
This is a repository copy of Automated Repair of Layout Cross Browser Issues Using
Search-Based Techniques.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/116990/

Version: Accepted Version

Proceedings Paper:
Mahajan, S., Alameer, A., McMinn, P.S. orcid.org/0000-0001-9137-7433 et al. (1 more
author) (2017) Automated Repair of Layout Cross Browser Issues Using Search-Based
Techniques. In: ISSTA 2017 Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. International Symposium on Software
Testing and Analysis (ISSTA 2017), 10-14 Jul 2017, Santa Barbara, California. ACM , pp.
249-260. ISBN 978-1-4503-5076-1

https://doi.org/10.1145/3092703.3092726

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Automated Repair of Layout Cross Browser Issues Using
Search-Based Techniques

Sonal Mahajan
University of Southern California, USA

Abdulmajeed Alameer
University of Southern California, USA

Phil McMinn
University of Sheffield, UK

William G. J. Halfond
University of Southern California, USA

ABSTRACT

A consistent cross-browser user experience is crucial for the suc-

cess of a website. Layout Cross Browser Issues (XBIs) can severely

undermine a website’s success by causing web pages to render in-

correctly in certain browsers, thereby negatively impacting users’

impression of the quality and services that the web page delivers.

Existing Cross Browser Testing (XBT) techniques can only detect

XBIs in websites. Repairing them is, hitherto, a manual task that is

labor intensive and requires significant expertise. Addressing this

concern, our paper proposes a technique for automatically repair-

ing layout XBIs in websites using guided search-based techniques.

Our empirical evaluation showed that our approach was able to

successfully fix 86% of layout XBIs reported for 15 different web

pages studied, thereby improving their cross-browser consistency.

CCS CONCEPTS

•So�ware and its engineering→So�ware testing and debug-

ging; Search-based so�ware engineering;

KEYWORDS

Cross-browser issues; automated search-based repair; web apps.

ACM Reference format:

Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J.

Halfond. 2017. Automated Repair of Layout Cross Browser Issues Using

Search-Based Techniques. In Proceedings of 26th International Symposium on

So�ware Testing and Analysis , Santa Barbara, CA, USA, July 2017 (ISSTA’17),

12 pages.

DOI: 10.1145/3092703.3092726

1 INTRODUCTION

�e appearance of a web application’s User Interface (UI) plays an

important part in its success. Studies have shown that users form

judgments about the trustworthiness and reliability of a company

based on the visual appearance of its web pages [21, 22, 51, 52],

and that issues degrading the visual consistency and aesthetics of

a web page have a negative impact on an end user’s perception of

the website and the quality of the services that it delivers.

�e constantly increasing number of web browsers with which

users can access a website has introduced new challenges in prevent-

ing appearance related issues. Differences in how various browsers

interpret HTML and CSS standards can result in Cross Browser

Issues (XBIs) — inconsistencies in the appearance or behavior of

a website across different browsers. Although XBIs can impact

ISSTA’17, Santa Barbara, CA, USA

2017. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3092726

the appearance or functionality of a website, the vast majority —

over 90% — result in appearance related problems [42]. �is makes

XBIs a significant challenge in ensuring the correct and consistent

appearance of a website’s UI.

Despite the importance of XBIs, their detection and repair poses

numerous challenges for developers. First, the sheer number of

browsers available to end users is large — an informal listing re-

ports that there are over 115 actively maintained and currently

available [59]. Developers must verify that their websites render

and function consistently across as many of these different browsers

and platforms as possible. Second, the complex layouts and styles

of modern web applications make it difficult to identify the UI el-

ements responsible for the observed XBI. �ird, developers lack

a standardized way to address XBIs and generally have to resolve

XBIs on a case by case basis. Fourth, for a repair, developers must

modify the problematic UI elements without introducing new XBIs.

Predictably, these challenges have made XBIs an ongoing topic of

concern for developers. A simple search on StackOverflow — a

popular technical forum — with the search term “cross browser”

results in over 23,000 posts discussing ways to resolve XBIs, of

which approximately 7,000 are currently active questions [49].

Tool support to help developers debug XBIs is limited in terms of

capabilities. Although tools such as Firebug [15] can provide useful

information, developers still require expertise to manually analyze

the XBIs (which involves determining which HTML elements to

inspect, and understanding the effects of the various CSS properties

defined for them), and then repair them by performing the necessary

modifications so that the page renders correctly. XBI-oriented

techniques from the research community (e.g., X-PERT [8, 42, 44]

and Browserbite [47]) are only able to detect and localize XBIs (i.e.,

they address the first two of the four previously listed challenges),

but are incapable of repairing XBIs so that a web page can be “fixed”

to provide a consistent appearance across different browsers.

