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On Algebraic Branching Programs of Small Width
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In 1979, Valiant showed that the complexity class VPe of families with polynomially bounded formula size

is contained in the class VPs of families that have algebraic branching programs (ABPs) of polynomially

bounded size. Motivated by the problem of separating these classes, we study the topological closure VPe, i.e.,

the class of polynomials that can be approximated arbitrarily closely by polynomials in VPe. We describe VPe

using the well-known continuant polynomial (in characteristic different from 2). Further understanding this

polynomial seems to be a promising route to new formula size lower bounds.

Our methods are rooted in the study of ABPs of small constant width. In 1992, Ben-Or and Cleve showed

that formula size is polynomially equivalent to width-3 ABP size. We extend their result (in characteristic

different from 2) by showing that approximate formula size is polynomially equivalent to approximate width-

2 ABP size. This is surprising because in 2011 Allender and Wang gave explicit polynomials that cannot be

computed by width-2 ABPs at all! The details of our construction lead to the aforementioned characterization

of VPe.

As a natural continuation of this work, we prove that the class VNP can be described as the class of families

that admit a hypercube summation of polynomially bounded dimension over a product of polynomially many

affine linear forms. This gives the first separations of algebraic complexity classes from their nondeterministic

analogs.
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1 INTRODUCTION

Separating complexity classes and more generally proving computational complexity lower
bounds is the infamous key objective in complexity theory. In an approach to prove complex-
ity lower bounds, in 1979 Valiant [40] proposed an algebraic alternative to the classical Boolean
circuit model of computation: Arithmetic formulas.

Arithmetic Formulas and the Class VPe. Fix a field F. An arithmetic formula is defined as a rooted
binary tree whose leaves are each labeled with a variable or a field constant and whose root and

Authors’ addresses: K. Bringmann; C. Ikenmeyer, Max-Planck-Institut für Informatik, Saarland Informatics Campus, Cam-

pus E1 4, 66123, Saarbrücken, Germany; emails: {kbringma, cikenmey}@mpi-inf.mpg.de; J. Zuiddam, Centrum Wiskunde

& Informatica, Science Park 123, Amsterdam, Netherlands; email: j.zuiddam@cwi.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0004-5411/2018/08-ART32 $15.00

https://doi.org/10.1145/3209663

Journal of the ACM, Vol. 65, No. 5, Article 32. Publication date: August 2018.

https://doi.org/10.1145/3209663
mailto:permissions@acm.org
https://doi.org/10.1145/3209663


32:2 K. Bringmann et al.

intermediate vertices (called gates) are labeled with either “+” (addition) or “×” (multiplication).
In the natural way, via induction over the tree structure, an arithmetic formula computes a mul-
tivariate polynomial f . The formula size of a multivariate polynomial f is defined as the smallest
number of gates required for a formula to compute f .

A sequence (mn ) of natural numbers is called polynomially bounded if there exists a univariate
polynomial q such that mn ≤ q(n) for all n. A sequence of multivariate polynomials ( fn ) is called
a family. Valiant [40] introduced the complexity class VPe that is defined as the set of all families
whose formula size is polynomially bounded. For example, the family ((x1)n + (x2)n + · · · (xn )n ) ∈
VPe, because its formula size grows at most quadratically.

The smallest known formulas for the determinant family detn :=
∑

σ ∈Sn
sgn(σ )

∏n
i=1 xi,σ (i ) have

size nO (log n) . This follows from Berkowitz’ algorithm [4], which gives an algebraic circuit of depth
O (log2 n), and thus by expanding we get an algebraic formula of depth O (log2 n) whose size is

then trivially bounded by 2O (log2 n) = nO (log n) . It is a major open question in algebraic complexity
theory whether formulas of polynomially bounded size exist for detn . This question can be phrased
in terms of complexity classes as asking whether or not the inclusion VPe ⊆ VPs is strict.

Motivated by this question, we study the closure class VPe of families of polynomials that can be
approximated arbitrarily closely by families in VPe (see Section 2 for a formal definition). Over the

field R or C, one can think of VPe as the set of families whose border formula size is polynomially
bounded, where the border formula size of a polynomial f is defined as the smallest c such that
there exists a sequence дi of polynomials with formula size at most c that satisfy limi→∞ дi = f .

In this article, we present a simple description of VPe and show that the continuant polynomial

Fn is VPe-complete, given the characteristic is not 2, see Theorem 3.12 below. The continuant has
rich algebraic properties, which are expected to be useful in the future to prove complexity lower
bounds.

The Continuant. The continuant Fn can be succinctly defined via F0 := 1, F1 := x1, Fn :=

xnFn−1 + Fn−2; see Section 3. We prove that Fn is VPe-complete under p-degenerations: This

means that every family ( fn ) in VPe can be obtained as the pointwise limit of a sequence fn =
limj→∞ Ft (n) (�1 (j ), . . . , �t (n) (j )), where each �i (j ) is a variable or constant and t (n) is a polynomi-

ally bounded function. The continuant is arguably the simplest VPe-complete polynomial known

today. Prior to our work, the simplest VPe-complete (and VPe-complete) polynomial was the iter-
ated 3 × 3 matrix multiplication polynomial [3]. This simple new polynomial immediately moti-
vates the definition of the border continuant complexity LCon ( f ) of a polynomial f , which is the
smallest number c such that f can be obtained as limj→∞ (Fc (�1 (j ), . . . , �c (j )))j . To make the sit-
uation more geometric, we allow the �i (j ) to be arbitrary affine linear forms (i.e., polynomials of
degree 1). Our results show that border continuant complexity is polynomially equivalent to bor-
der formula size. This insight is quite striking because a result of Allender and Wang [1] implies
that the continuant complexity without allowing approximations can be infinite!

Continuous Lower Bounds. In algebraic complexity theory, the way of showing a complexity
lower bound for a problem f ∈ V for some F-vector space V most often goes by (implicitly or
explicitly) finding a function F : V → F that is zero on all problems of low complexity while at
the same time F ( f ) � 0. Grochow [17] gives a long list (see, e.g., References [13, 20, 23, 25, 32,
34]) of settings where complexity lower bounds are obtained in this way. Moreover, he points out
that over the complex numbers these functions F can be assumed to be continuous (and even to
be so-called highest-weight vector polynomials). If C and D are algebraic complexity classes with
C ⊆ D (for example, C = VPe and D = VPs), then any separation of algebraic complexity classes

C � D in this continuous manner would automatically imply the stronger statement D � C. It is
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therefore natural to try to prove the separation VPs � VPe instead of the slightly weaker VPe � VPs,

which provides further motivation for studying VPe. This is exactly analogous to Mulmuley and
Sohoni’s geometric complexity approach (see, e.g., References [29, 30] and the exposition Reference

[14, Section 9]) where one tries to prove the separation VNP � VPs to attack Valiant’s famous
VPs � VNP conjecture [40]. Here, VNP is the class of p-definable families; see Section 2 for a precise
definition.

A Remark on Algebraic Geometry and Group Actions. A promising path toward proving formula
lower bounds, for example, for the determinant or the permanent pern :=

∑
σ ∈Sn

∏n
i=1 xi,σ (i ) , is to

apply to our setting the following standard geometric ideas. If we take our field to be the complex
numbers and fix the number of variables n and the degree d , then the set of homogeneous degree d
polynomials C[x1, . . . ,xn]d contains the set

Xc := { f ∈ C[x1, . . . ,xn]d | LCon ( f ) ≤ c}

as an affine subvariety (Xc is the closure of the set of affine projections of Fc intersected with
C[x1, . . . ,xn]d ). Moreover, since we allowed the �i (j ) to be affine linear forms, the group GL(Cn )
acts canonically on Xc , making Xc an affine GL(Cn )-variety. If we find a polynomial F that van-
ishes identically on Xc , then a nonzero evaluation F ( f ) � 0 implies that LCon ( f ) > c . This ap-
proach looks feasible given the very simple structure of the continuant polynomial. This is em-
phasized by the fact that the action of GL(Cn ) puts a lot of structure on the coordinate ring of Xc

(see, e.g., References [2, 12, 13, 19, 21, 25, 33]), where the action of the general linear group on the
coordinate ring of a variety is used to classify some of its defining equations.

1.1 Main Results

Algebraic Branching Programs (ABPs) of Width 2. Our main objects of study are the following
classes of families of polynomials: the class of families of polynomials with polynomially bounded

formula size VPe, its closure VPe, and the nondeterministic variant VNP (see Section 2). We do so by
studying algebraic branching programs of small width. These are defined as follows. An algebraic
branching program (ABP) is a directed acyclic graph with a source vertex s and a sink vertex t that
has affine linear forms over the base field F as edge labels. Moreover, we require that each vertex
is labeled with an integer (its layer) and that edges in the ABP only point from vertices in layer i
to vertices in layer i + 1. The width of an ABP is the cardinality of its largest layer. The size of an
ABP is the number of its vertices. The value of an ABP is the sum of the values of all s-t-paths,
where the value of an s-t-path is the product of its edge labels. We say that an ABP computes its
value. The class VPs coincides with the class of families of polynomials that can be computed by
ABPs of polynomially bounded size (see, e.g., Reference [37].

For this article, we introduce the class VPk , k ∈ N, which is defined as the class of families of
polynomials computable by width-k ABPs of polynomially bounded size. It is a well-known simple
exercise (see, e.g., Reference [8, Proposition 7.1] for a proof with all details) that for every k ≥ 1,

VPk ⊆ VPe. (1)

In 1992, Ben-Or and Cleve [3] showed that VPk = VPe for all k ≥ 3 (we review the proof, see
Theorem B.1). In 2011, Allender and Wang [1] showed that width-2 ABPs cannot compute every
polynomial, so in particular we have a strict inclusion VP2 � VP3. Let the characteristic of the base
field F be different from 2. Our first main result (Theorem 3.1 and Corollary 3.9) is that the closure
of VP2 and the closure of VPe are equal,

VP2 = VPe. (2)
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Interestingly, as a direct corollary of Equation (2) and the result of Allender and Wang, the inclusion

VP2 � VP2 is strict. It is easy to see that VP1 equals VP1 (Proposition A.12), so VP1 and VP2 are
examples of quite similar algebraic complexity classes that behave differently under closure. Most
importantly, from the proof of Equation (2) we obtain our results about the continuant polynomial
that we mentioned before.

