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Abstract—The Internet has undergone dramatic changes
in the past 15 years, and now forms a global communication
platform that billions of users rely on for their daily ac-
tivities. While this transformation has brought tremendous
benefits to society, it has also created new threats to online
privacy, ranging from profiling of users for monetizing
personal information to nearly omnipotent governmental
surveillance. As a result, public interest in systems for
anonymous communication has drastically increased. Several
such systems have been proposed in the literature, each
of which offers anonymity guarantees in different scenarios
and under different assumptions, reflecting the plurality of
approaches for how messages can be anonymously routed
to their destination. Understanding this space of competing
approaches with their different guarantees and assumptions
is vital for users to understand the consequences of different
design options.

In this work, we survey previous research on designing,
developing, and deploying systems for anonymous commu-
nication. To this end, we provide a taxonomy for clustering
all prevalently considered approaches (including Mixnets,
DC-nets, onion routing, and DHT-based protocols) with
respect to their unique routing characteristics, deployabil-
ity, and performance. This, in particular, encompasses the
topological structure of the underlying network; the routing
information that has to be made available to the initiator
of the conversation; the underlying communication model;
and performance-related indicators such as latency and com-
munication layer. Our taxonomy and comparative assessment
provide important insights about the differences between the
existing classes of anonymous communication protocols, and
it also helps to clarify the relationship between the routing
characteristics of these protocols, and their performance and
scalability.
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I. INTRODUCTION

The Internet has evolved from a mere communication
network used by millions of users to a global platform
for social networking, communication, education, enter-
tainment, trade, and political activism used by billions
of users. In addition to the indisputable societal benefits
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of this transformation, the mass reach of the Internet has
created new powerful threats to online privacy.

The widespread dissemination of personal informa-
tion that we witness today in social media platforms
and applications is certainly a source of concern. The
disclosure of potentially sensitive data, however, not
only happens when people deliberately post content
online, but also inadvertently by merely engaging in any
sort of online activities. This inadvertent data disclosure
is particularly worrisome because non-expert end-users
cannot be expected to understand the dimensions of the
collection taking place and its corresponding privacy
implications.

Widely deployed communication protocols only pro-
tect, if at all, the content of conversations, but do not
conceal from network observers who is communicating
with whom, when, from where, and for how long. Net-
work eavesdroppers can silently monitor users’ online
behavior and build up comprehensive profiles based
on the aggregation of user communications’ metadata.
Today, users are constantly tracked, monitored, and pro-
filed, both with the intent of monetizing their personal
information through targeted advertisements, and by
nearly omnipotent governmental agencies that rely on
the mass collection of metadata for conducting dragnet
surveillance at a planetary scale.

Anonymous Communication (AC) systems have been
proposed as a technical countermeasure to mitigate the
threats of communications surveillance. The concept of
AC systems was introduced by Chaum [I] in 1981,
with his proposal for implementing an anonymous email
service that aimed at concealing who sent emails to
whom. The further development of this concept in the
last decades has seen it applied to a variety of problems
and scenarios, such as anonymous voting [2], [3], Private
Information Retrieval (PIR) [4], censorship-resistance [5],
[6], anonymous web browsing [7], hidden web ser-
vices [8], and many others.

Public interest in AC systems has strikingly increased
in the last few years. This could be explained as a
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response to recently revealed dragnet surveillance pro-
grams, the fact that deployed AC networks seem to
become (according to leaked documentdl) a major hurdle
for communications surveillance, and to somewhat in-
creased public awareness on the threats to privacy posed
by modern information and communication technolo-
gies.

The literature offers a broad variety of proposals for
anonymity network designs. Several of these designs
have been implemented, and some are successfully de-
ployed in the wild. Of the deployed systems, the most
successful example to date is the Tor network, which is
used daily by about two million people [9].

Existing designs take a variety of approaches to
anonymous routing for implementing the AC network.
Routing determines how data is sent through the net-
work, and it as such constitutes the central element of the
AC design, determining to a large extent both security
and performance of the system. These approaches rely
on different threat models and sets of assumptions, and
they provide different guarantees to their users. Even
though survey articles on AC systems exist [10]-[18], we
still lack a systematic understanding, classification, and
comparison of the routing characteristics of the plurality
of existing AC approaches.

The purpose of this survey is to provide a detailed
overview of the routing characteristics of current AC
systems, and to examine how their features determine
the anonymity guarantees offered by those systems, as
well as its overall performance. To this end, we first
identify the routing characteristics that are relevant for
AC protocols and provide a taxonomy for clustering
the systems with respect to their routing characteristics,
deployability, and performance. Then, we apply the tax-
onomy to the extensive scope of existing AC systems,
in particular including Mixnets, DC-nets, onion routing
systems, and DHT-based protocols. Finally, we discuss
the relationship between the different routing decisions,
and how they affect performance and scalability.

Outline. Section [l provides our taxonomy for anony-
mous routing and describes the various routing features
and dimensions that we are considering for our eval-
uation. Section [IIl gives a compact tabular overview
describing the classification of existing systems in our
taxonomy and reviews existing AC systems with respect
to their routing characteristics, substantiating the com-
pact overview provided in the previous section. Section
[Vl discusses the relationship between routing decisions
and security and anonymity goals, and shares some
lessons learned. Section [Vl concludes the paper.

II. AnonNnymous RouTiNG ProTOCOL CHARACTERISTICS

This section first introduces the routing characteristics
considered in our taxonomy, and then discusses deploy-
ability, and performance metrics for AC networks.
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A. Routing Characteristics

Generally, routing in a communication network refers
to the selection of nodes for relaying communication
through the network. Routing schemes, however, re-
quire some essential design components. For anonymous
communication, we consider four building blocks that
are relevant to routing in AC networks. These building
blocks are node management, transfer/retrieval of node
information to/by the routing decision maker, path selec-
tion, and forwarding or relaying; where path selection is
the main design component of routing schemes for AC
protocols.

Several taxonomies and classifications for routing
protocols have been proposed in the literature [19]-[21]].
However, AC networks aim to conceal the metadata of
communications and thus have security requirements
that make them fundamentally different from other net-
works.

In this section, we present a classification for anony-
mous routing protocols. Our classification (see Tables [
and [[II) is an adaptation from Feeney’s taxonomy [20],
which classifies the routing characteristics of mobile ad
hoc networks into four categories:

1) Communication model describes whether the com-
munication is based on single-channels or multi-
channels.

2) Structure describes whether or not nodes are treated
equally.

3) State information describes where the topology infor-
mation is maintained.

4) Scheduling describes whether the information about
routes is maintained at the source or is instead
computed on-demand.

This taxonomy does not address several relevant
design features of AC networks, such as probabilistic
node selection for constructing circuits, and security
considerations for protecting routing information from
different network adversaries. In addition, not all the
characteristics identified by Feeney are relevant to AC
routing. For example, the distinction between single-
and multi-channel features is not relevant in overlay
networks, which constitutes a standard design choice for
many AC networks.

We redefine Feeney’s criteria to account for design
choices that are relevant to anonymous routing protocols.
We distinguish three groups of features inspired by
Feeney’s categories: network structure, routing information,
and communication model:

1) Network structure describes the characteristics of the
anonymous relays, the connections between them,
and the underlying network topology.

2) Routing information describes the network informa-
tion available to entities deciding on the route of an
anonymous connection.

3) Communication model defines the entities that make
the routing decisions and describes how these deci-
sions are made.
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In what follows, we describe these features in more
details, including their various sub-features and corre-
sponding notation symbols used to denote individual
feature instantiations. We refer to Table [[l for a general
overview of the resulting taxonomy.

1) Network Structure: We consider first the network
features that are relevant to anonymous routing. These
are, specifically, features relating to: (a) the topology of
the network, which describes how nodes are connected;
(b) the connection type, describing the characteristics of
the connections between nodes; and (c) symmetry, de-
scribing whether the entities participating in the network
are all similar, or if they can take on different roles and
responsibilities for routing data through the network.

a) Topology. The topology describes the arrangement of
various elements of the network, such as routers and
communication links between those routers. We only
take the logical topology of the network into account,
which determines how data flows within it. We note
that physical topology characteristics, such as the ge-
ographical location of computers, sometimes matters
in anonymous routing decisions, for example when
considering adversaries that control an Autonomous
System (AS) [22], [23].

We consider the network as a graph in which the
routers are represented by graph nodes. An edge be-
tween two nodes exists if the routing strategy allows
those two nodes to be directly connected as part of
the same anonymous circuit.

The connectivity of nodes varies widely across AC
network designs, and the advantages and disadvan-
tages of high and low levels of connectivity have been
the subject of debate for over a decade [24].
Restricted routing proposals [25] have shown that
for high-latency applications, partially connected
networks with certain topological characteristics
(e.g., based on expander graphs) provide optimal
anonymity and latency trade-offs and mitigate certain
attacks. These results further emphasize the impact of
network connectivity features for anonymous routing.
We classify anonymity networks into three categories
according to their connectivity: fully connected, mostly
connected, and partially connected networks.

e We consider a network to be fully connected (X¥i
when nodes can potentially connect to most (or all)
other nodes (our rule of thumb is that a node on
average should be able to connect to at least 95% of
the other nodes; this allows us to include systems
that only exclude a small number of connections in
order to prevent certain special cases from occur-
ring).

o We call a network mostly connected (O) if its nodes
can potentially connect to at least half the other
nodes.

e Finally, in partially connected (C) networks nodes
only connect to a relatively small subset of the
whole network.

%In parenthesis, we define the symbol or the keyword that is used
in the comparative Tables [l and [I] to indicate the corresponding
characteristic.

b)

Higher connectivity in the network topology leads
to better resilience (availability) against node fail-
ure, such as Denial of Service (DoS) attacks, such
resilience might have in turn a positive influence on
anonymity [24].

On the other hand, eliminating connections that might
induce security problems, such as the connection be-
tween two nodes from the same IP family that may be
easier to control by an adversary, but can be beneficial
to anonymity. The same holds for eliminating connec-
tions that would induce higher latency, which would,
in turn, improve the performance of the system.
Connection Type. Here, we consider the direction and
synchronization of connections. As far as the direction
is concerned, we consider the following options:

e A connection is unidirectional (—) if the data flow
between two entities can only be in one direction.

e A connection between two entities is bidirectional
(¢) if data can flow in both directions and the same
connection is used for sending back the response to
a received message.

Typically, interactive applications, such as web
browsing, require bidirectional channels, while non-
interactive applications, such as email, can just close
the connection as soon as the message has been for-
warded. In the first case, short-lived session keys can
be setup to achieve forward secrecy properties; how-
ever, in non-interactive applications, such as email,
forward secrecy is harder to achieve.

