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Abstract
We consider the problem of generating relevant execution
traces to test rich interactive applications. Rich interactive
applications, such as apps on mobile platforms, are complex
stateful and often distributed systems where sufficiently ex-
ercising the app with user-interaction (UI) event sequences
to expose defects is both hard and time-consuming. In par-
ticular, there is a fundamental tension between brute-force
random UI exercising tools, which are fully-automated but
offer low relevance, and UI test scripts, which are manual
but offer high relevance. In this paper, we consider a middle
way—enabling a seamless fusion of scripted and randomized
UI testing. This fusion is prototyped in a testing tool called
ChimpCheck for programming, generating, and executing
property-based randomized test cases for Android apps. Our
approach realizes this fusion by offering a high-level, embed-
ded domain-specific language for defining custom generators
of simulated user-interaction event sequences. What follows
is a combinator library built on industrial strength frame-
works for property-based testing (ScalaCheck) and Android
testing (Android JUnit and Espresso) to implement property-
based randomized testing for Android development. Driven
by real, reported issues in open source Android apps, we
show, through case studies, how ChimpCheck enables ex-
pressing effective testing patterns in a compact manner.
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1 Introduction
Driving Android apps to exercise relevant behavior is hard.
Android apps are complex stateful systems that interact with
not only the vast Android framework but also a rich envi-
ronment ranging from sensors to cloud-based services. Even
given a mock environment, the app developer must drive
her app with a sufficiently large suite of user-interaction
event sequences (UI traces) to test its ability to handle the
multitude of asynchronous events dictated by the user (e.g.,
button clicks but also screen rotations and app suspensions).
Industrial practice of Android app testing is largely cen-

tered around two main techniques: automated test gener-
ation via brute-force random UI exercising (Android Mon-
key [6]) and lower-level scripting of UI test cases (Android
Espresso [5], Robotium [17]). Monkey testing has the benefit
of requiring very little development effort and offers a low-
effort means to discover bugs in easily accessible regions
of an app (that are environment independent). However, to
achieve more relevant testing, the developer often has to
rely on writing customized UI test scripts. By relevance, we
mean using application-specific knowledge to be exercise
the app-under-test in a more sensible way. For instance, to
test a music-streaming service app, trying one failed login
attempt is almost certainly sufficient. Then, to exercise the
interesting part of the app requires using a test account to get
past the login screen to check, for example, that the media-
player behaves in a way that users expect for a music service.
While rich library support (e.g., Android JUnit, Espresso, and
Robotium) and IDE integration (Android Studio) can make
custom UI scripting more manageable, implementing test
cases one-at-a-time to cover all corner cases of an app is still
a tedious and boilerplate process.
In the literature, advanced approaches for automating

test generation has gained significant interest: model-based
techniques (e.g., Android Ripper [3, 4], Dynodroid [12], evo-
lutionary testing techniques (e.g., Evodroid [13]) and search-
based techniques (e.g., Sapienz [14]). While each of these
techniques easily out performs pure random techniques, the
development of all of these techniques have almost been en-
tirely focused on pure automation. Little attention has been
given to developing techniques that simplifies programmabil-
ity and allowing higher-levels of customizability that empow-
ers the test developer to inject her app-specific knowledge
into the test generation technique. As a result, while these
techniques offer effective automated solutions for testing
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generic functionality, they are unlikely to replace manual UI
scripting because of their omission of the test developer’s
human insight and app-specific knowledge. Pure automation
is unlikely to create generators, for example, imbued with
knowledge to get pass a dynamic single-sign-on page.

A New Paradigm for UI Testing The premise of this pa-
per is that we cannot forsake human insight and app-specific
knowledge. Instead, we must fuse scripted and randomized
UI testing to derive relevant test-case generators. While im-
proving and refining automated test generation techniques
is indeed a fruitful endeavor, an equally important research
thread is developing expressive ways to integrate human
knowledge into these techniques.
As an initial demonstration of this fused approach, we

present ChimpCheck, a proof-of-concept testing tool for pro-
gramming, generating, and executing property-based ran-
domized test cases for Android apps1. Our key insight is that
this tension between less relevant but automated and more
relevant but manual can be eased or perhaps even eliminated
by lifting the level of abstraction available to UI scripting.
Specifically, we make generators of UI traces available to UI
scripting, and we then discover that a brute-force random
tester can simply be expressed as a particular generator. From
a technical standpoint, ChimpCheck introduces property-
based test case generation [8] to Android by making user-
interaction event sequences (i.e., UI traces) first-class objects,
enabling test developers to express (1) properties of UI traces
that they deem to be relevant and (2) app-specific properties
that are relevant to these UI traces. From a test developer’s
perspective, ChimpCheck provides a high-level program-
ming abstraction for writing UI test scripts and deriving
app-specific test generators by integrating with advance test
generation techniques—all from a single and simple program-
ming interface. Furthermore, regardless of the underlying
generation techniques used, this integrated framework gen-
erates a unified representation of relevant test artifacts (UI
traces and generators), which effectively serves as both exe-
cutable and human-readable specifications. To summarize,
we make the following contributions:

• We formalize a core language of user-interaction event
sequences or UI traces (Section 3). This core language
captures what must be realized in a platform-specific
test runner. In ChimpCheck, the execution of UI traces
is realized by the ChimpDriver component built on top
of Android JUnit and Espresso. This formalization pro-
vides the foundation for generalizing property-based
randomized test generation for interactive apps to
other user-interactive platforms (e.g., iOS, web apps).

• Building on the formal notion of UI traces, we define
UI trace generators that lifts scripting user-interaction

1ChimpCheck is available at https://github.com/cuplv/ChimpCheck.

Figure 1. Testing a music service app requires, for example,
(1) fusing fixture-specific flows with random interrupts and
(2) asserting app-specific properties.

event sequences to scripting sets of sequences—poten-
tially infinite sets of infinite sequences, conceptually
(Section 4). This lifting enables the seamless mix of
scripted and randomized UI testing. It also captures
the platform-independent portion of ChimpCheck that
compiles to the core UI trace language. This compo-
nent is realized by building on top of ScalaCheck,
which provides a means of sampling from generators.

• Driven by case studies from real Android apps and real
reported issues, we demonstrate how ChimpCheck
enables expressing customized testing patterns in a
compact manner that direct randomized testing to pro-
duce relevant traces and targets specific kinds of bugs
(Section 5). Concretely, we show testing patterns like
interruptible sequencing, property preservation, ran-
domized UI exercising, and hybrid approaches can all
be expressed as derived generators, that is, generators
expressed in terms of the core UI trace generators.

In Section 7, we comment on how the ChimpCheck experi-
ence has motivated a vision for fused custom-scripting and
automated-generation of interactive applications.

2 Overview: A Test Developer’s View
In this section, we introduce our fused approach and Chim-
pCheck by means of an example testing scenario from the
app-test developer’s perspective. The purpose of this ex-
ample is not necessarily to show every feature of Chim-
pCheck but rather to demonstrate the need to fuse app-
specific knowledge with randomized testing.
Consider the problem of testing a music service app as

shown in Figure 1. Testing this app requires using test fix-
tures for getting past user authentication and asserting prop-
erties of the user interface specific to being a music player.
For concreteness, let us consider testing a particular user
story for the app: (1) Click on button Enter; (2) Type in
test and 1234 into the username and password text boxes,
respectively; (3) Click on button Sign in; and (4) Click on
buttons ○ and  to try out starting and stopping the music

2
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1 val signinTraces =

2 Click(R.id.enter) *>>

3 Type(R.id.username,"test") *>>

4 { Type(R.id.password,"1234") *>>

5 Click(R.id.signin) *>>

6 assert(isDisplayed("Welcome")) } <+>

7 { Type(R.id.password,"bad") *>>

8 Click(R.id.signin) *>>

9 assert(isDisplayed("Invalid Password")) }

10

11 forAll(signinTraces) {

12 trace => trace.chimpCheck()

13 }

Figure 2. ChimpCheck focuses test development to speci-
fying the skeleton of user interactions—here, the valid and
invalid sign-in flows for the music service app from Figure 1.

player, respectively. Observe that the first few steps (Steps 1–
3) describe setting up a particular test fixture to get to the
“interesting part of the app,” while the last step (Step 4) finally
gets to testing the app component of interest.
This description captures the user story that the test de-

veloper seeks to validate, but an effective test suite will likely
need more than one corresponding test case to see that that
this user-flow through the app is robust. With ChimpCheck,
the test developer describes essentially the above script, but
the script can be fused with fuzzing and properties to specify
not a single test case but rather a family of test cases. For
example, suppose the test developer wants to generate a
family of test cases where

A. The sign-in phase (Steps 1–3) is robust to interrupt events
such as screen rotations.

B. The state of ○ and  buttons in the user interface corre-
sponds in the expected manner to the internal state of an
android.media.MediaPlayer object.

A. Fusing Fixture-Specific Flows with Interrupts Test-
ing requires sampling from valid and invalid scenarios.While
invalid sign-ins are easily sampled by brute-force random
techniques, the most reasonable means of testing valid sign-
ins is to hard-code a test fixture account. While we would
like a concise way of expressing such fixtures, we also want
some way to generate variations that test the sign-in process
with interrupt events (e.g., screen rotate, app suspend and
resume) inserted at various points of the sign-in process.
Such variations are important to test because interrupts of-
ten are sources of crashes (e.g., null pointer exceptions) as
well as unexpected behaviors (e.g., characters keyed into a
text box vanishes after screen rotation). Developing such
test cases one-at-a-time (via Espresso or Robotium [5, 17])
is too time consuming, and most test-generation techniques

(via [4, 12–14]) would not be effective at finding valid sign-in
sequences.
A key contribution of ChimpCheck is that it empowers

the test developer to define the skeleton of the kind of UI
traces of interest. Concretely in Figure 2, we specify not
only a hard-coded sign-in sequence but variations of it that
include interrupt actions that an app-user could potentially
interleave with the sign-in sequence.

On line 1, the test developer defines a value signinTraces
that is a generator of sign-in traces where a trace is a se-
quence of UI events that drives the app in some way. To de-
fine signinTraces, the test developer describes essentially
the sign-in flow outlined earlier: (1) Click on button Enter
with Click(R.id.enter) on line 2; (2) Type in test with
Type(R.id.username,"test") on line 3 and type 1234with
Type(R.id.password,"1234") on line 4; and (3) Click on
button Sign in with Click(R.id.signin) on line 5. In An-
droid, the R class contains generated constants that uniquely
identify user-interface elements of an app. Like an Espresso-
test developer today, we use these identifiers to name the
user-interface elements.
The user-interaction events like Click and Type specify

an individual user action in a UI trace. These events can
be composed together with a core operator like :>> that
represents sequencing or, as on line 6, with the operator<+>
that implements a non-deterministic choice between its left
operand (lines 4–5) and its right operand (lines 7–9). Thus,
signinTraces does not represent just a single trace but a
set of traces. Here, we union two sets of traces to get some
valid sign-ins (lines 4–6) and some invalid ones (lines 7–9).
As the test developer, we can check for the correctness of
the sign-in scenarios with an assert for a welcome message
in the case of the valid sign-ins (line 6) or for an “Invalid
Password” error message in the case of the invalid ones
(line 9). The isDisplayed expressions specify properties on
the user interface that are then checked with assert.