VNP via Affine Linear Forms. To every algebraic complexity class there exists a natural nonde-
terministic analogoue (see Section 2 for the formal definition). Classically, the nondeterministic
analogue to VP is called VNP, and the analogue to VPe is called VNPe. We define the classes VNPe

and VNP in the natural way. In 1980, Valiant [41] showed that VNPe = VNP and in this article
we will always view VNP as the nondeterministic analog of VPe. To VP1 and VP2 we analogously
associate nondeterministic analogs VNP1 and VNP2. Using interpolation techniques it is possible
to deduce VNP2 = VNP from Equation (2), provided the field is infinite. Using more sophisticated
techniques, we strengthen this result to get our second main result (Theorem 4.2):

VNP1 = VNP. (3)

This can be succinctly stated as: a family ( fn ) is contained in VNP iff fn can be written as a hy-
percube summation of polynomially bounded dimension over a product of polynomially many
affine linear forms. Using Equation (3) it is then easy to verify that VP1 � VNP1 and using Ref-
erence [1] yields VP2 � VNP2, which separates complexity classes from their nondeterministic
analogs. Interestingly, VNP1 � VNP over the field with two elements; see Section 5.

Restricted ABP Edge Labels. Several more results on small-width ABPs, approximation closures,
and hypercube summations are proved throughout this article. For example, in Appendix A we
investigate the subtleties of what happens if we restrict the ABP edge labels to simple affine lin-
ear forms, or to variables and constants. The precise relations between complexity classes that we
obtain are listed in Figure 8. As another example, we strengthen Equation (3) as follows (Theo-
rem B.3): A family ( fn ) is contained in VNP iff fn can be written as a hypercube summation of
polynomially bounded dimension over a product of polynomially many affine linear forms that
use at most two variables each.

1.2 Further Related Work

An excellent exposition on the history of small-width computation can be found in Reference [1],
along with an explicit polynomial that cannot be computed by width-2 ABPs: x1x2 + x3x4 + · · · +
x15x16. Saha, Saptharishi, and Saxena [36, Corollary 14] showed that x1x2 + x3x4 + x5x6 cannot be
computed by width-2 ABPs that correspond to the iterated matrix multiplication of upper trian-
gular matrices.

Bürgisser [10] studied approximations in the model of general algebraic circuits, finding general
upper bounds on the error degree. For most specific algebraic complexity classes C, the relation

between C and C has not been an active object of study. As pointed out recently by Forbes [16],

Nisan’s result [31] implies that C = C for C being the class of size-k algebraic branching programs

on noncommuting variables. Recently, a structured study of VP and VPs has been started; see
Reference [18]. By far the most work in lower bounds for topological approximation algorithms
has been done in the area of bilinear complexity, dating back to References [6, 26, 38] and more
recently, e.g., References [21, 22, 24, 25, 42].

1.3 Paper Outline

In Section 2, we introduce in more detail the approximation closure and the nondeterminism clo-
sure of a complexity class. In Section 3, we prove the first main result: border formula size is
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polynomially equivalent to border width-2 ABP size and the continuant is VPe-complete under
p-degenerations. In Section 4, we prove the second main result: a new description of VNP as the
nondeterminism closure of families that have polynomial-size width-1 ABPs. The later sections
contain details on how to strengthen the result from Section 4 and results on the power of ABPs
with restricted edge labels.

2 NONDETERMINISM AND APPROXIMATION CLOSURE

In this section, we introduce the approximation closure and the nondeterministic analog of a class.
A family is a sequence of polynomials ( fn )n∈N. A class is a set of families and will be written in
boldface, C. For an introduction to the algebraic complexity classes VPe, VP, and VNP, we refer the
reader to Reference [11]. We denote by poly(n) the set of polynomially bounded functionsN→ N.
We define the norm of a complex multivariate polynomial as the sum of the absolute values of
its coefficients. This defines a topology on the polynomial ring C[x1, . . . ,xm]. Given a complexity
measure L, say ABP size or formula size, there is a natural notion of approximate complexity that
is called border complexity. Namely, a polynomial f ∈ C[x] has border complexity Ltop at most c
if there is a sequence of polynomials д1,д2, . . . in C[x] converging to f such that each дi satis-
fies L(дi ) ≤ c . It turns out that for reasonable classes over the field of complex numbers C, this
topological notion of approximation is equivalent to what we call algebraic approximation (see,
e.g., Reference [10]). Namely, a polynomial f ∈ C[x] satisfies L( f )alg ≤ c iff there are polynomials
f1, . . . , fe ∈ C[x] such that the polynomial

h := f + ε f1 + ε
2 f2 + · · · + εe fe ∈ C[ε, x]

has complexity LC(ε ) (h) ≤ c , where ε is a formal variable and LC(ε ) (h) denotes the complexity of h
over the field extension C(ε ). This algebraic notion of approximation makes sense over any base
field and we will use it in the statements and proofs of this article.

Definition 2.1. Let C(F) be a class over the field F. We define the approximation closure C(F)

as follows: a family ( fn ) over F is in C(F) if there are polynomials fn;i (x) ∈ F[x] and a function
e : N→ N such that the family (дn ) defined by

дn (x) := fn (x) + ε fn;1 (x) + ε2 fn;2 (x) + · · · + εe (n) fn;e (n) (x)

is in C(F(ε )). We define the poly-approximation closure C
poly

(F) similarly, but with the additional
requirement that e (n) ∈ poly(n). We call e (n) the error degree.

Remark 2.2. In the algebraic complexity theory literature, error degree was already studied by
Bini [5]. An alternative “quality measure” for approximative computation used in the literature is
the order of approximation. To define order of approximation one replaces the field F(ε ) in Defini-
tion 2.1 with the ring of power series F�ε� and one aims for an equality

дn (x) = εqn fn (x) + εqn+1Fn (x),

with Fn (x) ∈ F�ε�[x] and (дn ) ∈ C(F�ε�). (Note that the coefficients of Fn (x) are power series
in ε .) Then we have an approximation of ( fn ) with order of approximation equal to qn ; see, e.g.,
References [10, 14]. In this article, we work with error degree, since the interpolation technique
that we use to transform approximate formulas into formulas relies directly on error degree (see
Corollary 3.10 and Reference [8, Proposition 8.1]).

For all the complexity classes C considered in this article, the approximation closure operator

C �→ C is idempotent. For these classes, it is a Kuratowski closure operator, i.e., ∅ = ∅, C ⊆ C,

C ∪ D = C ∪ D, and C = C.
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One can think of VNP as a “nondeterminism closure” of VP. We want to use the nondeterminism
closure for general classes.

Definition 2.3. Let C be a class. The class N(C) consists of families ( fn ) with the following prop-
erty: There is a family (дn ) ∈ C and p (n),q(n) ∈ poly(n) such that

fn (x) =
∑

b∈{0,1}p (n )

дq (n) (b, x),

where x and b denote sequences of variables x1,x2, . . . and b1,b2, . . . ,bp (n) . We will sometimes
say that f (x) is a hypercube sum over д and that b1,b2, . . . ,bp (n) are the hypercube variables. For
any s, t , we will use the standard notation VNP

t
s to denote N(VP

t
s ), where the superscript t will

become relevant in Appendix A. We remark that the map C �→ N(C) trivially satisfies all properties
of being a Kuratowski closure operator, i.e., N(∅) = ∅, C ⊆ N(C), N(C ∪ D) = N(C) ∪ N(D), and
N(N(C)) = N(C).

3 APPROXIMATE WIDTH-2 ABPS AND FORMULA SIZE

As mentioned in the Introduction, Allender and Wang [1] showed that there exist polynomials that
cannot be computed by any width-2 ABP, for example, the polynomial x1x2 + x3x4 + · · · + x15x16.
Therefore, we have a separation VP2 � VP3 = VPe. We show that allowing approximation changes
the situation completely: every polynomial can be approximated by a width-2 ABP. In fact, every
polynomial can be approximated by a width-2 ABP of size polynomial in the formula size and with
error degree polynomial in the formula size. This is the main result of this section.

Theorem 3.1. VPe ⊆ VP2
poly

when char(F) � 2.

We leave as an open question what happens in characteristic 2.
To understand the following proofs and the corresponding figures it is advisable to recall that

an ABP corresponds naturally to an iterated product of matrices if we number the vertices in each
layer consecutively, starting with 1. Namely, consider two consecutive layers i and i + 1 and let Mi

be the matrix whose entry at position (v,w ) is the label of the edge from vertex v in layer i to
vertex w in layer i + 1 (or 0 if there is no edge between these vertices). Then the ABP’s value
equals the product Mk · · ·M2M1.

On a high level, our proof uses the following identities for addition:(
1 0
д 1

) (
1 0
f 1

)
=

(
1 0

f + д 1

)
,

and negative squaring:(
1 0

−ε−1 f 1

) (
1 ε2

0 1

) (
1 0

ε−1 f 1

)
=

(
1 + ε f ε2

−f 2 1 − ε f

)
ε→0−→

(
1 0
−f 2 1

)
,

as well as rescaling: (
α−1 0

0 1

) (
1 0
f 1

) (
α 0
0 1

)
=

(
1 0
α f 1

)
.

