
Enclave-Based Privacy-Preserving Alignment
of Raw Genomic Information ∗

Information Leakage and Countermeasures

Marcus Völp, Jérémie Decouchant, Christoph Lambert, Maria Fernandes, and
Paulo Esteves-Verissimo

CritiX Group — Interdisciplinary Center for Security, Reliability and Trust (SnT)
University of Luxembourg, L-2721 Luxembourg

<name>.<surname>@uni.lu

ABSTRACT
Recent breakthroughs in genomic sequencing led to an enor-
mous increase of DNA sampling rates, which in turn favored
the use of clouds to efficiently process huge amounts of ge-
nomic data. However, while allowing possible achievements
in personalized medicine and related areas, cloud-based pro-
cessing of genomic information also entails significant pri-
vacy risks, asking for increased protection. In this paper,
we focus on the first, but also most data-intensive, process-
ing step of the genomics information processing pipeline: the
alignment of raw genomic data samples (called reads) to a
synthetic human reference genome. Even though privacy-
preserving alignment solutions (e.g., based on homomorphic
encryption) have been proposed, their slow performance en-
courages alternatives based on trusted execution environ-
ments, such as Intel SGX, to speed up secure alignment.
Such alternatives have to deal with data structures whose
size by far exceeds secure enclave memory, requiring the
alignment code to reach out into untrusted memory. We
highlight how sensitive genomic information can be leaked
when those enclave-external alignment data structures are
accessed, and suggest countermeasures to prevent privacy
breaches. The overhead of these countermeasures indicate
that the competitiveness of a privacy-preserving enclave-
based alignment has yet to be precisely evaluated.

CCS Concepts
•Security and privacy → Hardware security imple-
mentation;

Keywords
information-flow, SGX-enclaves, DNA, alignment, privacy

∗Author Preprint This work is in part supported by the
Fonds National de la Recherche Luxembourg (FNR) through
PEARL grant FNR/P14/8149128.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SysTEX’17, October 28, 2017, Shanghai, China
c© 2017 ACM. ISBN 978-1-4503-5097-6/17/10. . . $15.00

DOI: https://doi.org/10.1145/3152701.3152707

1. INTRODUCTION
Intel’s Software Guard Extensions (SGX) [12] is the lat-

est effort to establish trustworthy execution environments
(TEEs) in which sensitive parts of an application are pro-
tected from attacks on environmental components , or from
their faults. Like Inktag [16] but unlike many previous ap-
proaches, SGX removes the management operating system
(OS) from the trusted computing base (TCB) of sensitive
application parts executing in provided TEEs (called en-
claves). At the same time, SGX keeps the OS responsible
for enclave construction and management.

Removing the management OS from the TCB is essential
for protecting data as sensitive, and long living, as DNA.
Any fault, or compromise, in this large complex OS may
allow adversaries to exfiltrate sensitive parts of DNA, and
thereby, compromise the anonymity of the individual, and
the privacy of some of her own genomic traits, but also of
her descendants, and even of whole populations [5]. How-
ever, this TCB reduction also comes at the cost of mak-
ing certain enclave-internal actions observable and manip-
ulatable by untrusted code in the management OS. Recent
attacks [32] have demonstrated such exfiltration and ma-
nipulation possibilities. Several proposals have been formu-
lated to mitigate their effects. For example, Gullamudi and
Chong [14] suggest a language-based approach to extract
sensitive application parts, forthcoming SGX version 2 will
conceal sub-page granular address information, and Völp et
al. [31] propose hardware extensions to reduce the number
of observable states.

However, while these solutions help mitigate information
leakage through objects residing inside an enclave, they re-
main agnostic to confidentiality breaches when data is ac-
cessed outside this protected environment. Unfortunately,
during a DNA alignment enclave-external data accesses are
inevitable, since the size of the reference genome, or of the
data structures that encode it, exceeds by far the amount of
secure memory that enclaves can access in a reasonably fast
manner.