Finally, the UI events are sequenced together with the*>>
combinator rather than the :>> operator. The *>> combina-
tor represents interruptible sequencing, that is, sequencing
with some non-deterministic insertion of interrupt events.
Because these generator expressions represent sets of traces
rather than just a single trace, this interruptible sequenc-
ing combinator*>> becomes a natural drop in for the core
sequencing operator :>>. And indeed, interruptible sequenc-
ing *>> is definable in terms of sequencing :>> and other
core operators.

ChimpCheck is built on top of ScalaCheck [16], extending
this property-based test generation library with UI traces
and integration with Android test drivers running emulators
or actual devices. From a practical standpoint, by building
on top of ScalaCheck, ChimpCheck inherits ScalaCheck’s
test generation functionalities. The signinTraces genera-
tor is then passed to a forAll call on line 12. The forAll
combinator comes directly from the ScalaCheck library that

3
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[1] Crashed after: Click(R.id.enter) :>> ClickHome

Stack trace: FATAL EXCEPTION: main, PID: 29302

java.lang.RuntimeException: Unable to start activity

...

[2] Failed assert isDisplayed("Welcome") after:

Click(R.id.enter) :>> Type(R.id.username,"test") :>>

Rotate :>> Type(R.id.password,"1234") :>>

Click(R.id.signin)

[3] Blocked after: Click(R.id.enter) :>> Rotate

Figure 3. Failed ChimpCheck test reports include the UI
trace that leads to the crash or assertion failure.

generically implements sampling from a generator. Tests
are executed by invoking the ChimpCheck library opera-
tion .chimpCheck() on UI-trace samples. Here, UI trace
samples are bound to trace and executed on line 12 (i.e.,
trace.chimpCheck()). When this operation is executed, it
triggers off a run of the app on an actual emulated Android
device and submits the trace trace (a trace sampled from
signinTraces) to an associated test driver running in tan-
dem with the app. When problems are encountered during
each run, details of crashes or assertion failures are reported
back to the user. Figure 3 shows examples of bug reports
from ChimpCheck.
An important contribution of ChimpCheck is that all re-

ports contain the actual user-interaction trace executed up
to the point of failure. In an interactive application, a stack
trace is severely limited because it contains only the internal
method calls from the callback triggered by the last user
interaction. This UI trace is essentially an executable and
concise description of the sequence of UI events that led up
to the failure. And thus, these executed UI traces are valuable
in the debugging process as they can guide the developer
in reproducing the failure and ultimately understanding the
root causes.

B. Asserting App-Specific Properties Many problems in
Android apps do not result in run-time exceptions that man-
ifest as crashes but instead lead to unexpected behaviors. It
is thus critical that the testing framework provide explicit
support for checking for app-specific properties. To check
for unexpected behaviors, the developer must write custom
test scripts and invoke specific assertions at particular points
of executing the Android app.

ChimpCheck provides explicit support for property-based
testing, which enables the test developer to simultaneously
express generators for describing relevant UI traces and asser-
tions for specifying app-specific properties to check. In Fig-
ure 4, we show another UI trace generator playStateTraces
for the same music-service app that focuses on testing that
the UI state with the ○ and  toggle is consistent with
the internal MediaPlayer object. Since the signinTraces

1 val playStateTraces =

2 Click(R.id.enter) :>> Type(R.id.username,"test") :>>

3 Type(R.id.password,"1234") :>> Click(R.id.signin) :>>

4 optional {

5 Click(R.id.play) *>> optional {

6 Sleep(Gen.choose(0,5000)) *>> Click(R.id.stop)

7 }

8 }

9

10 forAll(playStateTraces) { trace =>

11 trace chimpCheck {

12 (isClickable(R.id.play) ==> !mediaPlayerIsPlaying) /\

13 (isClickable(R.id.stop) ==> mediaPlayerIsPlaying)

14 }

15 }

Figure 4. ChimpCheck enables simultaneously describing
the trace of relevant user interactions to drive to app to a
particular state and checking properties on the resulting
state. For the music service app from Figure 1, we check that
the state of the○ (R.id.play) and (R.id.stop) toggle is
consistent with the state of the MediaPlayer object.

from Figure 2 already test the sign-in process, these tests
simply wire-in the test fixture to get past the sign-in screen
into the music player with the plain sequencing operator
:>> (lines 2–3). Past the sign-in screen, lines 4–8 implement
the optional-cycling between the ○ and  music player
states via Clicking the corresponding buttons. In this par-
ticular example, we insert a random idle of 0 to 5 seconds
(Sleep(Gen.choose(0,5000))) between a cycle. Note that
Gen.choose(0,5000) is not special to ChimpCheck; it is
part of the ScalaCheck library to generate an integer between
0 and 5,000. Finally, on lines 10–15, we execute the actual test
runs as before, but this time we supply a property expression
(lines 12–13) comprising of two implication rules that asserts
the expected consistency between the UI state and the un-
derlying MediaPlayer state. Note that while isClickable
is a built-in atomic predicate that accesses the Android run-
time view-hierarchy, mediaPlayerIsPlaying is a predicate
defined by the developer. Its implementation is simply a call
to the MediaPlayer object’s isPlaying method.

3 User-Interaction Event Sequences
This section defines a core language of UI traces to under-
stand what must be realized in a platform-specific test runner.
We first discuss the syntactic constructs that make up this
language (Section 3.1). Then, we present an operational se-
mantics that gives these declarative symbols formal meaning
by defining the interactions between UI traces and an ab-
straction of the device and app in test (Section 3.2). This
reification of implicit user interactions into explicit UI traces

4
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(Strings) s ∈ S (Integers) n ∈ Z (XY Coordinates) XY ::= (n,n) (UI Identifiers) id ::= n | s | XY ID ::= id | ∗

(App Events) a ::= Click(ID) | LongClick(ID) | Swipe(ID,XY ) | Type(ID, s) | Pinch(XY ,XY ) | Sleep(n) | Skip

(Device Events) d ::= ClickBack | ClickHome | ClickMenu | Settings | Rotate (UI Events) u ::= a | d

(UI Traces) τ ::= u | τ1 :>> τ2 | assert P | τ ? | P then τ | • (Arguments) args ::= n | s | args1, args2

(Properties) P ::= p(args) | !P | P1 ⇒ P2 | P1 ∧ P2 | P1 ∨ P2

Figure 5. A language of UI events, UI traces, and properties. UI eventsu reify user interactions, and UI traces τ reify interaction
sequences.

is crucial for fusing scripting and randomized testing. We fi-
nally discuss how an instance of these semantics are realized
for testing Android apps (Section 3.3).

3.1 A Language of UI Traces and Properties
Figure 5 shows the syntax of the language of UI traces and
properties. Basic terms of the language comprise of strings
of characters (s) and integers (n). Specific points (XY co-
ordinates) of the device display that renders the app are
expressed by a 2-tuple of integers. UI elements can be identi-
fied (ID) with an integer identifier n, the display text of the
element s , or the element’s XY coordinate. Additionally, our
language includes a UI element wild card *, which represents
a reference to some existing UI element without committing
to a specific element. Existing testing frameworks for An-
droid apps (e.g., Robotium and Espresso) enable developers
to reference particular UI elements using integer identifiers
(generated constants found in the R.id module of an An-
droid app), display text, and XY coordinates. The UI element
wild card * is the lowest level or simplest example of fusing
scripting and test-case generation (see Section 3.3 for further
details).

App events (a) represent the UI events that a user can apply
onto an app while staying within the app. Device events (d)
are interrupt events that potentially suspends and resumes
the app. UI traces τ are compositions of such events with
some richer combinators: our example earlier introduced
sequencing τ1 :>> τ2 and assertions assert P, informally
the try operator τ ? represents an attempt on τ that will
not halt the test (unless the app crashes or violates an as-
sert), P then τ represents a trace τ guarded by a property
P, while • is the unit operator. The language of properties
is a standard propositional logic with the usual interpreta-
tion. Predicates p can be either user-defined predicates (e.g.,
mediaPlayerIsPlaying in Figure 4) or built-in predicates
that maps to known test operations provided by the Android
framework (e.g., isClickable, isDisplayed). We discuss
implementation of these predicates in Section 3.3.

What is critical here is not, for example, the particular app
and device events but rather the reification of user interac-
tions into UI traces τ .

(Device States) Φ (Crash Reports) R

(Oracles)
Φ ⊢enabled u { Φ′ Φ ⊢disabled u ⊢idle Φ
Φ |=prop P Φ {mutate Φ′ Φ {crash R

(Results) ω ::= succ | crash R | fail P | block u
(Exec Events) o ::= u | • (Exec Traces) τ o ::= o | τ o1 :>> τ o2

Figure 6. Oracle judgments abstract application and device-
specific transitions.

3.2 A Semantics of UI Traces and Properties
Our main focus in this subsection is the operational seman-
tics of a transition system we call Chimp Driver, that inter-
prets UI events and submits commands to invoke the relevant
UI action. That is, these semantics give an interpretation to
reified user interactions.
Apps are complex, stateful event-driven systems. To ab-

stract over the particulars of any particular app and its com-
plex interactions with the underlying event-driven frame-
work, we define Chimp Driver in terms of several oracle
judgments (shown in Figure 6). These oracle judgments are
then realized in an implementation on a per platform ba-
sis. In Section 3.3, we discuss how we realize these oracle
judgments for Android apps. The device state Φ represents
the consolidated state of the app and the (Android) device.
The oracle judgment form Φ ⊢enabled u { Φ′ describes a
transition of the device state from Φ to Φ′ on seeing UI event
u. Recall that UI events u are primitive symbols of UI traces
and they are ultimately mapped to relevant actions on the
UI (e.g., Click(ID) to click on view with identifier ID). An
event u is said to be concrete (denoted by concrete(u)) if and
only if u does not contain an argument with the UI element
wild card * (i.e., all IDs are ids). The enabled oracle is only
defined for concrete events. The judgment Φ ⊢disabled u holds
if an eventu is not applicable in the current state Φ. Similarly,
it is only defined for concrete events. We assume that these
two judgments are mutually exclusive, formally:

∀ Φ,Φ′,u (concrete(u) ∧ Φ ⊢enabled u { Φ′ ⇒ Φ ⊬disabled u)
∀ Φ,Φ′,u (concrete(u) ∧ Φ ⊢disabled u ⇒ Φ ⊬enabled u { Φ′)