Multiplication can now be simulated using the identity f д = 1
2 (( f + д)2 − f 2 − д2). This essentially

proves Theorem 3.1, except that we need to ensure that the error terms cannot build up.
In the following, we aim for a more precise result about the continuant that requires a slightly

more complicated construction. Hence, we note that each matrix on the left-hand sides of the
addition and negative squaring identities is either upper or lower triangular with 1s on the main
diagonal. Such matrices are always products of two primitive Q-matrices, defined as follows. For
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Fig. 1. Addition construction for Lemma 3.2.

a polynomial f over F(ε ) define the matrix Q ( f ) := ( f 1
1 0 ). A parametrized affine linear form is

an affine linear form over the field F(ε ). A primitive Q-matrix is any matrix Q (�), where � is a
parametrized linear form.

For a 2 × 2 matrix M with entries in F(ε )[x], we use the shorthand notation M + O (εk ) for

M + ( O (εk ) O (εk )
O (εk ) O (εk )

), where O (εk ) denotes the set εk
F[ε, x]. As a product of matrices, the ABP con-

struction in our proof of Theorem 3.1 will be of the form ( 1 0 )M� · · ·M2M1 ( 1
0 ), where the Mi are

primitive Q-matrices Q ( f ) for which f is either a constant from F(ε ) or a variable. We are thus
proving a slightly stronger statement than the statement of Theorem 3.1.

Lemma 3.2 (Addition). Let k ≥ 1. Let f ,д ∈ F[x] be polynomials such that some F ∈ Q ( f ) +
O (εk ) and some G ∈ Q (д) + O (εk ) can be written as a product of n and m primitive Q-matrices,

respectively. Then some matrix H ∈ Q ( f + д) + O (εk ) can be written as the product of n +m + 1
primitive Q-matrices. Moreover, if the error degrees of F ,G are ef , eд , respectively, then the error degree
of H is at most ef + eд .

Proof. Note that (Q ( f ) + O (εk )) ·Q (0) · (Q (д) + O (εk )) = Q ( f + д) + O (εk ), so we have H :=
F ·Q (0) ·G ∈ Q ( f + д) + O (εk ). Moreover, the largest power of ε occurring in H is εef +eд ; see
Figure 1. �

Lemma 3.3 (Sqaring). Let f ∈ F[x] be a polynomial such that some F ∈ Q ( f ) + O (ε3) can be
written as the product of n primitive Q-matrices. Then some matrix H ∈ Q ( f 2) + O (ε ) and some
matrix H ′ ∈ Q (−f 2) + O (ε ) can be written as the product of 2n + 11 primitive Q-matrices. Moreover,
if the error degree of F is ef then the error degree of H and H ′ is at most 2 · ef + 4.

Proof. We set

A :=

(
−ε−1 0

0 ε

)
= Q (−ε−1) ·Q (ε ) ·Q (−ε−1),

B :=

(
ε2 1
−1 0

)
= Q (1) ·Q (−1) ·Q (1) ·Q (ε2),

C :=

(
ε−1 0
0 ε

)
= Q (−ε−1) ·Q (ε − 1) ·Q (1) ·Q (ε−1 − 1).

Then one can check that

H := A · F · B · F ·C ∈ A · (Q ( f ) + O (ε3)) · B · (Q ( f ) + O (ε3)) ·C ∈ Q (−f 2) + O (ε ).
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Fig. 2. Squaring construction for Lemma 3.3.

Fig. 3. Squaring construction subroutines for C , B, and A for Lemma 3.3.

To obtain H ′ ∈ Q ( f 2) + O (ε ), we replace B by

B′ :=

(
−ε2 1
−1 0

)
= Q (1) ·Q (−1) ·Q (1) ·Q (−ε2).

One checks that the highest power of ε appearing in H and H ′ is at most 2 · ef + 4; see Figures 2
and 3 for a pictorial description. �
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Fig. 4. Multiplication construction for Lemma 3.4.

Lemma 3.4 (Multiplication). Let f ,д ∈ F[x] be polynomials such that some F ∈ Q ( f /2) + O (ε3)
and some G ∈ Q (д) + O (ε3) can be written as the product of n and m primitive Q-matrices, respec-
tively. Then some H ∈ Q ( f · д) + O (ε ) can be written as the product of 4n + 4m + 37 primitive Q-
matrices. Moreover, if the error degrees of F , G are ef , eд , respectively, then the error degree of H is at
most 4 · ef + 4 · eд + 12.

Proof. We make use of the identity (−( f /2)2) + (−д2) + ( f /2 + д)2 = f · д. By the addition
lemma (Lemma 3.2), ( f /2 + д) + O (ε3) can be written as the product of n +m + 1 primitive Q-
matrices with error degree at most ef + eд . By the squaring lemma (Lemma 3.3), Q (−( f /2)2) +
O (ε ), Q (−д2) + O (ε ), and Q (( f /2 + д)2) + O (ε ) can be written as the product of 2n + 11, 2m + 11,
and 2(n +m + 1) + 11 primitive Q-matrices, respectively. The corresponding error degrees are
at most 2 · ef + 4, 2 · eд + 4, and 2(ef + eд ) + 4. Finally, by the addition lemma again, Q ( f · д) +
O (ε ) = Q (−( f /2)2 + (−д2) + ( f /2 + д)2) + O (ε ) can be written as the product of (2n + 11) + 1 +
(2m + 11) + 1 + (2(n +m + 1) + 11) = 4n + 4m + 37 primitive Q-matrices. The corresponding er-
ror degree is at most (2 · ef + 4) + (2 · eд + 4) + (2(ef + eд ) + 4) = 4 · ef + 4 · eд + 12; see Figure 4
for a pictorial description. �

Proposition 3.5. Let f be a polynomial computed by a formula of depth d . For every constant

α ∈ F, some matrix in F ∈ Q (α f ) + O (ε ) can be written as a product of at most 45 · 9d primitive

Q-matrices. Moreover, F has error degree at most 12 · 25d .

Proof. The proof is by induction on d . For d = 0, that is, f is a constant β ∈ F or a vari-
able x , note that Q ( f ) can be written directly as a primitive Q-matrix (with error degree 0). Since
Q (α/2) can also be written directly (also with error degree 0), we can use the multiplication lemma
(Lemma 3.4) to writeQ (α f ) + O (ε ) as a product of 4 + 4 + 37 = 45 primitive Q-matrices (with error
degree at most 12).

For d ≥ 1, fix a constant α . We know that either f = д + h or f = д · h with formulas д,h of
depth < d . By the induction hypothesis, for any constant β,γ , we can write Q (βд) + O (ε ) and
Q (γh) + O (ε ) as a product of nд ,nh ≤ 45 · 9d−1 primitive Q-matrices, with error degrees eд , eh ≤
12 · 25d−1.
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Case f = д + h. We set β = γ = α and use the addition lemma (Lemma 3.2) to obtain Q (α f ) +
O (ε ) = Q (αд + αh) + O (ε ) as a product of nд + nh + 1 ≤ 2 · 45 · 9d−1 + 1 ≤ 45 · 9d primitive Q-

matrices, with error degree at most eд + eh ≤ 2 · 12 · 25d−1 ≤ 12 · 25d .

Case f = д · h. By replacing ε by ε3 in all primitive Q-matrices, we obtain matrices in Q (βд) +
O (ε3) andQ (γh) + O (ε3) as a product of nд and nh primitive Q-matrices with error degree at most
3 · eд and 3 · eh , respectively. Now, we set β = α/2 and γ = 1 and use the multiplication lemma
(Lemma 3.4) to obtain Q (α f ) + O (ε ) = Q ((α · д) · h) + O (ε ) as a product of 4nд + 4nh + 37 ≤ 8 ·
45 · 9d−1 + 37 ≤ 45 · 9d primitive Q-matrices. The error degree is at most 4(3 · eд ) + 4(3 · eh ) + 12 =

12(eд + eh + 1) ≤ 24 · 12 · 25d−1 + 12 ≤ 12 · 25d . �

The following proposition will be used to prove Theorem 3.1 (as a direct corollary) and to prove
Theorem 3.12 on the continuant.

Proposition 3.6. If ( fn ) ∈ VPe, then for each n a matrix in F ∈ Q ( fn ) + O (ε ) can be written as a
product of poly(n) many primitive Q-matrices. Moreover, F has error degree at most poly(n).

Proof. The construction uses the classical depth-reduction theorem for formulas by Brent [7],
for which a modern proof can be found in the survey of Saptharishi [37, Lemma 5.5]: If a fam-
ily ( fn ) has polynomially bounded formula size, then there are formulas computing fn that have
size poly(n) and depth O (logn). Applying Proposition 3.5 now yields the result. �

Proof of Theorem 3.1. This follows directly from Proposition 3.6. Namely, let ( fn ) ∈ VPe . By
Proposition 3.6, there is an F ∈ Q ( fn ) + O (ε ) that is a product of polynomially many primitive
Q-matrices such that F has polynomially bounded error degree. The width-2 ABP computing fn +

O (ε ) is given by ( 1 0 )F ( 1
0 ). �

Remark 3.7. The element F ∈ Q ( fn ) + O (ε ) in the proof of Theorem 3.1, besides having polyno-
mially bounded error degree, has the stronger property that the highest negative epsilon-power
appearing with nonzero coefficient is polynomially bounded.

Example 3.8. Following the construction in Theorem 3.1, we get the following ABP for approxi-
mating the polynomial x1x2 + x3x4 + · · · + x15x16, which cannot be computed by any width-2 ABP.
Let

F (x ,y) =

(
1
ε
− εx

2 − x
2ε

ε3 ε

) (
1
2 (x − 2y)ε2 + 1 1

2 (x − 2y)
ε2 1

) (
xε2

2 + 1 − x
2

−ε2 1

) (
x+2y

2ε
ε

ε−1 0

)
.

Then,

F (x ,y) =

(
xy 1
1 0

)
+ O (ε ).

Using the addition lemma Lemma 3.2, we get

(1 0)F (x1,x2)

(
0 1
1 0

)
F (x3,x4) · · ·

(
0 1
1 0

)
F (x15,x16)

(
1
0

)
= x1x2 + x3x4 + · · · + x15x16 + O (ε ).