In this paper, we explain how existing alignment algo-
rithms may leak sensitive information from reads through
data structures access patterns. We look at cache side-
channel attacks to refine the page-granular access patterns
exposed by SGX-2, and demonstrate how clever manipula-
tions of the reference genome encoding data structures may
allow adversaries to exfiltrate sensitive parts of the reads.
Finally, we detail how existing countermeasures can be used

mailto:critix-pub@uni.lu
https://doi.org/10.1145/3152701.3152707

to prevent privacy leaks during reads alignment.

2. BACKGROUND AND RELATED WORK

2.1 DNA Sequencing and Alignment
Next generation sequencing machines extract genomic in-

formation from prepared samples, by multiplying the DNA,
splitting these copies into smaller strands, and sampling
these strands to digitize the information. The latter typi-
cally involves attaching and (e.g., optically) reading out the
reaction of the base at the edge of the strand with special
indicator bases, repeating the process after indicator and
base have been chopped off. The result is a set of over-
lapping strings (called reads) of letter/number pairs which
encode the bases Adenine, Thymine, Cytosine and Guanine
(abbreviated A, T, C, G) plus a confidence in their detec-
tion. The length of the strand thereby defines the size of
the read, which in modern machines ranges from a few hun-
dred basepairs (bp) to currently up to 40000 bp [7]. The
whole genome of a human amounts to 3.2 Giga-basepairs
and requires less than a day to sample.

Reconstructing a genome from sampled reads can be done
in two ways. First, a de-novo assembly compares sampled
reads to find where they overlap, and combines them to re-
construct the genome. Second, as humans share around 97%
of their DNA, one can compute the best matching position
of reads in a reference genome. In this work, we shall focus
on reference-based alignment.

The differences between an individual’s genome and the
artificial reference genome are called variants. It is these
variants that carry sensitive information. They may reveal
who we are, indicate our susceptibility to illnesses, drugs or
medicine, or expose our family relationships. Indeed, Pak-
stis et al. showed that as few as 92 well-chosen SNPs are
enough to identify anyone in the world with high probabil-
ity [25]. In this work, we aim at preventing variant leakage to
prevent adversaries from reidentifying individuals, or their
characteristics.

Variants can be characterized as insertions, deletions or
modifications of letters from the reference genome. Such
differences between a genome and the reference genome mo-
tivates the use of edit distances to determine the quality of
alignment matches. A typical genome [11] differs from the
reference at 4.1 – 5 million locations of which the vast major-
ity of > 99.9% are single nucleotide polymorphisms (SNPs),
i.e., modifications of a single character. Of the remaining
variations between 2100 and 2500 are structural variations
(SVs), which break up into 1000 large deletions, 1100 are
short insertions of various kinds, 160 are copy-number vari-
ations (i.e., variations in the number of copies of known
sequences) and only 10 are inversions, flipping characters.
The rest are short insertions and deletions (indels) of 1–10
Kbases.

Genomic alignment algorithms can be vaguely categorized
into two classes:

Search-based aligners traverse the reference from promis-
ing candidate locations while computing the edit distance of
the read to the reference, keeping the first/first-k/all loca-
tions whose distance is below a given threshold;

Index aligners compute a search index (e.g., a suffix
tree) from the reference to more quickly identify possible
locations of a read, trading higher memory consumption
against better alignment performance.

Seeding as a preprocessing step may help obtain promis-
ing candidate sets for search-based aligners such as Blast [1],
and also some index-based aligners. During this step, the al-
gorithm checks whether a read contains an identifying sub-
string (the seed), whose location in the reference is already
known and stored in a location map. Seeds can be small
segments of the read hashed into a location map but also
more complicated patterns such as (A C G T)6ACGT , with
gaps 1 destined to tolerate variants and sequencing errors.

In this work, we investigate applied candidates from each
of these classes: last [19], a successor of Blast (search-based),
and bowtie [20] (index-based). More precisely, we investi-
gate the alignment of encrypted reads in TEEs to guarantee
that only trusted code obtains access to this privacy sensitive
information. At the same time, the reference genome and
reference-related index structures remain unencrypted and
unsigned outside the TEE, because they contain no sensitive
information and are too large to fit into the TEE memory.