Bidirectional circuits have the advantage that they
induce less overhead in terms of circuit construc-
tion. Unidirectional connections have the advantage
that they are less vulnerable to timing attacks, as
a malicious node can only observe data flowing in
one direction, which is less informative than bidi-
rectional connections in which patterns of requests
and response are visible to all nodes in the path.
However, note that in unidirectional connection, a
larger number of nodes are going to be involved in
relaying the communication between a sender and a
receiver.

Further, we consider whether the anonymity system
involves connection synchronization:

e A connection is asynchronous (#) if the establish-
ment of connections and relaying of messages is
initiated by a user without any timing coordination
with other participants.

e Connections are synchronous (=) if they begin and
end at specific timings and messages are also re-
layed at specific moments in time, based on some
timing coordination between network entities.

Asynchronous systems are conceptually simpler as
they impose fewer constraints on the activity of net-
work participants. However, the distinct timing of
actions leaks information valuable to perform traffic
analysis and, for example, reveals long-term commu-
nication patterns [26] or perform end-to-end correla-
tion attacks [27]-[29].

Synchronous systems are often more difficult to en-
gineer and come with a performance or usability
penalty; moreover, secure and reliable time becomes



TABLE L.

OVERVIEW OF THE ProTOCOL ROUTING CHARACTERISTICS

Feature Name

Description

| Instantiation and Symbols |

Network topology Degree of node connectivity in the network X (fully) O (mostly) C (partially)
Connection Direction Data flow in connections — (unidirectional) < (bidirectional)

'é g type Synchronization Timing model for connection establishment and data sending # (asynchronous) = (synchronous)

2 Te-- —to- = ient—

E § Roles Users operating as relays o-e-e (peer :?_E?F.r)(h;b;ic({;hem server)
Symmetry Topology Node topology for routing -+ (flat) O (hierarchical)

Decentralization Degree of decentralization for non-routing services O (semi decentralized) O (fully decentralized)

aso o | Network view Network view necessary for making routing decisions @ (complete) © (partial)

i==1

s 8

= Updating Triggers for routing information updates O® (periodic) 4 (event-based)

- Routing type Node selection per route e--- (source-routed) --e-- (hop-by-hop)

'.E Scheduling Prioritization of traffic = (fair) © (prioritized)

E % Determinism Determinism of node selection O (deterministic) [ (non-deterministic)

=] = - -

== Node . . ® (all) @ (restricted, security)

g selection Selection set Permissible set of nodes per route # (restricted, network) © (user-based)

© Selection probability Node selection probability per route ® (unlljfo(rvrjgigfté;veé%};:ii:; atic)

B> L (low-latency) H (high-latency)
§ = Latency Protocol latency M (mid-latency)
g E Communication mode Longevity of connections e—e (connection-based) = (message-based)
©

:2: E‘ Implementation Implemented O (yes) O(no)

U

&R | Code availability Open source O (yes) O(no)

an additional dependency of the system, and a pos-
sible point of failure or vulnerability to attack. How-
ever, synchronization constitutes a very powerful de-
sign feature to offer robust anonymity guarantees
in the presence of powerful adversaries because it
disables trivial end-to-end correlation attacks based
on start and end times of connections [30], and other
timing data that synchronization makes less gran-
ular, enabling the aggregation of participants, con-
nections, and events in anonymity sets. Synchronous
anonymity systems were proposed in the early 1990s
by Pfitzmann et al. to anonymize ISDN telephony
calls [31]. These proposals were both feasible from an
engineering perspective (compatible with the network
requirements and introducing a low-efficiency cost),
and clearly spelled-out anonymity guarantees as well
as full unobservability for local calls.

Symmetry. We consider symmetry in the roles of the
network entities. An anonymity system is intuitively
“more symmetric” when all the participating entities
have similar roles and responsibilities, and “less sym-
metric” if there are different roles, capabilities, and
trust assumptions among the entities that participate
in the routing.

We thus first examine the overlap between the roles of
end-users who initiate communications and relaying
nodes. We distinguish three types of systems.

o We classify a system as peer-to-peer (o--o-- ), when
end-users are expected (often even obliged) to op-
erate as relaying nodes in order to use the AC
network.

e At the other end of the spectrum, in client-server
(e--®) systems, users are not expected (often even
forbidden) to operate as relaying nodes on order to
use the system.

e We call a system hybrid (e--o--e) if it combines
characteristics of both peer-to-peer and client-server
systems, i.e., end-users may or may not operate as
relaying nodes.

These different levels of symmetry come with advan-
tages and disadvantages [24]. Peer-to-peer systems
can better scale as the number of users grows, because
new users also increase the capacity of the network.
Further, peer-to-peer networks are more resilient to
node failures and have better availability properties.
In client-server architectures, however, it is possible
to run nodes more reliably and securely (as nodes
are not necessarily run by laymen end-users), which
in particular helps in handling liability issues with
respect to complaints. Having end users run just client
software has a lower cost for end-users in terms of
resources, and offers opportunities for simpler, and
thus often more usable, client software.

Second, we distinguish whether nodes are organized
in a flat or a hierarchical structure with respect to
routing. We call the resulting feature the topology:

e A network has a flat (---) structure if every node
has the same importance and rank when making
routing decisions.

e A network has a hierarchical () structure if nodes
have different capabilities and priorities towards
the routing algorithm.

Hierarchical structures are often introduced to im-
prove efficiency and performance. However, a non-
flat hierarchy can make the network less resilient to
attacks, as the failure of a node that is placed high in
the hierarchy has a severe impact on the performance
of the network.

The third and last dimension of symmetry addresses

the degree of decentralization of network services other



than (but auxiliary to) the routing itself. Note that
we are not considering centralized models because
they are a single point of failure for surveillance and
insecure by design.

e A network is semi decentralized (®) if it includes one
or a small number of entities performing a service
critical to routing (e.g., compiling and distributing
network directory information). This accounts for
the fact that especially high levels of trust placed
on these entities, which constitute more of a point
of failure than a simple relay.

o A network is fully decentralized (O) if the system
design does not include entities that have to be es-
pecially trusted for the provision of functionalities
that enable the routing. Fully decentralized systems
have a better distribution of trust.

2) Routing Information: We now consider the infor-

mation available to the entity (or entities) that decides
on the route of a connection, and how that information
is made available.

a)

b)

Network View. This determines the completeness of
information available to establish a route.

o The routing decision-maker has a complete view (@)
of the system if routing information about all nodes
is available to her.

o The decision maker has a partial view (©) of the
system if the routing information available to her
only covers a subset of the nodes that form the AC
network.

A complete view allows the decision maker to choose
among the full set of nodes. However, a partial view
improves the scalability of the network, as the dis-
tribution of routing information for the full network
may consume significant bandwidth and network
resources. There are also some attacks that become
possible when the routing decision makers only have

a partial view of the network. For example, route

fingerprinting attacks [32], [33] are possible if each

user knows different subsets of routers. In these at-
tacks, the initiator of a connection can be identified
by the nodes that make up the route, since typically

a very small number of users will know a certain

combination of network nodes.

Updating. This determines how frequently routing

information is updated.

e Routing information is updated periodically (®) if it
is updated in predefined time intervals.

e Routing information is updated event-based (4) if
the updates are triggered by events in the network
other than timeouts.

e No updating mechanism is in place (0.

3) Communication Model: We finally consider fea-

tures that describe the creation of anonymous routes.

a)

Routing Type. This refers to the selection of nodes to

determine a route.

e The routing decision is source-routed (e---) if the
initiator of the communication selects the set of
nodes that will form the anonymous route.

<)

e The routing decision is hop-by-hop (--e--) (also
called “random routing”) if the initiator only se-
lects the first relay node, which in turn picks the
second, and so on, until the message reaches its
final destination.

Source-routing enables the initiator to pick nodes she
trusts, and prevents adversaries from biasing the node
selection towards compromised nodes. A variation
of the basic source-routed model is found in some
systems that provide receiver anonymity. In these sys-
tems, the initiator and the receiver select, respectively,
the first and second halves of the route, which are
joined in the middle at a rendezvous point. An advan-
tage of hop-by-hop routing is that even if the initiator
only knows a subset of nodes, her connections might
be routed throughout the whole network, mitigating
route fingerprinting attacks [32]. In literature, other
node selection strategies have been proposed, which
we have not taken into consideration such as dynamic
routing schemes using distance vector routing (i.e.,
[34]) and link-state routing (i.e., [35]). Such algorithms
are often disregarded for AC networks because of
the predictability they offer, which is in conflict with
anonymity.

Scheduling. This refers to the way a node serves
incoming scheduling requests.

e Fair (=) scheduling means that all types of connec-
tion are treated same.

e Prioritized (©) scheduling means that certain con-
nections are given priority over others.

Prioritized scheduling can improve performance and
reduce congestion. However, differential treatment
of traffic may undermine anonymity as the traffic
of different priorities would be distinguishable and
thus not conform a single (larger) anonymity set.
An example of prioritized scheduling is when the
scheduling follows an economic model, which might
mitigate flooding attacks [36].

Node Selection. This refers to the protocol features
that determine which nodes are selected to be part
of an anonymous route. The number of nodes that
are selected to form the anonymous connection can
either be fixed (deterministically) or be computed
probabilistically according to some distribution.

e Node selection can either be deterministic () or
non-deterministic (probabilistic) (0.

To characterize node selection, we consider the se-

lection set that determines which nodes are eligible

for being on the route, and the selection (probability)
distribution that describes the likelihood of each of the
nodes in the selection set being chosen for a route.

e The selection set may contain all nodes (®) of the
network.

e It may contain a security-restricted subset (®) of
all network nodes, i.e., a subset that is selected
according to some security-restrictions, for example
establishing that all the nodes in a route must be in
different /16 IP subnets.

e It may contain a network-restricted subset (#) of all
network nodes, e.g., a subset aimed at guaranteeing



the quality of the communication, by for example
avoiding congested links and nodes.

e And finally, the selection set may be user-specific,
considering user preferences and trust assumptions
(©).

We are left to define the selection probability with

which individual nodes are chosen.

e The probability distribution that describes how
nodes are selected may be uniform (®).

e The probability distribution is statically weighted, i.e.,
weighted based on general, static parameters (©), for
example the bandwidth of the nodes.

e The probability distribution is dynamically weighted
based on state-specific dependencies (), for example
the nodes’ response time.