Note that Φ ⊢enabled u { Φ′ is possibly asynchronous and
imposes no constraints that in fact the action corresponding
tou has been executed. For this, we rely on the judgment ⊢idle

5
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(Chimp Driver Small-Step Transitions) ⟨τ ;Φ⟩ ↣o ⟨τ ′;Φ′⟩ ⟨τ ;Φ⟩ ↣o ⟨ω;Φ′⟩

Φ {mutate Φ′

⟨τ ;Φ⟩ ↣• ⟨τ ;Φ′⟩
(Mutate)

Φ {crash R
⟨τ ;Φ⟩ ↣• ⟨crash R;Φ⟩

(Crash)
⟨•;Φ⟩ ↣• ⟨succ;Φ⟩

(No-Op)

Φ ⊢enabled u { Φ′

⟨u;Φ⟩ ↣u ⟨•;Φ′⟩
(Enabled)

Φ ⊢disabled u
⟨u;Φ⟩ ↣• ⟨block u;Φ⟩

(Block-1)
Φ ⊢enabled [id/∗]a { Φ′

⟨a;Φ⟩ ↣[id/∗]a ⟨•;Φ′⟩
(Inferred)

∀id{Φ ⊢disabled [id/∗]a}
⟨a;Φ⟩ ↣• ⟨block a;Φ⟩

(Block-2)

⟨τ1;Φ⟩ ↣o ⟨τ ′1 ;Φ
′⟩

⟨τ1 :>> τ2;Φ⟩ ↣o ⟨τ ′1 :>> τ2;Φ
′⟩

(Seq-1)
⊢idle Φ

⟨• :>> τ2;Φ⟩ ↣• ⟨τ2;Φ⟩
(Seq-2)

⟨τ1;Φ⟩ ↣o ⟨ω;Φ′⟩ ω , succ

⟨τ1 :>> τ2;Φ⟩ ↣o ⟨ω;Φ′⟩
(Seq-3)

Φ |=prop P
⟨assert P;Φ⟩ ↣• ⟨•;Φ⟩

(Assert-Pass)
Φ ̸ |=prop P

⟨assert P;Φ⟩ ↣• ⟨fail P;Φ⟩
(Assert-Fail)

⟨τ ;Φ⟩ ↣o ⟨τ ′;Φ′⟩
⟨τ ?;Φ⟩ ↣o ⟨τ ′ ?;Φ′⟩

(Try-1)
⟨τ ;Φ⟩ ↣o ⟨ω;Φ′⟩ ω ∈ {succ, block u}

⟨τ ?;Φ⟩ ↣o ⟨•;Φ′⟩
(Try-2)

⟨τ ;Φ⟩ ↣o ⟨ω;Φ′⟩ ω ∈ {crash R, fail P}
⟨τ ?;Φ⟩ ↣o ⟨ω;Φ′⟩

(Try-3)

Φ |=prop P
⟨P then τ ;Φ⟩ ↣• ⟨τ ;Φ⟩

(Qualified)
Φ ̸ |=prop P

⟨P then τ ;Φ⟩ ↣• ⟨•;Φ⟩
(Unqualified)

(Chimp Driver Big-Step Transitions) ⟨τ ;Φ⟩ ↣∗
τ o ⟨ω;Φ′⟩

⟨τ ;Φ⟩ ↣o ⟨τ ′;Φ′⟩ ⟨τ ′;Φ′⟩ ↣∗
τ o ⟨ω;Φ′′⟩

⟨τ ;Φ⟩ ↣∗
(o :>> τ o) ⟨ω;Φ

′′⟩ Trans
⟨τ ;Φ⟩ ↣o ⟨ω;Φ′⟩
⟨τ ;Φ⟩ ↣∗

o ⟨ω;Φ′⟩ End

Figure 7. Chimp Driver is the operational semantics that defines the interpretation of UI traces τ in terms of the application
and device-specific oracle judgments in Figure 6.

Φ, that holds if the test app’s main thread has executed all
previous actions and is idling. The judgmentΦ |=prop P holds
if a given property P holds in the current state Φ. Since P
is a fragment of propositional logic, its decidability depends
on the decidability of the interpretations of predicates p.
Since the language of properties is standard propositional
logic, we omit detailed definitions. The judgment Φ {mutate
Φ′ describes a transition of the device from Φ to Φ′ that is
not a direct consequence of Chimp Driver operations. This
corresponds to background asynchronous tasks that can be
either part of the test app or other running tasks of the
device. Note that ⊢idle Φ does not imply that Φ {mutate Φ

′

is not possible but simply that the state of the main thread
appears idle. This interpretation, of course, ultimately results
in certain impreciseness in the reports extracted by Chimp
Driver (as certain race conditions are in-distinguishable), but
such is a known and expected consequence of UI testing.
Finally, Φ {crash R observes a transition of the device to a
crash state, with a crash report R (conceptually, a stack trace
from handling the event the ends in a crash).

The state of the Chimp Driver is the pair ⟨τ ;Φ⟩ comprising
of the current UI trace τ and current device state Φ. Resultsω
are terminal states of this transition system and come in four
forms: succ indicates a successful run, crash R indicates a
crash with report R, fail P indicates a failure to assert P,
and block u indicates that the Chimp Driver got stuck while
attempting to execute event u. An auxiliary output of Chimp
Driver is the actual concrete trace that was executed: τ o is

a sequencing (:>>) of primitive events u or the nullipotent
(unit) event •. It is the executed UI trace that reproduces the
failure (modulo race-conditions).
Figure 7 introduces the operational semantics of Chimp

Driver. Its small-step semantics is defined by the transitions
⟨τ ;Φ⟩ ↣o ⟨τ ′;Φ′⟩ and ⟨τ ;Φ⟩ ↣o ⟨ω;Φ′⟩ that defines inter-
mediate and terminal transitions respectively. Intuitively, τ
and Φ are inputs of the transitions, while τ ′, ω, Φ′ together
with the executed event o, are the outputs. The big-step
semantics is defined by the transition ⟨τ ;Φ⟩ ↣∗

τ o ⟨ω;Φ′⟩
that exhaustively chains together steps of the small-step
transitions. Outputs of the test run are τ o, ω, and possibly
observable (from the confines of the device framework) frag-
ments of Φ′. The following paragraphs explains the purpose
of each transition rule presented in Figure 7.

Mutate, Crash, and Unit The (Mutate) and (Crash) rules
lift mutate and crash oracle transitions into Chimp Driver
transitions. While the (Mutate) transition is transparent to
Chimp Driver, (Crash) results in a terminal crash R state.
(No-Op) transits the unit event • to a success state succ.

UI Events The four rules (Enabled), (Block-1), (Inferred),
and (Block-2) define the UI event transitions. The (Enabled)
rule defines the case when a concrete event u is successfully
inserted into the device state, while (Block-1) defines the
case when u is not enabled and the execution blocks. Note
that having block u as an output is an important diagnostic
behavior of Chimp Driver, hence this blocking behavior is
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explicitly modeled in the transition system. The next two
rules only apply to non-concrete events (containing * as
argument): the (Inferred) rule defines the case when a non-
concrete eventa is successfully concretized, duringwhich the
occurrence of ∗ in a is substituted by some UI identifier id (if
it exists) such that the instance of a is an enabled event. This
substitution is denoted by [id/∗]a. Finally the rule (Block-2)
defines the case when no enabled events can be inferred
from instantiating ∗ to any valid UI identifier (i.e., all valid
id’s are disabled), hence the transition system blocks.

UI Event Sequencing UI event sequencing (τ1 :>> τ2) is
defined by three rules: the rule (Seq-1) defines a single-step
transition on the prefix τ1 to τ ′1 . The rule (Seq-2) defines the
case when the prefix trace is a unit event •, during which the
derivation can only proceed if the device is in an idle state
(i.e., ⊢idle Φ). Finally the rule (Seq-3) defines the case when
the prefix trace ends in some failure result (ω , succ), during
which the transition system terminates with ω as the final
result. Importantly, note that the purpose of having ⊢idle Φ
as a premise of the (Seq-2) rule: this condition essentially
enforces the execution of Chimp Driver in tandem with the
test app. Particularly, this means that any event u in the
prefix sequence τ1 must have been executed before postfix τ2
is attempted. We assume that the actual execution of these
events are modeled by unspecified (Mutate) transitions and
that the state of the device eventually reaches an idle state
(i.e., ⊢idle Φ) once all pending events have been processed.

This semantics supports an intuitive, synchronous view
of UI traces. For instance, consider the following UI trace:

assert count(0) :>> Click(R.id.cnt) :>>
assert count(1) :>> Click(R.id.cnt) :>>
assert count(2) :>> . . .

In this example, count(n) is a predicate that asserts that the
UI element R.id.cnt has so far been clicked n times. No-
tice that the correctness of this UI trace is predicated on the
assumption that each Click(R.id .cnt) operation is actually
synchronous and in tandem with the test app. This is mod-
eled by the premise ⊢idle Φ of the (Seq-2) rule, and we will
discuss its implementation in the Chimp Driver for Android
in the next section. The mainstream Android testing frame-
works, such as Espresso and Robotium, have gone through
great lengths to achieve this synchronous interpretation and
publicly cite this behavior as a benefit of the frameworks.

Assertions and Try The (Assert-Pass) and (Assert-Fail)
rules handle assertions. They each consult the property or-
acles Φ |=prop P and Φ ̸ |=prop P to result in a success (•) or
failure (fail P), respectively. The try combinator (τ ?) repre-
sents an attempt to execute trace τ that should not terminate
the existing test (rule (Try-2)) unless τ results in a crash or
failed assertion (rule (Try-3)). Rule (Try-1) simply defines in-
termediate transitions. From the test developer perspective,
she writes (τ ?) when she wants to suppress the blocking

Test
Developer

Combinator
Library
(Scala)

Test Controller(
Scala, Google Protobuf,

Android Adb,
Instrumentation APIs

)

Chimp Driver( Java, Android JUnit,
Android Espresso

)
⟨τ ;Φ⟩ ↣∗

τ o ⟨ω;Φ′⟩

Develops test scripts Triages
outcome
τ o and ω

UI trace τ

Protobuf encoded τ Protobuf
encoded
τ o and ω

Figure 8. Implementing Chimp Driver for Android. Here,
we depict the development and execution of a single UI
trace τ . The Test Controller runs on the testing server, and
Chimp Driver runs on the device. Both are Android-specific
implementations.

behavior within the trace τ and just move on to the rest of
the UI sequence (if any). We discuss the motivation for this
combinator in Section 5.3.

Conditional Events The (Qualified) and (Unqualified) rul-
es handle cases of the combinator P then τ . Informally, this
combinator executes τ only if P holds (i.e., Φ |=prop P).
This combinator represents the language’s ability to express
conditional interactions depending on the device’s run-time
state that are often necessary when an app’s navigational
behavior is not static (see Section 5.4 for examples).