2.2 Intel SGX Enclaves
The attacks and countermeasures we present in this paper

are applicable to all TEEs where TEE-internal accesses to
external, but possibly also internal data structures are ob-
servable (e.g., through page faults, cache timing channels or
similar means). As an example, we focus here on Intel SGX
enclaves, which we briefly summarize in the following.

Enclaves are implemented as virtual-memory regions (the
ELRANGE) in the hosting application’s address space. As
such, they are subject to the same page-table based virtual-
to-physical address translation as their host. However, rather
than mapping to arbitrary frames, SGX triggers an excep-
tion if addresses in the ELRANGE map to frames outside
a dedicated physical-memory area called enclave page cache
(EPC), if the frame does not belong to the enclave or if a lin-
ear address is mapped to a frame that has not been accepted
by the enclave (either implicitly at enclave creation time or
later by the enclave executing EACCEPT). The processor
also faults if the enclave fetches code from non-EPC frames.

Options for implementing the EPC include on-chip scratch-
pad memories, but also normal RAM, in which case a mem-
ory encryption unit ensures data integrity, confidentiality
and freshness, by causing enclave-exiting faults on integrity
and freshness violations. Enclaves may access data mapped
to linear addresses outside the ELRANGE, however, SGX
ensures that the reverse is not possible and that EPC back-
ing store accesses do not reveal confidential information.

The processor secures control transfers into and out of
enclave. However, through page-faults and controlled cache
side-channel attacks [32], adversaries may learn about the
addresses of memory accesses to internal and external en-
clave data structures. In this paper, we deviate from SGX
by assuming countermeasures are in place to prevent side
channels from leaking accesses targeting data structures that
are located entirely in EPC memory. Still, most alignment
approaches are susceptible to leakage by observing enclave-
external access patterns.

2.3 Related Work
Naturally, there is a large body of works on TEE-based

data processing (e.g., [24]). We relate in the following only
to works on genomic-data processing. Modern encryption

1The example —NEAR seeding— is given here in regular-
expression notation with denoting allowed gaps.

techniques such as homomorphic encryption [6, 13, 3] and
similar approaches [4, 17, 18] can be applied to privacy-
preserving alignment by directly operating on encrypted ge-
nomic information. Short of breaking the cipher, data con-
fidentiality is preserved, however, at the cost of sacrificing
performance below what is required to keep up with modern
sequencing technology.

Chen et al. [9] suggest hashing short substrings and map-
ping them to a similarly hashed reference. Popic et al. [26]
extend this approach to locality-sensitive hashing.

Cogo et al. [10] introduce a bloom filter to classify reads
as sensitive or insensitive to process the former in a private
cloud. Unfortunately, classifying the whole read no longer
works when reads grow in size, because all but a few long
reads contain sensitive variations.

Patent CA2852916A1 [29] suggests offloading genomic in-
formation processing into TEEs. However, they do not ad-
dress the resource limitations of contemporary TEEs.

SAFETY [27] is a hybrid homomorphic encryption ap-
proach for later stages in the genomic information processing
pipeline. It computes aggregates through a Paillier homo-
morphic cryptosystem while offloading more complex sta-
tistical tests into enclaves. Also focusing on a later stage,
Brasser et al. [8] discuss a cache-side channel attack on
PRIMEX [21], a hash-based search index tool for locating
primers in polymerase chain reactions.

3. PRIVACY-PRESERVING ALIGNMENT
We assume enclaves are deployed in the usual authenti-

cated boot, sealed memory and communication infrastruc-
ture [2] capable of authenticating the enclave configuration
in the cloud, and of equipping it with the key material it
needs to securely communicate with the read-transmitting
sequencing system. We assume enclaves decrypt the received
reads, align them, and return the alignment results in en-
crypted form. Short of exploiting vulnerabilities in the ci-
pher, its implementation or in SGX, adversaries can there-
fore only learn about sensitive reads by observing the exe-
cution of an enclave and its access patterns.