Even for general parameters, weighted selection often
requires frequent updates so they reflect the current
state of the network. In other words, we consider pa-
rameters that are calculated in real-time to be dynamic
biases, and parameters based on routing information
that is unchanged until the next periodic update
to be static. Uniform selection typically offers better
anonymity levels, while weighted selection often im-
proves performance.

B. Performance and Deployability

In addition to the routing characteristics identified be-
fore, we finally identify the following list of metrics that
can be used to evaluate performance and deployability
characteristics of AC protocols.

1) Latency. In the literature, AC protocols are usually
classified into two performance categories:

e Protocols with low-latency (L) incorporate no la-
tency to the communication and typically support
applications that require real-time communication
(e.g., web browsing).

e Protocols with high latency (H) do not require real-
time communications and support applications
that can tolerate a certain delay between requests
and responses (e.g., email communication).

e Protocols with mid latency (M) introduce a ran-
dom delay and may induce a restricted latency;
hence, these protocols support applications that
can tolerate a restricted delay between requests
and responses (e.g., file sharing).

2) Communication Mode. We distinguish two kinds of
communication modes, depending on the longevity
of individual connections.

e We classify protocols as connection-based (e—e) if
routes between senders and receivers are main-
tained for a certain amount of time and used for
exchanging multiple data transfers.

e If routes are created just to send a message and
no state is maintained for further exchanges, then
we classify a protocol as message-based ().

3) Implementation and Code Availability. This indi-
cates whether or not a prototype of the protocol
has been implemented, and if the code is publicly

available, respectively. In both cases, the answer is
either yes () or no (D).

III. Routing CrassiricaTtioN oF AC ProTocoLs

In this section, we present a categorization of AC pro-
tocols. We have classified these protocols into four main
families: (1) Mixnet-based protocols, (2) Onion Routing-
based protocols, (3) Random Walk and Distributed Hash
Table (DHT)-based protocols, and (4) DCNet-based pro-
tocols (5) Miscellaneous, containing a few protocols that
do not fit into the aforementioned categories. A few pro-
tocols are presented in the most representative category,
albeit they can technically fall under other categories as
well, e.g., Octopus and Torsk are DHT-based, but they
also use onion routing. We summarize our classification
of the routing aspects in two comparative tables (namely
Table [ and Table [II).

We now discuss the AC protocols individually, start-
ing with Mixnet-based protocols (from Section [II-A] to
Section [II-D), and then proceeding with Onion Routing-
based protocols (Section [II-E] and Section [II-F), DHT-
based protocols (Sections [II-G), DCNet-based protocols
(Section [I-H), and finally the class of miscellaneous
protocols (Section [II-I).

A. Mixes

The idea of anonymous communication was origi-
nally proposed by David Chaum in 1981 [1] and initiated
a new field of privacy research. The central concept
proposed by Chaum is the use of mix nodes, or mixes in
short. Mix nodes cryptographically transform messages
so that they cannot be traced based on their content.
Further, mixes shuffle (“mix”) input messages and out-
put them in a reshuffled form. Thereby, they hide the
input-output relation between individual messages, such
that an adversary is not able to establish a correlation
between input and output messages. In Chaumian mixes,
the mix node does not output the messages immediately
upon arrival, but instead collects a certain number of
messages (up to a threshold) into a so-called batch, which
introduces a delay in message transmission. The mix
shuffles input messages within a batch and flushes them
out ordered lexicographically.

B. Mix Selection Strategies

In order to distribute trust, Chaum proposed to relay
messages through a fixed sequence of mix noded] called a
mix cascade. Chaum proposes a deterministic node selec-
tion without specifying how the nodes are selected (node
selection strategy) for mix cascades. He only suggests
that certain factors such as the networks topology and
user’s trust can be used for mix node selection. In a
mix cascade, messages are successively encrypted (in a
layered fashion) with the public key of each mix in the
cascade (see Figure [I)).

3In the literature, a sequence of mixes is usually referred to as path
or route.



TABLE II.

RouTtiNG CLASSIFICATION OF ANONYMOUS COMMUNICATION ProTOCOLS: MIXNET AND ONION ROUTING PROTOCOLS

Network Structure

Routing
Information

Communication Model

Performance and Deployability
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Fig. 1. A mix cascade with two mixes

As the message is transferred from one mix to the
next, the current mix peels off (decrypts) the corre-
sponding layer (i.e., remove one layer of encryption with
its private key), obtains the inner layer together with
the corresponding address of the next destination, and
sends the message to that destination. This procedure is
repeated until the last mix delivers the data to its final
destination. In order to receive replies for messages while
staying untraceable (to obtain recipient anonymity [82]),
return addresses are used. Chaum proposed to encrypt
the address of the recipient of replies separately so that
the respondent only needs to append the untraceable
return address to her replies. The anonymous replies are
also sent similarly in a layered fashion to the respondent.
From now on, we refer to the encrypted return address
block as the reply block. Note that in the case of the
anonymous replies, the recipient of the reply is the
routing decision maker.

In order to overcome a single point of failure in
availability of mix cascades, free-route mix networks have
been proposed. In free-route mix networks, the route
is not fixed and any sequence of nodes from the net-
work can be used for relaying messages. An important
aspect in mix cascades and free-route mix networks
design is how mixes are selected. Selecting mixes for a
mix cascade or for a path in a free-route mix network
may follow different strategies. Namely, a deterministic
strategy, a uniformly random selection, or a variation
such as random selection biased by network state, or
reputation/reliability scores. When multiple mix cascades
are available for the users to choose from, node selec-
tion has two dimensions: selecting a set of mixes for
building the cascades, and selecting a particular mix
cascade for relaying the messages. Moreover, predefined
probability distributions and topological restrictions can
also be taken into account for mix selection. Danezis [25]
proposed the restricted routes mix networks that leverage
the mix cascade model (i.e., being less vulnerable to in-
tersection attacks and being secure against global adver-
saries) and free-route mix networks (i.e., being scalable).
He proposes a mix network topology that is based on
constant degree graphs (sparse expander graphs), where
each mix only communicates with a few neighboring
nodes based on a predefined probability distribution.
Next, we review two variants of mix selection, one for
free-route mix networks and one for mix cascades.

Mixes that fail, lead to further delays in mix networks,
thus selecting reliable mix nodes can lead to better
performance. Dingledine et al. [42] proposed to identify
mixes that fail and use a reputation system for mix
selection leading to more reliability and efficiency for

the mix network. In their proposed system, mixes issue
receipts for each received message. After a mix has sent
a message to the next mix, if it is not receiving a receipt
within a restricted time, it asks a set of witnesses to
resend the message and receive the receipt and forward
it to the original mix. The system establishes routing
paths following the free-route node selection strategy,
where the mixes are selected based on their past behavior
(reputation score). Such a strategy suggests use of a non-
deterministic node selection, biased towards mix nodes
with high reputation scores. Mixes that have no positive
ratings at all are avoided for mix selection. The main
weakness of their scheme is that the reliability depends
on the witnesses that need to be trusted, or at least a core
group of trusted witnesses.

Unlike the previous system, which relies upon trusted
global witnesses, Dingledine and Syverson [43] proposed
a mix cascade protocol with distributed trust. The system
they propose uses a reputation mechanism for rearrang-
ing mix cascades in order to obtain more reliable cas-
cades. The construction of such cascade utilizes commu-
nal randomness and reputation scores provided by all of
the mixes; therefore, there is no need of a trusted central
authority. To mitigate the weakness of the previous work,
mix nodes of a cascade act as witnesses for the reliability
of their own cascade. All mixes submit random values
to the configuration servers, which order mixes based
on their reputation score and pick the top mix nodes to
create a pool of mixes. From this pool, the mixes are se-
lected randomly of mix cascade rearrangement. For each
cascade, routing relevant information such as available
bandwidth and expected waiting time are published.
Based on this information and the reputation score of
the mixes, users choose mix cascade for their messages.
Note that if the mix network is large, the network view
might not be complete for the users.

C. Variations of Flushing Strategies

Flushing algorithm (or batching strategies) specifies
the precise timing at when a batch of collected messages
is flushed out of the mix in order to be simultaneously
delivered to the respective recipients. Flushing strate-
gies are analogous to the forwarding component of the
routing and they highly influence the scheduling routing
characteristic defined in Section [IAl Recall that Chau-
mian mixes collect messages until a certain threshold is
reached such mixes are called threshold mixes. Threshold
mixes might induce very high latency if the traffic load
is low. Thereafter, other flushing algorithms have been
proposed in the literature.

Mixes that delay messages individually, for example
based on a certain probability distribution, and lead to
continuous flushing are called continuous mixes. One
example of continuous mixes is the Stop-and-Go mixes
(SG-mix) [39] system. The initiator of a message assigns
for each mix in the path a randomly selected delay (from
an exponential distribution). The independent random
delays that are assigned to each message make the per-
formance and anonymity of each message independent
of the other users in the system. However, a drawback



of their system is that SG-mixes are vulnerable when
incoming traffic is low [83]. Another type of flushing
algorithms is pool mixes that only flush out a fraction of
messages of a batch at each round, and keep the remain-
der in the memory of the mix (pool) for next flushing
rounds. In pool mixes, the number of messages that are
forwarded may be determined by deterministic or non-
deterministic functions, and the message selection may
be a uniformly random or weighted based on dynamic
conditions (e.g., based on incoming traffic). When the
average delay of the messages is equal, pool mixes offer
better anonymity since the anonymity set is bigger. An-
other advantage of pool mixes is that they are suitable for
networks with fluctuating traffic load. Pool mixes, how-
ever, still need to specify when messages are flushed out
and therefore combined with other flushing techniques
such as threshold (described above) or time restrictions.
Timed mixes enforce a time restriction for flushing out
messages. The anonymity of timed mixes is vulnerable
to low traffic since if only one message arrives before the
time restriction is met, the mix provides no anonymity
measure for that message. Moreover, a combination of
the aforementioned flushing strategies can also be used
by mixes [17], [83]. For example, the two prominent
remailers, namely Mixmaster [44] and Mixminion [45],
use timed dynamic pool mixes as flushing strategies [84],
which are a combination of timed and threshold pool
flushing techniques, where the parameters depend on the
network traffic. The flushing algorithm of Mixmaster has
been characterized by generalized mixes [85]. We review
these remailer protocols in Section

Next, we review some mix protocols from the liter-
ature that have been suggested for applications such as
ISDN telephone, web browsing, and anonymous emails.
In order to anonymize ISDN telephone communication
with its intrinsic requirements on low-latency, Pfitzmann
et al. [31] introduced the concept of ISDN mixes. An
important feature of ISDN mixes is to maintain constant
traffic in the network to avoid traffic analysis. ISDN
mixes use threshold mixes. To obtain sender and receiver
anonymity, ISDN mixes use two mix cascades, each
built by the sender and receiver, respectively, which
are connected either by a connecting mix; when used
in long distance communications by the long distance
network operators. Initially, a broadcast takes place to
exchange the connecting details and the time where the
communication takes place. To achieve constant traffic,
a number of ISDN channels, with an equal amount of
messages, need to start and end their communication
at the same time (in a so-called time-slice). However,
this is time-consuming and would lead to blocking the
connection, which is not suitable since ISDN mixes use
narrow-banded channels and were designed for low-
latency communication. In Table [[I, we disregard the
setup broadcast for exchanging connected information
for ISDN mixes. The basic design of ISDN mixes was
later generalized by Jerichow et al. [37] to a system that
enables low-latency, real-time communication.

