Decision Diagrams. ACM Transactions on Computational Logic, inPress.
�hal-01880774�

https://hal.science/hal-01880774v1
https://hal.archives-ouvertes.fr

A Theoretical and Numerical Analysis of the Worst-Case Size of

Reduced Ordered Binary Decision Diagrams

Jim Newton and Didier Verna, jnewton@lrde.epita.fr,didier@lrde.epita.fr

September 25, 2018

Abstract

Binary Decision Diagrams (BDDs) and in particular ROBDDs (Reduced Ordered BDDs) are a com-
mon data structure for manipulating Boolean expressions, integrated circuit design, type inferencers, model
checkers, and many other applications. Although the ROBDD is a lightweight data structure to implement,
the behavior, in terms of memory allocation, may not be obvious to the program architect. We explore
experimentally, numerically, and theoretically the typical and worst-case ROBDD sizes in terms of number
of nodes and residual compression ratios, as compared to unreduced BDDs. While our theoretical results
are not surprising, as they are in keeping with previously known results, we believe our method contributes
to the current body of research by our experimental and statistical treatment of ROBDD sizes. In addition,
we provide an algorithm to calculate the worst-case size. Finally, we present an algorithm for constructing
a worst-case ROBDD of a given number of variables. Our approach may be useful to projects deciding
whether the ROBDD is the appropriate data structure to use, and in building worst-case examples to test
their code.

1 Introduction

Binary Decision Diagrams (BDDs) are a data structure useful for representing Boolean expressions. The
data structure has countless applications to problems involving Boolean algebra. In the Art of Computer
Programming [Knu09, Page iv], Donald Knuth writes, “[BDDs] have become the data structure of choice for
Boolean functions and for families of sets, and the more I play with them the more I love them. For eighteen
months I’ve been like a child with a new toy, being able now to solve problems that I never imagined would be
tractable.”

The decision diagram has been defined in several different flavors in currently available literature. Colange [Col13,
Section 2.3] provides a succinct historical perspective, including the BDD [Bry86], the Multi-Valued Decision
Diagram (MDD) [Sri02], Interval Decision Diagram (IDD) [ST98], the Multi-Terminal Binary Decision Diagram
(MTBDD) [CMZ+97], the Edge-Valued Decision Diagram (EVDD) [LS92], and the Zero-Suppressed Binary
Decision Diagram (ZBDD) [Min93].

The particular decision diagram variant which we investigate in this article is the Reduced Ordered Binary
Decision Diagram (ROBDD). When we use the term ROBDD we mean, as the name implies, that the BDD
has its variables Ordered as described in Section 2.1 and has been fully Reduced by the rules presented in
Section 2.2. It is worth noting that there is variation in the terminology used by different authors. For example,
Knuth [Knu09] and Bryant [Bry18] both use the unadorned term BDD for what we are calling an ROBDD.

Even though the ROBDD is a lightweight data structure to implement, and can be easily implemented, some
of its behavior regarding the amount of necessary memory allocation may not be obvious in practice. In this
paper we convey an intuition of expected sizes and shapes of ROBDDs from several perspectives.

Section 2 provides illustrations of ROBDD constructing from the point of view of reduction operations.
Section 3.2 examines worst cases sizes of ROBDDs: first, we look exhaustively at cases involving a small number
of variables; then, we examine experimentally the average and worst-cases sizes for several cases involving more
variables. Section 3 examines the shapes of the graphs of the worst-cases sizes. In Section 3.5 we use an
intuitive understanding to derive an explicit formula to calculate the worst-case size for a given number of
variables. Finally in Section 4, we provide an algorithm for generating a worst-case sized ROBDD for a given
number of Boolean variables.

1

Z1

Z2

Z3 Z3

T⊥

Figure 1: BDD for (Z1 ∧ Z2) ∨ (Z1 ∧ ¬Z2 ∧ Z3) ∨ (¬Z1 ∧ ¬Z3)

2 BDD construction and reduction

An equation of Boolean variables can be represented by a data structure called a Binary Decision Diagram
(BDD). The literature on BDDs is abundant [Bry86, Bry92, Ake78, FTV16] [Knu09, Section 7.1.4] [Col13,
Section 2.3]. Andersen summarizes many of the algorithms for efficiently manipulating BDDs [And99]. We
do not provide a formal definition of BDD here. Instead the interested reader is invited to consult [And99]
or [Knu09, Section 7.1.4].

BDDs can be implemented easily in a variety of programming languages with only a few lines of code.
The data structure provides a mechanism to manipulate Boolean expressions elegantly. Operations such as
intersection, union and complement can be performed resulting in structures representing Boolean expressions
in canonical form [Bry86]. The existence of this canonical form makes it possible to implement the equality
predicate for Boolean expressions, either by straightforward structural comparison, or by pointer comparison
depending on the specific BDD implementation. Some programming languages model types as sets [HVP05,
CL17, Ans94]. In such programming languages, the BDD is a potentially useful tool for representing types and
for performing certain type manipulations [Cas16, NVC17, NV18].

Figure 1 shows an example of a BDD which represents a particular function of three Boolean variables: Z1,
Z2, and Z3. The BDD in the figure is actually an ROBDD; we will define more precisely what that means later.
When the Boolean function is expressed in Disjunctive Normal Form (DNF), it contains three terms, each of
which being represented by a respective path in the BDD from the root node, Z1, to the leaf node, ⊥. The
variables in each term are logically negated (i.e. ¬Zi) if the path leaves node Zi via its dashed red exit arrow,
and are not negated (i.e. Zi) if the path follows the solid green exit arrow.

In order to avoid confusion, when this article is printed in black and white, we hereafter refer to the red
dashed arrow as the negative arrow and the green solid arrow as the positive arrow. Respectively, we refer to
the nodes which the arrows point to as the positive and negative child nodes.

There are several conventions used in literature for graphically representing a Boolean expression as a BDD.
Some conventions indicate the false (logically negated ¬) case as an arrow exiting the node on the bottom left
and the true case as an arrow exiting the node on the left. We found that such a convention forces BDDs
to be drawn with excessively many crossing lines. In order to allow the right/left arrows within the BDDs to
be permuted, thus reducing the number of line crossings, we avoid attaching semantic information to left and
right arrows, and instead use red dashed arrows for the false (negative) case and solid green arrows for the true
(positive) case.

Casually generating a set of sample BDDs for randomly chosen Boolean expressions quickly reveals that a
BDD may have redundant subtrees. It seems desirable to reduce the memory footprint of such a tree by reusing
common subtrees (sharing pointers) or eliminating redundant nodes. Here, we introduce one such approach:
first, we start with a complete binary tree (Section 2.1), and then, we transform it into a reduced graph by
applying certain reduction rules to its nodes (Section 2.2). The process is intended to be intuitive, conveying
an understanding of the topology of the resulting structure. On the contrary, this construction process is not
to be construed as an algorithm for efficiently manipulating BDDs programmatically.

In addition to significantly reducing the memory footprint of a BDD, the optimization strategy described
here also enables certain significant algorithmic optimizations, which we won’t discuss in depth in this article.
In particular, the equality of two Boolean expressions often boils down to a mere pointer comparison [NVC17].

2

A

B B

C C

D D

⊥ ⊥ ⊥ T

D D

⊥ ⊥ T T

C C

D D

⊥ ⊥

D D

T T T T⊥ T

Figure 2: UOBDD for F = ¬ ((A∧C)∨ (B ∧C)∨ (B ∧D)). The highlighted path of nodes corresponds to the
highlighted row of the truth table in Figure 3.

A B C D F
> > > > ⊥
> > > ⊥ ⊥
> > ⊥ > ⊥
> > ⊥ ⊥ >
> ⊥ > > ⊥
> ⊥ > ⊥ ⊥
> ⊥ ⊥ > >
> ⊥ ⊥ ⊥ >
⊥ > > > ⊥
⊥ > > ⊥ ⊥
⊥ > ⊥ > ⊥
⊥ > ⊥ ⊥ >
⊥ ⊥ > > >
⊥ ⊥ > ⊥ >
⊥ ⊥ ⊥ > >
⊥ ⊥ ⊥ ⊥ >

Figure 3: Truth table for F = ¬ ((A∧C)∨(B∧C)∨(B∧D)). The highlighted row of the truth table corresponds
to the path of highlighted nodes in Figure 2.

2.1 Initial construction step

One way to understand the (RO)BDD representation of a Boolean expression is by first representing the truth
table of the Boolean expression as decision diagram. Consider this Boolean expression of four variables: ¬ ((A∧
C) ∨ (B ∧C) ∨ (B ∧D)). Its truth table is given in Figure 3, and its BDD representation in Figure 2. When a
BDD is a tree corresponding exactly to the truth table of its Boolean function (which is not necessarily true), the
BDD is referred to as an UOBDD (unreduced ordered BDD). Each non-leaf node of the UOBDD represents the
appearance of a Boolean variable in the expression. Each path from the root node A to a leaf node represents
one row of the truth table. For example, the highlighted path in Figure 2 corresponds to the highlighted row in
Figure 3.

A BDD is said to be ordered if there is some ordering of the variables {v1, v2, ..., vn}, such that whenever
there is an arrow from vi to vj then i < j. Some authors such as Gröple et al. [GPS98, GPS01] and Langberg
et al. [LPR03], when exploring a BDD variant called qOBDD, consider the further restriction that arrows only
connect vi with vi+1. We do not make such a restriction in our treatment of ROBDDs. For UOBDDs having not
yet undergone any reduction, being ordered implies that every branch from the root to a leaf contains exactly
the same variables in the same order. In Figure 2 for example, every path from the root to a leaf contains
exactly A,B,C,D in that order. On the contrary, and as in Figure 1, some of these paths contain fewer nodes
than others. Nevertheless, the nodes visited by each path remain ordered. For the extent of this paper we will
use the natural lexicographical orderings: A < B < C < D, and Z1 < Z2 < ...Zn.

2.2 Reduction rules

The three reduction rules described in this section give us the ability to convert an ordered BDD into an
ROBDD.

3

⊥ T

A

B B

C C

D DD D

C C

D D DD

Figure 4: BDD after applying Terminal rule

C

⊥

D

C

T

A

B B

Figure 5: BDD after applying Terminal, Deletion, and Merging rules. This diagram is an ROBDD logically
equivalent to the UOBDD shown in Figure 2.

Given its UOBDD, it is straightforward to evaluate an arbitrarily complex Boolean expression of n variables,
simply descend the tree in n steps according to the values of the n variables. This is equivalent to tracing across
the corresponding row of the truth table (see the highlighting in Figure 3). However, the size of the tree grows
exponentially with the number of variables. The UOBDD representing a Boolean expression of n variables has

|UOBDDn| = 2n+1 − 1 (1)

nodes. Fortunately, it is possible to reduce the allocated size of the UOBDD by taking advantage of certain
redundancies. There are three rules which can be used to guide the reduction. Andersen and Gröple [And99,
GPS98] also explain the merging and deletion rules, so we will dispense with many of the details. However, we
consider an extra rule, the terminal rule, which is really a special case of the merging rule.