3.1 Detailed Definition of the Problem
We are concerned with adversaries aiming at exfiltrating

genomic variations from the access patterns that alignment
algorithms generate in TEEs. Such information potentially
allow the adversaries to learn about the identity of a donor,
and infer other privacy sensitive information in the donor’s
DNA. The adversaries try to obtain these information from
reads used in the trusted alignment algorithm. Reads are
transmitted encrypted and only ever decrypted by the en-
clave, which is supposed to keep reads confidential. How-
ever, data structures used during alignment contain only
public information, and some of them are too large to fit in
the constrained enclave memory. In particular, the reference
genome, and the data structures derived from it, are pub-
lic information. We assume these data structures are not
encrypted, otherwise, the overall performance of enclave-
based read alignment would probably not be competitive.
Seed patterns are also publicly known, but whether or not
a specific pattern matches a read constitutes sensitive infor-
mation. In particular, a seed may only match a read because
the latter contains a sensitive variation.

Most variations, their locations and sizes are also known
and can be obtained, for example, from the 1000 Genomes

project [30] which provides the variations of individuals. A
further source of variations is the Short Tandem Repeats
(STR) Database [22], which lists known patterns and lo-
cations where short 3-5 base-pair sequences are repeated
several times. Knowing the number of repetitions of cer-
tain STRs allows reidentifying individuals and must there-
fore be considered privacy sensitive. We are confident that
most variations have been discovered because the number
of newly found variations in the 1000 genomes project de-
creased from 21 million in the initial set of 2010 to 100.000
in the 2016 set of Phase 3. Whether or not a variation is
sensitive depends on the information it encodes. However,
variations located in the vicinity of encoding variations may
reveal this information, as shown for example by Nyholt et
al. [23] who deduced the variant of Dr. Watson’s removed
Alzheimer gene. For the purpose of this paper, we say that
variations are sensitive if they allow for privacy impacting
attacks (e.g., re-identification), leaving the development of
more refined definitions as future work.

The tasks at hand are: (1) to understand how adversaries
may deduce which variations are present in a genome; and
(2) to construct countermeasures to prevent adversaries from
succeeding in these attacks. These tasks are complicated
by the fact that because of the way DNA is sequenced, a
lot of overlapping reads are generated, some of which may
include errors. Alignment, having to reconstruct the genome
despite read errors, must therefore consider all reads to mask
these errors whereas adversaries need only be able to analyze
a subset to gain sufficient confidence in the presence of a
certain variation.

In this paper, we do not consider privacy attacks due to
later disclosure of the aligned data (e.g., in genomic studies).

3.2 Search-based Alignment
Search-based tools such as Blast [1], and Last [19], com-

pute the local alignment of a read relative to the reference
by applying one of the variants of the Smith-Waterman-
Gotoh algorithm [28, 15]. Given the length of the human
genome, this algorithm is only applied in combination with
search-space pruning heuristics, such as seeding. We return
to seeding in Section 3.4. Here, we first analyze leakage of
a naive implementation, which traverses through the entire
reference genome. The results apply to pruned locations as
long as the sizes of the constructed data-structures exceed
available enclave memory.

To align a read to a reference, Smith-Waterman-Gotoh
constructs a so called DP matrix with one row for each let-
ter of the read and one column for each (considered) loca-
tion of the reference genome. Cells store alignment scores,
which are computed iteratively as a combination of the three
cells in the top left corner (Hi,j) and as a function of the
read and reference letter S(ai, bj) of the cell’s row/column
pair. Figure 1 illustrates this algorithm. More precisely,
the alignment score of cell Hi,j is equal to max (Hi−1,j−1 +
S(ai, bj), Hi,j−1 + winsert , Hi−1,j + wdelete , 0), where wk are
penalties for inserting a letter in, or respectively deleting a
letter from, the reference, and S(ai, bj) rewards or penalizes
the alignment depending on whether or not the reference let-
ter ai matches the read letter bj . Together with the score,
Smith-Waterman-Gotoh stores the cell from which the high
score originated which.

After the matrix has been populated, threshold exceeding
cells indicate possible end locations of optimal local align-

Figure 1: Smith-Waterman-Gotoh algorithm. The
score of cell Hi,j is computed as the maximum of
0 and the top left preceding cells weighted with a
match/mismatch score S(ai, bj), an insertion score
winsert , and a deletion score wdelete . Shown here are
linearly weighted indels.

ments, while the backtracking paths from these locations
reveals the shape of the alignment (in terms of matches,
indels or character replacements).