Corollary 3.9. VP2 = VPe and VP2poly = VPe
poly

when char(F) � 2.

Proof. The inclusion VP2 ⊆ VPe is standard, see Equation (1). Taking closures on both sides,

we obtain VP2 ⊆ VPe and VP2
poly ⊆ VPe

poly
.

However, when char(F) � 2, we have the inclusion VPe ⊆ VP2
poly

(Theorem 3.1). By taking

closures this implies VPe ⊆ VP2 and VPe
poly ⊆ VP2

poly
. �

Corollary 3.10. VP2
poly
= VPe when char(F) � 2 and F is infinite.
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Proof. By Corollary 3.9, we have VP2
poly
= VPe

poly
. The equality VPe

poly
= VPe follows from

a standard interpolation argument; see, e.g., Reference [8, Proposition 8.1] for details. (The in-
terpolation argument in the context of approximative complexity goes back to Bini [5], see also
Strassen [39], Bürgisser et al. [11], or Reference [18, Lemma 17] and the references therein.) �

As a consequence of Proposition 3.5, we obtain a new description of VPe as follows. The
continuant Fn (x1, . . . ,xn ) is defined via F0 := 1, F1 := x1, and Fn := xnFn−1 + Fn−2 for all n ≥ 2.
Among the well-known algebraic properties of Fn is the fact that Fn (1, 1, . . . , 1) is the nth Fi-
bonacci number and that Fn is the upper left entry of a product of Q-matrices Q (xi ), that is,
Fn (x1, . . . ,xn ) = (Q (xn )Q (xn−1) · · ·Q (x1))1,1.

Definition 3.11. A polynomial f is a projection of Fm if there exist affine linear forms �1, . . . , �m
such that f = Fm (�1, . . . , �m ). The smallest m such that f is a projection of Fm we call the con-
tinuant complexity of f . A polynomial f is a degeneration of Fm if there exist parametrized affine
linear forms �1 (ε ), . . . , �m (ε ) such that Fm (�1 (ε ), . . . , �m (ε )) ∈ f + O (ε ). The smallest m such that
f is a degeneration of Fm we call the border continuant complexity of f , and denote it by LCon ( f ).

A family (hn ) of polynomials is called VPe-complete under p-degenerations if (hn ) ∈ VPe and for

every ( fn ) ∈ VPe there exists a polynomially bounded function t such that fn is a degeneration of
ht (n) .

The continuant complexity is not always finite [1], but Proposition 3.6 shows that the border

continuant complexity LCon ( f ) is always finite and that VPe can be characterized as the class of
families with polynomially bounded border continuant complexity:

Theorem 3.12. VPe = {( fn ) | LCon ( fn ) ∈ poly(n)}.

Proof. Clearly the right-hand side is contained in the left-hand side. VPe is contained in the
right-hand side by Proposition 3.6. A moment’s thought reveals that the right-hand side is closed
under the approximation closure in the sense of Definition 2.1. Thus, taking the closure on both
sides yields the result. �

Remark 3.13. Theorem 3.12 shows that (Fn ) is VPe-complete under p-degenerations. From the

proof of Proposition 3.5 it follows that also (F2n+1) is VPe-complete under p-degenerations, that is,
we only need the Fm with odd indexm (this follows from det(Q ( f )) = −1).

Remark 3.14 (Symmetry). Define the polynomial Cn (x1, . . . ,xn ) as

Cn (x1, . . . ,xn ) := trace(Q (xn ) ·Q (xn−1) · · ·Q (x1)).

Since the trace of a matrix product is invariant under cyclic shifts of the matrices, the polynomial
Cn (x1, . . . ,xn ) is invariant under cyclic shifts of the variables x1, . . . ,xn . Thus,Cn can be viewed as
a cyclically symmetric version of Fn . (Note thatCn and Fn are also both invariant under reversing
the order of the variables x1, . . . ,xn , that is, mapping (x1, . . . ,xn ) to (xn , . . . ,x1).) Define the border
cyclic continuant complexity analogously to the border continuant complexity by replacing Fn by
Cn in Definition 3.11. Analogously to Theorem 3.12, we now see that the families (Cn ) and (C2n+1)

are both VPe-complete under p-degenerations. The polynomial Cn is called rotundus in Reference
[15].

Remark 3.15 (A closed form for Fn and Cn). We describe another way to write Fn and Cn . An
adjacent pair is a set of two numbers {i, i + 1}with 1 ≤ i < n. A supporting set is the set {1, 2, . . . ,n}
after removing a disjoint (possibly empty) union of adjacent pairs. For a supporting set S define
xS :=

∏
i ∈S xi . Then Fn (x1, . . . ,xn ) =

∑
S xS , where the sum is over all supporting sets.
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Fig. 5. Making an ABP consisting of three primitive Q-matrices planar.

We define a cyclicly adjacent pair as a set that is either an adjacent pair or the set {1,n}, if 1 � n.
We define a cyclic supporting set as the set {1, 2, . . . ,n} after removing a disjoint (possibly empty)
union of cyclicly adjacent pairs. Then Cn (x1, . . . ,xn ) =

∑
S xS , where the sum is over all cyclic

supporting sets.

Remark 3.16 (Planarity). We remark that the product of two Q-matricesQ (x )Q (y) can be rewrit-

ten as Q (x )Q (y) = (Q (x ) ( 0 1
1 0 )) (( 0 1

1 0 )Q (y)). We also have Q (x ) ( a
b ) = (Q (x ) ( 0 1

1 0 )) ( b
a ). Consider a

width-2 ABP that is a product of primitive Q-matrices,

(a b)Q (�1)Q (�2) · · ·Q (�k )

(
c
d

)
.

By pairing up the ith Q-matrix with the (i + 1)th Q-matrix for each odd i , and using the above
equations, we can rewrite this ABP into a width-2 ABP whose underlying graph has no crossing
edges, that is, a planar with-2 ABP; see Figure 5 for an example with three Q-matrices. Planarity
has been studied in the context of ABPs over {0, 1} in, e.g., Reference [27].

4 VNP VIA PRODUCTS OF AFFINE LINEAR FORMS

Valiant proved the following characterization of VNP in his seminal work [41]; see also References
[11, Theorem 21.26], [9, Theorem 2.13], and [28, Therorem 2].

Theorem 4.1 (Valiant [41]). VNPe = VNP.

We strengthen Valiant’s characterization of VNP from VNPe to VNP1.

Theorem 4.2. VNP1 = VNP when char(F) � 2.

We give two proofs. The idea of the first proof is to show that the VNP-complete permanent
family pern :=

∑
σ ∈Sn

∏
i ∈[n] xi,σ (i ) is in VNP1. The idea of the second proof is to simulate in VNP1

the primitives that are used in the proof of VPe = VP3 by Reference [3]. We present the second proof
in Appendix B. The advantage of the second proof is that we can restrict the ABP edge labels to
affine linear forms that have at most two variables; see Theorem B.3. Both proofs use the following
lemma to write expressions of the form 1 + xy as a hypercube sum of a product of affine linear
forms.
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Lemma 4.3. 1
2

∑
b ∈{0,1} (x + 1 − 2b) (y + 1 − 2b) = 1 + xy when char(F) � 2.

Proof. Expanding the left side gives the right side. �

Proof of Theorem 4.2. The permanent family (pern ) is well-known to be VNP-complete under
p-projections, see, for example, Reference [9, Theorem 2.10]. Therefore, to show that VNP ⊆ VNP1,
it suffices to show that (pern ) ∈ VNP1. We begin by writing pern as an inclusion-exclusion-type
expression due to Ryser [35, Theorem 4.1],

pern = (−1)n
∑

S ⊆[n]

(−1) |S |
∏
j ∈[n]

∑
i ∈S

xi, j .

Encoding every subset S ⊆ [n] by a bit string b = (b[1], . . . ,b[n]) ∈ {0, 1}n , we can rewrite the
above as

pern = (−1)n
∑

b ∈{0,1}n

��
�

∏
k ∈[n]

(1 − 2b[k])��
�

∏
j ∈[n]

∑
i ∈[n]

b[i]xi, j

= (−1)n
∑

b ∈{0,1}n

��
�

∏
k ∈[n]

(1 − 2b[k])��
�

∑
i1, ...,in ∈[n]

∏
j ∈[n]

b[i j ]xi j , j .

For notational convenience, we use square brackets not only to refer to sets ([n] := {1, . . . ,n}) but
also to entries in a list (b[k] := bk ). We now introduce new Boolean variables a[i, j], 1 ≤ i ≤ n − 1,
1 ≤ j ≤ n, and we fix the values a[0, j] = 1, a[n, j] = 0. (This gives an (n + 1) × n matrix of variables
and constants in which the first row consists of all 1s and the last row contains only 0s.) We claim
that the above expression equals

pern = (−1)n
∑

b ∈{0,1}n
�
�

∏
k ∈[n]

(1 − 2b[k]) ·
∑

a

∏
i, j ∈[n]

(1 + (xi, j − 1) (a[i−1, j] − a[i, j])) (4)

·
(
1 + (b[i] − 1) (a[i−1, j] − a[i, j])

)
·
(
1 + (a[i−1, j] − 1)a[i, j]

)�
�
,

where the second sum is over all Boolean assignments of a[i, j]. The idea is to encode the indices
i1, . . . , in in the boolean variables a[i, j] in unary. For example, for n = 4, if i1 = 4, i2 = 3, i3 = 1,
i4 = 4, then the corresponding matrix a is

�������
�

1 1 1 1
1 1 0 1
1 1 0 1
1 0 0 1
0 0 0 0

�������
�

.

We prove the claim Equation (4) in three steps. Fix j.