3.3 Implementing Chimp Driver for Android
Here, we discuss one example instance of implementing
Chimp Driver (along with the oracle judgments) abstractly
defined in Section 3.2.

ChimpCheckRun-timeArchitecture Figure 8 illustrates
the single-trace architecture of the ChimpCheck combinator
library and the test driver (Chimp Driver) for Android. Here,
we depict the scenario where the test developer programs
single UI traces directly; in Section 4.3, we describe how we
lift this architecture to sets of traces. The main motivation
of our development work here is to implement a system that
can be readily integrated with existing Android development
practices.
The combinator library of ChimpCheck is implemented

in Scala. Our reason for choosing Scala is simple and well-
justified. Firstly, Scala programs integrate well with Java
programs, hence importing dependencies from the underly-
ing Android Java projects is trivial. For instance, it would be
most convenient if the test developer can reference static con-
stants of the actual Android app in her test scripts, especially
the unique identifier constants generated for the Android
app (e.g., Click(R.id.Btn)). The second more important
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reason is Scala’s advance syntactic support for developing
domain-specific languages, particularly implicit values and
classes, case classes and object definition, extensible pattern
matching, and support for infix operators. The test controller
module of ChimpCheck essentially brokers interaction be-
tween the test scripts written by the developer and actual
runs of the test on an Android device (hardware or emulator).
It is largely implemented in Scala while leveraging existing
and actively maintained libraries: UI traces of the combina-
tor library are serialized and handed off to Chimp Driver
(see below) via Google’s Protobuf library; communications
between the test script and the Android device is managed
by the Android testing framework, particularly Adb and
the instrumentation APIs. The Chimp Driver module is the
test driver that is deployed on the Android device. It is im-
plemented as an interpreter that reads and executes the UI
traces expressed by the developer’s test script—leveraging
on the Android JUnit test runner framework and the An-
droid Espresso UI exercising framework. Most importantly,
it implements the operational semantics defined in Figure 7.

Running UI Events in Tandem with the Test App As
we mention in Section 3.2, for reliability of test scripts, the
test driver runs in tandem with the test app. To account for
this design, our operational semantics imposes the ⊢idle Φ
restriction on sequencing transitions (rule (Seq-2) that ap-
plies to • :>> τ ). Our implemenation realizes this semantics
largely thanks to the design of the Espresso testing frame-
work: primitive and concrete actions of our combinator li-
brary ultimately map to Espresso actions. For instance, the
combinator Click("Button1") maps to the following Java
code fragment that calls the Espresso library:

Espresso.onView(

ViewMatchers.withText("Button1")

).perform(click());

We need not implement any additional synchronization rou-
tines because within the call to perform, Espresso embeds a
sub-routine that blocks the control flow of the tester program
until the test appsmain UI thread is in an idle state. This work
is essentially the implementation of the ⊢idle Φ condition in
our operational semantics. Similarly, property assertions of
our operational semantics are required to be exercised at
the appropriate times, and this effect is realized by mapping
our property assertions (i.e., rules (Assert-Pass), (Assert-Fail),
(Qualified) and (Unqualified) for combinators assert P and
P then τ ) to Espresso assertions via its ViewAssertion li-
brary class.
Handling non-concrete events (i.e., events with the UI

element wild card *as arguments), however, requires some
more care. To infer relevant UI elements, we need to access
the app’s run-time view hierarchy. In order to access the view
hierarchy at the appropriate, current state of the app, our

access to the view hierarchy must be guarded by a synchro-
nization routine similar to the ones provided by the Android
Espresso library.

Inferring Relevant UI Elements from the View Hierar-
chy We describe how we realize the rules (Inferred) and
(Block-2) of the operational semantics. As noted above, im-
plementing the inference property of the * combinator relies
on accessing the test app’s current view hierarchy. The view
hierarchy is a run-time data structure that represents the cur-
rent UI layout of the Android app. With it, we can enumerate
most UI elements that are currently present in the app and
filter down to the elements that are relevant to the current UI
event combinator. For instance, for Click(∗), we want * to be
substituted with some UI element id that is displayed and is
clickable, while for Type(∗, s), we want a UI element id that
is displayed and accepts user inputs. This filtering is done by
leveraging Espresso’s ViewMatchers framework, which pro-
vides us a modular way of matching for relevant views based
on our required specifications. Our current implementation
is sound in the sense that it will infer valid UI elements for
each specific action type. However, it is not complete: certain
UI elements may not be inferred, particularly because they
do not belong in the test app’s view hierarchy. For instance,
UI elements generated by the Android framework’s dialog
library (e.g., AlertDialog) will not appear in an app’s view
hierarchy. Our current prototype will enumerate the default
UI elements found in these dialog elements, but it does not at-
tempt to extract UI elements introduced by user-customized
dialogs.

Built-in and User-Defined Predicates Primitives of the
properties of our language, particularly predicates, are im-
plemented in two forms: built-in predicates are first-class
predicates supported by the combinator library. For example,
isClickable(ID) and isDisplayed(ID) are both combina-
tors that accept ID as an argument, and they assert that
the UI element corresponding to ID is clickable and dis-
played, respectively. Our current built-in predicate library
includes the full range of tests supported by Espresso li-
brary’s ViewMatchers class and their implementations are
simply a direct mapping to the corresponding tests in the
Espresso library.

Our library also allows the test developer to define her own
predicates (e.g., mediaPlayerIsPlaying from Figure 4). The
combinator library provides a generic predicate class that
the developer can use to introduce instances of a predicate,
such as

Predicate("mediaPlayerIsPlaying")

or extend the framework with her own case classes that rep-
resent predicate combinators. The current implementation
supports predicates with any number of call-by-name argu-
ments of simple types (e.g., integers, strings). The developer
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(String Generators) GS (Integer Generators) GZ

(XY Coordinates) GXY ::= (n,n) | (GZ,GZ) (UI Identifiers) GID ::= s | n | XY | ∗ | GS | GZ | GXY

(App Events) Ga ::= Click(GID) | LongClick(GID) | Type(GID,GS) | Swipe(GID,GXY ) | Pinch(GXY ,GXY ) | Sleep(GZ)

(Trace Generators) G ::= Ga | Skip | d | G :>> G′ | G <+> G′ | G ? | P then G | repeat n G | •

Figure 9. Lifting UI traces from Figure 5 to UI trace generators.

is also required to provide Chimp Driver an operational in-
terpretation of this predicate in the form of a boolean test
method of the same name. A run-time call to this test op-
eration is realized through reflection. The use of reflection
is admittedly a possible source of errors in test suite itself
because it circumvents static checking. To partially mitigate
this problem, ChimpCheck’s run-time system has been de-
signed to fail fast and to be explicit about such errors. Explicit
language support like imposing explicit declarations of and
pre–run-time checks on user-defined predicates could be
introduced to further mitigate this problem, but such engi-
neering improvements are beyond the scope of a research
prototype.

Resuming the Test App After Suspending Device events
like ClickBack, ClickHome, ClickMenu and Settings po-
tentially map to actions that suspend the test app. Our op-
erational semantics silently assumes that the app is subse-
quently resumed so that the rest of the UI test sequence can
proceed as planned. However, implementing this behavior
in Espresso, as well as Robotium, is currently not possible
within the testing framework. Instead, to overcome this limi-
tation of the underlying testing framework, we embed in our
test controller a sub-routine that periodically polls the An-
droid device on what app is currently displayed on the fore-
ground. If this foreground app is determined to be one other
than the test app, this sub-routine simply invokes the nec-
essary commands to resume the test app. These polling and
resume commands are invoked through Android’s command-
line bridge (Adb) and this “kick back” subroutine is kept ac-
tive until the UI test trace has been completed (with either
success or failure).

4 UI Trace Generators
We now discuss lifting UI traces to UI trace generators. In
Section 4.1, we define the language of generators, by (1)
lifting from the symbols of UI traces and (2) introducing new
combinators. Then in Section 4.2, we present the semantics
of generators in the form of a transformation operation into
the domain of sets of UI traces. Finally in Section 4.3, we
present the full architecture of ChimpCheck, connecting
generators to actual test runs and to test results.

4.1 A Language of UI Trace Generators
Figure 9 introduces the core language of trace generators. In
essence, it is built on top of the language of traces (Figure 5),

particularly extending the formal language in two ways: (1)
extending primitive event arguments with generators and (2)
a richer array of combinators, particularly non-deterministic
choice and repetition. Our usual primitive terms (coordinates
GXY and UI identifiers GID) are now extended with string
generators GS and integer generators GZ. Formally, we de-
fine string and integer generators as any subset of the string
and integer domains, respectively. Hence app events Ga can
now be associated to sets of primitive values. Trace gener-
ators G consists of this extension of app events (Ga ), the
device events d , combinators lifted from UI traces (i.e., :>> ,
?, and then), as well as two new combinators; G <+> G′ ing a
non-deterministic choice between G and G′ and repeat n G
representing the repeated sequencing of instances of G for
up to n times.
Notice that the combinators optional and *>> shown

in the example in Figure 4 are not part of the core lan-
guage introduced in Figure 9. The reason is that they are
in fact derivable from combinators of the core language.
For instance, optional G can easily be derived as a non-
deterministic choice between traces from G or Skip (i.e.,
optional G def

= G <+> Skip). Derived combinators are in-
troduced to serve as syntactic sugar to help make trace gen-
erators more concise. More importantly, for more advance
generative behaviors, derived combinators provide the main
form of encapsulation and extensibility of the library. We
will introduce more such derived combinators in Section 5
and demonstrate their utility in realistic scenarios.

4.2 A Semantics of UI Trace Generators
The semantics of generators are defined by Gen[G]: given
generator G, the semantic function Gen[G] yields the (pos-
sibly infinite) set of UI traces where each trace τ is in the
concretization [9] of G (i.e., is an instance of G). Figure 10
defines the semantics of UI trace generators, particularly the
definition of Gen[G]. For app events Ga (e.g., Click(GID),
Type(GID,GS)), the semantic function Gen[Ga] simply de-
fines the set of app event instances with arguments drawn
from the respective primitive generator domains (e.g., GID ,
GS). For Skip and device eventsd , Gen[Skip] and Gen[d] are
simply singleton sets. Similar to primitive app events, gener-
ators of the combinators :>> , ? and then define the sets of
their respective combinators. For non-deterministic choice
G1 <+> G2, Gen[G1 <+> G2] defines the union of Gen[G1]
and Gen[G2]. Intuitively, this means that its concrete traces
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Gen[Click(GID)] def
= {Click(id) | id ∈ Gen[GID]}

Gen[LongClick(GID)] def
= {LongClick(id) | id ∈ Gen[GID]}

Gen[Type(GID,GS)] def
=

{
Type(id, s) id ∈ Gen[GID] ∧

s ∈ Gen[GS]

}
Gen[Swipe(GID,GXY )] def

=

{
Swipe(id, l) id ∈ Gen[GID] ∧

l ∈ Gen[GXY ]

}
Gen[Pinch(GXY

1 ,G
XY
2 )] def

=

{
Pinch(l1, l2)

l1 ∈ Gen[GXY
1 ] ∧

l2 ∈ Gen[GXY
2 ]

}
Gen[Sleep(GZ)] def

= {Sleep(n) | n ∈ Gen[GZ]}
Gen[Skip] def

= {Skip}
Gen[d] def

= {d}

Gen[G1 :>> G2]
def
=

{
τ1 :>> τ2

τ1 ∈ Gen[G1] ∧
τ2 ∈ Gen[G2]

}
Gen[G ?] def

= {τ ? | τ ∈ Gen[G]}
Gen[P then G] def

= {P then τ | τ ∈ Gen[G]}
Gen[G1 <+> G2]

def
= Gen[G1] ∪ Gen[G2]

Gen[repeat n G] def
=

{
:>>mi=1τi

τi ∈ Gen[G] ∧
0 < m ≤ n

}
Figure 10. Semantics of UI trace generators. Generators are
interpreted as sets of UI traces that they generate.

can be drawn from either from concrete traces in G1 or G2.
Finally, Gen[repeat n G] defines the set containing trace se-
quences of τi of lengthm, wherem is between zero and n and
each τi are concrete instances of G (denoted by :>>mi=1τi ).