Attack Vectors: Clearly since the reference genome is
already too large, the size of the DP matrix exceeds enclave
memory, even if only a part of the DP matrix is populated.
Exposing the DP matrix values in clear, indels become visi-
ble by following the alignment path. From the size of indels,
known variations with differing sizes can be distinguished.
For example, a one letter insertion at a location where one or
two letter variants are known to appear reveals can be iden-
tified. The same information can be obtained up to the gran-
ularity of the observable block accesses (e.g., a cacheline) by
observing the backtracking pattern. Matches, sequencing
errors or mismatches (e.g., due to SNPs) create a diagonal
traversal pattern. More precisely, if we assume a row-wise
stored DP matrix and a block size of bc = 4 cells per block2,
diagonal backtracking advances through exactly bc rows be-
fore changing to the next bc columns. For insertions, back-
tracking traverses vertically, which means more rows are ac-
cessed before switching columns and deletions cause horizon-
tal traversals and an earlier column change. The precision
at which indels are revealed is bc. However, adversaries may
improve the precision of deletions by artificially inflating the
reference genome when replaying the alignment request until
the deletion point moves across cacheline boundaries. Fig-
ure 2 illustrates this attack.

Adversaries can replay alignments either by resubmitting
intercepted client requests to the server, or by relying on
overlapping reads which align to nearby locations. Whereas
constructing the DP matrix leads to a regular access pattern.
The location of alignment is revealed by the access pattern
created during backtracking.

The attacks discussed so far only reveal the location of
alignment and the nature of variations whose size is unique
and different from the variation present in the reference
genome. However, manipulation of the reference genome
allows adversaries to also identify the letters of variations
of the same size by enumerating all possible variants in an
artificial reference. Given a read length r and two fixed-size
variations at location l, the artificial reference needs to copy

2 Extraction methods for column-wise or diagonally stored
DP matrices can be obtained in a similar fashion.

Figure 2: Inserting characters in the reference shifts
the A-deletion in G − TAC to the next cacheline.
Shown are the cache-colored matrices for the orig-
inal and the modified reference genome. After in-
serting two additional characters, the cells (G,G) and
(G,A) span different cachelines, which pinpoints the
deletion.

the 2r letters around l and the letters of the two variations to
two different locations in the artificial reference. Observing
a backtracking pattern in either one of the two locations re-
veals the individual’s variation. In case the alignment scores
in both locations are above the threshold, non-variation let-
ters must be changed in replays until only one of the two
locations remains above the threshold.

Smith-Waterman-Gotoh in Enclaves: One obvious
countermeasure, if we assume non-observability of enclave-
internal accesses, is to relocate the DP matrix entirely into
enclave memory. Checking alignments immediately once cell
scores exceed the threshold, and further considering only
short indels, it is possible to reduce the size of the DP ma-
trix by recycling the columns located beyond the deletion
range. Assuming further a high number of matches, it is
possible to further shrink the matrix, keeping only cells near
the diagonal. Such reduced matrices start to fit in enclave
memory, but continue to exceed today’s fast on-chip mem-
ory capacities. For example, with 40Kbp reads and limiting
insertions and deletions to 10Kbp each, the diagonalized DP
matrix shrinks to 2 x 10Kbp diagonals with max 40Kbp +
10Kbp cells each (i.e., 100MBytes storage).

Attack Vectors: Without having access to the cell in-
formation, adversaries have to infer backtracking locations
from cache access patterns. If we further assume such pat-
terns are concealed in an augmented SGX implementation,
the only attack vectors that remain are based on the ob-
servable location in the reference genome while construct-
ing the associated fraction of the DP matrix, and the time
that the alignment procedure spends at this location. In
case the current location contains a threshold exceeding cell,
backtracking becomes necessary and the enclave takes more
time until it advances in the reference. Unfortunately, the
traditional countermeasures against this attack (i.e., clock
obfuscation and timing-leak transformations) are ineffective
or too costly. For example, to equalize the time spent over a
fragment of the reference genome, backtracking needs to be
applied to all locations (irrespective of their score). Enumer-
ating all variants in an artificial reference therefore remains
a privacy threat.