A real-world realization built on ISDN mixes are
Webmixes (also known as JAP) [40], [41] designed for
real-time Internet applications, passing the traffic to

several available mix cascades. In Webmixes, the mixes
transform the messages cryptographically and re-shuffle
their order before flushing them out. However, messages
are not delayed by flushing strategies. Webmixes use
an adaptation of the time-slice method introduced by
ISDN mixes. Routes in Webmixes consist of JAP proxies,
which are local software at the users, one (or several)
mix cascade(s) consisting of reliable and high capacity
mix nodes, and a cache-server. Web requests are sent
from the users JAP proxy through the mix cascade
and the cache-server, and furthermore delivered to the
destination server. The web replies are sent back the
same route and a copy of the reply is saved at the
cache-server. Hourly mix cascade information is published
by so-called Info Servers. Users can choose among the
published mix cascades by the info servers. ISDN mixes,
real-time mixes, and Webmixes have a deterministic node
selection to build the mix cascade, where nodes selection
for the cascades relies on the network state.

D. Prominent Applications of Mixes: Remailers

The original concept of mixes has an immediate ap-
plication to high-latency remailer systems for providing
anonymous e-mail service.

Babel [38] aims at mitigating traffic analysis attacks by
delaying only some messages of the batches. Babel uses
independent forward routes and return routes. Forward
routes may include a reply block (where the return
route mix addresses are encrypted in a layered fashion)
that may be used by recipients for anonymous replies.
Forward routes are considered to have better anonymity;
one of the reasons for this is that reply blocks enable
replay attacks on anonymous replies [86]. Babel intro-
duces intermix detours, where mix nodes choose a random
sequence of mixes and relay the message through them
before forwarding the message further to the next mix of
the original route. In Babel, the flushing algorithm uses
time restrictions (intervals) and thresholds for flushing
out messages. Another technique Babel proposes to use
is probabilistic deferment, where a number of messages
(determined by a biased coin) are delayed at each mix
(this is similar to pool mixes). Babel proposes to use
of free-route mix networks, where mixes are chosen
uniformly random for each route by the user. However,
there were no details given how routing information is
communicated to users.

Mixmaster [44] is an anonymous remailer, where
mixes transform messages cryptographically into uni-
form sizes by adding random data at the end of each
data packet. If a message is too large, Mixmaster splits
up the message to achieve uniform sized packets and
sends these packets independently of each other through
a series of mixes, which do not necessarily need to be all
the same. Only the last mix needs to be the same for all
packets of one email message, which has been split up
before. Mixmaster adopts a free-route path selection, the
node selection is not specified by the protocol, though
statistics on the reliability of mixes can be used to bias
node selection [25]. Though the Mixmaster protocol did
not specify details about maintaining mix information,



later implementations of Mixmaster adopted an ad hoc
scheme for distributing routing information [45]. One the
main weaknesses of Mixmaster is that it only guarantees
sender anonymity, since reply blocks are not used in
Mixmaster.

Mixminion (or Type III remailer) [45] are widely
considered as the state-of-the-art remailer. To guaran-
tee equal routing information for all senders, Mixmin-
ion deploys a group of redundant and a synchronized
system of directory servers, which was not considered
in the Mixmaster design. Note that we disregard the
directory servers synchronization for our classification
in Table [ Like Mixmaster, Mixminion also uses “timed
dynamic pool”. Mixminion uses reply blocks. Generally,
reply blocks enable replay attacks; hence, Mixminion
introduces Single Use Reply Blocks (SURB), where for
each reply message, the content of the reply is appended
to the SURB and sent through the mix network. In the
Mixminion communication model, the routing path is
divided into two so-called legs, each consisting of half
of the mixes in the route. For reply messages, where
both sender and receiver anonymity is desirable, in the
first leg of the route, the sender of the reply chooses
the mixes and appends the SURB for the second leg.
When the message is traversing the route, at a crossover
point (the last mix in the first leg), the SURB replaces
the first leg, and the message is routed further to the
intended recipient. In such cases, the route consists of
mixes, which are half chosen by the sender and the other
half chosen by the recipient. Thus, Mixminion aims at
providing sender anonymity and recipient anonymity
for email messages. Moreover, since forward and reply
messages are not distinguishable from each other by
outsiders and intermediate mix nodes themselves, they
share the same anonymity set. The exceptions are the
crossover points that have partial knowledge and the exit
mix nodes because they can observe whether the content
has been encrypted or is in plain text. Mixminion also
suggests choosing nodes from preferably a large pool;
however, further details on the node selection strategy
have not been specified in Mixminion.

E. Onion Routing

Onion routing [7] [87] is designed for anonymiz-
ing connections for applications with low-latency con-
straints, such as web browsing.

~ ~ Destination
o o>

Source

@

Fig. 2. The concept of onion routing

An onion routing network consists of a set of nodes
so-called Onion Routers (ORs). Users choose an ordered

sequence of ORs to establish a bidirectional channel, so-
called circuit, for relaying their data through the onion
routing network. The communication is encrypted in
a layered fashion and the ORs in the circuit each can
decrypt their corresponding layer. When the communi-
cation is relayed by an OR in the circuit, the OR removes
the corresponding layer of encryption and forwards the
data to the next OR in the circuit (see Figure [2). The
last OR forwards the data to the destination. Each OR
only knows their predecessor and successor in the circuit,
and the complete sequence is only known to the circuit
initiator (the user). Therefore, only the first OR in a
circuit is aware of the IP address of the user who has
initiated the circuit and only the last OR of a circuit is
aware of the destination of the communication, which is
relayed through the circuit. The response of the receiver
is relayed back to the initiator through the same circuit.
Similar to Webmixes, in onion routing, the ORs imple-
ment First-In First-Out (FIFO)-like forwarding strategy
to provide low-latency services. Having no delays at
the ORs and due to missing cover traffic onion routing
are susceptible to a number of attacks, such as traffic
analysis and timing attacks, where the adversary may
identify and correlate traffic patterns at the initiator and
receiver [14], [16], thus de-anonymizing the connection.
Nonetheless, onion routing is a promising design to
provide a low-latency AC network, and many currently
used systems to build upon this design.

F. Onion Routing-based Protocols

Onion routing is used in Tor [8], which constitutes
an extension of the original onion routing design, with
some modifications to achieve better security, efficiency
and deployability. The Tor network, an open source and
free to use the framework, consists of a large set of vol-
unteering routers (at the time of writing, there exist more
than 7000 routers [9]). The network is mostly connected
because routers can connect to any router from the Tor
network, except for connections between routers located
in the same IP /16 subnet space, which are not possible.
Tor’s services are used daily by approximately 2,000,000
users [9]. Each user runs a piece of software called Onion
Proxy (OP) that manages all Tor related processes, e.g.,
establishing circuits or handling connections from user
applications. Tor deploys a group of well-known and
trusted authoritative servers that publish on a regular
basis (typically, every hour) a list of all active Tor nodes
with their characteristics, e.g., estimated bandwidth, IP
addresses, and cryptographic keys. This list is called a
consensus. After the user has obtained the consensus, the
OP of the user chooses an ordered set of usually three
ORs to build a circuit. The first node in a circuit is called
the entry node, the second node is the middle node, and
the last node in the circuit is the exit node. The first node
that is selected is the exit node, then the entry node of the
circuit is selected, and last the middle node of the circuit
is selected. After selecting a set of ORs, the OP contacts
the entry node and builds a circuit with it. This newly
created circuit is used to contact the middle OR to extend
the circuit and similarly through the middle node the exit
node is contacted to extend the circuit. The established



circuit can now be used to anonymously relay data.

In 2002, Wright et al. introduced the predecessor
attack [88] on onion routing. To defend against this and
related attacks, selecting a small set of nodes was intro-
duced for Tor [89]. Previously, each user maintained a list
of 3 randomly pre-selected (so-called guard) nodes with
high bandwidth and uptime. This list was updated every
30/60 days and the user could choose uniformly random
an entry node from this list for each path construction.
This has changed recently because Tor is starting to let
each user select only one fixed entry guard node for 9
months [90].

In the early onion routing design, it was suggested
to select the nodes uniformly random [91]. Due to per-
formance considerations, Tor’s routing policy does not
select nodes with the same probability, but rather pref-
erence is given to high-bandwidth nodes. The likelihood
that nodes are chosen for certain positions in a given
route depends on the ratios of overall node bandwidths
and node such as the IP addresses and whether they
can be selected as entry node or as exit node. More-
over, some additional bandwidth weights are used to
balance off the node selection. As mentioned before, a
further development in the routing policy is to disallow
a communication to pass through two nodes within the
same /16 subnet IP address. The implications of these
changes with respect to structural node corruption have
been recently explored by Backes et al. [51], [92].

Next, we review two prominent attacks on Tor’s rout-
ing. Murdoch et al. have proposed a traffic-analysis attack
using timing information to identify Tor nodes and to
infer traffic load to a specific initiator. Their investigation
shows a degradation of Tor’s anonymity against such
attacks. They furthermore propose some strategies to
prevent the risk of such attacks, mainly by increasing
communication latency [93]]. Bauer et al. have proposed
a traffic analysis attack aim at decreasing the anonymity
of Tor [28]. Their attack investigates the load balancing
that is performed by Tor, where high bandwidth nodes
are preferred in the node selection strategy. They show
that performance optimization impairs the anonymity of
Tor against end-to-end traffic analysis attacks.

Since Tor has been proposed, there has been a great
deal of research on extending Tor’s routing strategy. The
proposed extensions to the Tor routing protocol aim
mostly at improving either the achieved anonymity of
Tor, or the performance that Tor users experience.