Terminal rule: The only possible leaf nodes are > and ⊥, so these nodes can be represented by two singleton
objects, allowing pointers to them to be shared.

Deletion rule: If any node X is such that its positive and negative arrows both point to the same node Y , then
X is said to be symmetric. Such a node can be deleted and arrows previously pointing to it may
be promoted to point to Y directly.

Merging rule: If any two nodes U and V corresponding to the same Boolean variable are such that their positive
arrows both point to node X and negative arrows both point to node Y , then U and V are said
to be congruent, and they may be merged. Any arrow pointing to U may be updated to point to
the V , and U may be removed (or the other way around).

4

Applying the Terminal rule reduction cuts the number of nodes roughly by half, as shown in Figure 4.
Further applications of the deletion rule and merging rules, results in the ROBDD shown in Figure 5. In

this case the graph shrinks from 31 nodes in Figure 2 to 8 nodes in Figure 5.

3 Worst-case ROBDD size and shape

The BDD shown in Figure 2 is a 31 nodes UOBDD, reduced in Figure 5 to an 8 nodes ROBDD, thanks to the
three reduction rules presented in Section 2.2. We may naturally ask whether this reduction process is typical.

The size and shape of a reduced BDD depends on the chosen variables ordering [Bry86]. Finding the best
ordering is coNP-Complete [Bry86]. In this article we do not address the questions of choosing or improving the
variables ordering. Given a particular variables ordering however, the size and shape of the ROBDD depends
only on the truth table of the Boolean expression. In particular, it does not depend on the chosen representation
for the expression. For example, (A ∨ B) ∧ C has the same truth table as (A ∧ C) ∨ (B ∧ C), so these two
expressions are equivalent and will be reduced to the exact same ROBDD. In a practical sense, the ROBDD
serves as a canonical form for Boolean expressions.

The best-case size (in terms of node count) for a constant expression is obviously one, i.e., a Boolean
expression which is identically > or ⊥. But what is the worst-case size of an ROBDD of n variables? We
examine this question both experimentally and theoretically in the following sections.

3.1 Process summary

We start by showing all possible ROBDDs for the 1- and 2-variable cases. Then, we address the question of
the worst-case size by looking at the exhaustive list of ROBDDs up to the 4-variable case, extrapolating from
random samples thereafter. The way we do random sampling is also explained.

Given the above data, we observe that the difference between the worst-case size and the average size
becomes negligible as the number of Boolean variables increases. At this stage however, this observation is only
a conjecture, and we would like to prove it formally. We define a quantity called residual compression ratio
which measures how effective a representation the ROBDD is as compared to the size of the truth table. We
note from experimental data that this ratio decreases, but to which value is unclear.

We continue by deriving a formula for the worst-case ROBDD size, based on the number of nodes in each
row, and holding for any number of variables. This derivation is motivated by images of sample worst-case
ROBDDs as the number of variables increases. The derivation is obtained as follows.

First, we introduce a threshold function which represents the competition between an increasing exponential
and a decreasing double exponential. We are able to express the worst-case ROBDD size in terms of this
threshold. Then we argue that natural number thresholds are non-decreasing, and that real number thresholds
are strictly increasing. We then derive bounds on the threshold function, and use them to provide an Algorithm
for computing threshold values, usually within one or two iterations.

Ultimately, we use those bounds to show that the residual compression ratio indeed tends to zero.

3.2 Experimental analysis of worst-case ROBDD Size

We saw above that, given a variable ordering, every truth table of n variables corresponds to exactly one
ROBDD. Otherwise stated, there is a one–to–one correspondence from the set of n-variable truth tables to the
set of n-variable ROBDDs. However, for any given truth table, there are infinitely many equivalent Boolean
expressions. An n-variable truth table has 2n rows, and each row may contain a > or ⊥ as the expression’s
value. Thus there are 22

n

different n-variable truth tables.
For small values of n it is reasonable to consider every possible ROBDD exhaustively to determine the

maximum possible size. However, it becomes impractical to do so for large values. For example, there are
22

10

> 1.80×10308 ROBDDs of 10 variables. In our analysis, we treat the 1- through 4-variable cases exhaustively,
and use extrapolated results (explained below) otherwise.

Figure 6 shows all the possible ROBDDs of a single variable. We see that only 4 ROBDDs are possible
(22

n

= 22
1

= 4). Two of the ROBDDs have one node, and two have two nodes. Here we consider an n-variable
expression as an expression having n or fewer variables. This is because some Boolean expressions of n variables
can be reduced to equivalent expressions having fewer ones. For example, A∨ (A∧¬B), a 2-variable expression,

5

No. ROBDD and ROBDD and
Nodes Boolean Boolean

Expression Expression

1

T ⊥

> ⊥

3

Z1

T ⊥

Z1

⊥ T

Z1 ¬Z1

Figure 6: All ROBDDs of one variable

No. ROBDD and ROBDD and ROBDD and ROBDD and
Nodes Boolean Boolean Boolean Boolean

Expression Expression Expression Expression

1

T ⊥

> ⊥

3

Z1

T ⊥

Z1

⊥ T

Z2

T ⊥

Z2

⊥ T

Z1 ¬Z1 Z2 ¬Z2

4

Z1

Z2

⊥ T

Z1

Z2

⊥ T

Z1

⊥

Z2

T

Z1

⊥

Z2

T

(Z1 ∧ Z2) (Z1 ∧ ¬Z2) (¬Z1 ∧ Z2) (¬Z1 ∧ ¬Z2)

4

Z1

Z2

T ⊥

Z1

Z2

T ⊥

Z1

T

Z2

⊥

Z1

T

Z2

⊥

((Z1 ∧ Z2) ((Z1 ∧ ¬Z2) ((¬Z1 ∧ Z2) ((¬Z1 ∧ ¬Z2)
∨¬Z1) ∨¬Z1) ∨Z1) ∨Z1)

5

Z1

Z2 Z2

⊥ T

Z1

Z2 Z2

T ⊥

((Z1 ∧ ¬Z2) ((Z1 ∧ Z2)
∨(¬Z1 ∧ Z2)) ∨(¬Z1 ∧ ¬Z2))

Figure 7: All ROBDDs of two variables

6

Z5 Z4 Z3 Z2 Z1 F min-term
0 0 0 0 0 1 (¬Z1 ∧ ¬Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5)
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1 (Z1 ∧ Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5)
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 0
...
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

Figure 8: 5-Variable truth table representing 910 = 10012. To interpret a binary integer as a truth table, enter
the bits in order with least significant bit at the top and most significant bit at the bottom. Bits which are 1
correspond to min-terms as shown.

is in fact equivalent to just A. Figure 7 shows an exhaustive list of the possible ROBDDs of 2 variables. Here,
the worst-case node count is 5, occurring twice out of a total of 22

n

= 22
2

= 16 possible expressions.

3.3 Statistics of ROBDD size distribution

Figure 9 and Figure 10 are histogram plots illustrating the possible sizes of an ROBDD vs. the number of
possible Boolean functions which reduce to an ROBDD of that size. In Figure 9, we have exhaustively counted
the possible sizes of each ROBDD for 1 to 4 variables. In Figure 10 we have extrapolated from random sampling
the 5- through 10-variable cases as described below. The worst case for 4 variables is 11 nodes. We can estimate
from Figure 9 that of the 65536 different Boolean functions of 4 variables, only about 12000 of them (18%) have
node size 11. The average size is about 10 nodes.

We generated the data in Figure 10 for 5 through 8 Boolean variables, by randomly selecting truth tables,
counting the nodes in the ROBDD, and multiplying by a factor to compensate for the sample size. In particular,
we did the computation work in Common Lisp [Ans94] using the SBCL [New15] Common Lisp compiler. SBCL
(version 1.4.3) uses the MT19937 prng algorithm [MN98] for generating random numbers. For each plot, we
generated a list of random integers between 0 and 2n−1, removing duplicates so as not to count the same truth
table twice. From each such sampled integer, we generated an ROBDD and counted its nodes. For example,
from the integer 910 = 010012 represents the truth table shown in Figure 8. From this truth table we generated
the Boolean expression

((¬Z1 ∧ ¬Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5) ∨ (Z1 ∧ Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5)) ,

and from that Boolean expression, we generated the corresponding ROBDD.
Construction of such large ROBDDs is compute intensive. We have shared access to a cluster of Intel XeonTM

E5-2620 2.00GHz 256GB DDR3 machines. Consequently, we tried to achieve a reasonably large sample size with
the limited resources available. There are potential ways of increasing the sample size, discussed in Section 7.

Figure 11 lists the number of samples and corresponding compute times we observed. Figure 12 consolidates
the data from Figures 9 and 10 into a single plot but normalized so that the total number of Boolean functions
in each curve is 100 percent. This normalization allows us to interpret a point (x, y) on the curve corresponding
to n variables as meaning that a randomly selected Boolean expression of n variables has probability y of having
an ROBDD which contains exactly x nodes.

Each point, (n, σn), in the plot in Figure 14 was calculated from a corresponding curve Cn of Figure 12 by
the formula:

σn =

√ ∑
(x,y)∈Cn

y · (x− µn)2 , with µn =
∑

(x,y)∈Cn

x · y .

7

1 1.5 2 2.5 3

1.8

2

2.2

2.4

ROBDD node count for 1 variable

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

1 2 3 4 5

2

4

6

8

ROBDD node count for 2 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

1 2 3 4 5 6 7

0

20

40

60

80

ROBDD node count for 3 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5
·104

ROBDD node count for 4 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

Figure 9: Histograms illustrating size distributions of ROBBDs from 1 to 4 Boolean variables. The histograms
are based on exhaustive data.

It is not clear from Figure 12 whether the spread of ROBDD sizes grows with the number of variables.
However, from the standard deviation plot in Figure 14, the spread seems to grow in absolute terms. Despite
this, the average (expected size), median, and worst-case sizes summarized in Figure 13 give the impression that
the distinction between average size and worst-case size becomes negligible as the number of variables increases.
Otherwise stated, it appears that for large values of n, |ROBDDn| becomes a good approximation for average
size, an observation which seems related to the Shannon Effect discussed by Gröpl et al. [GPS98].

The plot in Figure 12 gives the impression that the distribution of possibles ROBDD sizes for a given number
of variables is clustered around the average such value. The standard deviation plot in the same figure gives an
impression of how tight this clustering is. In this article, we don’t present a formula for this standard deviation
as a function of n, but from the plot, it appears to grow faster than linearly.