A Trace Combinator? Or A Generator? One reasonable
question that likely arises by now is the following, “Why
do the combinators for non-deterministic choice ( <+> ) and
repetition (repeat) not have counterparts in the language of
UI trace (Figure 5)?” No doubt for uniformity, it appears very
tempting to instead define all the combinators in the lan-
guage of UI traces and then the simply lifting all constructs
of the language into generators (as done for :>> , ? and
then and app events). Doing so however would introduce
some amount of semantic redundancy. For instance, hav-
ing τ1 <+> τ2 as a UI trace combinator would introduce the
following two rules in our operational semantics of Chimp
Driver (Figure 7):

⟨τ1 <+> τ2;Φ⟩ ↣• ⟨τ1;Φ⟩
(Left)

⟨τ1 <+> τ2;Φ⟩ ↣• ⟨τ2;Φ⟩
(Right)

While these rules do offer a richer “dynamic” (from the per-
spective of the single-trace semantics) form of non-determin-
istic choice, they provide no additional expressivity to the
overall testing framework since the non-deterministic choice
behavior is already modeled by the generator semantics (Fig-
ure 10). Similarly, the repetition (repeat) generator faces
the same semantic redundancy if it is introduced as a trace
combinator. But conversely, are the UI trace combinators
(i.e.,u, :>> , •, assert, ? and then) that we have introduced
truly necessarily part of that language? In fact, they each
are indeed necessary: primitive UI events u directly interacts
with the device state Φ hence must inevitably be part of the
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Report
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Figure 11.Architecture of ChimpCheck test generation. The
test developer focuses on writing ChimpCheck UI trace gen-
erator scripts. At run time, the underlying ScalaCheck library
samples UI traces from these UI trace generators. The test
coordinator issues each UI trace sample to a unique Android
emulator, which independently exercises an instance of the
test app as dictated by the UI trace. The outcome of execut-
ing each UI trace is, in the end, reported back to the test
developer.

UI trace language. We need a fundamental way to express
sequences of events, hence we have τ1 :>> τ2 with • as the
unit operator. Finally, notice that the remaining combina-
tors each in its own way explicitly interacts with the device
state: assert P conducts a run-time test P on the device,
what prefix of τ ? to be executed can only be determined at
run-time by inspecting the device state Φ, and deciding to
execute τ in P then τ depends on the run-time test P. In
essence, symbols of the UI trace language should necessarily
require run-time interpretation from the device or app state,
while the language of generators may contain combinators
that can be “statically compiled” away. This strategy of lan-
guage and semantics minimization between traces and their
generators would continue to make sense as ChimpCheck
gets extended.

4.3 Implementing UI Trace Generators
Figure 11 illustrates the entire test generation and execution
architecture of ChimpCheck. The test developer now writes
UI trace generators rather than a single UI trace (as natively
in Espresso or Robotium). To generate concrete instances
of traces from these generators, we have implemented the
generators on top of the ScalaCheck [16] library—Scala’s
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active implementation of property-based test generation [8].
Since the testing framework now potentially needs to man-
age multiple test executions, the ChimpCheck library in-
cludes a coordinator library (called Mission Control) that
coordinates the test executions: it coordinates the testing
efforts across multiple instances of the test controller and
Android devices (physical or emulated), scheduling test runs
of traces τi across the test execution pool, and consolidating
concretely executed trace τ oi and test result ωi from exe-
cuting trace τi . This coordinator library is developed with
Scala’s high-performance Akka actor library.

Initializing Device State Our testing framework archi-
tecture assumes that every run of the new test ⟨τ ;Φ⟩ ↣∗

τ o

⟨ω;Φ′⟩, is done starting from some initial app state Φ. To
achieve this, the default schedule loop of the coordinator
library conservatively re-installs the test app onto the device
instance on which the test is to be executed. In general, this
re-installation is the only way to fully guarantee that the
test app has been started from a fresh state However, this de-
fault re-install routine can be omitted at the test developer’s
discretion. Similarly, the developer can specify if devices
(for emulators only) should be re-initialized before starting
each test run. Regardless of these initialization choices, the
developer is expected to treat each test run in isolation, and
a single UI trace should be defined to be self-contained, for
instance, including the encoding of time delays for instru-
menting the invocation of a specific time-idle based behavior
in the app.
Apart from these global configurations, explicit support

to control these initialization conditions are out-of-scope of
the current prototype, though we postulate possible future
work that involve extending the language and combinator
library to allow the developer to specify these initialization
conditions as first-class expressions. This would allow the
developer to define more concise initialization sequences
to stress test her app’s ability to handling unfavorable app
start-up conditions.

UI Trace Generators with ScalaCheck The ChimpCheck
Generator library is implemented on top of the ScalaCheck
Library, an implementation of property-based test genera-
tion, QuickCheck [8]. This design choice has proven to be
extremely beneficial for our current and anticipated future
development efforts of ChimpCheck: rather than develop-
ing randomized test generation from scratch, we leverage
on ScalaCheck’s extensive library support for generating
primitive types (e.g., strings and integers denoted by GS
and GZ, respectively). This library support includes many
utility functions from generating arbitrary values of the re-
spective domains, to uniform/weighted choosing operations.
The ScalaCheck library is also highly extensible, allowing
developers to extend these functionalities to user-defined
algebraic datatypes (e.g., trees, heaps) and in our case, extend-
ing test generation functionalities to UI trace combinators.

This approach not only offers the ChimpCheck developer
compatible access to ScalaCheck library of combinators, it
makes ChimpCheck reasonably simple to maintain and in-
crementally developed.
As highlighted earlier in Figures 2 and 4, to generate

and execute UI trace test cases, ChimpCheck relies on the
ScalaCheck library combinator forAll to sample and instan-
tiate concrete UI traces, while our chimpCheck combinator
embeds the sub-routines that coordinates execution of the
tests (as illustrated in Figure 11). The following illustrates
the general form of the Scala code the developer would write
to achieve this:

forAll(G: Gen[EventTrace]) { τi: EventTrace =>

τi chimpCheck { P: Prop }

}

UI traces τi are objects of class EventTrace and are sam-
pled and instantiated by the forAll combinator. The test
operation is

τi chimpCheck { P: Prop }

where P is the app property to be tested at the app state
obtained by exercising the app with τi . The chimpCheck
combinator implements the entire test routine, formally

⟨τi :>> assert P;Φ⟩ ↣∗
τ o
i
⟨ωi ;Φ′⟩ .

In addition to ScalaCheck’s standard output on total number
of tests passed/failed, the ChimpCheck libraries generate log
streams containing the information for reproducing failures,
namely the concrete executed trace τ oi and test result ωi .

5 Case Studies: Customized Test Patterns
In this section, we demonstrate the utility of UI trace gener-
ators as a higher-order combinator library. We present four
novel ways that a generator derived from the core language
is applied to address a specific issue in Android app test-
ing. For each, we discuss real, third-party reported issues
in open-source apps that motivate the conception of this
generator.

5.1 Exceptions on Resume
A common problem in Android apps is the failure to han-
dle suspend and resume operations. These failures are most
commonly exhibited as app crashes caused by (1) illegal state
exceptions, when an app’s suspend/resume routines do not
make correct assumptions on a subcomponent’s life-cycle
state, or (2) as null pointer exceptions, typically when an app’s
suspend/resume routines wrongly assumes the availability
of certain object resources that did not survive the suspend
operation or was not explicitly restored during the resume
operation. From a software testing perspective, the Android
app’s test suite should include sufficient test cases that ex-
ercises its suspend/resume routines. As illustrated in our
example in Section 2, Android apps are stateful event-based
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G1 *>>m G2
def
= G1 :>> repeatm Gintr :>> G2 where

Gintr
def
= ClickHome <+> ClickMenu <+> Settings <+> Rotate

Figure 12. The Interruptible Sequencing Combinator is de-
fined in terms of the ChimpCheck core language. It sequences
G1 and G2 but allows a finite number (m) of occurrences of
interrupt events (Gintr) in between.

systems, so conducting suspend and resume operations at
different points (states) of an Android may result in entirely
different outcomes. Test cases must provide coverage for
suspend/resume at crucial points of the test app (e.g., login
pages, while performng long background operations).

The Interruptible Sequencing Combinator To simplify
the development of trace generator sequences that tests the
app’s ability to handle interrupt events, we derive a specific
combinator similar to sequencing but additionally inserts
suspend and resume events in a non-deterministic manner.
Figure 12 shows how the Interruptible Sequencing Com-

binator is derived from the repetition (repeat) combina-
tor: G1 *>>

m G2 is defined as sequencing where we allow
repeatm Gintr to be inserted between G1 and G2. The in-
terrupt generator Gintr denotes the non-deterministic choice
between the various interrupt device events that triggers the
suspending (and resuming) of the app. The combinator takes
one parameterm, which is the maximum number of times we
allow interrupt events to occur. Our current implementation
treats this parameter optionally and defaults it to 3, as we
have observed that in practice, such app crashes are typically
reproducible within one or two consecutive interrupt events.