Improvements to Tor’s anonymity have been often
realized by aiming at an improved node selection. For ex-
ample, improving anonymity by using better weighting
at the node selection phase has been proposed in [50] and
[51]. Involving AS-level information in the node selection
has been proposed by [23] and [46]. Moreover, offering
the user a tuneup option between uniformly random
node selection (for high anonymity) and weighted ran-
dom node selection with a bias towards high bandwidth
nodes (for better performance) has been suggested by
Snader and Borisov [48].

Tor’s performance problems have several causes, and

hence suggested improvements aim at different aspects
of the Tor routing protocol. One cause of Tor performance
is high congestion [13], [94], often caused by bulk traffic,
which induces high latency for interactive/web traffic.
Several solutions to solve the problem of high waiting
times for interactive traffic have been proposed. One
possible solution is to increase the number of connections
between two nodes [52]-[55], which can be used to sepa-
rate interactive and bulk traffic into different connections.
Another solution is to prioritize interactive traffic in the
scheduling phase [56] [57]. An alternative solution is
to improve how Tor’s resources are used by improving
node selection with a more realistic estimation of the
available bandwidth of nodes [50]. Furthermore, another
solution to Tor’s congestion problem is to enforce avoid-
ing congested nodes at the node selection phase [49].
Another reason for Tor’s high latency is circuitous paths
[46]. To solve this problem, node selection strategies have
been proposed that take the destination between chosen
nodes into account [46], [47], [50].

The scalability of Tor has also been subject to new
proposals for the Tor routing protocol in the literature.
One proposal to tackle scalability issues is to give the
user only the information about the necessary nodes for
path construction and to hide the complete view of the
system from the user by either managing Tor nodes as
a DHT table and using Kademlia for node retrieval [62],
or by using private node retrieval [58]].

G. Random Walks, Structured and Unstructured DHT-based
Protocols

In this section, we review random walk protocols, where
the communication is relayed randomly through the
network. We consider a protocol a random walk protocol
if node selection is hop-by-hop routed and a random
selection. Random walk protocols are often combined
with peer-to-peer network structures.

Crowds [59] is one of the early AC systems designed
for anonymous web browsing. The key design feature
of Crowds is a random peer selection. In Crowds, all
nodes are grouped into so-called crowds; all nodes within
a crowd might connect to each other for relaying a
communication. Each node in the crowd is called a jondo.
A so-called blender is responsible for managing and ad-
ministrating nodes. Crowds has a peer-to-peer structure
since all users of the system are nodes themselves. The
user randomly selects a node and sends her message
(i.e., website request). Upon receiving the request, this
node flips a biased coin to decide whether to send the
request directly to the receiver or to forward it to another
node selected uniform at random. This continues until
the message arrives at the destination. The server replies
are relayed through the same nodes in reverse order.
Wright et al. showed that Crowds is vulnerable to so-
called predecessor attacks [88]], [95]. In order to prevent
such type of attacks, Crowds suggested to employ static
route (a user keeps the route for a while) such that an
attacker does not have multiple routes to link to the same
jondo [59]. However, even keeping routes static for a day
is not enough to prevent predecessor attacks [86].



MorphMix [60], [61] is a dynamic peer-to-peer AC
network. Technically, MorphMix establishes circuit-based
connections using layered encryption, where the anony-
mous route is established iteratively by the nodes on
the route. Each node is typically only aware of a set
of network nodes, which is not necessarily covering all
nodes. In order to avoid repeated connections with the
same set of nodes, a node has to forget about nodes it
has not been connected and constantly require new node
information. After an initiator selects the first node, she
selects randomly a witness for each hop thereafter, ran-
domly chosen from the nodes in her local database. She
asks the next hop to extend the route with the assistance
of the witness she has chosen, where nodes propose a
set of candidate nodes for the next hop and the witness
chooses one of them. To prevent path compromise, nodes
can only propose nodes with different IP prefix to her
own IP address to the witness. The witness should not
be selected from the nodes to which the initiator is
connected currently to avoid initiators being identified
by witness nodes. In order to mitigate guessing whether
a node was initiator by the next hop, the initiator adds
random delays to her communication before forwarding
them in the tunnel establishment phase.

Efficiency is one of the main problems in random
walk protocols. In the next section, we review DHT-
based protocols, which aim at efficient node lookup
and selection. Random walk protocols can employ DHT
lookups to gain better efficiency (e.g., AP3 protocol [64]).

1) DHT-based Protocols: In distributed systems, where
there are network administrators, a challenge is to lo-
cate a node. One solution is to use Distributed Hash
Tables (DHTs) to manage the distributed nature of the
data (relaying nodes or distributed storage). Generally,
DHT refers to a trust-distributing, structured-data man-
agement model for storing (value, key) pairs and is
accompanied with key-based lookups for locating the
corresponding stored value (see Figure [B). The value
might be, for example, either the router information
of relaying nodes in a distributed network or a stored
content (file). The keys are hashed from the identifier
of the value (for nodes, their IP addresses are hashed
into keys). In the literature, several lookup strategies for
the DHT-based structures have been proposed, aiming
at efficient searching. Some popular lookup strategies
are Kademlia [96] (locating the nodes based on their
estimated distance using an XOR metric), Chord [97]
(using a clockwise circle metric, where at each hop of
the lookup, the distance to the node is decreased, at least
half), and Pastry [98] (carrying out lookups based on
numerical identifiers).

DHT structures enable efficient routing even when
the peers of a DHT structure keep only information (key-
value pairs) of a partial subset of all the other peers of
the DHT structure; this, in turn, leads also to improved
scalability of such systems. Another important feature
of DHT-based structures is having better load balancing.
For systems, where nodes have only a partial view of
the structure, hop-by-hop routing is preferable. Some AC
protocols use randomness in the routing strategy besides

the classical lookup method. For example, node selection
is carried out by selecting a random key and by then
using a classical lookup method (an adaptation of Chord,
Kademlia, or Pastry) to find that key. Next, we review
AC protocols that use an adaptation from Kademlia,
Chord, Pastry for their node lookup (considered as struc-
tured DHT-based protocols). We proceed by reviewing
independent DHT-based routing proposals for AC that
are considered unstructured DHT-based protocols. We
start with AP3 [64], a random walk protocol aiming at
providing anonymity when a large part of the nodes
is compromised. AP3 uses the same routing strategy as
Crowds, with the difference that the node information is
retrieved using Pastry and that the node does not have
a complete view of the system.
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Fig. 3. The concept of distributed hash tables

Next, we review two protocols that aim at replac-
ing node selection of source-routed protocols such as
onion routing with structured DHT systems making the
suitable to be combined with onion routing. Salsa [65],
proposed by Nambiar ef al., aims at providing scalability
and preventing malicious colluding nodes to be able to
bias routing. Salsa virtually divides nodes into groups,
which are organized in a binary tree form. For routing,
simultaneous redundant lookups and bound checking
are used in order to avoid malicious nodes returning
wrong addresses. The lookup queries are carried out
similar to the Chord lookup in a recursive fashion. gln
Salsa, the routing information that is available to each
node is partial; however, the tree structure allows nodes
to carry out source-routing.

McLachlan et al. have proposed Torsk [62], a peer-
to-peer AC protocol, replacing Tor’s node selection and
directory service with a DHT design. It aims at providing
better scalability for Tor. Their design uses DHT tables
for node selection by using a randomly chosen key that
is looked up in the table using Kademlia. To secure
lookups, Torsk uses the “root certification” approach
proposed by Myrmic [99] and randomly selected secret
“secret buddies.”

Panchenko ef al. proposed NISAN [63], an AC proto-
col that aims at achieving high scalability and preventing
adversaries to bias routing. NISAN uses iterative search
to select nodes randomly for constructing anonymous
paths. It uses an adaptation of Chord, where the node
lookups are aggregated. Moreover, NISAN hides the
node that it is looking up, by requiring the complete
routing table and enforcing bound checking to further



prevent selecting nodes from routing tables, which were
manipulated by malicious nodes.

Octopus [66] aims at providing security by preventing
malicious nodes to be able to bias routing. It also aims at
providing anonymity by hiding which nodes have been
looked up for anonymous paths. For routing, Octopus
uses iterative lookups by sending the query to the closest
node to the searched key in the local routing table and
then retrieving the routing table from that node until
the node containing the corresponding value to the key
is found. Node selection is carried out in two phases. In
the first phase, nodes are selected by the path initiator
(user). In the second phase, the last node selected in
the first phase chooses the remaining nodes. Therefore,
Octopus is not purely a random walk protocol. After
establishing anonymous paths, Octopus splits queries to
different paths and adds dummy traffic to hide the real
queries among them. Furthermore, as security measures,
Octopus enforces bound checking on the received rout-
ing tables to prevent using manipulated routing tables,
and it proactively tries to identify and remove malicious
nodes.

Next, we review two file sharing protocols that use
DHT for routing file requests and their responses. They,
however, use unstructured routing. Clarke et al. proposed
Freenet [67], a peer-to-peer censorship-resistant system
for sharing storage space. Freenet offers strong decen-
tralization in order to provide privacy and robustness
against attacks. The key design feature of Freenet is
based on storage replication and plausible deniability.
Files are stored multiple times at the nodes, are indexed
by binary file keys, and can be looked up by their
corresponding key. Each node has a dynamic routing
table including the node information with the stored
keys. The original design uses a heuristic deterministic
routing using potentially all Freenet participating nodes
choosing mostly neighborhood nodes (currently called
Opennet mode). Freenet uses an adaptive routing using
DHTs with keys that are location-independent. Three
methods are used for key construction: keyword-signed
key, signed-subspace key, and content-hash key (for more
details see [67]). The routing table is updated periodi-
cally to achieve better performance. The replication of
files provides resilience against node failure and node
overloads. In the Opennet mode, a heuristic-based deter-
ministic routing approach (a distance-directed depth-first
search with backtracking) is used [68], [100]. When a file
request arrives at a node, including a key and a value
for hops-to-live, if the file is not stored locally, the node
looks up the node with the nearest key in the routing
table and forwards the file request to the corresponding
node. The node receiving the request repeats the process
until either the file is found or the hops-to-live is reached.
If the requested file is found, the node forwards the file
to the node from which it has received the request, stores
a copy of the file locally and updates its routing table in
order to optimize routing for future requests. If the node
that is contacted is not responding, the node sends the
request to the node with the second-nearest key. If that
node is also unresponsive, it contacts the third-nearest
one, and so on. If the file is not retrieved within the

hops-to-live number of hops then the search is aborted
and the file requester is informed. The nodes that are
forwarding the requested file back to the file requester
change randomly the sender address, providing reason-
able deniability for the node that has stored the file [67].
The Opennet mode was vulnerable to various attacks.
In particular, nodes participating in Freenet were not
protected, and an attacker could easily find out whether
a router is a participating Freenet node. In the Darknet
mode, such shortcomings are addressed. In 2010, Freenet
has been extended by a membership-concealing Darknet
mode, where trusted connection are used for routing [68]].
In the Darknet mode, the user chooses the nodes from
her trusted nodes [68]. The routing table is consisting
of nodes derived from a fixed graph, which is the social
graph of the node. In the Darknet mode, the routing table
is not optimized during time and cannot include nodes
that are not derived from the social graph of the node.
Since the Darknet mode is based on the trusted network
of a user, the structure of the network is following
Kleinberg’s small world model [101]]. The relaying nodes
only know their predecessor and the successor in order
provide privacy. In Freenet, the data is encrypted using
symmetric encryption. The key is transferred either with
the address or in the header of the file request [67].