One might be tempted to assume that the data represented in Figure 10, and consequently in Figure 12,
follows a normal distribution, as the curves have a bell-like shape. However, the distribution is not Gaussian.
In particular, each of the curves extend left to the point (1, 2) because there are always two constant functions
of N variables, namely, f = > and f = ⊥. On the other hand, we did not see any case in our experimentation
where the curves extended to the right any considerable distance beyond the peak. Later, we show what the
actual maximum size of an ROBDD of N variables is (see Figure 19), and in each case, the rightmost points in
Figure 12 agree impeccably with Figure 19.

If we believed the data followed a Gaussian distribution, we could interpret the standard deviation more
strictly. But for any distribution where we can calculate the mean and standard deviation, we can interpret
the standard deviation according to the Chebyshev inequality. The standard deviation plot (Figure 14) can
be interpreted according to the Chebyshev inequality [Als11], with X being the size of a randomly selected
ROBDD.

Pr(|X − µ| > k · σ) ≤ 1

k2
Chebyshev’s inequality

If the standard deviation of the probability function (Figure 12) for n Boolean variables is σn and the average
ROBDD size is µn, then for a given real number, k ≥ 1 (k > 1 in practice), the probability of a randomly selected

8

0 5 10 15 20

0

0.5

1

·109

ROBDD node count for 5 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

0 5 10 15 20 25 30

0

1

2

3

4

·1018

ROBDD node count for 6 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

0 10 20 30 40 50

0

2

4

6

8

·1037

ROBDD node count for 7 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

0 20 40 60 80

0

0.5

1

1.5

2

2.5

·1076

ROBDD node count for 8 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

0 20 40 60 80 100120140

0

0.5

1

1.5

2
·10153

ROBDD node count for 9 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

0 50 100 150 200 250

0

0.5

1

1.5

·10307

ROBDD node count for 10 variables

N
u
m
b
er

of
B
o
ol
ea
n
fu
n
ct
io
n
s

Figure 10: Histograms illustrating size distributions of ROBBDs from 5 to 10. The histograms are based on
extrapolations from sampled data.

No. No. No. Compute Seconds
Variables Samples Unique Time per

(n) Sizes hh:mm:ss ROBDD
5 500,003 15 10:26:41 0.075
6 400,003 18 17:51:42 0.161
7 486,892 16 73:02:01 0.54
8 56,343 17 35:22:15 2.26
9 94,999 26 292:38:58 11.09

10 17,975 35 304:34:35 61.0

Figure 11: Number of samples and compute times for generating the plots in Figure 10. The table also shows
the number of unique ROBDD sizes which were detected for each value of n.

9

0 50 100 150 200 250

0

0.2

0.4

BDD Size

P
r
o
b
a
b
il
it
y

”Size with 2 variables”

”Size with 3 variables”

”Size with 4 variables”

”Size with 5 variables”

”Size with 6 variables”

”Size with 7 variables”

”Size with 8 variables”

”Size with 9 variables”

”Size with 10 variables”

Figure 12: Normalized histograms of size distribution probability functions for ROBBDs of 2 to 10 variable
Boolean expressions, based on exhaustive data for 2, 3 and 4 variables, and on randomly sampled data for 5
and more variables.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Number of variables

R
O

B
D

D
si

ze

tinyWorst case
tinyAverage
tinyMedian

Figure 13: Expected and worst-case ROBDD size from 1 to 10 variables, exhaustively determined for 1 through
4 variables, experimentally determined for 5 and more variables.

10

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Number of variables

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

Figure 14: Standard deviations for each of the curves shown in Figure 12 and whose averages are shown in
Figure 13.

ROBDD of n variables having more than µn + k · σn nodes or less than µn − k · σn nodes, is less than 1
k2 . As

an example of using the plots in Figures 13 with the Chebyshev inequality, taking k = 2:

µ8 = 75.0 from Figure 13

σ8 = 1.92 from Figure 14

k = 2

1

k2
=

1

22
= 25%

µ8 − k · σ8 = 71.16

µ8 + k · σ8 = 78.84 .

This means that given a randomly selected 8-variable ROBDD, there is a 100% − 25% = 75% chance that it
has between 71 and 79 nodes.

3.4 Measuring ROBDD residual compression

In Section 2.2, a 31 node UOBDD of 4 Boolean variables was reduced to an equivalent ROBDD with 8 nodes,
meaning a residual compression ratio of 8/31 ≈ 25.8%. The question was posed as to how typical this reduction
is. Figure 15 shows a plot of the worst-case, average, and median sizes divided by the size of the UOBDD. The
figure shows the residual compression ratio,

ρn =
|ROBDDn|
|UOBDDn|

, (2)

for sizes n = 1 through n = 10 Boolean variables. The residual compression ratio quantifies which portion of the
original size remains after converting a UOBDD into an ROBDD. The closer to zero, the better the compression.

The points in the plot are calculated by starting with the numbers from Figure 13 and dividing each by the
size of the UOBDD. A UOBDD of n Boolean variables (as well as a full binary tree of n levels and 2n leaves)
has |UOBDDn| = 2n+1 − 1 nodes. It appears from the plot that the residual compression ratio improves (the
percentage decreases) as the number of variables increases. It is not clear from the plot what the asymptotic
residual compression ratio is, but it appears from experimental data to be less than 15%. It would also appear
that whether the residual compression ratio is measured using the average size or worst-case size, the difference
is negligible as the number of variables increases.

In Section 3.5, we derive a formula for the worst-case ROBDD size as a function of the number of Boolean
variables. In order to do that, we need to understand the topology of such ROBDDs. What are the connectivity

11

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
es

id
u

al
co

m
p

re
ss

io
n

ra
ti

o

tinyWorst case
tinyAverage
tinyMedian

Figure 15: Residual compression ratio of ROBDD as compared to UOBDD

invariants which control the shape? In this section, we examine some example worst-case ROBDDs. Section 4
discusses an algorithm for constructing such ROBDDs.

Figure 16 shows examples of worst-case ROBDD for 1 through 7 variables. Those ROBDDs have 3, 5, 7, 11,
19, 31, and 47 nodes respectively.

The 2-variable ROBDD represents the Boolean expression ((Z1∧¬Z2)∨(¬Z1∧Z2)), which is the xor function.
We did not recognize any obvious pattern in the Boolean expressions for the cases of 3 variables or more. As
will become clear in Section 4 and in Algorithm 2, the worst-case ROBDD is not unique. There is considerable
flexibility in constructing it. One may naturally wonder whether there is some underlying pattern within the
Boolean expressions corresponding to these worst-case ROBDDs. We have not investigated this question yet,
and leave it open for further investigation.

Even if there is no obvious pattern among the closed form Boolean expressions, we do notice a general
pattern in the overall shapes of the worst-case ROBDDs, as we increase the number of variables. We will make
this pattern explicit in Section 3.5, but intuitively, it seems that the shapes expand from the top (root node)
to somewhere close to mid-way down and thereafter contract toward the bottom, always ending with two rows
having exactly two nodes each.

This shape makes sense because the maximum possible expansion (top toward bottom) occurs when each
row contains twice as many nodes as the row directly above it. Each node in the ith row corresponding to
variable Zi has two arrows (one positive and one negative) pointing to nodes of variable Zi+1. If the ith row
is to have the maximum number of nodes possible, then no node may be symmetric, otherwise the node could
be eliminated by the Deletion rule. Furthermore, no two nodes may be congruent, otherwise one of the nodes
could be eliminated by the Merging rule.

However, this exponential expansion is limited by the fact that the bottommost row must contain exactly
two leaf nodes in worst case, corresponding to >, and ⊥. We know this because if the bottom row had only one
of > or ⊥, then any node in the second to last row would be symmetric, having its positive and negative arrows
pointing to this same leaf node. Such a node would be eliminated by the Deletion rule. Thus, the second to
last row would be empty. From this we can conclude that if an ROBDD has exactly one leaf, it also has exactly
one node. Such an ROBDD is obviously not a worst-case ROBDD.

We know from the previous argument that the bottommost row has exactly two leaves. That being the
case, if the second to last row had any symmetric node, such a node would be removed by the Deletion rule.
Furthermore, if any two nodes in the row were congruent, one of the nodes would be eliminated by the Merging
rule. Therefore, as worst case, there may be only as many nodes in the second to last row as there are ordered
parings of the leaf nodes. There are only two such ordered pairs: (>,⊥) and (⊥,>). The second to last row
has exactly two nodes.

A similar argument limits the third to last row, and the rows above it. In each such case, the number of
nodes in the row is limited by the number of ordered pairs which can be formed by all the nodes below it, having

12

Z1

T ⊥

Z1

Z2 Z2

⊥ T

Z1

Z2 Z2

Z3 Z3

T ⊥

3 nodes 5 nodes 7 nodes
for 1 variable for 2 variables for 3 variables

Z1

Z2Z2

Z3 Z3Z3Z3

Z4 Z4

T ⊥

Z1

Z2Z2

Z3 Z3Z3Z3

Z4Z4 Z4 Z4Z4Z4Z4Z4

T ⊥

Z5 Z5

11 nodes 19 nodes
for 4 variables for 5 variables

Z1

Z2Z2

Z3Z3Z3 Z3

Z4 Z4Z4Z4 Z4Z4 Z4Z4

Z5Z5 Z5 Z5Z5 Z5Z5 Z5Z5 Z5 Z5Z5

T⊥

Z6 Z6

Z1

Z2 Z2

Z3 Z3Z3Z3

Z4 Z4 Z4 Z4Z4 Z4Z4Z4

Z5 Z5 Z5Z5 Z5 Z5 Z5 Z5Z5Z5 Z5Z5Z5 Z5Z5Z5

Z6 Z6 Z6Z6 Z6 Z6Z6Z6 Z6 Z6Z6 Z6

T ⊥

Z7Z7

31 nodes 47 nodes
for 6 variables for 7 variables

Figure 16: Shapes of worst-case ROBDDs for 1 to 7 variables

13

nRn+1 = 2
nSn = nRn+1 = 2

nRn = nSn
2 = 2 · 1 = 2

nSn−1 = nRn+1 + nRn = 4

nRn−1 = nSn−1
2 = 4 · 3 = 12

nSn−2 = nRn+1 + ...+ nRn−1 = 16

nRn−2 = nSn−2
2 = 16 · 15 = 240

nSn−3 = nRn+1 + ...+ nRn−2 = 256

nRn−3 = nSn−3
2 = 256 · 255 = 65280

nSn−k =

n+1∑
i=n−(k−1)

nRi

nRn−k = nSn−k
2 (3)

Figure 17: The two interrelated sequences nSi and nRi.

no symmetric node and no congruent nodes. This implies a combinatorial expansion from bottom toward the
top.

As argued above, there is an exponential growth from the topmost node downward, and there is a combi-
natorial growth from the bottommost node upward. At some point, the widest part of the graph, these two
growth rates meet.

3.5 Worst-case ROBDD Size

In Section 3.2, we saw the worst-case sizes of ROBDDs for different numbers of Boolean variables. We observed
an exponential top-down growth rate, a bottom-up combinatorial one, and a point somewhere in between where
these two growths meet. In this section, we derive explicit formulas for these observations, and from them,
derive the worst-case size, |ROBDDn|.