Case Studies We have observed numerous numbers of
issue tracker cases on open Android GitHub projects that
report failures that are exactly caused by this issue (illegal
state exceptions or null pointer exceptions on app resume).
One example is found in Tower2, which is a popular open-
source mobile ground control station app for UAV drones.
A past issue3 of the Tower app documents a null-pointer
exception that occurs when the user suspended and resumed
the app from the app’s main map interface. This failure is
caused by a wrong assumption that references to the map
UI display fragment remain intact after the suspend/resume
cycle.
Another example worth noting is the Nextcloud open-

source Android app4, which provides rich and securedmobile
access to data (documents, calendars, contacts, etc) stored (by
paid users) in the company’s proprietary cloud data storage
service. A recent issue5 reports a crash of the app during
2DroidPlanner. Tower. https://github.com/DroidPlanner/Tower.
3Fredia Huya-Kouadio. FlightActivity NPE in onResume #1036. https://
github.com/DroidPlanner/Tower/issues/1036. September 2, 2014.
4Nextcloud. https://github.com/nextcloud/android.
5Andy Scherzinger. FolderPicker - App crashes while rotating device #448.
https://github.com/nextcloud/android/issues/448. December 13, 2016.

G preserves P def
= assert P :>> G :>> assert P

Figure 13. The Property-Preservation Combinator is defined
by asserting a property P before and after a given genera-
tor G, and it tests if the property is preserved by UI traces
sampled from G.

a file selection routine when the user re-orients the app
from portrait to landscape. This crash is the result of a null-
pointer exception on a reference to the file selector UI object
(OCFileListFragment), caused by the failure of the app’s
resume operation to anticipate the destruction of the object
after suspension.
We have developed test generators for Nextcloud and re-

produced this crash (#448) with the following trace generator
(with the login sequence omitted for simplicity):

⟨Login Sequence⟩ *>>
LongClick(R.id.linearlayout) *>>
Click("Move") *>> •

Note that other recent work [1] has also identified inject-
ing interrupt events as being critical to testing apps. While
our (current) implementation of *>> is less sophisticated
than Adamsen et al. [1], the advantage of the ChimpCheck
approach is that*>> is simply a derived combinator that can
be placed alongside other scripted pieces (e.g., for the login
sequence). The *>> provides a basic demonstration of how
more complex test generators that address real app problems
can be implemented in ChimpCheck.

5.2 Preserving Properties
An app’s proper functionality may very frequently depend
on its ability to preserve important properties across certain
state transitions that it is subjected to. For instance, it would
be a very visible defect if key navigational buttons of the
app vanish after user suspended and resumed the app. While
this issue seems very similar to the previous (i.e., a failure
caused by interrupt events), the distinction we consider here
is that the issue does not result in app crashes. Hence, simply
testing against interrupt events (via the *>> combinator)
may not detect any faults. Since the decision of which UI
elements should “survive” interrupt events is app specific, we
cannot to fully-automate testing such property but instead
derive customizable generators that allow the test developer
to program such tests more effectively and efficiently.

The Property-PreservationCombinator Rather thanwrit-
ing boiler-plate assertions before and after specific events,
we derive a generator that expresses the test sequences in a
more general manner.

Figure 13 defines this generator. The Property-Preservation
Combinator G preserves P asserts the (meta) property that
P is preserved across any trace instance of G. For example,
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we can assert that "Button1" remains clickable across inter-
rupt events (i.e., after the app resumes):

Gintr preserves isClickable("Button1") where

Gintr
def
= ClickHome <+> ClickMenu <+> Settings <+> Rotate .

Case Studies We have observed many instances of this
“vanishing UI element” scenario described above. Just to
name a few popular apps in this list: Pokemap6, a supporting
map app for the popular Pokémon Go game; c:geo7, a pop-
ular Geocaching app with 1M-5M installs from the Google
Play Store as of August 23, 2017; and Tusky8, an Android
client for a popular social-media channel Mastodon. Each
app at some point of its active development contained a bug
related to our given scenario. For Pokemap, issue #2029 de-
scribes a text display notifying your success in locating a
Pokémon permanently disappears after screen rotation. For
CGeo, issue #242410 describes an opened download progress
dialog is wrongly dismissed after screen rotation, leaving
the user uncertain about the download progress. For Tusky,
issue #4511 states that replies typed into text inputs are not
retained after screen rotation.

We found that we could reproduce issue #45 in Tusky with
the following simple generator:

. . . :>> Type(R.id.edit_area,"Hi") :>>
Rotate preserves hasText(R.id.edit_area,"Hi")

5.3 Integrating Randomized UI Testing
While writing custom test scripts is often necessary for
achieving the highest possible test coverage, black-box tech-
niques like pure randomized UI testing [6] and model learn-
ing techniques [4, 12] are nonetheless important and an
effective means in practice for providing basic test cover-
age. Industry-standard Android testing frameworks (e.g.,
Espresso and Robotium) provides little (or no) support for
integrating with these test generation techniques, which
unfortunately forces the test developer to use the various
possible testing approaches in isolation.

The Monkey Combinators To demonstrate how black-
box techniques can be integrated into our combinator library,
here we derive two generators monkey and relevantMonkey
from existing combinators.

6Omkar Moghe. Pokemap. https://github.com/omkarmoghe/Pokemap.
7 c:geo. https://github.com/cgeo/cgeo.
8Andrew Dawson. Tusky. https://github.com/Vavassor/Tusky.
9Andy Cervantes. Flipping Screen Orientation Issue - Pokemon Found Stops
Being Displayed #202. https://github.com/omkarmoghe/Pokemap/issues/
202. July 26, 2016.
10Ondřej Kunc. Download from map is dismissed by rotate #2424. https:
//github.com/cgeo/cgeo/issues/2424. January 22, 2013.
11Julien Deswaef. When writing a reply, text disappears if app switches
from portait to landscape #45. https://github.com/Vavassor/Tusky/issues/45.
April 2, 2017.

monkey n
def
= repeat n (GMs <+> Gintr where

GMs
def
= Click(GXY ) ? <+> LongClick(GXY ) ?
<+> Type(GXY ,GS) ? <+> Swipe(GXY ,GXY ) ?
<+> Pinch(GXY ,GXY ) ? <+> Sleep(GZ) ?

relevantMonkey n
def
= repeat n (GGs <+> GIntr) where

GGs
def
= Click(∗) ? <+> LongClick(∗) ?
<+> Type(∗,GS) ? <+> Swipe(∗,GXY ) ?
<+> Pinch(GXY ,GXY ) ? <+> Sleep(GZ) ?

Gintr
def
= ClickHome <+> ClickMenu <+> Settings <+> Rotate

Figure 14. Two implementations of theMonkey Combinator.
The first (monkey) randomly applies user events on random
XY coordinates on a device, mimicking exactly what the
Android UI/Application Exerciser Monkey does. The next
(relevantMonkey) is just slightly smarter—applying more
relevant actions by accessing the device’s run-time view
hierarchy and inferring relevant user events.

Figure 14 shows two implementations of generators for
random UI event sequences. The first, called the monkey com-
binator, is similar to Android’s UI Exerciser Monkey [6] in
that it generates random UI events applied to random loca-
tions on the device screen. The second combinator, called the
relevantMonkey, generates random but more relevant UI
events by relying on ChimpCheck’s primitive * combinator
to infer relevant interactions from the app’s run-time view
hierarchy. Having randomized test generators like these as
combinators provides the developer with a natural program-
ming interface to integrate these approaches with her own
custom scripts. For instance, revisiting our example in Sec-
tion 2 (or similarly for the Nextcloud app in Section 5.1),
getting pass a login page is the hurdle to using a brute-force
randomized testing, but we can implement the necessary
traces to the media pages by simply the following generator:

Click(R.id.enter) :>>
Type(R.id.username,"test") :>>
Type(R.id.password,"1234") :>>
Click(R.id.signin) :>> relevantMonkey 50

This generator simply applies the relevant monkey combi-
nator (arbitrarily for 50 steps) after the login sequence—thus
generating multiple UI traces that randomly exercises the
app functionalities after applying the login sequence fixture.

Case Studies Our preliminary studies have found that
even for simple apps (e.g., Kistenstapeln12, a score tracker
for crate stacking game, and Contraction Timer13, a timer

12Fachschaft Informatik. Kistenstapeln-Android. https://github.com/d120/
Kistenstapeln-Android.
13Ian Lake. Contraction Timer. https://github.com/ianhanniballake/
ContractionTimer.
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Table 1. We applied ChimpCheck’s relevantMonkey and
the Android UI Exerciser Monkey to try to witness a known
issue (#1) in Kistenstapleln-Android. We ran each exerciser
10 times for up to 5,000 UI events. The average number of
steps is taken only over successful attempts in witnessing
the bug.

UI Exerciser Attempts Witnessed Steps to Bug

(n) (n) (frac) (average n)

relevantMonkey 10 10 1 289
Android Monkey 10 5 0.5 3177

that tracks and stores contraction data), we require gener-
ating numerous UI event sequences from Android Monkey
before we get acceptable coverage results. Preliminary exper-
iments using the relevant monkey combinator (that accesses
the view hierarchy) have shown promising results shown
in Table 1. For the Kistenstapeln app, the relevant-monkey
combinator witnesses the bug from issue #114) in an order of
magnitude less generated events than the Android UI Exer-
ciser Monkey. Note that Android Monkey failed to witness
the bug in under 5,000 events in half of the attempts.
We also note that these promising preliminary results

are achieved with a simplistic, light-weight implementation:
exactly the code in Figure 14, together with less than 200
lines of library code that implements view hierarchy access
for the * combinator, developed within a span of two days,
including time to learn the Android Espresso framework.

5.4 Injecting Custom Generators
In Section 5.3, we demonstrated how random UI testing tech-
niques can be added to ChimpCheck as black-box generators.
However in practice, many situations require more tightly
coupled interactions between the custom scripts and the
black-box techniques. For instance, many modern Android
apps can contain features requiring user authentication with
her account and such authentication procedures are often re-
quested in an on-demand manner (only when user requests
contents that requires two-factor authentication). Such dy-
namic behaviors makes it difficult or impractical to simply
hard-code and prepend a custom login script as we did in
the previous sections.

TheGorillaCombinator From the relevantMonkey com-
binator, we refine it into the gorilla combinator with the
ability to inject customized scripting logic into randomized
testing.

Figure 15 shows the implementation of the gorilla com-
binator. It accepts an additional argument: a generator G that
is prepended before every randomized event (GMs <+> Gintr,

14Tobias Neidig. Crash on timer-event on other fragment #1. https://github.
com/d120/Kistenstapeln-Android/issues/1. March 19, 2015.

gorilla n G def
= repeat n (G :>> (GMs <+> Gintr) where

GMs
def
= Click(GXY ) ? <+> LongClick(GXY ) ?
<+> Type(GXY ,GS) ? <+> Swipe(GXY ,GXY ) ?
<+> Pinch(GXY ,GXY ) ? <+> Sleep(GZ) ?