GNUnet [69] was originally designed as a peer-to-peer
censorship-resistant content sharing system, but has been
expanded into other applications such as anonymous
file sharing using the GAP protocol [70]. GAP aims at
providing requester and responder anonymity for file
search and file sharing. In GAP, a node that is relaying
a message in the forward route has the option to “drop
out” from the reply route (for example due to network
state and its own heavy load) and when the reply is
sent back, the node is over-jumped. Moreover, when
queries arrive at the nodes, they can be dropped if
the node has already too much load. Routing in GAP
uses credit rating scheme, where relaying requests and
replies increases the credit and sending uses the credit.
The credit score is local at each node. In GAP, the file
request can either be sent to newly selected nodes or to
a node where there is already a connection established.
This is decided based on the node’s current CPU and
load, the credit rating and a random factor. The node
selection is random with a bias towards nodes, which
have a closer identifier to the hash value of the file that
is queried. Moreover, the network activity is also taken
into account in node selection (giving preference to “hot
paths”). Unlike Freenet, GAP uses a time-live restriction
to avoid routing loops; when time-to-live is reached, the
query is forwarded directly to the destination with a
certain probability. For flushing in GAP, nodes use a
combination of timed and threshold mixes for flushing
batches of messages, where the time restriction is selected
randomly.

H. DC Networks

The idea of DCnets (Dining Cryptographers Net-
works) was first proposed by Chaum [71] and later
revisited [72], [73]. DCnets are an important alternative
to mix-based schemes and their extensions due to their



resistance against traffic analysis attacks. DCnets offer
non-interactive anonymous communication using secure
multi-party computation with information-theoretically
secure anonymity, guaranteeing sender anonymity while
enabling all participants to verify the final outcome. The
key concept is that every participant outputs a message
that is disguised by XORing them with the keys the
participants are sharing pairwise with other participants.
The participants combine their outputs and share the
output with each other (i.e., they broadcast their output).
When the encrypted messages are combined, the keys
cancel each other out, and the message is revealed;
however, the sender remains unknown (see Figure M.

Fig. 4. The concept of DC network

The DCnet concept can be generalized, to transmit
large messages simply by repeating the protocol as de-
sired [73]. DCnet expects all participants to be involved
in every run of the protocol and requires pairwise shared
keys between the participants. Moreover, every partici-
pant needs to disclose the same number of bits in each
round. The participants can share the keys for every
round, or they can repeatedly use the same key; this
makes DCnet unconditionally or computationally secure,
under the assumption that the protocol is executed cor-
rectly. Moreover, DCnets also have practical challenges,
such as the message transmission or avoiding collisions
(unintentional) and disruptions (intentional collisions).
Since a collision invalidates the message (bit), when only
one-bit messages are sent, just one of the participants
may transmit at a time (although all participants are
involved in each round). If multiple participants want
to send messages within a block of communication,
they need to occupy different positions within the block.
One proposed solution is to randomly pick a position
(slot) in the block that is going to transmit and reserve
the position in earlier rounds (pre-transmission round).
However, this might only shift problem and again in
the reservation round collisions might occur. The basic
DCnet does not prevent any disruption, such as actively
blocking participants from sending the message; hence, it
is susceptible to anonymous DoS attacks. To partially ad-
dress this problem, some solutions to detect disrupters in
DCnets have been proposed in the literature [102], [103].
Furthermore, recovering from a fault is only possible by
re-broadcasting the messages.

Chaum proposed in his DCnet to either use a ring
topology for sharing the messages or use broadcast to
transmit messages to all participants at once. The ring
topology solution has a the problem of detecting the
disruptions because malicious participants can adapt
their answers to other participants answers to avoid
being detected. Basically, if two users submit reverse
bits, they cancel each other out and the disruptions
remain undetected. Other topologies that have been
proposed for DCnets are tree [104] or star topologies
[105]. The broadcast solution has the problem of being
expensive and introduces the problem of collision. The
major limitations of DCnet are the strong assumptions
that they require: first, participants follow the protocol
honestly and are expected not to collude; second, uncon-
ditional sender anonymity is guaranteed only if there is
an unconditional secure channel between every pair of
participants. Furthermore, DCnets are vulnerable to Sybil
attacks [106].

Herbivore [74] is built on top of DCnets aiming at
better efficiency and scalability and managing churn. To
improve scalability, Herbivore breaks down the partici-
pants into smaller groups called cliques, a message can
only be traced to a clique but not to the correspond-
ing sender/receiver within their clique. Within a clique,
participants are organized in a star topology, where the
central node relays all messages between members of a
clique. The central node is changed for each new round
of communication. For inter-clique communication, the
cliques are connected to each other in a ring topology. For
locating cliques, Herbivore employs the Chord protocol
[97]. In order to mitigate intersection attacks, nodes de-
parture from a clique can be vetoed by the node that is in
the middle of a long-run transmission. Although authors
claim low-latency, we decided to classify the protocols as
being high latency since it contains a central node that has
to wait for messages from all other nodes in the clique.
One of the main weaknesses of Herbivore is that smaller
anonymity sets are achieved and the applications have a
time restriction based on the cliques lifetime. Moreover,
the star topology makes the design vulnerable to DoS
attacks.

Dissent (Dinning-cryptographers Shuffled-Send Net-
work) [75] is a latency-tolerant protocol for AC. It is the
first protocol that provides accountability for a small-size
group, and also maintains integrity. Dissent is built on
top of DCnets, but relaxes the aforementioned assump-
tion that all participants follow the protocol correctly.
In Dissent, anonymous communication is guaranteed
for members of a group. Apart from the multi-party
computation and layered encryption to hide the sender
of the messages, to solve the collision problem, each
group member influences the position of the messages
of other group members in the final transmission block.
Dissent consists of two sub-protocols: a shuffle protocol
and a bulk protocol, In the bulk protocol, each member
creates an assignment table for each of the other member,
so-call message descriptors. The shuffle protocol is used
to shuffle these messages descriptors. Based on these
message descriptors, each participant inserts her mes-
sages to a cipher stream, which is a slice of the message



block that needs to be transmitted. The shuffle protocol
functions similar to mix cascades, where each participant
receives the set of message descriptors (which were
encrypted in a layered fashion) and shuffles them and
passes them over to the next participant. Thereafter, each
member transmits one cipher stream. When these cipher-
streams are combined, a vector of concatenated messages
is obtained. Dissent uses broadcasting for intermediate
runs of its protocols such as sharing keys. However,
the final cipher streams are not necessarily broadcasted,
and can be sent to a single group member or a non-
member node. Hence, Dissent primarily only guarantees
sender anonymity and further protocol setup details
determine whether recipient anonymity is also achieved.
To mitigate untraceable DoS attacks (disruptions), go/no-
go messages and blame phases are used in Dissent,
which identify collisions and malicious participants and
enables accountability.

Wolinsky et al. have extended Dissent to improve
scalability and efficiency [76]. They propose to group
participants and use designated servers, where the group
members share keys with these servers instead of each
other (the network consists of server nodes and partic-
ipant nodes). In the basic version of Dissent, the group
size was restricted; however, in the extended version,
the participants may form larger groups, though the
servers consist of a significantly smaller group, while
still being not completely centralized to avoid the single
point of failure. Hence, the extended Dissent builds an
asymmetric topology for key sharing. At least one of
the servers needs to be honest to prevent compromises.
While latency introduced at the shuffle protocol made the
basic version of Dissent unsuitable for interactive and
low-latency applications, the extended Dissent, if used
in a local-area setting, can be suitable for low-latency
communication.

1. Miscellaneous Protocols

Tarzan [78], [79] is a peer-to-peer anonymous fully
decentralized IP-level network overlay. All participants
are peers; they are all potential originators of traffic, and
also potential relays. Tarzan nodes do not implement any
mixing strategies and simply forward incoming traffic.
After the initiator node selects a set of nodes (prefer-
ably from existing connections from previous commu-
nication rounds) to form a route through the overlay
network, a tunnel via these nodes is established for
relaying communication. Unlike the early design of the
protocol [78], where the peers only needed to know
about a random subset of nodes, the final version [79]
introduces a gossip-based protocol based on the Name-
Dropper protocol [107], where more node information
is requested from randomly chosen nodes. The aim is
to gain information about all available servers in the
network to avoid attacks that are facilitated due to churn,
such as fingerprinting attacks [32]. Node information
is stored in a ring model and lookups are carried out
using the Chord algorithm [97]. The initiator only selects
nodes randomly from distinct IP subnets, a three layer
hierarchy selection is used to make sure nodes are from
distinct subnets.

I2P [108] is a distributed overlay network, originally
aimed at enabling anonymous communication between
two nodes within the I2P network. Note that currently
there is a service built on top of I2P to allow getting
connected to web servers [109]. Currently, the number of
I2P routers is estimated to be between 40,000 and 50,000
[110].

The network metadata (containing router contact in-
formation and destination contact information) is dis-
tributed among a subset of all nodes so-called floodfill
nodes, and is managed using DHT structure by employ-
ing Kademlia for node lookups. At bootstrapping, users
obtain a list of I2P peers from websites and then contact
two floodfill routers from the list and requests router
information that is available to that floodfill node. In
order to mitigate that malicious floodfill nodes are not
biasing node selection by providing manipulated router
information, router information is stored at eight floodfill
nodes [111]].

Nodes are categorized into tiers (called peer profiling)
based on the previous performance (response times) and
reliability (uptime) of nodes. Three main types of tiers
are defined in I2P: high capacity, fast, and standard. The
routing protocol of I2P, so-called Garlic Routing, is source-
routed with a randomized node selection biased towards
faster nodes [81].