As can be seen in Figure 16, the number of nodes per row (per variable), looking from the top down, is
limited by 2i where i is the index of the variable. The number of nodes per row follows the sequence 20 = 1,
21 = 2, 22 = 4, ...2k.

The row corresponding to the last variable has two nodes, one with children positive = ⊥, negative = >
and one with positive = >, negative = ⊥. In the worst case, each row above the bottom has the number of
nodes necessary for each node to uniquely connect its positive and negative arrows to some unique pair of nodes
below it. The number of ordered pairs of m items is m2 (read m raised to the second power descending). Recall
that ma = m!

(m−a)! which, for the special case of a = 2, becomes m2 = m!
(m−2)! = m · (m− 1).

We denote the size of the kth row of the worst-case ROBDD of n variables as nRk, and the total number of
nodes of rows k+ 1 through n as nSk. In other words, nSk is the number of nodes in the rows strictly below row
k. Viewed from the bottom up, the sequence of rows have sizes nRn−1,

nRn−2,
nRn−3, etc. The number of nodes

in row i is a function of the sum of the number of nodes in the rows below it, namely nRi = nSi
2 = nSi · (nSi−1).

Notice that the bottom row of a non-trivial worst-case ROBDD has exactly 2 nodes, the > and ⊥ nodes,
thus nRn+1 = 2. For each i, nSi can be calculated as the sum of the previous nRj for j = n− i, ..., n+ 1. This
is illustrated by the equations in Figure 17.

An interesting pattern emerges: nSn = 22
0

, nSn−1 = 22
1

, nS2 = 22
2

, nS3 = 22
3

, suggesting Lemma 3.1.

Lemma 3.1. Let

nSn−k =

n+1∑
i=n−(k−1)

nRi ,

14

where
nRn+1 = 2

and for k > 1,
nRn−k = nSn−k · (nSn−k − 1) .

Then for every positive integer k,
nSn−k = 22

k

.

Proof. By Induction: The initial case, k = 0 is that

nSn−k = nSn−0

= nRn+1 = 2 = 21 = 22
0

= 22
k

.

It remains only to be shown that for k ≥ 0, nSn−k = 22
k

implies nSn−(k+1) = 22
k+1

. Assume

nSn−k = 22
k

.

It follows that

nSn−(k+1) =

n+1∑
i=n−k

nRi

= nRn−k +

n+1∑
i=n−(k+1)

nRi

= nRn−k + nSn−k

= (nSn−k) · (nSn−k − 1) + (nSn−k)

= (nSn−k) · (nSn−k − 1 + 1)

= nSn−k · nSn−k
= (nSn−k)2

= (22
k

)2 = 22·2
k

= 22
k+1

.

Next, we show more concise forms for nRn−k and nRi. As a convention, we will use the variable i to index
rows and summations when counting from the top (root) node down. By contrast we will use the variable k to
index rows and summations when counting from the bottom up.

Lemma 3.2. If k ≥ 0, then
nRn−k = 22

k+1

− 22
k

,

and if i ≤ n,
nRi = 22

n−i+1

− 22
n−i

.

15

Proof.

nRn−k = nSn−k
2 by 3

= (22
k

) · (22
k

− 1) by Lemma 3.1

= (22
k

· 22
k

)− 22
k

= (22
k

)2 − 22
k

= 22·2
k

− 22
k

nRn−k =

{
22
k+1 − 22

k

if k ≥ 0

2 if k = −1

nRi =

{
22
n−i+1 − 22

n−i
if i ≤ n

2 if i = n+ 1

As explained already, nRi is the number of elements which would fit into row i, only taking into consideration
the combinatorial growth from the bottommost row up to row i. However, when looking from the topmost row
down, taking into account the exponential growth only, the number of nodes in row i is given by

nri = 2i−1 (4)
nrn−k = 2n−k−1 . (5)

Each row within the worst-case ROBDD is limited in size by the two terms, nRi and nri. The precise number
of nodes in each row is the minimum of these two terms. The total number of nodes in a worst-case ROBDD of
n variables is the sum of the number of nodes in each of its rows, given by Equation 7 which holds when n > 1.

|ROBDDn| = 2 +

n∑
i=1

min{nri, nRi} (6)

= 2 +

n∑
i=1

min{2i−1, 22
n−i+1

− 22
n−i
} (7)

Theorem 3.3 is stated and proven now. This theorem is useful in the later discussion of Algorithm 2.

Theorem 3.3. Every row of a worst-case ROBDD, except the first row, has an even number of nodes.

Proof. The i’th row of an n-variable ROBDD either has nri nodes or nRi nodes. If i > 1, then nri = 2i−1 (by

Equation 4) is even. If 1 < i ≤ n, then nRi = 22
n−i+1 − 22

n−i
(by Lemma 3.2) is even. The final case is when

i = n+ 1, the row of terminal nodes, nRn+1 = 2 which is even.

In Section 3.5 we derived the sizes of the rows of the worst-case ROBDD. We also derived Equation 7 which
is easy to state but difficult to evaluate, which gives the value of |ROBDDn| in terms of the sum of the row
sizes. In this section we will build up to and prove Theorem 3.9 which makes a step forward in making this
value easier to calculate.

Corollary 3.4. A worst-case ROBDD as an odd number of nodes.

We could prove Corollary 3.4 by straightforward examination of Equation 7, and we would reach the same
conclusion as the following simpler argument.

16

Proof. The first row of any ROBDD (worst-case or not) has a single node. By Theorem 3.3 every row thereafter
of a worst-case ROBDD has an even number of nodes. Therefore the the total number of nodes is necessarily
odd.

There is a shortcut for calculating the sum in Equation 7. To make the shortcut more evident, first consider
the example where n = 10, and calculate the size of row i = 1. To calculate min{21−1, 2210−1+1 − 22

10−1} =

min{20, 2210 − 22
9} = 1, there is no need to calculate the 1024 digits of 22

10 − 22
9

, because 20 = 1 is obviously
smaller. The trick is to realize that the summation (Equation 7) is the sum of leading terms of the form 2i, plus

the sum of trailing terms of the form 22
n−i+1 − 22

n−i
. How many leading and trailing terms may not be obvious

however. Theorem 3.9 shows the existence of the so-called threshold function, θ, which makes these two sums
explicit.

3.6 The threshold function θ

In this section, we prove the existence of the so-called threshold function, θ, and express |ROBDDn| in terms of θ
(Theorem 3.9). Before proving that lemma, we establish a few intermediate results to simplify later calculations.

Lemma 3.5. If f : R→ R is differentiable, then

d

dx
2f(x) = 2f(x) · ln 2 · d

dx
f(x)

Proof.

d

dx
2f(x) =

d

dx
eln 2f(x) =

d

dx
ef(x)·ln 2

= ef(x)·ln 2 · ln 2 · d
dx
f(x)

= eln 2f(x) · ln 2 · d
dx
f(x)

= 2f(x) · ln 2 · d
dx
f(x)

Lemma 3.6. If f : R→ R is differentiable, then

d

dx
22
f(x)

= 2f(x)+2f(x) · ln 4 · d
dx
f(x)

Proof. Change of variables, let g(x) = 2f(x), and use Lemma 3.5 twice.

d

dx
22
f(x)

=
d

dx
2g(x) = 2g(x) · ln 2 · d

dx
g(x)

=
d

dx
2f(x) · ln 2 · 22

f(x)

=
(
2f(x) · ln 2 · d

dx
f(x)

)
·
(

ln 2 · 22
f(x))

= 2f(x)+2f(x) · ln 4 · d
dx
f(x)

17

Even though Lemma 3.7 is trivial to prove, we provide it because it removes redundant steps in proving
Lemmas 3.8 and 3.10.

Lemma 3.7. If h : R→ R, then 2h(x)+1+2h(x)+1

> 2h(x)+2h(x) .

Proof.

h(x) + 1 > h(x) =⇒ 2h(x)+1 > 2h(x)

=⇒ h(x) + 1 + 2h(x)+1 > h(x) + 2h(x)

=⇒ 2h(x)+1+2h(x)+1

> 2h(x)+2h(x)

Lemma 3.8. The function, f(x) = 22
n−x+1 − 22

n−x
is decreasing.

Proof. To show that f is decreasing, we show that d
dxf(x) < 0.

d

dx
f(x) =

d

dx

(
22
n−x+1

− 22
n−x)

= 2n−x+1+2n−x+1

· ln 4 · (−1)− 2n−x+2n−x · ln 4 · (−1) by Lemma 3.6

=
(
2n−x+1+2n−x+1

− 2n−x+2n−x
)
· ln 4 · (−1)

=
(
2n−x+2n−x − 2n−x+1+2n−x+1)

· ln 4

Letting h(x) = n− x, and applying Lemma 3.7, we have 2n−x+2n−x < 2n−x+1+2n−x+1

. So(
2n−x+2n−x − 2n−x+1+2n−x+1)

· ln 4 < 0 .

The following theorem proves the existence of the threshold function θ, without giving insight into how to
calculate it. See Section 3.9 for a discussion on how to calculate it.

Theorem 3.9. For each n > 0, there exists an integer θ, such that

|ROBDDn| = (2n−θ − 1) + 22
θ

.

Proof. As i increases, so does nri = 2i−1. By Lemma 3.8, nRi = 22
n−i+1 − 22

n−i
is decreasing (as a function of

i). At i = 0, 2i−1 < 22
n−i+1 − 22

n−i
. So there necessarily exists a χn such that when i < χn we have nri <

nRi,
and when i ≥ χn we have nri ≥ nRi.

|ROBDDn| = 2 +

n∑
i=1

min{nri, nRi} by 6

= 2 +

χn−1∑
i=1

nri +

n∑
i=χn

nRi

18

Now, we define θn = n − χn + 1, i.e., the number of terms in the second sum. We also adjust the iteration
variable of the second summation to commence at 0. Finally, we apply Lemma 3.2. Simply as a matter of
notation, and to facility ease of reading, we will write θ rather than θn.

|ROBDDn| = 2 +

n−θ∑
i=1

nri +

n∑
i=n−θ+1

nRi

= 2 +

n−θ∑
i=1

nri +

θ−1∑
k=0

nRn−k

= 2 +

n−θ∑
i=1

2i−1 +

θ−1∑
k=0

(22
k+1

− 22
k

)

Notice that
∑n−θ
i=1 2i−1 is a truncated geometric series whose sum is 2n−θ−1. Furthermore,

∑θn−1
k=0 (22

k+1 −22
k

)

is a telescoping series for which all adjacent terms cancel, leaving the difference 22
θ − 22

0

= 22
θ − 2. This leads

to the desired equality.

|ROBDDn| = 2 + (2n−θ − 1) + (22
θ

− 2)

= (2n−θ − 1) + 22
θ

This result makes sense intuitively. The (2n−θ − 1) term represents the exponential growth of the ROBDD

seen in the top rows, from row 1 to row n − θ, as can be seen in the illustrations such as Figure 16. The 22
θ

term represents the double-exponential decay in the bottom rows as can be seen in the same illustration.
Another way to think of θ is as follows. We define the integer sequence θn as the corresponding values of

the real valued function

θn = bψ(n)c , (8)

where ψ : R+ 7→ R such that

22
ψ(n)+1

− 22
ψ(n)

= 2n−ψ(n)−1 . (9)

Equation 9 is the real number extension of the integer equation nrθn = nRθn . Clearly, θ and ψ are functions
of n, hence we denote them as such. We will, as before, dispense with the notation when it is clear, and simply
refer to θn as θ, and ψ(n) as ψ.