3.3 Index-based Alignment
Index-based aligners, such as bowtie [20], preprocess the

Figure 3: FM index of the reference of Figure 1. The
index is comprised of the Burrows Wheeler Trans-
formation of the reference (vector L[i]) and of two ta-
bles C[c] and Occ(c, k) counting the number of occur-
rences of lexically smaller characters respectively of
the character c in L[1 . . . k]. The index allows recon-
structing the first column F from L as F [LF [i]] = L[i]
with LF [i] = C[L[i]] + Occ(L[i], i).

reference genome to construct index data structures for faster
suffix search. Figure 3 shows bowtie’s FM index applied on
the example presented in Figure 1. Alignment indexes are
based on the Burrows Wheeler Transformation (BWT) of
the reference, which is the last column L[i] obtained from
lexicographically sorting all rotations of the reference string.
For example, rotating −GAT . . . AT by one position, we ob-
tain T − GAT . . . A, which after lexicographic sorting be-
comes the 7th string. The index stores L[i] the two lookup
tables C[c] and Occ(c, k) and for some indexes i of L[i] the
location of this character in the reference. C[c] stores the
number of lexicographically smaller characters that exist in
the reference. When lexicographically sorted, this is exactly
one less than the index of the first string starting with c (i.e.,
F [C[c] + 1] is the first index occurrence of c in the Burrows
Wheeler Transformation. Occ(c, k) denotes for each index k
how often c occurs in the vector L before k.

The actual alignment proceeds by searching all occur-
rences of suffixes, which are sufficiently similar to the read.
Starting from the end of the read with the last character
c and the interval [start . . . end] = [C[c] + 1 . . . C[c + 1]] of
indexes in L (where c+ 1 is the character following c in lex-
icographical order), the interval is successively adjusted to
[C[c] + Occ(c, start − 1) + 1 . . . C[c] + Occ(c, end)] For ex-
ample, the interval for suffix ’AT’ is obtained by starting
with [C[′T ′] + 1 . . . C[T + 1]] = [7 . . . 8] and refining it to
[C[′A′] + Occ(′A′, 6) + 1 . . . C[′A′] + Occ(′A′, 8)] = [3 . . . 4].
Because of the lexicographical sorting of the rotated refer-
ence, suffixes correspond to dense intervals in L. Associated
positions are then used to translate positions in L back to
the reference by traversing L until a location with associ-
ated reference position is found. For example, mapping last
to first column character of the prefix AT at location 3 with
LF [i] = C[L[i]] + Occ(L[i], i), we obtain the index of the
previous character at L[i] whose location in the reference
genome is stored. Hence, the location of CAT is 5 and AT
is found at 6.

Attack Vectors: Because the FM index is only con-
structed from the reference, L[i], C[c] and Occ(c, k) con-
tain only public information. With only four bases plus the
empty character ’-’ and column wise storage of Occ(c, k), no
direct information about the nature of looked up bases can
be obtained from C[c] or Occ(c, k). The first easily fits a

Figure 4: Smith-Waterman-Gotoh to extend seed
locations.

cacheline whereas the latter can be stored columnwise and
padded such that columns do not cross cacheline boundaries.
Therefore, accessing Occ(c, k) only reveals k but not c.

More problematic is the direct revelation of read char-
acters when searching for suffix locations. Dense intervals
imply that subsequent indexes of L[i] stand for the same
character F [i]. It is therefore likely that adversaries will
learn about F [i] by just learning about the cacheline gran-
ular access. Since the FM index only encodes the reference,
variations cause some backtracking when the suffix contains
a variation letter. The accessed location L[i] prior to back-
tracking reveals this letter. For example, looking up the
suffix TA in ATA reveals the variation letter T through lo-
cation 8 although the match would interleave 5 and 2 with
CA and ACA before matching TACA at 8.