In I2P, communication channels are unidirectional
and called tunnels; tunnels for outgoing traffic are called
outbound and tunnels for incoming traffic are called
inbound. Each user maintains a number of inbound and
outbound tunnels; outbound inbound tunnels of other
users can be retrieved from the floodfill nodes. When
users want to relay communication to each other, the
nodes in the chosen inbound and outbound tunnels
shape the relaying route. Moreover, there are two types
of tunnels in I2P — client tunnels and exploratory tun-
nels — for which different peer selection strategies are
used. Client tunnels are used for application traffic,
and exploratory tunnels are used to send administra-
tive information. For client tunnels, peers are selected
randomly from the nodes that are categorized as fast-
tier nodes, which is done locally by the client using
previous measurements. For exploratory tunnels, peers
are selected randomly from the set of nodes that are
categorized as standard tier.

The communication through I2P is protected using
garlic encryption. Garlic encryption is very similar to
onion encryption, with the difference that multiple data
messages may be contained in a single garlic message.

IV. DiscussioN
A. Routing Features: Commonalities and Differences

In this section, we discuss commonalities and dif-
ferences between the investigated classes of AC pro-
tocols with respect to their routing characteristics. The
discussion is grounded on our classification presented
in Tables [l and I and strives to provide a deeper
understanding of the relationships of individual routing
characteristics.



Mixnet-based protocols, as classified in Table [, show
the most heterogeneous routing design among the four
investigated protocol classes. The main reason for this is
they demonstrate routing diversity on multiple routing
building blocks, such as proposing disparate flushing
strategies, differentiating node selection strategies, which
in turn lead to topological differences. As mentioned
earlier, existing routing strategies can be classified into
free-routes mix networks and mix cascades. However, we
distinguish whether a connection is potentially allowed
between two nodes or not based on routing of the
messages. Hence, we marked most of the mix cascade
networks as fully connected and only Webmixes and
Restricted routed mix networks as partially connected.

Generally speaking, mix cascade networks employ
rather synchronized connection because messages are
sent in batches and mostly depend on their flushing al-
gorithms in a timely schedule. For example, timed mixes
lead to synchronized message transmission. Recall that
the flushing algorithm in Mixmaster and Mixminion par-
tially uses time restrictions. However, we consider these
two protocols with asynchronous message transmissions
due to the possibility that low traffic might lead to a
threshold restriction instead of a time restriction. As for
free-route systems, in SG-mixes, message transmission
is also synchronized due to assigned time ranges by
the routing initiator. Nevertheless, these timing ranges
are not coordinated with other users or mix nodes.
Dingledine et al.’s proposal for a reputation system for
mixnets [42] also uses a synchronized message relaying
to enable verifying the correctness of the routing process.

In the mix protocols, node management has not been
always specified in the protocol description. For exam-
ple, in Chaumian mixes, the view of the routing decision
maker is not discussed; however, it can be implicitly
deduced that it is complete. The anonymous remailer
Mixmaster does not discuss node management either;
however, the later implementation uses ad hoc systems,
which suggests a partial view [45]. The remailer Mixmin-
ion defines a node management strategy to insure a
complete view for the routing decision maker.

Source-routing is one of the inherent routing features
of mix cascade protocols because the routing paths are
fixed beforehand. Choosing the mixes for the mix cas-
cade might be either deterministic such as in the case
of Webmixes or non-deterministic such as in the case of
Reliable mix cascades.

Flushing algorithms do apparently impact schedul-
ing. Note that some protocols in Tables [l and [II] use
randomness in the scheduling process (e.g., pool mixes).
Consequently, some messages are forwarded later than
others. Since individual messages do not have priorities
by themselves, we categorized them also as fair. How
the set of nodes is derived for node selection has also
not been specified precisely for mix networks. The same
holds for selection probability, such as for Chaumian
mixes. For mix networks, we categorized the selection
probability as deterministic because all mixes are chosen
for a single mix cascade. For both mix cascade protocols
and free-route mix networks, the selection set varies

depending on the application of the AC network and
on the potential anonymity properties.

As mentioned in Section[[II-A] in mix cascades, the se-
lection probability has two dimensions when more than
one cascade exists. For instance, Webmixes can provide
multiple mix cascades, where mixes are chosen by the
network administrator for each mix cascade. Thereafter,
the user manually selects one of these mix cascades for
routing her messages. Another mix cascade protocol,
where mixes are selected deterministic, is ISDN mixes.

All mix cascade protocols are high latency AC net-
works and have a message-based communication mode;
exceptions are ISDNs, Real-time mixes, and Webmixes,
which are designed for low-latency applications, such
as web browsing. Note that the latencies might be re-
stricted, for instance in case of Stop-and-go mixes, where
the delays are randomly selected from a restricted time
range.

Onion routing protocols, as classified in Table[[] are all
Tor related schemes and hence, exhibit the most homoge-
neous routing design among the four investigated proto-
col classes. On a conceptual level, all these protocols are
equally characterized by their routing features. However,
there are three exceptions that affect: the completeness
of the network view, the fairness of scheduling, and
the node selection probability (leaving apart the non-
technical question if the code has been made publicly
available). Their differences, however, often lie in im-
plementation details, which are not necessarily relevant
to routing, such as reducing buffer size [112]. Also,
differences in the routing policy, which do not change the
routing feature on a conceptual level such as changing
node selection probabilities [51] and [50], are equally
classified in the table, though node selection probabilities
could be different.

One inherent routing feature of onion routing proto-

cols, due to preventing additional latency, is to have no
synchronization, which makes such protocols sensitive to
timing attacks and global adversaries. Another inherent
feature is that all onion routing protocols have a client-
server model, which improves their usability and leads
to a higher number of users, thus contributing to better
anonymity for onion routing protocols [113]. They are
characterized as complete network view due to a central
authority, which distributes the list of Tor routers. One
exception is [58], which realizes private node retrieval
and thereby constrains the decision maker’s view of
the network. A complete view helps against adversary
biasing node selection and is preferred in source-routing
in order to prevent the decision maker to choose from a
smaller set of nodes.
Further inherent routing features concerning the com-
munication model include routing type, scheduling, de-
terminism in the node selection, and the selection set.
The exceptions here are [56], [57], where they suggest a
prioritization at the scheduling phase in favor of inter-
active traffic in order to reduce delays that interactive
users might experience.

Node selection in all onion routing-based protocols



is non-deterministic. This is important since the Tor
network consists of volunteers and it is very likely to
have a fraction of malicious nodes among them. A non-
deterministic node selection reduces the chances of con-
sistently selecting malicious nodes. Since the adversary
is assumed to be local, a non-deterministic node selection
makes targeted surveillance harder.

Furthermore, the node selection probability is generally
weighted using static parameters, except for a few ap-
proaches that dynamically adjust weights, e.g., for bal-
ancing security versus performance [48] and for avoiding
congestion [49], [55]. Onion routing protocols are low-
latency and have circuit-based communication mode,
which are both inherent routing features of these pro-
tocols. Although we classify Tor as a protocol where the
routing decision maker has a complete view, it is worth
mentioning that the unlisted relays, known as bridges, are
not part of this view.

Next, we discuss random walk protocols and DHT-
based protocols. Crowds are Morphmix are two of the
early random walk protocols that were proposed for
anonymous communication. However, they present con-
ceptual differences in terms of routing features. Both
Crowds and Morphmix have fully connected topologies
since every node may build a connection with every
other node, resulting in better availability of the system,
which leads to a bigger attack surface for timing attacks.

The path length in Crowds may vary and is deter-
mined in a non-deterministic manner to make simple
timing attacks harder for external, local, and passive
adversaries. Still, this does not necessarily hold for the
case that at least one of the nodes in the path is malicious.
In Morphmix, the initiator does not select the nodes of
the route herself, rather decides on the number of nodes
and establishes the connection.

Crowds is semi-decentralized because routing infor-
mation of nodes is distributed by a central entity (the
blender), which introduces a single point of failure with
respect to node administration. Morphmix, however, has
a fully decentralized structure. The network view is
complete in Crowds, which, on the one hand, protects
Crowds from eclipse attacks and on the other hand, is
important since Crowds has a hop-by-hop routing type
that makes the node selection sensitive to be biased by
adversaries. In Morphmix, the network view is partial,
and therefore, witnesses were introduced to prevent the
biased node selection. Moreover, an inherent feature of
random walk protocols is that the node selection is non-
deterministic. In Crowds, each node is chosen from the
set of all nodes based on a geometric distribution [114];
whereas, in Morphmix, the initiator knows a subset of
nodes.

An inherent routing feature of DHT-based protocols
is partially connected topology and a partial network
view. The routing information is distributed among
nodes and no single node has the complete list. Such
a design increases the scalability of the protocols. A
partially connected network topology makes DHT-based
protocols less resilient against DoS attacks, which aim at
disconnecting the network as much as possible compared

to onion routing protocols. The connection direction is
bidirectional for the majority of protocols with two ex-
ceptions. The exceptions are the file sharing applications
Gnunet and Freenet Opennet mode.

Generally, DHT-based protocols are fully peer-to-peer
protocols. There are two exceptions in this category:
namely, Torsk and Salsa, where the first one has a hybrid
role structure while the latter one allows both hybrid
and fully peer-to-peer role structures. For being partially
connected, DHT-based protocols provide a partial view
of the network to the routing decision maker. Note
that this may introduce a series of attacks. Examples of
attacks against protocols that provide only a partial view
of the network to the routing decision maker are route
fingerprinting attacks [32], and route bridging attacks
[33]. Another series of attacks, which might be possible
due to a partial network view, are attacks that aim at
disconnecting target nodes from the rest of the network,
such as eclipse attacks [115].

Most of the DHT-based protocols are characterized
with a hop-by-hop routing type. Exceptions are NISAN,
Salsa, and Octopus, with source-routing. In Octopus,
there are two decision makers for node selection; the
path initiator who decides only about a segment of the
path and the last node of that segment, which initiates
the rest of the path. In our study, we could not find
much information about the scheduling of DHT-based
protocols, in particular for protocols that have not been
deployed. Most of the DHT-based protocols have non-
deterministic node selection, again here exceptions are
the file sharing applications, where the routing path does
not need to be anonymous.