—If a[i − 1, j] = 0 and a[i, j] = 1, then 1 + (a[i − 1, j] − 1)a[i, j] = 0. Thus, if in the se-
quence a[0, j], . . . ,a[n, j] a 0 is followed by a 1, then

∏
i ∈[n] (1 + (a[i − 1, j] − 1)a[i, j] =

0. Conversely, if (a[0, j], . . . ,a[n, j]) = (1, . . . , 1, 0, . . . , 0), then
∏

i ∈[n] (1 + (a[i − 1, j] −
1)a[i, j]) = 1. The assignments of (a[0, j], . . . ,a[n, j]) that contribute to the sum are thus
exactly of the form (1, . . . , 1, 0, . . . , 0) where the first 0 occurs at some index 1 ≤ z ≤ n
(since we have set a[0, j] = 1 and a[n, j] = 0). Fix such an assignment with first 0 occurring
at index z.
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—If i = z, then 1 + (xi, j − 1) (a[i − 1, j] − a[i, j]) equals xi, j . If i � z, then it equals 1.
—If i = z, then 1 + (b[i] − 1) (a[i − 1, j] − a[i, j]) equals b[i]. If i � z, then it equals 1.

This proves Equation (4).
Next, we apply Lemma 4.3, introducing fresh hypercube variables c1[i, j], c2[i, j], and c3[i, j], for

1 ≤ i, j ≤ n, to obtain

pern = (−1)n ( 1
2 )3n2

∑
b

��
�

∏
k ∈[n]

(1 − 2b[k])��
�
·
∑

a

��
�

∏
i, j ∈[n]∑

c1[i, j]

[(xi, j − 2 c1[i, j]) · (a[i−1, j] − a[i, j] + 1 − 2 c1[i, j])]

·
∑

c2[i, j]

[(b[i] − 2 c2[i, j]) · (a[i−1, j] − a[i, j] + 1 − 2 c2[i, j])]

·
∑

c3[i, j]

[(a[i−1, j] − 2 c3[i, j]) · (a[i, j] + 1 − 2 c3[i, j])]��
�
,

where the sum goes over all Boolean assignments of b[i], a[i, j], c1[i, j], c2[i, j], c3[i, j], for all
indices 1 ≤ i, j ≤ n, except for a[n, j] := 0, and a[0, j] := 1. After a rearrangement, we obtain the
expression

pern =
∑
a,b

c1, c2, c3

��
�
(−1)n ( 1

2 )3n2 ��
�

∏
k ∈[n]

(1 − 2b[k])��
�
·

∏
i, j ∈[n]

(xi, j − 2 c1[i, j]) · (a[i−1, j] − a[i, j] + 1 − 2 c1[i, j])

· (b[i] − 2 c2[i, j]) · (a[i−1, j] − a[i, j] + 1 − 2 c2[i, j])

· (a[i−1, j] − 2 c3[i, j]) · (a[i, j] + 1 − 2 c3[i, j])��
�
,

where the sum goes over all Boolean assignments of a[i, j],b[i], c1[i, j], c2[i, j], c3[i, j] for all indices
1 ≤ i, j ≤ n, again except for a[n, j] := 0, and a[0, j] := 1. This shows that (pern ) ∈ VNP1. �

In Section 5, we will prove that the statement of Theorem 4.2 does not hold over F2, that is,
VNP1 � VNP when F = F2. We leave the situation over other fields of characteristic 2 as an open
problem.

5 VNP1 � VNP WHEN F = F2

In our proofs of VNP1 = VNP (Section 4 and Appendix B) the assumption char(F) � 2 played a
crucial role. We can prove that over the finite field F2 the inclusion VNP1 ⊆ VNP is indeed strict.

Proposition 5.1. VNP1 � VNP when F = F2.

Proof. Let F = F2. Clearly (1 + xy) ∈ VNP. However, we will prove that 1 + xy cannot be writ-
ten as a hypercube sum of affine linear forms. In fact, we will prove something stronger, namely
that the function (x ,y) �→ 1 + xy cannot be written as a hypercube sum of a product of affine linear
forms.
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Assume the contrary: the function (x ,y) �→ 1 + xy can be written as a hypercube sum of a prod-
uct of affine linear forms. We can thus write

1 + xy =
∑

b Lb with Lb :=
∏α

i=1 (x +Ai )
∏β

j=1 (y + Bj )
∏γ

k=1
(x + y +Ck ) (5)

for some affine linear forms Ai (b), Bj (b), Ck (b) in the hypercube variables b. On F2 the functions
x ,x2,x3, . . . coincide; the functions y,y2,y3, . . . coincide; and the functions x + y, (x + y)2, (x +
y)3, . . . coincide, so

∏
i (x +Ai ) =

∏
i Ai + x

(∏
i (1 +Ai ) +

∏
i Ai

)
,

∏
j (y + Bj ) =

∏
j Bj + y

(∏
j (1 + Bj ) +

∏
j Bj

)
,

∏
k (x + y +Ck ) =

∏
k Ck + (x + y)

(∏
k (1 +Ck ) +

∏
k Ck

)
.

We multiply the three expressions. To simplify the notation, we write A :=
∏

i Ai , A :=
∏

i (1 +

Ai ), B :=
∏

j Bj , B :=
∏

j (1 + Bj ), C :=
∏

k Ck , C :=
∏

k (1 +Ck ). In this notation, we have Lb =

(A + x (A +A)) (B + y (B + B)) (C + (x + y) (C + C)). We expand

Lb = ABC

+ x ((A +A)BC +AB (C + C)) + x2 ((A +A)B (C + C))

+ y (A (B + B)C +AB (C + C)) + y2 (A (B + B) (C + C))

+ xy (A (B + B) (C + C) + (A +A)B (C + C) + (A +A) (B + B)C)

+ (x2y + xy2) (A +A) (B + B) (C + C).

Simplifying powers of x and y and using that the characteristic is 2, we obtain

Lb = ABC + x (ABC +ABC) + y (ABC +ABC) + xy (ABC +ABC +ABC +ABC).

Plugging in the four possible assignments (x ,y) ∈ F2 × F2 into 1 + xy =
∑

b Lb, we get the follow-
ing system of equations: ∑

b

∏
i, j,k AiBjCk = 1, (6)

∑
b

∏
i, j,k (1 +Ai )Bj (1 +Ck ) = 1, (7)

∑
b

∏
i, j,k Ai (1 + Bj ) (1 +Ck ) = 1, (8)

∑
b

∏
i, j,k (1 +Ai ) (1 + Bj )Ck = 0. (9)

We will show that the above system of equations is inconsistent. Note that Equation (6) asserts
that an odd number of vectors b satisfy the system of equations

Ai = 1 ∀i,
Bj = 1 ∀j,
Ck = 1 ∀k .

Recall that we defined α , β,γ as the number of factors x +Ai , y + Bj , x + y +Ck in Equation (5),
respectively. Letm := α + β + γ . Recall that we defined n as the number of hypercube variables b� .
As we work over F2, any affine linear form in b can be written as α0 +

∑n
�=1 α�b� with αi ∈ {0, 1}.

Write the ith linear form in (A1, . . . ,Aα ,B1, . . . ,Bβ ,C1, . . . ,Cγ ) as v0,i +
∑n

�=1 b�v�,i , and let
v� = (v�,1, . . . ,v�,m ) for 0 ≤ � ≤ n. We define the linear map M : Fn

2 → Fm
2 by M (b) =

∑n
�=1 b�v� .
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We call a bit vector b ∈ Fn
2 a solution of Equation (6) ifM (b) = v0 + 1α 1β 1γ , where 1α 1β 1γ is the all-

ones vector of lengthm = α + β + γ . Observe that Equation (6) says that there is an odd number of
solutions of Equation (6). Since the set of solutions of Equation (6) forms an affine linear subspace
of (F2)n , its cardinality is a power of two. The only odd power of two is 1, so there is exactly one so-

lution of Equation (6). Let b (1) be this unique solution: M (b (1) ) = v0 + 1α 1β 1γ . We do the same for

Equations (7) and (8) and find unique solutions M (b (2) ) = v0 + 0α 1β 0γ and M (b (3) ) = v0 + 1α 0β 0γ .
Equation (9) asserts that the number of solutions of Equation (9) is even. One solution of Equa-

tion (9) is given by M (b (1) + b (2) + b (3) ) = 3v0 + 1α 1β 1γ + 0α 1β 0γ + 1α 0β 0γ = v0 + 0α 0β 1γ . Let

b (4′) and b (4′′) be two distinct solutions of Equation (9) with M (b (4′) ) = M (b (4′′) ) = v0 + 0α 0β 1γ .

Then M (b (2) + b (3) + b (4′) ) = v0 + 1α 1β 1γ = M (b (2) + b (3) + b (4′′) ), which contradicts the unique-

ness of b (1) . �

Remark 5.2. In the proof of Proposition 5.1, we considered a family ( fn ) consisting of a single
polynomial fn = 1 + xy. We can immediately generalize this and find many more families in VNP \
VNP1 over F2: For any family дn = дn (x1, . . . ,xn ) in VNP, the family (hn ) with

hn := дn (x1, . . . ,xn ) − дn (0, . . . , 0) + 1 + xn+1xn+2

is clearly in VNP. However, if (hn ) would be in VNP1, then after setting x1 = · · · = xn = 0, we
would obtain a representation of hn (0, . . . , 0,x ,y) = 1 + xy = fn as a hypercube sum of a product
of affine linear forms, contradicting Proposition 5.1. Thus, (hn ) is in VNP \ VNP1 over F2.

Remark 5.3. Our proof of Proposition 5.1 does not generalize to all fields F of characteristic 2,
because the polynomial 1 + xy is in fact computable by a hypercube sum of a product of affine
linear forms when F = F4 (and thus when F = F22k , k ∈ N). Indeed, F4 � F2[Z ]/(Z 2 + Z + 1), so
the element Z ∈ F4 is a third root of unity (Z 3 = 1) and satisfies Z 2 + Z + 1 = 0. It can be checked
that, therefore,

∑1
b=0 (x + Z 2y + Zb) · (x + Zy + Z 2b) · (x + y + b) equals 1 + xy.