Although we do not attempt to express θ in closed form as a function of n, we do know several things about
that function. For example we see in Theorem 3.11 that θ is non-decreasing. We also see in Theorems 3.13
and 3.14 that θ is bounded above and below by functions which themselves go to infinity. Thus, θ becomes
arbitrarily large (Equation 22).

That θ = bψc, means that θ is the integer such that n− θ is the maximum integer for which

nrn−θ ≤ nRn−θ . (10)

If n− θ is the maximum such integer, then

nrn−θ+1 >
nRn−θ+1 . (11)

As an example, consider the case of n = 3.

3r2 = 2 < 3R2 = 12
3r3 = 4 > 3R3 = 2

We see that 3r2 is the largest value of 3ri which is less than 3Ri. So we have n− θ = 3− θ = 2, or θ = 1. If
we look at the case of n = 2 we see why Inequality 10 is not a strict inequality.

19

2r1 = 1 < 2R1 = 12
2r2 = 2 ≤ 2R2 = 2
2r3 = 4 > 2R3 = 2

This can be seen in Figure 16, in which the worst-case ROBDD for n = 2 has two nodes for Z2. There are
two nodes for two reasons: because 22−1 = 2 and also because 22 = 2.

3.7 The threshold function is non-decreasing

This section establishes that θ (defined by Equation 8) is a non-decreasing sequence. In Section 3.8, we will
show by Theorems 3.13 and 3.14 that θ is bounded above and below by increasing functions. However, this
alone is not sufficient to show that θ itself is non-decreasing.

To show θ is non-decreasing (Theorem 3.11), we first show that ψ, as defined by Equation 9, is strictly
increasing (Lemma 3.10). To prove Lemma 3.10, we need two identities, proven earlier in Lemmas 3.5 and 3.6.

Lemma 3.10. ψ : R+ 7→ R is strictly increasing.

Proof. To show that ψ is increasing, we show that its derivative, d
dxψ(x), is strictly positive. We use x as

the variable of integration rather than n to emphasize that the domain of ψ is R+ not N. Note that it is not
actually necessary to calculate the derivative of ψ in a form independent of ψ. Rather, it suffices to show that
the derivative is positive. We find an expression for d

dxψ(x) in terms of ψ(x) using implicit differentiation.

22
ψ(x)+1

− 22
ψ(x)

= 2x−ψ(x)−1

d

dx
22
ψ(x)+1

− d

dx
22
ψ(x)

=
d

dx
2x−ψ(x)−1 (12)

For clarity, we calculate these three derivatives separately. Applications of Lemma 3.5 and Lemma 3.6 lead
to:

d

dx
22
ψ+1

= 2ψ+1+2ψ+1

· ln 4 · dψ
dx

(13)

d

dx
22
ψ

= 2ψ+2ψ · ln 4 · dψ
dx

(14)

d

dx
2x−ψ−1 = 2x−ψ−1 · ln 2 · (1− dψ

dx
) (15)

Substituting 13, 14, and 15 into 12, and solving for dψ
dx results in

dψ

dx
=

2x−ψ−1

ln 2 · (2ψ+1+2ψ+1 − 2ψ+2ψ) + 2x−ψ−1
. (16)

Since the right hand side of Equation 16 is a fraction whose numerator, 2x−ψ−1, is positive, and whose
denominator is the sum of two terms, the second of which, 2x−ψ−1, is positive, then it suffices to argue that the

first term in the denominator, ln 2 · (2ψ+1+2ψ+1 − 2ψ+2ψ), is positive. If we let h(x) = ψ(x) + 1, then Lemma 3.7

implies 2ψ+1+2ψ+1

> 2ψ+2ψ . So since ln 2 > 0, we conclude that ln 2 · (2ψ+1+2ψ+1 − 2ψ+2ψ) > 0.

dψ

dx
=

>0︷ ︸︸ ︷
2x−ψ−1

ln 2︸︷︷︸
>0

· (2ψ+1+2ψ+1

− 2ψ+2ψ)︸ ︷︷ ︸
ψ+1+2ψ+1 > ψ+2ψ

+ 2x−ψ−1︸ ︷︷ ︸
>0

> 0 .

20

Theorem 3.11. θ : N 7→ N by θn = bψ(n)c is non-decreasing.

Proof. ψ : R+ 7→ R is increasing (Lemma 3.10), implies that if m ∈ N, then ψ(m + 1) > ψ(m). Thus
bψ(m+ 1)c ≥ bψ(m)c; i.e., θm+1 ≥ θm holds for all m ∈ N.

3.8 Bounds for the threshold function

We showed in Theorem 3.9 that the function θ is well defined, but we didn’t say how to calculate it. We now
show that θ is bounded by two logarithmic functions. Using those bounds, we will then develop an efficient
algorithm for calculating it iteratively (Section 3.9). To do this, we first establish an inequality (Lemma 3.12)
to be used later.

Lemma 3.12. For any real number α > 0, we have

22
α

< 22
α+1

− 22
α

.

Proof.

1 = 20 < 2α

2 = 21 < 22
α

1 < 22
α

− 1

= 2(2−1)·2
α

− 1

= 22·2
α−2α − 1

= 22
α+1−2α − 1

22
α

22α
<

22
α+1

22α
− 22

α

22α

22
α

< 22
α+1

− 22
α

We now establish an upper bound for θ.

Theorem 3.13. For any n ∈ N, we have
θn < log2 n .

Proof.

nRn−θ+1 <
nrn−θ+1 by 11

22
θ+1

− 22
θ

< 2n−θ

22
θ

< 22
θ+1

− 22
θ

< 2n−θ by Lemma 3.12

2θ < n− θ < n

θ < log2 n

21

50 100 150 200
0

1

2

3

4

5

6

7

8

Number of variables n

U
p
p

er
a
n
d

lo
w

er
b

o
u
n
d
s

fo
r
θ

tinylog2 n
tinyθ

tinylog2(n− 2− log2 n)− 2

Figure 18: Upper and lower bounds for θ

We now establish a lower bound for θ.

Theorem 3.14. For any n ∈ N, we have

log2(n− 2− log2 n)− 2 ≤ θ .

Proof.

ψ − 1 ≤ bψc = θ < log2 n

ψ < 1 + log2 n (17)

ψ + 1 < θ + 2 (18)

2n−2−log2 n = 2n−(1+log2 n)−1 by 5 and Lemma 3.2 (19)

< 2n−ψ−1 by 17

= 22
ψ+1

− 22
ψ

by 9

< 22
ψ+1

< 22
θ+2

by 18

2θ+2 > n− 2− log2 n

θ > log2(n− 2− log2 n)− 2 (20)

As a consequence of Theorems 3.13 and 3.14, Corollary 3.15 defines upper and lower bounds for θ. The
continuous, real valued bounds are illustrated in Figure 18.

Corollary 3.15. For any n ∈ N, we have

dlog2(n− 2− log2 n)e − 2 ≤ θ ≤ blog2 nc

Proof. From Theorems 3.13 and 3.14 we already have

log2(n− 2− log2 n)− 2 ≤ θ ≤ log2 n ,

22

but since θ is an integer, the inequality implies

dlog2(n− 2− log2 n)e − 2 ≤ θ ≤ blog2 nc

As is implied by Figure 18, and as explicitly proven in Theorem 3.16, θ →∞.

Theorem 3.16.
lim
n→∞

θn =∞

Proof. First note that for n� 0

log2 n <
n

2
. (21)

Next, we have a lower bound for θ,

θn ≥ log2(n− 2− log2 n)− 2 by 20

lim
n→∞

θn ≥ lim
n→∞

log2(n− 2− log2 n)− 2

≥ lim
n→∞

log2(n− 2− n

2
)− 2 by 21

= lim
n→∞

log2(
n

2
− 2)− 2

=∞ (22)

Theorem 3.16 may be interpreted in conjunction with Theorem 3.9:

|ROBDDn| = (2n−θ − 1) + 22
θ

.

|ROBDDn| contains two components: 22
θ

, which goes to infinity (because θ → ∞), and 2n−θ − 1 which goes
to infinity (because θ < log2 n <

n
2).

Corollary 3.17.
lim
n→∞

ψ(n) =∞ .

Proof. Since
θn = bψ(n)c ≤ ψ(n) ≤ dψ(n)e ≤ 1 + θn ,

then by application of Theorem 3.16 we have

∞ = lim
n→∞

θn ≤ lim
n→∞

ψ(n)

≤ lim
n→∞

1 + θn =∞ .

So

lim
n→∞

ψ(n) =∞ . (23)

23

n blog2 nc θ 2n−θ − 1 + 22
θ

n blog2 nc θ 2n−θ − 1 + 22
θ

1 0 0 3 20 4 4 131,071
2 1 1 5 30 4 4 67,174,399
3 1 1 7 50 5 5 3.52× 1031

4 2 1 11 100 6 6 1.98× 1028

5 2 1 19 200 7 7 1.26× 1058

6 2 2 31 500 8 8 1.28× 10148

7 2 2 47 1000 9 9 2.09× 10298

8 3 2 79 2000 10 10 1.12× 10599

9 3 2 143 5000 12 12 3.45× 101501

10 3 2 271 10,000 13 13 2.43× 103006

11 3 3 511 20,000 14 14 2.42× 106016

Figure 19: Worst-case ROBDD size, |ROBDDn|, in terms of number of variables, n. The table also shows θ
(the threshold) and blog2 nc demonstrating that blog2 nc serves both as an upper bound and as an initial guess
for θ. The table also shows the exponential term and the double-exponential term, whose sum is the worst-case
size.

3.9 Computing the threshold function

For a given n, the value of θ can be found iteratively, as shown in Algorithm 1. Initializing θ to the upper bound

blog2(n)c as initial guess, from Corollary 3.15, we continue to decrement θ as long as 22
θ+1−22

θ

< 2n−θ−1. This
iteration seems to usually terminate after 2 iterations. When running Algorithm 1 from n = 2 to n = 200001, it
terminates after 3 iterations 152 times, and after 2 iterations 199848 times (99.92%). Table 19 shows the values
of θ for 1 ≤ n ≤ 21 as calculated by Algorithm 1.