3.4 Seeds
Seeds are short sequences from the reference sequence,

which are carefully chosen for their matching properties and
searched in reads. They are used to accelerate both search
and index-based aligners by allowing them to focus on promis-
ing locations, from which they extend the match to the read.
Figure 4 shows this extension scheme for Smith-Waterman-
Gotoh based search alignment. From a seed (red diagonal),
the DP matrix is extended in both directions until the com-
puted scores drop significantly.

Attack Vectors: Seeding inherits the attack vectors of
search-based algorithms for the extension, and of index-
based algorithms if like an FM-index is used as location map
for the candidate set. A seed may match because a read con-
tains a specific variation. Such sensitive seeds should then
not be used.

3.5 Countermeasures
Several countermeasures are imaginable to mitigate the

identified attack vectors. Cogo et al. [10] suggest circum-
venting the problem by not aligning privacy sensitive data
in the cloud. However, relying on the filter they suggest to
classify reads as sensitive and insensitive would work only
to up to 30 bases reads, since the majority of larger reads
(produced by modern machines) contain sensitive parts.

Traditional side channel mitigation strategies (e.g., equal-
izing the cache access pattern, possibly in combination with
preemption control [31], or memory randomization [8]) are
difficult to apply to TEE-external data structures or lead to
significant performance impacts, in particular when applied
to large data structures. We gave an example of such an
equalizing method when discussing Smith-Waterman-Gotoh

backtracking, which would need to be applied to all cells irre-
spective of whether the alignment score exceeds the match-
ing threshold.

The nature of the majority of variants could only be re-
vealed through reference modification. Effective counter-
measures to a large class of attacks therefore include mech-
anisms to ensure the integrity of the reference genome and
of derived indexes. Unfortunately, these mechanisms (e.g.,
keyed hashes) bear non-negligible costs and require copying
in part of the data structure to TEE memory to avoid TOC-
TOU attacks. Encrypting a secret shuffle of the reference or
of the FM index vector L[i] randomizes locations, however,
at significant costs.

4. CONCLUSIONS AND FUTURE WORK
This paper investigated leakage of sensitive DNA varia-

tions during TEE-based alignment of raw genomic informa-
tion. We identified several attack vectors based on observing
accesses to TEE external data, through which adversaries
may exfiltrate this privacy-violating information, even if ac-
cesses to TEE-internal data structures are concealed.

Directions for future work include exploring substring clas-
sifiers for raw genomic information and the data privacy one
can obtain from aligning such classified reads. We are also
interested in privacy-preserving solutions for later stages of
the genomic information processing pipeline.

References
[1] S. F. Altschul et al.“Basic local alignment search tool”.

In: Journal of molecular biology 215.3 (1990), pp. 403–
410.

[2] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata.
Innovative Technology for CPU Based Attestation and
Sealing. Tech. rep. Intel Corp., Aug. 2013.

[3] M. J. Atallah, F. Kerschbaum, and W. Du. “Secure
and private sequence comparisons”. In: WPES. 2003.

[4] M. J. Atallah and J. Li. “Secure outsourcing of se-
quence comparisons”. In: International Journal of In-
formation Security 4.4 (2005), pp. 277–287.

[5] M. Backes et al. “Simulating the Large-Scale Erosion
of Genomic Privacy Over Time”. In: GenoPri. 2016.

[6] J. Baron et al. “5pm: Secure pattern matching”. In: Se-
curity and Cryptography for Networks. Springer, 2012,
pp. 222–240.

[7] P. Biosciences. Pacific Biosciences Introduces New Chem-
istry with Longer Read Length. Oct. 2013.

[8] F. Brasser et al.“Software Grand Exposure: SGX Cache
Attacks Are Practical”. In: WOOT. 2017. url: https:
/ / www . usenix . org / conference / woot17 / workshop -
program/presentation/brasser.

[9] Y. Chen, B. Peng, X. Wang, and H. Tang. “Large-
Scale Privacy-Preserving Mapping of Human Genomic
Sequences on Hybrid Clouds.” In: NDSS. 2012.