APPENDIXES

A ABPS WITH RESTRICTED EDGE LABELS

So far the edge labels of our ABPs were allowed to be arbitrary affine linear forms. This section is
about ABPs in which the edge labels are restricted to be simple affine linear forms (“weak ABPs”),
or variables and constants (“weakest ABPs”). These edge label types were also studied in Refer-
ence [1].

Definition A.1. A wst-ABP (weakest ABP) is an ABP with edges labeled by variables or constants.
A w-ABP (weak ABP) is an ABP with edges labeled by simple affine linear forms αxi + β , α , β ∈ F.
A g-ABP (general ABP) is an ABP with edges labeled by general affine linear forms

∑
i αixi + β ,

αi , β ∈ F. For τ equal to wst, w, or g, the class VP
τ
k

consists of all families of polynomials over
polynomially many variables that are computed by polynomial-size width-k τ -ABPs. In the rest of
this article, τ will act as a variable from {wst,w, g}. By VPk , we mean VP

g

k
.

From the above definition, it follows that VP
wst
k
⊆ VP

w
k
⊆ VP

g

k
.

Remark A.2. One checks that the construction in the proof of Theorem 3.1 actually proves the

inclusion VPe ⊆ VP
wst
2

poly
when char(F) � 2. The inclusion VPe ⊆ VP

wst
2

poly
implies the equalities

VP
wst
2 = VPe and VP

wst
2

poly
= VPe

poly
.

In the following sections, we will prove all inclusions and separations that are listed in Figure 8.
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A.1 Comparing Different Types of Edge Labels in Width-2 ABPs

The aim of this subsection is to prove the following separation.

Theorem A.3. VP
w
2 � VP

g
2 .

In fact, we will show the following stronger statement.

Theorem A.4. The polynomial

p (x) = (x11 + x12 + · · · + x17) (x21 + x22 + · · · + x27)

+ (x31 + x32 + · · · + x37) (x41 + x42 + · · · + x47)

is computable by a width-2 g-ABP, but not computable by any width-2 w-ABP.

We leave it as an open problem whether the inclusion VP
wst
2 ⊆ VP

w
2 is strict.

To prove Theorem A.4, we will review and reuse the arguments used by Allender and Wang [1]
to show that the polynomial x1x2 + · · · + x15x16 cannot be computed by any width-2 g-ABP.

For the proof of Theorem A.4, we may without loss of generality assume that the base field F is
algebraically closed, because for any field F, if p is not computable over the algebraic closure of F,
then it is not computable over F itself. Let H be the affine linear forms that are single variables xi

or constants F. Let S be the set of simple affine linear forms. Let L be the set of general affine
linear forms. Let H2×2, S2×2, L2×2 be the sets of 2 × 2 matrices with entries in H, S, L, respectively.
In this subsection, all ABPs have width 2, and by a wst-, w-, or g-ABP Γ, we will mean a sequence
Γk , . . . , Γ1 with Γk ∈ F1×2, Γk−1, . . . , Γ2 ∈ X 2×2, and Γ1 ∈ F2×1 withX equal toH, S or L, respectively.
We call Γk−1, . . . , Γ2 the inner matrices of Γ. It is important for technical reasons that Γ1 and Γk have
field entries only.

Definition A.5. A matrix A ∈ L2×2 is called inherently nondegenerate (indg) when det(A) ∈ F \
{0}. A matrix A ∈ L2×2 that is not inherently nondegenerate is called possibly degenerate (pdg).

Allender and Wang prove the following necessary condition for a polynomial to be computable
by a wst-, w-, or g-ABP whose inner matrices are indg. Let H(p) denote the highest-degree homo-
geneous part of a polynomial p.

Theorem A.6 ([1, Theorem 3.9 and Lemma 4.7]). Let p be a polynomial and Γ a wst-, w- or
g-ABP computing p, whose inner matrices are indg. Then, H(p) is a product of homogeneous linear
forms.

Our next goal is to give a necessary condition for a polynomial p to be computable by a w-ABP.
We begin with a simple lemma, which can essentially be found in Reference [1], but we include
its brief proof here for completeness.

Lemma A.7 ([1]). Let p be a polynomial. If p is computed by a w-ABP that has an inner matrix
containing four distinct variables, then there is an assignment π of these four variables with π (p) = 0.

Proof. Let M be such a matrix. Since the ABP is of type w, M is of the form

M =

(
α11x11 + β11 α12x12 + β12

α21x21 + β21 α22x22 + β22

)

for some constants αi j ∈ F \ {0}, βi j ∈ F. Applying the four assignments xi j �→ −βi j/αi j makes M
zero and thus p zero. �

We need two more ideas before we will state and prove the necessary condition we are af-
ter. (1) Let A ∈ L2×2 be pdg. Then, there is an assignment π of the variables such that π (A) has
only constant entries and has rank ≤ 1. (2) Let p be a polynomial computed by an ABP Γ, that is,
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p = Γk · · · Γ1. Suppose that Γ contains an inner matrix Γi , 1 < i < k , with only constant entries and
with rank ≤ 1. Then, there is a constant 2 × 1 matrix Γi,2 and a constant 1 × 2 matrix Γi,1 such that
Γi = Γi,2Γi,1. Then, p is a product

p = p2p1

of polynomials p1, p2, each computable by an ABP, namely

p2 = Γk · · · Γi+1Γi,2,

p1 = Γi,1Γi−1 · · · Γ1.

We say that p factors into p2p1. Recall that H(p) denotes the highest-degree homogeneous part of
a polynomial p. The following is implicit in Reference [1].

Theorem A.8 ([1]). Let p be a polynomial computed by a w-ABP Γ. Then, there is an assignment
π of at most six variables such that H(π (p)) is either a constant, a homogeneous linear form, or a
product of two homogeneous polynomials of positive degree.

Proof. Let (Γk , . . . , Γ1) be the matrices of Γ, so that p = Γk · · · Γ1. Clearly, if some Γi is the zero
matrix, thenp = 0, and we are also done. If there is a Γi containing four distinct variables, then there
is an assignment π of these four variables with π (p) = 0 (Lemma A.7), so we are done. Otherwise,
all Γi are nonzero and have at most three distinct variables. If the inner Γi are all indg, then H(p)
is a product of homogeneous linear forms (Theorem A.6), in which case we are done. Therefore,
we are left to discuss the case where there is at least one nonzero pdg inner matrix. Consider the
nonempty subsequenceM = (M�, . . . ,M1) of all nonzero pdg inner matrices. For each Mi there is
an assignment π of at most three distinct variables such that π (Mi ) has only constant entries and
rank ≤ 1. To each Mi , we assign a type (several types might be possible for a single Mi , in which
case, we choose and fix the type arbitrarily from the possible ones):

—If there is an assignment π of at most three variables of Mi such that π (Mi ) is constant of
rank ≤1 and π (p) factors into a product p2p1 with p2 and p1 both constant, then Mi has type
“C”.

—If Mi does not have type “C” and if there is an assignment π of at most three variables of
Mi such that π (Mi ) is constant of rank ≤ 1 and π (p) factors into a product p2p1 with p2 and
p1 both polynomials of positive degree, then Mi has type “P .”

—If Mi does not have type “C” or “P” and if there is an assignment π of at most three variables
of Mi such that π (Mi ) is constant of rank ≤ 1 and π (p) factors into a product p2p1 with p2

a polynomial of positive degree and p1 constant, then Mi has type “L.”
—If Mi does not have type “C” or “P” or “L” and if there is an assignment π of at most three

variables of Mi such that π (Mi ) is constant of rank ≤ 1 and π (p) factors into a product p2p1

with p2 constant and p1 a polynomial of positive degree, then Mi has type “R.”

The slight imbalance between type “L” and “R” will be relevant. In particular, in a type “R” matrixM
every assignment of variables for which M becomes rank deficient results in a factorization of p
with a constant left factor. We consider four possible situations.

(a) There is an M ∈ M of type “C” or “P .” In this case, we are done.
(b) M1 has type “R.” Then p1 is computed by an ABP whose inner matrices are all indg

(since M1 is the right-most pdg inner matrix) and hence H(p1) is a product of homo-
geneous linear forms (Theorem A.6), so we are done.

(c) M� has type “L.” Then p2 is computed by an ABP whose inner matrices are all indg
(since M� is the left-most pdg inner matrix) and hence H(p2) is a product of homogeneous
linear forms (Theorem A.6), so we are done.
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(d) Remaining situation. Since we are not in situation (a), the types “C” and “P” do not appear.
Since we are neither in situation (b) nor (c), both types “L” and “R” do appear. Let i be the
largest number such that Mi has type “L.” Since we are not in situation (c), Mi+1, . . . ,M�

all have type “R.” With a assignment π to at most three variables of Mi , π (p) factorizes
as p2p1. Consider the matrices π (Mj ), i + 1 ≤ j ≤ �. If those are all indg, then H(p2) is a
product of homogeneous linear forms (Theorem A.6), and so is H(π (p)) = H(p2)p1, which
means that we are done. Otherwise, choose the smallest j, i + 1 ≤ j ≤ �, such that π (Mj )
is pdg. Since Mj has type “R”, there is an assignment σ of at most three variables of π (Mj ),
such that σ (p2) factors into p4p3 with p4 constant. Since p3 is computed by an ABP whose
inner matrices are all indg, H(p3) is a product of homogeneous linear forms (Theorem A.6).
Since σ (π (p)) = p4p3σ (p1) is a scalar multiple of p3, the theorem follows. �

Theorem A.4 (repeated). The polynomial

p (x) = (x11 + x12 + · · · + x17) (x21 + x22 + · · · + x27)

+ (x31 + x32 + · · · + x37) (x41 + x42 + · · · + x47)

is computable by a width-2 g-ABP but not computable by any width-2 w-ABP.