Algorithm 1 terminates in about two iterations, which makes sense when considering Theorem 3.18. We see
in that theorem that for large n the difference of the upper and lower limits expressed in Corollary 3.15 is 2.
However, we see from experimentation that a small fraction of the time the algorithm terminates at 3 iterations.
This is because Algorithm 1 arranges that θ is always decremented once too many (except when n = 1). This
is why θ + 1 is returned on line 1.10 of Algorithm 1.

Theorem 3.18. For all sufficiently large n,

log2 n− θn < 2 .

Proof. We know that for n � 0, θn lies between the upper and lower bounds indicated in Theorems 3.13
and 3.14. This means

log2 n− θn < log2 n− (log2(n− 2− log2 n)− 2) .

∆bounds = lim
n→∞

(upper bound︷ ︸︸ ︷
log2 n −

(
log2(n− 2− log2 n)− 2

)︸ ︷︷ ︸
lower bound

)
= 2 + lim

n→∞
log2

n

n− 2− log2 n

= 2 + log2 lim
n→∞

n

n− 2− log2 n
= 2 + log2 lim

n→∞

L’Hôpital’s rule︷ ︸︸ ︷
d
dnn

d
dn (n− 2− log2 n)

= 2 + log2 lim
n→∞

1

1− 1
n

= 2 + log2 1 = 2

24

Algorithm 1: FindTheta determine θ iteratively

Input: n: positive integer n > 0, indicating the number of Boolean variables

Output: θ: minimum integer, θ such that nrn−θ ≤ nRn−θ; i.e., 2n−θ ≤ 22
θ − 22

θ−1

1.1 begin
1.2 if n = 1 then
1.3 return 0

1.4 θ ← blog2 nc + 1
1.5 repeat
1.6 θ ← θ − 1

1.7 r ← 2n−θ−1

1.8 R← 22
θ+1 − 22

θ

1.9 until R < r
1.10 return θ + 1

0 5 10 15
100

101

102

103

104

105

Number of variables

tiny2n

tiny2n−θ − 1

tiny22
θ

tiny2n−θ − 1 + 22
θ

0 10 20 30 40 50
10−1

103

107

1011

1015

Number of variables

tiny2n

tiny2n−θ − 1

tiny22
θ

tiny2n−θ − 1 + 22
θ

Figure 20: The plots show the relative sizes of 2n−θ, 22
θ

, and their sum |ROBDDn|.

3.10 Plots of |ROBDDn| and related quantities

Now that we can calculate θ, it is possible to plot |ROBDDn| as a function of n. The plots in Figure 20 show

the relative sizes of 2n−θ, 22
θ

, and their sum |ROBDDn|. The plot also shows 2n, which is intended to convey
intuition about relative sizes of the various quantities. In the plot on the right, it appears that 2n−θ becomes
a good approximation for |ROBDDn| for large values of n. However, the plot on the left shows that this is a
poor approximation for values of n below 15.

3.11 Limit of the residual compression ratio

In Section 3.2, we introduced ρn, the ROBDD residual compression ratio (Equation 2). We also observed in
Figure 15 that ρn seems to decrease as n increases. Moreover, Figure 21 shows ρn calculated by Equation 2 for
values of 1 ≤ n ≤ 21. The plot in Figure 21 shows the residual compression ratio for 1 ≤ n ≤ 200. In this plot,
it appears that the residual compression ratio tends to 0. This is in fact the case, as proven in Theorem 3.19.

Theorem 3.19.
lim
n→∞

ρn = 0 .

Proof. First, we establish a few helpful inequalities.

25

|UOBDDn| = 2n+1 − 1 by 1

> 2n for n� 0 (24)

22
θ

= 22
bψ(n)c

≤ 22
ψ(n)

by 8

< 22
ψ(n)+1

− 22
ψ(n)

by Lemma 3.12 (25)

= 2n−ψ(n)−1 by 9 (26)

|ROBDDn| = 22
θn − 2n−θn − 1 by Theorem 3.9

≤ 2n−ψ(n)−1 − 2n−θn − 1 by 26 (27)

ρn =
|ROBDDn|
|UOBDDn|

by 2

<
|ROBDDn|

2n
by 24

≤ 2n−ψ(n)−1 − 2n−θn − 1

2n
by 27 (28)

Now, we can apply the limit to Inequality 28.

lim
n→∞

ρn ≤ lim
n→∞

2n−ψ(n)−1 − 2n−θn − 1

2n

= lim
n→∞

2n−ψ(n)−1

2n
− lim
n→∞

2n−θn

2n
− lim
n→∞

1

2n

= lim
n→∞

1

2ψ(n)+1
− lim
n→∞

1

2θn
− lim
n→∞

1

2n

≤ 0− 0− 0 by 23 and 22

lim
n→∞

ρn ≤ 0 .

Since for each n, ρn is the quotient of two positive numbers, we know that ρn > 0. We can thus conclude
that

lim
n→∞

ρn = 0 .

4 Programmatic construction of a worst-case n-variable ROBDD

In the previous sections, we looked at various examples of ROBDDs of different sizes. During our experimen-
tation, we found it necessary to devise an algorithm for generating worst-case ROBDDs. Because worst-case
ROBDDs are not unique, any such algorithm has leeway in the manner it constructs them. In this section,
we discuss the algorithm we developed, i.e., an algorithm for constructing a worst-case ROBDD of n Boolean
variables, denoted Z1, Z2, ...Zn. The constructed ROBDDs resemble those shown in Figure 16.

Recall, from Section 3.5, that the worst-case ROBDD can be thought of as having two parts, which we will
call the top part and the bottom part. This is illustrated in Figure 22. The top part comprises the exponential
expansion from the root node (corresponding to Z1) called row 0, and continuing until row n − θ − 1. This

top part contains n − θ number of rows. The bottom part comprises the double-exponential (i.e., 22
i

) decay,

26

n |ROBDDn| ρn
1 3 100.000%
2 5 71.429%
3 7 46.667%
4 11 35.484%
5 19 30.159%
6 31 24.409%
7 47 18.431%
8 79 15.460%
9 143 13.978%

10 271 13.239%
11 511 12.479%
12 767 9.364%
13 1279 7.807%
14 2303 7.028%
15 4351 6.639%
16 8447 6.445%
17 16639 6.347%
18 33023 6.299%
19 65791 6.274%
20 131071 6.250%
21 196607 4.687%

0 50 100 150 200

10−2

10−1

100

Number of variables

R
es

id
u
al

co
m

p
re

ss
io

n
ra

ti
o

Figure 21: Residual compression ratio of worst-case ROBDD, calculated from theoretical data as compared to
UOBDD, and shown in tabular graphical form.

starting at row n − θ, and continuing through row n for a total of θ + 1 rows. The bottommost row is row
n which contains precisely the two singleton objects > and ⊥. From this information and the following few
notational definitions, we are able to construct one of the many possible worst-case n-variable ROBDDs with
Algorithm 2.

An ROBDD node is denoted as node(>) (true terminal node), node(⊥) (false terminal node) or node(i, α, β)
(non-terminal node on rowi with children nodes α and β.) Let rowba denote the set of rows a to b. If S is a set,

let its cardinality be denoted |S|, and let P(S) = {(α, β) | α, β ∈ S, α 6= β}. Note that |P(S)| = |S|2.
Algorithm 2 generates an ROBDD represented as a vector of sets of nodes [row0, row1, ..., rown]. Lines 2.4

through 2.5 generate the bottom part, and lines 2.7 through 2.10 generate the top part. Algorithm 3 generates
the belt as illustrated in Figure 22.

Algorithm 2: GenWorstCaseROBDD generates a worst-case ROBDD

Input: n, positive integer indicating the number of Boolean variables
Output: a vector of sets of nodes

2.1 θ ← FindTheta(n) // Algorithm 1

2.2 B ← n− θ − 1 // belt row index

2.3 // Generate the bottom part
2.4 rown ← {node(>), node(⊥)} for i from n− 1 downto B + 1 do
2.5 rowi ← {node(i, α, β) | (α, β) ∈P(rowni+1)} // |rowi| = nRi

2.6 // Generate the top part
2.7 rowB ← GenBelt(n,B, row) // Algorithm 3

2.8 for i from B − 1 downto 0, do

2.9 P ← any partition of rowi+1 into ordered pairs // possible by Theorem 3.3, |P | = |rowi+1|
2

= 2i

2.10 rowi ← {node(i, α, β) | (α, β) ∈ P} // |rowi| = 2i

2.11 return [row0, row1, ..., rown] // generated 1 + (n− B − 1) + 1 + B = n+ 1 rows.

27

Algorithm 3: GenBelt generates the B row of the worst-case ROBDD

Input: n, positive integer indicating the number of Boolean variables
Input: B, between 0 and n, indicating the belt’s row number
Input: row, a vector which the calling function has partially populated. rowB+1...rown are each non-empty

sets of nodes.
Output: a set of 2B nodes intended to comprise rowB

3.1 p← |rowB+1| // calculate nRB+1

3.2 Pleft ← any partition of rowB+1 into ordered pairs // possible by Theorem 3.3

3.3 Sleft ← {node(B, α, β) | (α, β) ∈ Pleft}
3.4 if 2B < p · (p− 1) then // if wide belt

3.5 Pright ←P(rownβ+1)

3.6 else // if narrow belt

3.7 Pright ←P(rowβ+1)

// We want |rowB| = 2B. So limit |Sright| to 2B −
nRB+1

2
.

3.8 Sright ← any
(
2B − |Sleft|

)
sized subset of {node(B, α, β) | (α, β) ∈ Pright \ Pleft}

3.9 return Sleft ∪ Sright // |Sleft|+ |Sright| =
nRB+1

2
+ (2B −

nRB+1

2
) = 2B

Top Part

Belt

Bottom Part
Leaves

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4 Z4 Z4 Z4Z4 Z4 Z4Z4

Z5 Z5 Z5Z5 Z5 Z5Z5Z5 Z5 Z5Z5 Z5

T ⊥

Z6Z6

Figure 22: 6-variable ROBDD top & bottom parts

28

Wide Belt

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4 Z4 Z4 Z4Z4 Z4Z4 Z4

T ⊥

Z5 Z5

Narrow Belt

T ⊥

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4Z4 Z4 Z4Z4 Z4 Z4Z4

Z5 Z5Z5Z5 Z5 Z5Z5Z5 Z5 Z5Z5Z5

Z6 Z6

Figure 23: Belt connections of the ROBDD for 5 and 6 variables. The narrow belt only connects to the row
directly below it. The wide belt connects not only to the row below it, but also to other, lower rows.