[10] V. V. Cogo, A. Bessani, F. M. Couto, and P. Verissimo.
“A high-throughput method to detect privacy-sensitive
human genomic data”. In: WPES. 2015.

[11] T. 1. G. P. Consortium. “A global reference for human
genetic variation”. In: Nature 526.7571 (Oct. 2015),
pp. 68–74.

[12] V. Costan and S. Devadas. Intel SGX Explained. MIT.

[13] E. De Cristofaro, S. Faber, and G. Tsudik. “Secure
genomic testing with size-and position-hiding private
substring matching”. In: WPES. 2013.

[14] A. Gollamudi and S. Chong. “Automatic Enforcement
of Expressive Security Policies using Enclaves”. In: OOP-
SLA. 2016.

[15] O. Gotoh. “An improved algorithm for matching bi-
ological sequences”. In: Journal of molecular biology
162.3 (1982), pp. 705–708.

[16] O. S. Hofmann et al. “InkTag: Secure Applications on
an Untrusted Operating System”. In: ASPLOS. 2013.

[17] Y. Huang, D. Evans, J. Katz, and L. Malka. “Faster
Secure Two-Party Computation Using Garbled Cir-
cuits.” In: USENIX Security. 2011.

[18] S. Jha, L. Kruger, and V. Shmatikov. “Towards prac-
tical privacy for genomic computation”. In: IEEE Se-
curity and Privacy. 2008.

[19] S. Kiebasa et al. “Adaptive seeds tame genomic se-
quence comparison”. In: Genome Research 21.3 (2011),
pp. 487–493.

[20] B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, et
al. “Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome”. In: Genome
biol 10.3 (2009), R25.

[21] M. Lexa and G. Valle. “PRIMEX: Rapid identifica-
tion of oligonucleotide matches in whole genomes”. In:
Bioinformatics 19.18 (2003).

[22] NIST. STRBase: Short Tandem Repeat DNA Internet
DataBase. http://www.cstl.nist.gov/biotech/strbase/.

[23] D. R. Nyholt, C.-E. Yu, and P. M. Visscher. “On Jim
Watson’s APoE status: genetic information is hard to
hide”. In: Eur. J. Hum. Genet. 17 (2009), pp. 147–149.

[24] O. Ohrimenko et al. “Oblivious Multi-Party Machine
Learning on Trusted Processors”. In: USENIX Secu-
rity. 2016.

[25] A. J. Pakstis, W. C. Speed, R. Fang, and F. C. e. a.
Hyland. “SNPs for a universal individual identification
panel”. In: Human genetics 127.3 (2010), pp. 315–324.

[26] V. Popic and S. Batzoglou.“A hybrid cloud read aligner
based on MinHash and kmer voting that preserves pri-
vacy.” In: Nature comm. 8 (2017), p. 15311.

[27] N. Sadat et al. SAFETY: Secure gwAs in Federated
Environment Through a hybrid solution with Intel SGX
and homomorphic encryption. Mar. 2017.

[28] T. F. Smith and M. S. Waterman. “Identification of
common molecular subsequences”. In: Journal of molec-
ular biology 147.1 (1981), pp. 195–197.

[29] Systems and methods for protecting and governing ge-
nomic and other information. Patent CA2852916A1.

[30] The 1000 Genomes Project Consortium.“An integrated
map of genetic variation from 1,092 human genomes”.
In: Nature 491 (2012), p. 1.

[31] M. Völp et al. “Avoiding Leakage and Synchroniza-
tion Attacks Through Enclave-Side Preemption Con-
trol”. In: SysTEX. Trento, Italy, 2016. isbn: 978-1-
4503-4670-2.

[32] Y. Xu, W. Cui, and M. Peinado. “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted
Operating Systems”. In: IEEE Security and Privacy.
2015.

https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
http://www.cstl.nist.gov/biotech/strbase/

	Introduction
	Background and Related Work
	DNA Sequencing and Alignment
	Intel SGX Enclaves
	Related Work

	Privacy-Preserving Alignment
	Detailed Definition of the Problem
	Search-based Alignment
	Index-based Alignment
	Seeds
	Countermeasures

	Conclusions and Future Work