Proof. Clearly p (x) is computable by a width-2 g-ABP. Suppose p (x) is computable by a width-
2 w-ABP. Then, by Theorem A.8 there is an assignment π of at most six variables such that either
π (p) is affine linear or H(π (p)) is a product of two polynomials of positive degree. The first option is
impossible, because distinct variables do not cancel. So, H(π (p)) is a product of two polynomials
of positive degree. With another assignment σ , we can achieve that H(σ (π (p)) is of the form
xix j + xkx� for some distinct variables xi ,x j ,xk ,x� . This is not a product of two polynomials of
positive degree, so H(π (p)) is not either. �

A.2 Comparing Different Types of Edge Labels in Width-1 ABPs

Clearly, VP
wst
1 ⊆ VP

w
1 ⊆ VP

g
1 and VP

τ
1 ⊆ VP

τ
2 (τ ∈ {wst,w, g}), but this does not give a complete

description of all inclusions among these classes. The following two propositions realize a complete
description among VP

τ
1 and VP

wst
2 .

Proposition A.10. VP
g
1 ⊆ VP

wst
2 .

Proof. Let (pn ) ∈ VP
g
1. Then, each pn is a product of poly(n) affine linear forms in poly(n)

variables. Let �(x) = α0 + α1x1 + α2x2 + · · · + αmxm be such an affine linear form with α0 ∈ F and
α1, . . . ,αm ∈ F \ {0}. We can compute �(x) with the width-2 wst-ABP in Figure 6. A product of
affine linear forms can be computed by the width-2 wst-ABP that is the concatenation of the width-
2 wst-ABPs computing the affine linear forms. For pn the resulting ABP has poly(n) size. Thus,
(pn ) ∈ VP

wst
2 . �

Proposition A.11. VP
wst
1 � VP

w
1 � VP

g
1 � VP

wst
2 .

Proof. If (pn ) ∈ VP
wst
1 , then pn is a monomial. However, (α0 + α1x1) ∈ VP

w
1 and α0 + α1x1 is

not a monomial, so VP
wst
1 � VP

w
1 . If (pn ) ∈ VP

w
1 and pn is homogeneous, then pn is a monomial.

However, ((x1 + x2)2) ∈ VP
g
1 and (x1 + x2)2 is not a monomial, so VP

w
1 � VP

g
1. The last inclusion

is Proposition A.10. To see the strictness, if (pn ) ∈ VP
g
1, then the highest-degree homogeneous

part H(pn ) of pn is a product of homogeneous linear forms. However, (x1x2 + x3x4) ∈ VP
wst
2 and

x1x2 + x3x4 is not a product of homogeneous linear forms, so VP
g
1 � VP

wst
2 . �
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Fig. 6. Width-2 wst-ABP computing �(x) = α0 + α1x1 + α2x2 + · · · + αmxm .

A.3 Approximation in Width-1 ABPs

The following proposition says that each of VP
wst
1 , VP

w
1 , and VP

g
1 is closed under approximation.

Proposition A.12. VP
τ
1 = VP

τ
1 for τ ∈ {wst,w, g}.

Proof. Trivially, VP
τ
1 ⊆ VP

τ
1 . To prove the opposite inclusion, let ( fn ) ∈ VP

τ
1 . There are polyno-

mials дn (ε, x) ∈ F[ε, x] such that fn + εдn (ε, x) can be written as a product of poly(n) affine linear
forms in F(ε )[x] in poly(n) variables (these affine linear forms have either wst-, w-, or g-type).
That is (forgetting the subscript n for the moment), f (x) + εд(ε, x) can be written as

f (x) + εд(ε, x) =
m∏

i=1

�i (ε, x)

with

�i (ε, x) =
ei∑

j=di

ε jki, j (x)

for some affine linear formski, j ∈ F[x], such thatki,di
(x) � 0, anddi ≤ ei ∈ Z. By shifting ε-factors

from �1, . . . , �m−1 to �m , we can assume that di = 0 for i < m. We claim that dm ≥ 0. If dm < 0,
then expanding

∏
i �i (x) as a Laurent series in ε gives a term with a negative power of ε . This

contradicts f (x) + εд(x) having only nonnegative powers of ε . Therefore, the �i (x) do not contain
any negative powers of ε , and we can safely substitute ε �→ 0 in each linear form �i to obtain f as
a product of affine linear forms in F[x] (either of wst-, w-, or g-type). Remembering our subscript
n again, we have thus proven ( fn ) ∈ VP

τ
1 . �

A.4 Nondeterminism in Width-1 ABPs

In the following proposition, we compare VP
τ
1 to VNP

τ
1 for all three versions τ ∈ {wst,w, g}.

Journal of the ACM, Vol. 65, No. 5, Article 32. Publication date: August 2018.



On Algebraic Branching Programs of Small Width 32:21

Proposition A.13.

—VP
τ
1 = VNP

τ
1 for τ equal to wst or w.

—VP
g
1 � VNP

g
1 when char(F) � 2.

Proof. Trivially, VP
τ
1 ⊆ VNP

τ
1 . Let (pn ) ∈ VNP

wst
1 . Then, pn can be written as a hypercube-sum

over a monomial,

p (x) =
∑

b∈{0,1}poly(n )

m(b, x),

with m a monomial (subscripts n are implied). For any b-variable that does not occur in m, we
remove that b-variable form the summation and at the same time multiply the expression by 2, to
again have an expression for p (x). Assuming all b-variables occur in m, only for b = (1, 1, . . . , 1)
canm(b, x) be nonzero. So,p (x) =m((1, . . . , 1), x). Remembering the subscriptn, we proved (pn ) ∈
VP

wst
1 .
Let (pn ) ∈ VNP

w
1 . Then (forgetting the subscript n),

p (x) =
∑

b∈{0,1}poly(n )

∏
i

�i (b)
∏

j

kj (x)

for some simple affine linear forms �i in the variables b and some simple affine linear forms kj

in the variables x. The product
∏

j kj (x) is independent of b, while
∑

b

∏
i �i (b) is a constant. We

can thus write p (x) as a constant times
∏

j kj (x). Therefore (remembering n), pn (x) ∈ VP
w
1 . This

proves the first line of the proposition.
To prove the second line, recall that if (pn ) ∈ VP

g
1, then pn is a product of affine linear forms.

However, let pn (x1,x2) =
∑

b ∈{0,1} (x1 + b) (x2 + b) = 2x1x2 + x1 + x2 + 1. Then, (pn ) ∈ VNP
g
1, but

pn (x1,x2) is a not a product of affine linear forms, as we will now verify. Suppose 2x1x2 + x1 + x2 +

1 = (α0 + α1x1 + α2x2) (β0 + β1x1 + β2x3). Then, α1β1 = 0 and α2β2 = 0. Since α1β1 = 0, we may
assume without loss of generality that α1 = 0. Since not both α1 and α2 can be 0 (otherwise (α0 +

α1x1 + α2x2) (β0 + β1x1 + β2x2) has degree 1) and since α2β2 = 0, we have β2 = 0. Hence, 2x1x2 +

x1 + x2 + 1 = (α0 + α2x2) (β0 + β1x1). Then, α0β0 = 1, α0β1 = 1, α2β0 = 1, and α2β1 = 2. The first
two of these equations imply β0 = β1, which contradicts the last two of these equations. So VP

g
1 �

VNP
g
1. �

Remark A.14. It follows directly from Propositions A.13 and A.11 that we have strict inclusions
VNP

wst
1 � VNP

w
1 � VNP

g
1, when char(F) � 2.

Remark A.15. For showing VP
g
1 � VNP

g
1 we considered a family (pn ) consisting of a single

polynomial pn = 2x1x2 + x1 + x2 + 1. Similar to Remark 5.2, it is easy to find many more families
( fn ) ∈ VNP

g
1 \ VP

g
1. For example, for fn = fn (x1, . . . ,xn ) = pn (x1,x2) · (1 + x3) (1 + x4) · · · (1 + xn ),

we clearly obtain ( fn ) ∈ VNP
g
1, but since pn (x1,x2) = fn (x1,x2, 0, . . . , 0), we cannot have ( fn ) ∈

VP
g
1.

B ALTERNATIVE PROOF OF VNP1 = VNP VIA VP3

Recall that in Section 4, we proved that

VNP
g
1 = VNP, (10)

using the completeness of the permanent (Theorem 4.2). We will present an alternative proof
of Equation (10) inspired by the proof of the following theorem by Ben-Or and Cleve. The al-
ternative proof of Equation (10) has the benefit that it can be extended to show a slightly stronger
result, see Theorem B.3.
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Theorem B.1 (Ben-Or and Cleve [3]). For k ≥ 3, VP
τ
k
= VPe for τ ∈ {wst,w, g}.

We include a proof of this theorem, since we will later adapt it to prove Equation (10).

Proof. It is well-known (see Equation (1)) that VP
τ
k
⊆ VPe. We will prove that VPe ⊆ VP

wst
3 ,

from which it follows that VPe ⊆ VP
τ
k

and thus VP
τ
k
= VPe. For a polynomial h, define the matrix

M (h) :=
��
�

1 0 0
h 1 0
0 0 1

��
�
,

which, as part of an ABP, looks like

We call the following matrices primitive:

—M (h) with h any variable or any constant in F,
—every 3 × 3 permutation matrix Mπ with π ∈ S3 any permutation,
—every diagonal matrix Ma,b,c := diag(a,b, c ) with a,b, c any constants in F.

The entries of the primitives are variables or constants in F, making them suitable to use in the
construction of a width-3 wst-ABP (Definition A.1).

Let ( fn ) ∈ VPe. Then fn can be computed by a formula of size s (n) ∈ poly(n). By Brent’s depth-
reduction theorem for formulas [7] fn can then also be computed by a formula of size poly(n) and
depth d (n) ∈ O (logn).