29

For simplicity, we don’t specify how to perform the computations on lines 2.9, 3.2, and 3.8. Solutions may
vary, depending on the choice of programming language and data structures. Lines 2.9 and 3.2 call for a set
with an even number of elements to be partitioned into pairs. Such a partitioning can be done in many different
ways, one of those being

{node1, node2...nodem} 7→ {(node1, node2), (node3, node4)...(nodem−1, nodem)}

Line 3.8 calls for the generation of any subset of a given size, and given a specified superset. In particular
it asks for a subset,

Sright ⊆ {node(B, α, β) | (α, β) ∈ Pright \ Pleft} , such that |Sright| = 2B − |Sleft| .

One way to generate such a subset might be to first generate the superset, then truncate it to the desired size.
A more clever way would be to start as if generating the superset, but stop once a sufficient number of elements
is reached.

In Algorithm 3, there are two cases to consider. The question posed on line 3.4 is whether it is possible to
generate p2 = p · (p− 1) unique ordered pairs of nodes from rowB+1, possibly with some left over.

Wide: 2B > p · (p− 1) The belt is called wide because it touches not only the row directly below it, but others
as well.

The Wide Belt case is illustrated in Figure 23. In this case rowB is row3 (corresponding to Z4) which
has 23 = 8 nodes. However, rowB+1, i.e. row4, (corresponding to Z5) only has two nodes. There is
an insufficient number of nodes in row4 to connect the nodes in row3. For this reason, connections are
made, not only to rowB+1, but also to some or all the nodes below it. Line 3.5 collects the set of all
ordered pairs of nodes coming from rowB+1 to rown, and we will later (on line 3.8) want to subtract out
those ordered pairs already collected in Pleft to avoid generating congruent nodes. This set of ordered
pairs might be large, so our suggestion is to generate a lazy set. Explanations of lazy data structures
are numerous (Okasaki [Oka98] and Slade [Sla98, Section 14.6], to name a few).

Narrow: 2B ≤ p · (p− 1) The belt is called narrow because unlike the wide belt, it only touches the row directly
below it.

The Narrow Belt case is illustrated in Figure 23. In the figure we see that row3, corresponding to
variable Z4, has 8 nodes, and 24 = 16 arrows pointing downward. Since row4 does not contain more
than 16 nodes, it is possible to connect the belt to the bottom part simply by constructing the connecting
arrows exclusively between row3 and row4 (between Z4 and Z5).

The time complexity of Algorithm 2 may vary, depending on the types of data structures used, and also
according to which choices the programmers makes in implementing the set relative complement operation and
truncated subset operations on line 3.8. However, in every case,. the algorithm must generate |ROBDDn|
number of nodes. The complexity, therefore, cannot be made better than Ω(2n−θ + 22

θ

), (we refer the reader
to Wegener [Weg87, Section 1.5] for a discussion of Ω notation). The plots in Figure 20 convey an intuition of

the relative sizes of 2n−θ vs 22
θ

; i.e. that for large n, 2n−θ − 1 becomes a good approximation for |ROBDDn|.
Thus we may approximate Ω(2n−θ + 22

θ

) ≈ Ω(2n−θ).

5 Related Work

Newton et al. [NVC17] discuss calculations related to the Common Lisp type system. These calculations are
facilitated using ROBDDs, and there is an implication that Boolean expressions (describing Common Lisp types
in this case) are efficient with this choice of data structure. However, no quantization is made in that work
to justify the claim. In the current work we treat some of the questions relating to space efficiency using this
choice of data structure.

Butler et al. [SIHB97] discuss average and worst-case sizes of BDDs representing multiple-valued functions.
Miller et al. [MD03] also discusses the maximum size of discrete multiple-valued functions.

Bergman and Cire [BC16] discuss size bounds on data structures they call BDDs but which are defined
slightly differently than we do. Bergman’s data structures only support arcs connecting successive levels (which
we call rows). That is, whereas we allow nodes in row i to connect to nodes in any row below it, Bergman

30

only allows connections between rows i and i + 1. Thus, in Bergman’s case, BDDs such as the 4, 5, 6, and
7 variable cases we illustrate in Figure 16 are not considered. Nevertheless, we do find that our approach is
similar to that of Bergman and Cire in that they both estimate the worst-case width of a row as the minimum
of an exponential and a double-exponential, and then proceed to find the threshold where the exponential and
double-exponential are equal.

The equation in Theorem 3.9 is similar to that provided by Knuth [Knu09, Section 7.1.4 Theorem U], and
that provided by Heap et al. [HM94]. The derivation we show here relies heavily on intuitions gleaned from the
shapes of worst-case ROBDDs, while the treatment of Knuth relies on a concept called beads which we do not
address. The treatment by Heap is indeed similar to our own, albeit less grounded in geometric intuition. Heap’s
Theorem 1 gives a formula for R(n) which differs by a constant of 2 from our Theorem 3.9. That difference is
due to the fact that Heap does not include the two leaf nodes in his calculation as we do. Heap argues that
the threshold (his k, our θ) is precisely blog2 nc or blog2 nc − 1, which seems in keeping with our experimental
findings from Algorithm 1 and Figure 19.

Gröpl et al. [GPS01] improved on the work of Heap by explaining certain oscillations shown but not explained
in Heap’s work. Additional work by Gröpl et al. [GPS98] look again into size of ROBDDs and discusses the
Shannon effect, which explains the correlation between worst-case and average ROBDD sizes.

Minato [Min93] suggests using a different set of reduction rules than those discussed in Section 2. The
resulting graph is referred to as a Zero-Suppressed BDD, or 0-Sup-BDDs (also referred to as ZDDs and ZBDDs
in the literature). Minato claims that this data structure offers certain advantages over ROBDDs in modeling
sets and expressing set-related operations, especially in sparse Boolean equations where the number of potential
variables is large but the number of variables actually used in most equations is small. Additionally, Minato
claims that 0-Sup-BDDs provide advantages when the number of input variables is unknown, which is the case
we encounter when dealing with Common Lisp types, because we do not have a way of finding all user defined
types.

Lingberg et al. [LPR03] consider sizes of ROBDDs representing the very special case of simple CNF formulas,
in particular the representation of CNF formulas consisting of max-terms, each of which consists of exactly two
variables, neither of which is negated. He does the majority of his development in terms of QOBDDs and relates
back to ROBDDs with his claim that |ROBDDn| lies between the max size of a QOBDD and half that quantity.

Our work discusses the exponential worst-case ROBDD size of arbitrary Boolean functions of n variables.
One might ask whether certain subsets of this space of functions have better worst-case behavior in terms of
worst-case ROBDD size. Ab́ıo et al. [ANO+12] examine Pseudo-Boolean constraints which are integer functions
of the form

∑n
i=1 aixi ≤ a0 where ai is an integer and xi is a Boolean variable. The solution space of such

inequalities may be represented by an ROBDD. Ab́ıo identifies certain families of Pseudo-Boolean constraints
for which the ROBDDs have polynomial size and others which have exponential size.

In our research we consider ROBDD sizes for a fixed variable order. Lozhkin et al. [LS10] extends the work
of Shannon [Sha49] in examining sizes when allowed to seek a better variable ordering.

In Section 3.4 we introduced the residual compression ratio. Knuth [Knu09, Section 7.1.4] discusses similar
ratios of sizes of BDDs vs ZDDs. Bryant [Bry18] introduces the operation of chain reduction, and discusses size
ratios of BDDs and ZDDs to their chain reduced counterparts.

Castagna [Cas16] mentions the use of a lazy union strategy for representing type expressions as BDDs.
Here, we have only implemented the strategy described by Andersen [And99]. The Andersen approach involves
allocating a hash table to memoize all the BDDs encountered in order to both reduce the incremental allocation
burden when new Boolean expressions are encountered, and also to allow occasional pointer comparisons rather
than structure comparisons. Castagna suggests that the lazy approach can greatly reduce memory allocation.
Additionally, from the description given by Castagna, the lazy union approach implies that some unions involved
in certain BDD-related Boolean operations can be delayed until the results are needed, at which time the result
can be calculated and stored in the BDD data structure.

Brace et al. [BRB90] demonstrate an efficient implementation of a BDD library, complete with details about
how to efficiently manage garbage collection (GC). We have not not yet seen GC as an issue as our language of
choice has a good built-in GC engine which we implicitly take advantage of.

The CUDD [Som] developers put a lot of effort in optimizing their algorithms. Our BDD algorithm can
certainly be made more efficient, notably by using techniques from CUDD. The CUDD user manual mentions
several interesting and inspiring features. More details are given in Section 7.

The sequence an = 22
n−1 − 22

n−2

with a1 = 1 appears in a seemingly unrelated work of Kotsireas and
Karamanos[KK04] and shares remarkable similarity to Lemma 3.2. The results of Kotsireas and Karamanos

31

are accessible on the On-Line Encyclopedia of Integer Sequences (OEIS).1 Using the OEIS we found that the
sequence nRn,

nRn−1,
nRn−2, ... agrees with the Kotsireas sequence from a2 up to at least a9, which is a 78 digit

integer. This similarity inspired us to investigate whether it was in fact the same sequence, and lead us to
pursue the formal development we provide in Section 3.5.

6 Conclusion

We have provided an analysis of the explicit space requirements of ROBDDs. This analysis includes exhaustive
characterization of the sizes of ROBDDs of up to 4 Boolean variables, and an experimental random-sampling
approach to provide an intuition of size requirements for ROBDDs of more variables. We have additionally
provided a rigorous prediction for the worst-case size of ROBDDs of n variables. We used this size to predict
the residual compression the ROBDD provides. While the size itself grows unbounded as a function of n, the
residual compression ratio shrinks asymptotically to zero. That is, ROBDDs become arbitrarily more efficient
for a sufficiently large number of Boolean variables.

In order to perform our experiments, we had to design an algorithm for generating a worst-case ROBDD
for a given number of variables. We have described this algorithm here as well, as having a typical worst-case
ROBDD may prove to be useful for other applications than size predictions.

Our approach for this development is different from what we have found in current literature, in that while
it is mathematically rigorous, its development is highly based on intuitions gained from experiment.

7 Future Work

There are several obvious shortcomings to our intuitive evaluation of statistical variations in ROBDD sizes as
discussed in Section 3.2. For example, we stated that judging from the small sample in Figure 13, it would
appear that for large values of n, |ROBDDn| is a good estimate for average size. We would like to continue
this investigation to better justify this gross approximation.

The number of samples we take when constructing the plots in Figure 10 is constrained by the computation-
time at our disposal. As shown in Figure 11 computing approximately 3000 samples of 10-variable ROBDDs
takes around 50 hours. We would like to extend our program to work in a multi-threaded environment, thus
exploiting more cluster nodes for shorter periods of time. It may also be possible to exploit other Common Lisp
features such as dynamic extent objects, or weak hash tables to better manage the memory footprint of our
computations, thus achieving more ROBDDs computed per unit time

When using ROBDDs, or presumably 0-Sup-BDDs, one must use a hash table of all the BDDs encountered
so far (or at least within a particular dynamic extent). This hash table, mentioned in Section 2, is used to assure
structural identity. However, it can become extremely large, even if its lifetime is short. Section 3 discusses
the characterization of the worst-case size of an ROBDD as a function of the number of Boolean variables.
This characterization ignores the transient size of the hash table, so one might argue that the size estimations
in 3 are misleading in practice. We would like to continue our experimentation and analysis to provide ways
of measuring or estimating the hash table size, and potentially ways of decreasing the burden incurred. For
example, we suspect that most of the hash table entries are never re-used. We would like to experiment with
weak hash tables: once all internal and external references to a particular hash table entry have been abandoned,
that hash table entry can be removed, thus potentially freeing up the children nodes as well.