Gintr
def
= ClickHome <+> ClickMenu <+> Settings <+> Rotate

Figure 15. The Gorilla Combinator enriches the monkey
combinators with an additional generator parameter G. This
generator is injected before every randomly sampled traces
from GMs or Gintr.

hence allowing the developer to “inject” custom directives to
handle situations where a purely randomized technique may
be mostly ineffective. For example, we can define a simple
combinator that generates traces that randomly explores the
app unless a login page is displayed. When the login page
is displayed, it will append a hard-coded login sequence to
effectively proceed through the login page:

val login = Click("Login") :>>
Type("User","test") :>>
Type("Password","1234") :>> Click("Sign-in")

gorilla 50 (isDisplayed("Login") then login)

Case Studies An example of a simple app with an authen-
tication page is OppiaMobile15, a mobile learning app. We
have developed test generators using the refined gorilla
with a hard-coded login directive (as described above). In
sample runs, we observed that the gorilla occasionally logs
out and logs back in between unauthenticated and authen-
ticated portions of the page. Though no bugs were found,
such log in/out loops are very rarely tested and potentially
hides defects.

This app also contains an information, modal dialog that is
unfavorable for randomized testing techniques. In particular,
the only way to navigate through this page is a lengthly
scroll to the end of the UI view and hitting a button labeled
"Select SD Card". Attempts at random exercising often
ends up stuck in this problematic page. To help the gorilla
function more effectively, we injected a non-deterministic
choice between the only two possible actions when this
dialog page is visible: (1) proceed forward by scrolling down
and click the button or (2) hit the device back navigation
button. In Figure 16, we show the few lines that implements
this injection of this application-specific way of getting past
a particular modal dialog.
Finally, another application of gorilla is that from An-

droid 6.0 (API level 23) onwards, device permissions (e.g., SD
card usage, camera, location) are granted at run-time, as op-
posed to on installation. The app developer is free to decide
15Digital Campus. OppiaMobile Learning. https://github.com/
DigitalCampus/oppia-mobile-android.
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1 gorilla 100 {

2 isDisplayed("SD Card Access Framework") then {

3 { Swipe(R.id.scroll,Down) :>>

4 Click("Select SD Card") } <+> ClickBack

5 }

6 }

Figure 16. Getting past a modal dialog in the Oppi-
aMobile app. This ChimpCheck generator says to do
random UI exercising unless the app is showing the
"SD Card Access Framework" page. In this case, inject the
specific action to either scroll to the bottom of the page and
click a specific button to continue or click the back button.

how these dynamic permissions are requested. Typically, an
app will use a modal dialog box with an acknowledgment
and reject button. Dealing with these dynamic permissions
is straight-forward with the gorilla combinator using code,
for example, similar to Figure 16.

6 Related Work
Research in test-case generation for Android apps has largely
focused on developing techniques and algorithms to auto-
mate testing while providing better code coverage than the
industrial baseline, Android Monkey [6]. Evodroid [13] ex-
plores the adaption of evolutionary testing methods [7] to
Android apps. MobiGuitar [4] is a testing tool-chain that
automatically reverse-engineers state-machine navigation
models from Android apps to generate test cases from these
models. It leverages a model-learning technique for Android
apps called Android Ripper [3], which uses a stateful en-
hancement of event-flow graphs [15] to handle stateful An-
droid apps. Dynodroid [12] also develops a model-based ap-
proach to generate event sequences. Similar to our approach
in inferring relevant UI events, Dynodroid uses the app’s
view hierarchy to observe relevant actions. Sapienz [14] uses
a multi-objective search-based technique to generate test
cases with the aim of maximizing/minimizing several objec-
tive functions key to Android testing. Techniques described
in this work has been successfully applied in an industrial
strength tool, Majicke [11].

The works mentioned above each offer a steady advance-
ment of automatic test-case generation. Given this focus of
what’s automatable, a perhaps unwitting result has been
much less attention on the issue of programmability and
customizability that we identify in this paper. To use these
automatic test-case generation approaches, a test developer
often needs to work around the app-specific concerns in awk-
ward ways. For instance, to deal with login screens, Amal-
fitano et al. [3, 4] assumes that the test developer provides
a set of “initial” states of the app that are past the login
screens, which thus allows the authors to focus only on the
automatable aspects of the app. The test developer would

then have to rely on other techniques (presumably scripting-
based techniques) to exercise the app to these “initial” states.
ChimpCheck offers the potential to fuse these automatic
test-case generation techniques with scripted, app-specific
behavior. Another example of this perhaps unwitting result
can be found in Mao et al. [14]. This approach describes a
test-case generation strategy that is inspired by genetic mu-
tation. Though the “genes” can in principle be customized for
specific apps, the authors chose to focus their experiments
only on a set of genes that are known to be generic across all
apps. Much less attention was given to the programmability
or customizability question to, for example, empower the test
developer to express her own customized genes. In the end,
studies [2, 4, 12] on the saturation and coverage of automatic
test-case generation for Android apps provide evidence for
the ChimpClick claim—the need for human insight and app-
specific knowledge to generate not just traces but relevant
traces.
The most closely related work to ChimpCheck are a few

pieces that consider some aspect of programmability in gen-
erating UI traces. Adamsen et al. [1] introduces a method-
ology that enriches existing test suites (Robotium scripts)
by systematically injecting interrupt events (e.g., rotate, sus-
pend/resume app) into key locations of test scripts to intro-
duce what the authors refer to as adverse conditions that are
responsible for many failures in real apps. Comparing to our
approach, this work can be viewed as a more sophisticated
implementation of the interruptible sequencing operator
*>> injected into the existing test suite in a fixed manner
(replacing all :>>’s with*>> ). Our approach is complemen-
tary in that ChimpCheck provides the opportunity to fuse
interruptible sequencing with other test-generation tech-
niques in a user-specified manner, and we might adapt their
approaches for systematic exploration of injected events and
failure minimization to improve ChimpCheck’s library com-
binators. Hao et al. [10] introduces a programmable frame-
work for building dynamic analyses for mobile apps. A key
component of this work is a programmable Java library for
developing customized variants of random UI exercisers sim-
ilar to the Android Monkey. Our work shares similar moti-
vations but differs in that we provide a richer programmable
interface (in the form of a combinator library), while their
work provides stronger support for injecting code and logic
for dynamic analysis.
Our approach leverages ideas from QuickCheck [8], a

property-based test-generation framework for the functional
programming language Haskell. Our implementation is built
on top of the ScalaCheck library [16], which Scala’s imple-
mentation of the QuickCheck test framework. A novel con-
tribution of ChimpCheck over QuickCheck and ScalaCheck
is the reification of user interactions as first-class objects
(UI traces) so that UI trace generators can be defined and
sampled from the ScalaCheck library.
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7 Towards a Generalized Framework for
Fusing Scripting and Generation

In this section, we discuss our vision of a general framework
for creating effective UI tests by fusing scripting and genera-
tion. While the development of ChimpCheck has provided
the first steps to this end, here we discuss steps that would
take this approach of fusing scripting and generation to the
next level. Specifically, we envision augmentations in two
incremental fronts:

1. Integrating scripting with state-of-the-art automated
test-generation techniques (Section 7.1), beyond pure
randomized (monkey) exercising.

2. Reifying test input domains beyond just user interac-
tion sequences (UI traces) (Section 7.2)

From lessons learnt from the conception and development
ChimpCheck, we identify and distill key design principles
and challenges that we need to overcome. Particularly, the
key challenge for (1) is to formally define the semantics of
interaction between the scripts that the developer writes and
each specific test generation technique in which we fuse.
For (2), the key challenges are developing general means of
expressing multiple input domains (not only UI traces) and
defining the means in which these input streams interact
with one another. Generalizing reified input domains also
introduces an opportunity for exploring an augmentation
on state-of-the-art test generation techniques: generalizing
them for generating not just UI traces but also other input
sequences (e.g., GPS location updates, event-based broad-
casts from other apps). In the following subsections, we will
discuss ideas on how these challenges can be addressed.

7.1 Generalizing the Integration with
State-of-the-Art Automated Generators

We now describe a design principle that will enable us to fuse
ChimpCheck scripts withmore advanced forms of automated
test generation. Figure 17 illustrates two ways in which we
have fused scripting and test generation in this paper. The
top most diagram illustrates this interaction implemented
by the monkey combinator (Section 5.3, Figure 14). In the di-
agram, we represent fragments of the UI traces from scripts
written by the developer (G1 and G2) with rounded-boxes,
while the fragment from a randomized exercising technique
(monkey N) is represented with a cloud. Edges represent or-
dering between the UI trace fragments, as dictated by the
:>> combinator. This diagram shows a coarse-grained inter-
action between user scripts and test generator. Particularly,
even though the developer can fuse the two techniques, the
expression monkey N relinquishes all control to the random-
ized exercising technique, other than the parameter N that
dictates the maximum length of randomized steps. In general,
this composition can be viewed as a “uni-directional” interac-
tion, which enables a script to call the automated generator
at a specific point of the UI trace.

(I) Coarse-grained Fusion

(II) Fine-grained Fusion

Figure 17. Two ways of using scripting and automated
test generation: (I) the monkey combinator can be invoked
within a script, but no user interaction is permitted while
random exercising is done, hence coarse-grained fusion; (II)
the gorilla combinator allows the test developer to inject
human directives into random exercising, hence it is a higher-
order combinator enabling finer-grained fusion.

Fine-Grained Fusion The gorilla (Section 5.4, Figure 15)
realizes a more fine-grained interaction: shown in the lower
diagram of Figure 17, the gorilla combinator refines the
monkey combinator by further allowing the test developer
to inject directives that supersedes randomized exercising. In
this “bi-directional” interaction, the test developer can inter-
act with the automated test generator by providing a script
that is injected into the randomized exercising routine. In
this instance, the developer injects P then Gh , customizing
the randomized exercising by stating exceptional conditions
(P) in which a script (Gh ) should be used instead of pure
randomized exercising. As demonstrated in Section 5.4, this
combinator enhances randomized exercising by allowing
the developer to guide the test generation process when
needed. The key insight here is that the higher-order nature
of the combinator library (a generator can be a parameter of
another generator gorilla) has enabled us to express this
fine-grained interaction that alternates control between user-
directed scripts and the randomized exercising technique.

Generalization From a broader perspective, the gorilla
combinator is but just an instance of a higher-order auto-
mated generator, specifically for randomized exercising. We
wish to apply this idea to other state-of-the-art automated
test-generation techniques (e.g., model-based [3, 4], evolu-
tionary testing [13], and search-based [14]). This work would
provide a more generalized way for fusing automated test-
generation techniques into the combinator library. Figure 18
illustrates this idea in the form of a combinator autoGen.
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Figure 18. A higher-order combinator for generalized auto-
mated generators. Parameters T is an expression that repre-
sents an instance of some automated test-generation tech-
nique, while Gh is the higher-order generator representing
human directives injected into T . Finally S specifies the
injection strategy to be used.