We will construct a sequence of primitive matrices A1, . . . ,Am (n) , such that

A1 · · ·Am (n) =
��
�

1 0 0
fn 1 0
0 0 1

��
�
,

withm(n) ∈ O (4d (n) ) = poly(n). Then,

fn (x) = (1 1 1)M−1,1,0A1 · · ·Am
��
�

1
1
1

��
�
,

so fn (x) can be computed by a width-3 wst-ABP of size poly(n), proving the theorem.
To explain the construction, leth be a polynomial and consider a formula computingh of depthd .

The goal is to construct (recursively on the formula structure) primitive matricesA1, . . . ,Am , such
that

A1 · · ·Am =
��
�

1 0 0
h 1 0
0 0 1

��
�

withm ∈ O (4d ). (11)

Suppose h is a variable or a constant. Then, M (h) is itself a primitive matrix.
Suppose h = f + д is a sum of two polynomials f ,д and suppose M ( f ) and M (д) can be written

as a product of primitive matrices. Then, M ( f + д) equals a product of primitive matrices, because
M ( f + д) = M ( f )M (д). This can easily be verified directly, or by noting that in the corresponding
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partial ABPs, the top-bottom paths (ui -vj paths) have the same value:

Supposeh = f д is a product of two polynomials f ,д and supposeM ( f ) and M (д) can be written
as a product of primitive matrices. Then, M ( f д) equals a product of primitive matrices, because

M ( f · д) = M (23)

(
M1,−1,1M (123)M (д)M (132)M ( f )

)2
M (23)

(here, (23) ∈ S3 denotes the transposition 1 �→ 1, 2 �→ 3, 3 �→ 2 and (123) ∈ S3 denotes the cyclic
shift 1 �→ 2, 2 �→ 3, 3 �→ 1), as can be verified either directly or by checking that in the correspond-
ing partial ABPs, the top-bottom paths (ui -vj paths) have the same value:

This completes the construction.
The lengthm of the construction ism(h) = 1 for h a variable or constant and recursivelym( f +

д) =m( f ) +m(д),m( f · д) = 2(m( f ) +m(д)) + O (1), som ∈ O (4d ), where d is the formula depth
of h. The construction thus satisfies Equation (11), proving the theorem. �

We will now give an alternative proof of Theorem 4.2.

Theorem 4.2 (repeated). VNP1 = VNP when char(F) � 2.
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Second proof of Theorem 4.2. Clearly, VNP
g
1 ⊆ VNP by Equation (1) and taking the nonde-

terminism closure N. We will prove that VNP ⊆ VNP
g
1.

Recall that in the proof of VPe ⊆ VP
wst
3 (Theorem B.1), we defined for any polynomial h the

matrix

M (h) :=
��
�

1 0 0
h 1 0
0 0 1

��
�
,

and we called the following matrices primitive:

—M (h) with h any variable or any constant in F,
—every 3 × 3 permutation matrix Mπ with π ∈ S3 any permutation,
—every diagonal matrix Ma,b,c := diag(a,b, c ) with a,b, c any constants.

In the proof of VPe ⊆ VP
wst
3 , we constructed, for any family ( fn ) ∈ VPe, a sequence of primitive

matrices An,1, . . . ,An,t (n) with t (n) ∈ poly(n), such that

fn (x) = (1 1 1)M−1,1,0A1 · · ·Am
��
�

1
1
1

��
�
.

We will construct a hypercube sum over a width-1 g-ABP that evaluates the right-hand side, to
show that VPe ⊆ VNP

g
1. This implies VNPe ⊆ VNP

g
1 by taking closures. Then by Valiant’s Theo-

rem 4.1, VNP ⊆ VNP
g
1.

Let f (x) be a polynomial and let A1, . . . ,Ak be primitive matrices, such that f (x) is computed
as

f (x) = (1 1 1)Ak · · ·A1
��
�

1
1
1

��
�
.

View this expression as a width-3 ABP G, with vertex layers labeled as shown in the left diagram
of Figure 7. Assume for simplicity that all edges between layers are present, possibly with label 0.
The sum of the values of every s-t path in G equals f (x),

f (x) =
∑

j ∈[3]k

Ak [jk , jk−1] · · ·A1[j2, j1]. (12)

We now introduce some hypercube variables. To every vertex, except s and t , we associate a bit;
the bits in the ith layer we call b1[i], b2[i], b3[i]. To an s-t path inG, we associate an assignment of
the bj [i] by setting the bits of vertices visited by the path to 1 and the others to 0. For example, in
the right diagram in Figure 7 we show an s-t path with the corresponding assignment of the bits
b1[i], b2[i], and b3[i]. The assignments of bj [i] corresponding to s-t paths are the ones such that
for every i ∈ [k] exactly one of b1[i], b2[i], b3[i] equals 1. Let

V (b1,b2,b3) :=
∏

i ∈[k]

(b1[i] + b2[i] + b3[i])
∏

s, t ∈ [3] :
s � t

(
1 − bs [i]bt [i]

)
. (13)

The assignments of bj [i] corresponding to s-t paths are thus the ones such that V (b1,b2,b3) = 1.
Otherwise, V (b1,b2,b3) = 0.

We will now write f (x) as a hypercube sum by replacing each Ai [ji , ji−1] in Equation (12) by a
product of affine linear forms Si (Ai ) with variables b and x as follows:∑

b

V (b1,b2,b3)Sk (Ak ) · · · S1 (A1).
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Fig. 7. Illustration of layer labelling and path labelling in the proof of Theorem 4.2.

Define Eq(α , β ) : {0, 1}2 → {0, 1} by (1 − α − β ) (1 − α − β ). This function is 1 if α = β and 0 oth-
erwise.

—For any variable or constant x , define

Si (M (x )) :=
(
1 + (x − 1) (b1[i] − b1[i−1])

)
·
(
1 − (1 − b2[i])b2[i−1]

)
· Eq

(
b3[i−1],b3[i]

)
.

—For any permutation π ∈ S3, define

Si (Mπ ) := Eq
(
b1[i−1],bπ (1)[i]

)
· Eq

(
b2[i−1],bπ (2)[i]

)
· Eq

(
b3[i−1],bπ (3)[i]

)
.

—For any constants a,b, c ∈ F, define

Si (Ma,b,c ) :=
(
a · b1[i−1] + b · b2[i−1] + c · b3[i − 1]

)
· Eq

(
b1[i−1],b1[i]

)
· Eq

(
b2[i−1],b2[i]

)
· Eq

(
b3[i−1],b3[i]

)
.

One verifies that with these definitions, indeed,

f (x) =
∑

b

V (b1,b2,b3)Sk (Ak ) · · · S1 (A1).
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Some of the factors in the Si (Ai ) are not affine linear. As a final step, we apply the equation 1 + xy =
1
2

∑
c ∈{0,1} (x + 1 − 2c ) (y + 1 − 2c ) (Lemma 4.3) to write these factors as products of affine linear

forms, introducing new hypercube variables. �

Combining Theorem 4.2 and Remark A.14 gives the separation VNP
w
1 � VNP

g
1 = VNP. We can

prove a slightly stronger separation by adjusting the construction in the above proof of Theo-
rem 4.2. Namely, let S+ := {αxi + βx j + γ | α , β,γ ∈ F} be the set of affine linear forms in at most
two variables and let VP

w+
1 be the class of families that can be computed by width-1 ABPs over S+

of polynomial size. Define VNP
w+
1 accordingly (Definition 2.3). Then, we can adjust the construc-

tion in the above proof of Theorem 4.2 to show the following.

Theorem B.3. VNP
w
1 � VNP

w+
1 = VNP when char(F) � 2.

Proof. We only need to show VNP
w+
1 = VNP, as VNP

w
1 � VNP was shown in Remark A.14.

The adjustments we have to make to the construction in the proof of Theorem 4.2 are as follows.
Most of the resulting polynomial of the construction is already of the correct form where each
linear forms contains at most two variables, since the expression Eq(x ,y) = (1 − x − y)2 and the
expression 1 + xy = 1

2

∑
c ∈{0,1} (x + 1 − 2c ) (y + 1 − 2c ) are of this form. Three expressions occur

that are not of the correct form:

(1) b1[i] + b2[i] + b3[i] in V (b1,b2,b3),
(2) a · b1[i−1] + b · b2[i−1] + c · b3[i − 1] in S(Ma,b,c ), and
(3) 1 + (x − 1) (b1[i] − b1[i−1]) in S(M (x )).

Expressions 1 and 2 we can write in the correct form using the identity

1
2

∑
b ∈{0,1}

(x + 1 − 2b) (y + 1 − 2b) (z + 1 − 2b) = x + y + z + xyz. (14)

Indeed, expression 1 can be replaced by

1
2

∑
c ∈{0,1}

(b1[i] + 1 − 2c ) (b2[i] + 1 − 2c ) (b3[i] + 1 − 2c )

= b1[i] + b2[i] + b3[i] + b1[i]b2[i]b3[i],

since the unwanted term b1[i]b2[i]b3[i] will always vanish in our construction (because in Equa-
tion (13), we multiply with 1 − bs [i]bt [i] for every s � t ). Similar for expression 2.

For expression 3, we first replace the expression 1 + (x − 1) (b1[i] − b1[i−1]) by the expression
1
2

∑
c ∈{0,1} (x − 1 + 1 − 2c ) (b1[i] − b1[i−1] + 1 − 2c ). The second factor has too many variables. We

replace it, using identity Equation (14), by

1
2

∑
c ′ ∈{0,1}

(
b1[i] + 1 − 2c ′

) (
−b1[i−1] + 1 + 1 − 2c ′

) (
−2c + 1 − 2c ′

)

= b1[i] − b1[i−1] + 1 − 2c + b1[i](1 − b1[i − 1]) (−2c ).

The first four summands in the right-hand side are as we want. The last summand is only nonzero
if b1[i] = 1 and b1[i−1] = 0. However, since Si (M (x )) contains a factor 1 − (1 − b2[i])b2[i−1] and
a factor Eq(b3[i−1],b3[i]), it can be checked that this last summand will always vanish.

In the new construction thus obtained each linear form is in S+. This completes the necessary
adjustments to the construction. �
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