As discussed in Section 5, Minato [Min93] claims that using the BDD variant called 0-Sup-BDD is well suited
for sparse Boolean equations. We see potential applications for this in type calculations, especially when types
are viewed as sets, as in Common Lisp. In such cases, the number of types is large, but each type constraint
equation scantly concerns few types. We would like to experiment with 0-Sup-BDD based implementations of
our algorithms, and contrast the performance results with those found thus far.

It is known that algorithms using BDDs tend to trade space for speed. A question naturally arises: can
we implement a fully functional BDD which never stores calculated values. The memory footprint of such an
implementation would potentially be smaller, while incremental operations would be slower. It is not clear
whether the overall performance would be better or worse. Castagna [Cas16] suggests a lazy version of the
BDD data structure which may reduce the memory footprint, which would have a positive effect on the BDD
based algorithms. This approach suggests dispensing with the excessive heap allocation necessary to implement

1The On-Line Encyclopedia of Integer Sequences or OEIS is available at https://oeis.org.

32

Andersen’s approach [And99]. Moreover, our implementation (based on the Andersen model) contains additional
debug features which increase the memory footprint. We would like to investigate which of these two approaches
gives better performance, or allows us to solve certain problems. It seems desirable to attain heuristics to describe
situations which one or the other optimization approach is preferable.

Even though both Andersen[And99] and Minato [Min93] claim the necessity to enforce structural identity, it
is not clear whether in our case, the run time cost associated with this memory burden, outweighs the advantage
gained by structural identity. Furthermore, the approach used by Castagna [Cas16] seems to favor laziness over
caching, lending credence to our suspicion.

CUDD [Som] uses a common base data structure, DdNode, to implement several different flavors of BDD,
including Algebraic Decision Diagrams (ADDs) and ZDDs. We have already acknowledged the need to exper-
iment with other BDD flavors to efficiently represent run-time type based decisions such as the Common Lisp
run-time type reflection [NVC17, NV18] in performing simplification of type-related logic at compile-time. We
wish to examine the question of whether the Common Lisp run-time type reflection can be improved by search-
ing for better ordering of the type specifiers at compile-time. The work of Lozhkin [LS10] and Shannon [Sha49]
may give insight into how much improvement is possible, and hence whether it is worth dedicating compilation
time to it. CUDD, as well as the system described by Brace et al. [BRB90], both provide a subsystem for cache
management. Although our Common Lisp implementation already provides basic cache management which can
be specified by dynamic context, and is thus managed by the global GC, we have observed a need to purge
nodes from the cache which are no longer referenced. In this case, the GC cannot currently purge them because
they are referenced by the cache itself. We propose the use of weak hash tables to address this issue. Weak
hash tables are available in several Common Lisp implementations. Measuring the effectiveness of weak hash
tables is ongoing research.

8 Acknowledgments

Many thanks to Dr. Alexandre Duret-Lutz, Dr. Maximilien Colange, and Dr. Guillaume Tochon, for the many
white board discussions and brainstorming which were extremely useful in clarifying many of the tedious points
in the development leading up to this article.

33

A Glossary of Notation

Symbol Definition
B The index of the belt row of a worst-case ROBDD.

The belt row is the highest row index, i, such that
the number number of nodes in row i is 2i.

µ The mean value of a set of numbers. In this Sec-
tion 3.3 we refer to µi as the weighted average of the
points in a histogram curve Cn

n The number of Boolean variables in expression whose
ROBDD is under consideration.

ma Number of permutations of m things taken a at a
time. ma = m!

(m−a)! .

ψ ψ : R+ 7→ R such that 22
ψ(x)+1 − 22

ψ(x)

= 2x−ψ(x)−1.
nri Number of elements in the i’th row of a worst-

case ROBDD as a function of top-down exponential
growth. The actual number of nodes is min{nri, nRi}.

nRi Number of elements in the i’th row of a worst-
case ROBDD as a function of top-down double ex-
ponential decay. The actual number of nodes is
min{nri, nRi}.

rowba The set of all elements in the ROBDD between rows
a and b inclusive. rowba =

⋃b
j=a rowj .

|ROBDDn| Number of nodes in the worst-case ROBDD of n vari-
ables.

P(S) The set of all ordered pairs whose elements are cho-
sen from set S, excluding ordered pairs such as (x, x).
P(S) = {(α, β) | α, β ∈ S, α 6= β}.

nSi Number of nodes in the worst-case ROBDD in the
rows strictly below row i. nSi is only used when
nRi <

nri, so nSi =
∑n
k=i+1

nRi.
θ The threshold function, also denoted θn, defined in

Theorem 3.9.
σ The standard deviation of a set of numbers. In this

Section 3.3 we refer to σi as the standard deviation
of the sample whose histogram curve is Cn.

|UOBDDn| Number of nodes in an unreduced ordered BDD.
bxc The floor function. max{i ∈ Z | i ≤ x}.
dxe The ceiling function. min{i ∈ Z | i ≥ x}.
|S| The cardinality (number of elements in) set S.

References

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6):509–516, June 1978.

[Als11] Gerold Alsmeyer. Chebyshev’s Inequality, pages 239–240. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2011.

[And99] Henrik Reif Andersen. An introduction to binary decision diagrams. Technical report, Course Notes
on the WWW, 1999.

[ANO+12] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Valentin Mayer-
Eichberger. A new look at bdds for pseudo-boolean constraints. J. Artif. Intell. Res., 45:443–480,
2012.

[Ans94] Ansi. American National Standard: Programming Language – Common Lisp. ANSI X3.226:1994
(R1999), 1994.

34

[BC16] David Bergman and Andre A. Cire. Theoretical insights and algorithmic tools for decision diagram-
based optimization. Constraints, 21(4):533, 2016.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a bdd package. In 27th
ACM/IEEE Design Automation Conference, pages 40–45, Jun 1990.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers, 35:677–691, August 1986.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv., 24(3):293–318, September 1992.

[Bry18] Randal E. Bryant. Chain reduction for binary and zero-suppressed decision diagrams. In Dirk Beyer
and Marieke Huisman, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 81–98, Cham, 2018. Springer International Publishing.

[Cas16] Giuseppe Castagna. Covariance and contravariance: a fresh look at an old issue. Technical report,
CNRS, 2016.

[CL17] G. Castagna and V. Lanvin. Gradual typing with union and intersection types. Proc. ACM Program.
Lang., (1, ICFP ’17, Article 41), sep 2017.

[CMZ+97] E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large
boolean functions with applications to technology mapping. Form. Methods Syst. Des., 10(2-3):137–
148, April 1997.

[Col13] Maximilien Colange. Symmetry Reduction and Symbolic Data Structures for Model Checking of
Distributed Systems. Thèse de doctorat, Laboratoire de l’Informatique de Paris VI, Université
Pierre-et-Marie-Curie, France, December 2013.

[FTV16] Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi. Bdd-based boolean functional synthesis. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part II, pages 402–421, 2016.

[GPS98] Clemens Gröpl, Hans Jürgen Prömel, and Anand Srivastav. Size and structure of random ordered
binary decision diagrams. In STACS 98, pages 238–248. Springer Berlin Heidelberg, 1998.

[GPS01] Clemens Gröpl, Hans Jürgen Prömel, and Anand Srivastav. On the evolution of the worst-case
OBDD size. Inf. Process. Lett., 77(1):1–7, 2001.

[HM94] Mark A. Heap and M. R. Mercer. Least upper bounds on obdd sizes. 43:764–767, June 1994.

[HVP05] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. ACM
Trans. Program. Lang. Syst., 27(1):46–90, January 2005.

[KK04] Ilias S. Kotsireas and Kostas Karamanos. Exact computation of the Bifurcation point B4 of the
logistic map and the Bailey-Broadhurst conjectures. I. J. Bifurcation and Chaos, 14(7):2417–2423,
2004.

[Knu09] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009.

[LPR03] Michael Langberg, Amir Pnueli, and Yoav Rodeh. The ROBDD size of simple CNF formulas. In
Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working
Conference, CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings, pages 363–377, 2003.

[LS92] Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hierarchical verification.
In Proceedings of the 29th ACM/IEEE Design Automation Conference, DAC ’92, pages 608–613,
Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[LS10] Sergei A. Lozhkin and Alexander E. Shiganov. High accuracy asymptotic bounds on the BDD size
and weight of the hardest functions. Fundamenta Informaticae, 104(3):239–253, 2010.

35

[MD03] D. M. Miller and G. W. Dueck. On the size of multiple-valued decision diagrams. In 33rd
International Symposium on Multiple-Valued Logic, 2003. Proceedings., pages 235–240, May 2003.

[Min93] Shin-ichi Minato. Zero-suppressed BDDs for Set Manipulation in Combinatorial Problems. In
Proceedings of the 30th International Design Automation Conference, DAC ’93, pages 272–277,
New York, NY, USA, 1993. ACM.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30, January
1998.

[New15] William H. Newman. Steel Bank Common Lisp user manual, 2015.

[NV18] Jim Newton and Didier Verna. Strategies for typecase optimization. In European Lisp Symposium,
Marbella, Spain, April 2018.

[NVC17] Jim Newton, Didier Verna, and Maximilien Colange. Programmatic manipulation of Common Lisp
type specifiers. In European Lisp Symposium, Brussels, Belgium, April 2017.

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, New York, NY,
USA, 1998.

[Sha49] C. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical Journal,
28(1):59–98, Jan 1949.

[SIHB97] Tsutomu Sasao, Robert J. Barton III, David S. Herscovici, and Jon T. Butler. Average and worst case
number of nodes in decision diagrams of symmetric multiple-valued functions. IEEE Transactions
on Computers, 46:491–494, 1997.

[Sla98] S. Slade. Object-oriented Common LISP. Prentice Hall PTR, 1998.

[Som] Fabio Somenzi. CUDD: BDD package, University of Colorado, Boulder.

[Sri02] A. Srinivasan. Algorithms for discrete function manipulation. In Computer-Aided Design, 1990.
ICCAD-90. Digest of Technical Papers., 1990 IEEE International Conference on, 2002.

[ST98] Karsten Strehl and Lothar Thiele. Symbolic model checking of process networks using inter-
val diagram techniques. In Proceedings of the 1998 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’98, pages 686–692, New York, NY, USA, 1998. ACM.

[Weg87] Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons, Inc., New York, NY,
USA, 1987.

36