The set selection for DHT-based protocols is, in most
cases, all nodes within the routing table (i.e., all nodes
available to the decision maker). However, there are two
exceptions: Torsk, where the set selection is restricted
by security and network restrictions, and Freenet in
the Darknet mode, where the set selection is based on
trust assumptions of the user. For most of DHT-based
protocols, the selection probability is uniform, exceptions
are Freenet and Gnunet. Both protocols do not aim at
providing unlinkability [82] nor they hide that a user
is participating in the network. Nevertheless, they hide
the role of the peer in the network. Most of the DHT-
based protocols are message-based except Torsk, AP3,
and Salsa.

Next, we discuss the DCNets protocols. DCNet-based
protocols, as classified in Table [, have some general
inherent routing features that are due to the broadcast
nature of their communication. These inherent routing
features include unidirectional connection, asynchronous
connection, and network structure involving centralized
entities. Moreover, the routing type is source-routing
with deterministic node selection and statically weighted
selection probability.

Furthermore, DCnet-based protocols incur high latency
and have message-based communication models. In DC-
nets, we regard avoiding collusion and shuffling as
routing relevant aspects of these protocols. The first
designs of DCnets [71]-[73] and Dissent [75] are direct



realization of the original DCNet; therefore, they are
similarly characterized. Inherent characteristics of such
protocols are fully connected network structures, having
a fully peer-to-peer role model. They support flat topolo-
gies, selecting all nodes for the selection set and offer a
uniform selection probability for node selection.

In order to improve efficiency and performance, some
DCNet-based protocols [74], [76], [77] have been pro-
posed, which vary in their routing features. Unlike the
first group, in these protocols, the network structure is
partially connected. For example, in Herbivore, partici-
pants are organized in star topologies, which are then
connected in a ring topology. The organization of the
nodes yields a hierarchical structure for the second group
of DCnet protocols. Moreover, in the extended version
of Dissent, users do not share keys with each other
but rather with designated servers. Furthermore, the
new versions of DCnet-based protocols enforce network
restrictions to the selection set in order to increase effi-
ciency and performance.

We conclude this part of the discussion with mis-
cellaneous protocols. Tarzan protocol originally had a
partially connected topology that was due to its par-
tial network view of the route initiator. However, in
the later version of Tarzan, a gossip-based strategy has
been proposed to have a complete view for the route
initiator, which leads to a fully connected topology as
marked in Table [IIl The connectivity of I2P is similar
to onion routing protocols due to the similarities for the
node selection. I2P is characterized with unidirectional
connection, which reduces the timing data that a single
relay can have. However, multiple relays participate in
the communication between a sender and receiver. The
routing information of I2P is managed in a DHT-like
fashion. Each database node (floodfill peer) has a slice of
the information [81], which could enable adversaries to
carry out eclipse attacks targeting floodfill nodes [111].
Since a user obtains node information from more than
one floodfill node (up to eight), the union of this infor-
mation might cover most of the I2P network and give
the decision maker an almost complete view. I2P uses a
source-routing approach, allowing the users to choose
nodes that are faster. The selection probability in I2P
is non-deterministic with a bias towards nodes that are
profiled as fast responding nodes. Response times of
these nodes differ among users; hence, timing attacks are
more difficult to mount compared to Tor, where the node
selection is biased using publicly known information
[116]. Since response times are continuously measured,
we have marked the selection probability with a bias
based on dynamic restrictions. At the node level, I12P
nodes use a prioritized scheduling mechanism, where
each task has “bid”, and the task with the lowest (best)
bid is served first [[117].

B. Correlation, Conflicts, Trade-offs, and Applications

In this section, we address correlation (i.e., depen-
dencies and conflicts), and trade-offs between routing
characteristics of AC networks. First, we review direct

and indirect correlations of routing features by com-
paring them with each other. We conclude this section
with a discussion about the relevance of specific routing
characteristics for certain applications.

We have defined the topology only based on con-
nectivity of relaying routers (see Section [I-A). This is
the reason why users and administrative entities are not
taken into account. Hence, based on our definition, there
is no correlation between topology and the two of the
routing features, namely roles and decentralization.

There is an evident correlation between hierarchy and
topology of AC networks. A hierarchical AC network
does not have a fully connected network structure. For
example, Herbivore, which has a hierarchical routing
strategy, has a partially connected topology. Moreover,
the network view of the routing decision maker can
have an influence on the topology of the AC net-
work. Generally speaking, a partial network view might
lead to a partially connected network topology for the
AC network because the routing decision maker might
have difficulties accessing routing information of certain
nodes. This holds for random walk and DHT-based
protocols. One exception is demonstrated by PIR-TOR,
which uses PIR to keep the network view minimal, albeit
the topology is fully connected. Therefore, the correlation
between topology and the network view depends on
further factors. For example, if the topology is partially
connected, it might be that the routing decision maker
has a partial view, but it also might be due to some other
routing restrictions.

We also observe a correlation between topology and
selection set. Namely, restrictions in the selection set lead
to reduced connectivity of the network topology. For
example, in Restricted Route mix networks, the network
view is complete; however, connectivity is restricted due
to restrictions in the selection set, which leads to a
partially connected network topology.

Although the synchronization of connections is not
directly correlated to scheduling, it depends on the for-
warding strategy of the particular nodes. As mentioned
in Section [I-A] the flushing algorithms influence syn-
chronization when timed mixes are used.

AC networks with a hierarchical structure have par-
tially connected network structure (i.e., Herbivore and
the extended version of Dissent). By definition, hierar-
chical organization of nodes restricts the selection set.

Node management is more challenging in fully de-
centralized AC networks. Therefore, obtaining a com-
plete view and a periodic updating of routing informa-
tion is more difficult. When the network view of the
routing decision maker is partial, often source-routing
has the advantage to prevent the bias of malicious nodes
and partitioning attacks. Thus, AC protocols that use
this combination need to employ a secure node selection
policy in their protocol. Examples of such protocols are
Octopus and Morphmix. Octopus uses bound checking
and proactively identifies malicious nodes; while, the
latter one randomly selects witnesses to prevent bias
in node selection. A partial network view also restricts



TABLE IV.

OVERVIEW OF THE ADVERSARY DEFINITIONS, FOCUS OF ROUTING FEATURE, AND CHALLENGES THAT OUR FOUR ROUTING CLASSES FACE

Routing Class Adversary Type Routing Feature in Focus

Challenges

Global & active
Local & active
Local & active
Global & passive

Mixnet

Onion routing
Random Walks (DHT)
DCnet

Node selection

Forwarding

Forwarding (scheduling) & node management (topology)

Node selection & transfer of routing information

Traffic analysis attacks, such as flooding attacks
Traffic analysis attacks, i.e., timing attacks
Partitioning attacks & biasing node selection
Collision and disruption

the selection set because the routing decision maker can
select only nodes that it is aware of.

Clearly, flushing algorithms also influence schedul-
ing. For example, pool mixes can be defined to induce
prioritized scheduling. There is also a correlation be-
tween scheduling and latency because in a prioritized
scheduling algorithm, some type of traffic is delayed.

Flushing algorithms also influence latency. Timed
mixes by themselves do not necessarily influence latency.
However, they might induce latency if long time re-
strictions have been selected. Same with the threshold
mixes, when the incoming traffic is low compared to
the threshold that has been set up. There is also a
correlation between latency and communication mode.
High latency AC networks usually use a message based
communication mode and vice versa. This is because
connections are not going to be used further (e.g., replies
are not going to be sent in a short time); therefore, setting
up a circuit is unnecessary.

Next, we compare our four main groups by dis-
cussing their applications. Mixnets are designed to be
secure against traffic analysis and global adversaries
by aggregating messages into batches. However, they
are vulnerable to the collusion of mixnets and flooding
attacks [84], in case if there are not enough (honest)
users. Moreover, Mixnets’ resilience against traffic anal-
ysis comes with a price and makes them more appro-
priate for high latency applications, such as emails and
electronic voting.

Onion routing protocols, such as Tor, are more effi-
cient (in particular faster) and have little computational
overhead, making them suitable for low-latency applica-
tions, such as web browsing. Tor also leverages a large
number of volunteer nodes. Almost all of these nodes
are known to the routing decision maker. However,
the complete network structure for the routing decision
maker can limit scalability. Moreover, Tor is considered
to be only secure against local adversaries and it is
vulnerable to traffic analysis attacks [93], [118]-[122], in
particular if the adversary can access both ends of the
communication.

Random walk protocols and protocols using DHT are
designed rather for fully peer-to-peer networks, where
the network view is incomplete. Having a fully peer-
to-peer network motivates the growth of the network
and helps scalability. Therefore, they are suitable, for
instance, for anonymous file sharing, where the nodes
have to dedicate a considerable amount of resources.
However, being fully peer-to-peer is considered to affect
the usability of the protocol. Unfortunately, this might
lead to a decrease in the number of users of such systems
and in turn reduce anonymity. Last but not least, clas-

sic DCnets provide information-theoretic anonymity but
some of them require a restricted setting, where all users
or nodes need to be honest. The classic DCnets were also
not resilient against DoS attacks. Moreover, DCnets tend
do have a large communication overhead and do not
scale well. Even Dissent, which employs a client-server
approach for better scalability, can only scale up to a few
thousand clients [76]. Therefore, they are more suitable
for applications, such as micro-blogging, but at a small
scale.

In Table [V] we summarized the type of adversaries
defined for the particular routing class. Moreover, the
table shows the routing feature in focus for the particular
class. Finally, the table lists challenges that our four
routing classes face in terms of routing features and
achieving anonymity and security.

V. CoNCLUDING REMARKS

In this work, we classified anonymous routing char-
acteristics. We identified main criteria groups, each with
several routing features and dimensions tackling various
aspects routing decisions in AC protocols. Moreover,
we shortly described and then carefully evaluated the
bulk of existing AC protocols under our classification.
Furthermore, we discussed the relevance between rout-
ing decisions that are made in such networks and their
influence on anonymity and security. We have learned
several lessons from conducting our survey. On the one
hand, security, anonymity, scalability, and performance
goals that are favored for anonymous communication are
very hard to reach altogether, simply because the routing
decisions, which support each of these goals, often con-
tradict each other. This is especially true for achieving
strong anonymity and good performance, which is still
an open problem. On the other hand, routing aspects are
related to each other, for example, a partial view of the
system (in the routing information) often supports the
hop-by-hop routing. Therefore, it is very hard to separate
the various routing aspects from one to another protocol.
We observe that making certain routing decisions leads
often to a trade-off between security, anonymity, scala-
bility, and performance goals. Finally, our classification
uncovers which routing decisions have to be tailored
to the security, anonymity, scalability, and performance
goals that are necessary for a specific use case of a given
AC protocol.
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