Similar to the gorilla combinator, it is a higher-order com-
binator that accepts a generator Gh . This generator repre-
sents the human directives to be injected into some instance
of an automated generator, which is associated with this call
to autoGen. To specify the instance of an automated genera-
tor, autoGen takes in another parameter T , which is a new
form of expression that defines automated test generators.
The gorilla combinator can be refined as an instance of such
an expression (i.e., gorilla N).
Parameter T and Gh do not yet completely define this

generalization. Our definition of gorilla N earlier in this
paper implements a very specific strategy for injecting Gh
into the randomized exercising technique. Particularly, it
treats the semantics of randomized exercising as a transition
system that appends a new user action (e.g., click(ID)) to a
UI trace at each derivation step. The strategy of injection is
simply to inject Gh between every step. This strategy, we call
step-wise interleaving, is effective for fusing with randomized
exercising but not necessarily for other techniques. Hence, in
order to enable more generality, we might need to introduce
a third parameter S that defines the strategy of injection.
We anticipate that defining S is the main challenge of

implementing this design principle because it is the key in-
strument that defines the semantics of the fusion between
automated generator and scripting. The applicability of a
strategy S to a generator technique T would in general de-
pend on T ’s fulfillment of certain properties (e.g., step-wise
interleaving strategy will require T to be a well-defined tran-
sition system). Developing a set of interfaces that implements
this generalizationwill be the key engineering challenge. Our
initial observation suggests that similar to randomized ex-
ercising, model-based techniques can exploit the step-wise
interleaving strategy, though more investigation would be

Figure 19. Reifying user interactions into UI traces—as done
in the current ChimpCheck prototype.

required to ascertain if that would be the most effective strat-
egy. Search-based techniques, on the other hand, appear to
permit a more sophisticated and specialized strategy: we
can treat Gh as a customized set of UI traces in which we
want the technique’s multi-objective search algorithm [14]
to consider as basic UI trace fragments that it uses to gen-
erate test sequences. This essentially allows the developer
to interact with the search algorithm—by fusing her own
fragments of user interaction sequences (expressed by Gh )
into the search-based test generation technique.

Such “higher-orderness” tempts the obvious question: what
happens if we inject an automated generator into another?
It is unclear to us, at this moment, whether such interactions
are useful or if they should be avoided. Developing an un-
derstanding of the semantics of such interactions will be a
key challenge to address this question, as well as to enable
us make the most sensible engineering choices.

7.2 Generalizing the Reification of Test-Input
Domains

In this section, we discuss fusing test scripting and test gen-
eration to input domains beyond UI traces (user interaction
sequences). To begin, we reflect on the original conception
of ChimpCheck’s domain-specific language: since we were
interested in user interaction sequences as inputs to our test-
ing efforts, we derived symbols that uniquely represent these
user actions (e.g., click(ID)). We next define various combi-
nators (e.g., :>> ) that build more complex UI trace objects
from atomic actions. Now we have means of expressing user
interaction sequences (UI traces) as structured data, which
can be manipulated and interpreted. This is the process of
reification: concretizing implicit, abstract sequences of events
into data structures that we can manipulate. For this par-
ticular case, we have reified the domain of user-interaction
(UI) traces. Finally, the language of UI traces is lifted into the
language of trace generators, hence giving us the means of
generating and sampling UI traces.

Figure 19 illustrates an architectural diagram of the testing
strategy for Android apps in ChimpCheck. Particularly, the
system under test is the test app together with all other
sub-systems that the app interacts with. Since these other
interactions are not reified, test cases are agnostic to their
existence. The edge between the user and test app represents
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Figure 20. An example of a test environment with two rei-
fied domains, namely UI traces and location traces.

the only input into the system under test and is essentially
what we have reified into UI traces. By reifying UI traces,
ChimpCheck is able to substitute an actual user with UI
traces, and by lifting UI traces into the language of UI trace
generators, the test developer has the means of expressing
customized UI trace generators for their test apps.

Reifying Other Domains Our key observation is that,
while user inputs (UI traces) is arguably the most impor-
tant form of input for user event-driven apps, it is clearly not
the only kind of inputs relevant to testing an app. Reifying
other forms of input would enable us to use similar test-
scripting and test-generation techniques to generate input
sequences for testing the app. For instance, by subjecting
location updates of the GPS module to the same reification
process, we can derive the means of generating test cases
that simulate the relevant location updates to the test app—in
the same way we have done for UI traces in ChimpCheck.
Figure 20 illustrates this new test environment that has two
reified domains: UI traces from the user and location traces
from the GPS module. This generalization introduces a new
challenge: we now have two forms of inputs (UI and location
traces), so how do they interact in terms of the syntax and
semantics of this generalized language? Our initial observa-
tion is that at earlier stages of testing an app, it is still useful
to derive test cases based on the sequential composition of
elements from both domains (user actions and location up-
dates). Such would be akin to expressing “laboratory” tests
to test basic functionalities of the app with a controlled (dis-
cretized) sequence of events. As an example, let us assume
the hypothetical reification of GPS location updates in the
form of a primitive combinator locUpdate(lg,la) where
lg and la are simulated inputs (longitude and latitude in
decimal degrees). The following expresses a very specific test
sequence in which the the test developer uses ChimpCheck
to inspect the app’s handling of a GPS location update after
exercising the app past the login page:

Type(R.id.username,"test") :>>
Type(R.id.password,"1234") :>>
Click(R.id.login) :>> locUpdate(41.334,2.1567)

Figure 21. Generalized test environment where multiple
domains (e.g., user input, inputs from device or external
services, inputs from other apps) can be chosen as reified
domains.

While the above targets a specific test sequence, it is quite
likely that at more advanced stages of testing, the test de-
veloper might be interested in subjecting the app to inputs
that the correspond to UI traces interleaved with location
update occurrences, for instance, to test the app’s handling
of GPS location updates that interleaves with the user’s lo-
gin sequence. A parallel composition operator would allow
the test developer to express test generators of this nature,
exemplified by the following (with a hypothetical parallel
compose operator ||):
{ Type(R.id.username,"test") :>>
Type(R.id.password,"1234") :>>
Click(R.id.login) } ||

locUpdate(41.334,2.1567)

Note however, that this parallel composition is necessarily
domain restricted. Other than composing UI traces with lo-
cation traces, it might not make sense to allow the developer
to parallel-compose streams of UI traces. The parallel compo-
sition represents an example of an extension of the language
motivated by having multiple input reified domains. In gen-
eral, it is likely that more such combinators relevant to and
aimed at capturing idiomatic interactions between various
input domains with be necessary and useful.

Generalization Figure 21 shows the generalization of this
design principle. Particularly, we should assume that the
system under test is subjected to inputs from any number of
arbitrary reified domains. The relevant domains for reifica-
tion are the same as the domains of unspecified sub-systems
within the system under test, namely: (1) user inputs, (2)
inputs from device or external services, or (3) interactions
with other Android apps. Depending on the focus of testing,
the test developer should be allowed to decide which sub-
systems fall within the system under test and which should
be explicitly subjected to reification. This design would al-
low her to express test generators seamlessly derived from
any of the reified domains in a single language specification.
Other (unreified) input domains would still interact with

18



Property-Based Randomized Test Generation for Interactive Apps Onward!’17, October 25–27, 2017, Vancouver, Canada

the test app as usual but are assumed not to be the main
subjects of the test. In practice, it is likely that UI traces
are typically given special attention (since Android apps are
typically user driven), though in theory, UI traces can be
uniformly treated as but one of the reified domains. That is,
we can even entirely omit UI traces if it makes sense for the
testing needs. An interesting effect of this generalization is
that we now introduce traces of other domains (other than
UI traces) to automated generator techniques, which so far
has mostly been studied in the context of user-interaction
sequences. While more studies are required to understand
these new interactions with existing automated test gener-
ators, we believe that this also constitutes an opportunity
to define automated generators in a more general manner:
allowing us to generate input sequences not limited to just
UI traces but also compositions of an arbitrary number of
input domains.

We anticipate a number of exciting research opportunities
and challenges to achieve this dimension of generalization
in our testing framework: other than extending our combina-
tor library with new reified domains, we must facilitate the
possibility of allowing the user to extend the language with
her own reified domains. We expect that a robust library
will include reification from common domains (e.g., user in-
teractions, GPS, WiFi), but the test developer would likely
want to define, for instance, reified interfaces to her propri-
etary web service that her test app calls on during normal
usage. This capability will entail designing programming
interfaces that allow the test developer to implement the
various required runtime obligations of her reified domains.
Another interesting challenge would be to develop ways
for the developer to express domain-specific constraints that
governs the sampling strategy from test generators of each
input domain. This ability is important because the notion
of relevance of a test input sequence depends heavily on the
input domain. For instance, a GPS location update sequence
that instantaneously alternates between opposite ends of the
Earth is likely to be an unrealistic input sequence. We envi-
sion that an effective test-scripting and generation library
must include explicit support to enable the test developer to
express such domain-specific omissions as constraints over
the sampling strategies of the test-generation techniques. Fi-
nally, since test inputs are qualified from different domains,
it makes sense to introduce explicit support for asserting
certain meta-level properties. For example, a script must ad-
here to certain security policies and safety properties when
executing inter-app communication (e.g., a malicious app is
present or a dependent app is not installed). Exploring such
new language features will be critical to making the testing
framework expressive and effective in practice.

Implementing the interfaces of new reified domains to test-
ing framework is no doubt often a tedious endeavor. For in-
stance, in the case of UI traces, we have to develop a mapping

from UI trace atoms to Android Espresso method calls to real-
ize the actual exercising on the test app. For the GPS module,
we would have to develop a similar mapping from our reified
domain of location updates to APIs in the LocationManager
framework class of the Android framework. We believe that
by encouraging the development of thesemappings as library
code that are accessible by highly reusable combinators, we
ultimately provide more opportunities for reusability.

8 Conclusion
We considered the problem of exercising interactive apps to
generate relevant user-interaction traces. Our key insight
is a lifting of UI scripting from traces to generators draw-
ing on ideas from property-based test-case generation [8].
In particular, we formalized the notion of user-interaction
event sequences (or UI traces) as a first-class object with
an operational semantics that is then implemented by a
platform-specific component (Chimp Driver). First-class UI
traces naturally lead to UI trace generators that abstract sets
of UI traces. The sampling from UI trace generators is then
platform-independent and can leverage a property-based
testing framework such as ScalaCheck.
Driven by real issues reported in real Android apps, we

demonstrated how ChimpCheck enables easily building cus-
tomized testing patterns out of compositional components.
The resulting testing patterns like interrupting sequencing,
property preservation, brute-force randomized monkey test-
ing, and a customizable gorilla tester seem broadly appli-
cable and useful. Preliminary experiments provide evidence
that simple specializations expressed in ChimpCheck can
drive apps to witness bugs with many fewer events.

Generalizing from lessons learnt during development and
experimentation of ChimpCheck, we have distilled two de-
sign principles, namely higher-order automated generators
and custom reifications of test inputs. We believe that these
design principles will serve as a guide to future development
of highly relevant testing frameworks based on the hum-
ble idea of expressing property-based test generators via
combinator libraries.
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