To address these limitations, we propose a novel search-based

approach that enables the automated repair of a significant class

of appearance related XBIs. �e XBIs targeted by our approach

are known as layout XBIs (also referred to as “structure XBIs” by

Choudhary et al. [42]), which collectively refer to any XBI that

relates to an inconsistent layout of HTML elements in a web page

when viewed in different browsers. Layout XBIs appear in over

56% of the websites manifesting XBIs [42]. Our key insight is that

the impact of layout XBIs can be quantified by a fitness function

capable of guiding a search to a repair that minimizes the number of

XBIs present in a page. To the best of our knowledge, our approach

is the first automated technique for generating XBI repairs, and

the first to apply search-based repair techniques to web pages. We

ISSTA’17, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

(a) Correct rendering of the page with Internet Explorer 11.0.33

(b) �e same page displaying an XBI when rendered with Mozilla Firefox 46.0.1

Figure 1: Screenshots of the navigation bar of the IncredibleIndia homepage (http://incredibleindia.org), which has an XBI. When viewed with Firefox the text
of the navigation menu bar is unreadable.

implemented our approach as a tool, XFix, and evaluated it on 15

real world web pages containing layout XBIs. XFix was able to

resolve 86% of the XBIs reported by X-PERT [42], a well-known

XBI detection tool, and 99% of the XBIs observed by humans. Our

results therefore demonstrate that our approach is potentially of

high use to developers by providing automated fixes for problematic

web pages involving layout XBIs.

�e main contributions of this paper are as follows:

(1) A novel approach for automatically finding potential fixes for

layout XBIs using guided search-based techniques.

(2) An extensive evaluation on a set of 15 real-world web pages,

in which our approach resolved 86% of automatically detected

XBIs and 99% observed by human subjects.

(3) A human study to assess the web pages’ cross-browser consis-

tency a�er repair by our approach.

(4) A study to compare the size similarity of our repair patches to

XBI-addressing code in real-world web pages.

�e rest of this paper is organized as follows: In Section 2, we give

background information about web page rendering and introduce

an illustrative example. We then present our approach in Section 3

and discuss its evaluation in Section 4. We discuss related work in

Section 5 and summarize in Section 6.

2 BACKGROUND AND EXAMPLE

In this section we provide background information that details why

layout XBIs occur, what the common practices are to repair them,

and introduces an illustrative example.

Basic Terminology. Modern web applications typically follow

the “Model-View-Controller (MVC)” design pa�ern in which the

application code (the “Model” and “Controller”) runs on a server

accessible via the Internet and delivers HTML and CSS-based web

pages (the “View”) to a client running a web browser. �e layout

engine in a web browser is responsible for rendering and displaying

the web pages. When a web browser receives a web page, the layout

engine parses its HTML into a data structure called a Document

Object Model (DOM) tree. Each HTML element may be referenced

in the DOM tree using a unique expression, called an “XPath”.

To render a DOM tree, the layout engine calculates each DOM

element’s bounding box and applicable style properties based on

the Cascading Style Sheets (CSS) style rules pertaining to the web

page. A bounding box gives the physical display location and size

of an HTML element on the browser screen.

Layout XBIs. Inconsistencies in the way browsers interpret the

semantics of the DOM and CSS can cause layout XBIs — differences

in the rendering of an HTML page between two or more browsers.

�ese inconsistencies tend to arise from different interpretations

of the HTML and CSS specifications, and are not per se, faults in

the browsers themselves [1]. Additionally, some browsers may

implement new CSS properties or existing properties differently in

an a�empt to gain an advantage over competing browsers [30].

Fixing Layout XBIs. When a layout XBI has been detected, de-

velopers may employ several strategies to adjust its appearance.

For example, changing the HTML structure, replacing unsupported

HTML tags, or adjusting the page’s CSS. Our approach targets XBIs

that can be resolved by finding alternate values for a page’s CSS

properties. �ere are two significant challenges to carrying out this

type of repair. First, the appearance (e.g., size, color, font style) of

any given set of HTML elements in a browser is controlled by a

series of complex interactions between the page’s HTML elements

and CSS properties, which means that identifying the HTML el-

ements responsible for the XBI is challenging. Second, assuming

that the right set of elements can be identified, each element may

have dozens of CSS properties that control its appearance, position,

and layout. Each of these properties may range over a large domain.

�is makes the process of identifying the correct CSS properties to

modify and the correct alternate values for those properties a labor

intensive task.

Once the right alternate values are identified, developers can use

browser-specific CSS qualifiers to ensure that they are used at run-

time. �ese qualifiers direct the layout engine to use the provided

alternate values for a CSS property when it is rendered on a specific

browser [5, 58]. �is approach is widely employed by developers.

In our analysis of the top 480 websites (see Section 4), we found that

79% employed browser-specific CSS to ensure a consistent cross

browser appearance. In fact, web developers typically maintain an

extensive list of browser specific styling conditions [5] to address

the most common XBIs.

Example XBI and Repair. Figure 1 shows screenshots of the menu

bar of one of our evaluation subjects, IncredibleIndia, as rendered

in Internet Explorer (IE) (Figure 1a) and Firefox (Figure 1b). As can

be seen, an XBI is present in the menu bar, where the text of the

navigational links is unreadable in the Firefox browser (Figure 1b).

An excerpt of the HTML and CSS code that defines the naviga-

tion bar is shown in Listing 1. To resolve the XBI, an appropriate

value for the margin-top or padding-top CSS property needs to

be found for the HTML element corresponding to the navigation

bar to push it down and into view. In this instance, the fix is to

add “margin-top: 1.7%” to the CSS for the Firefox version. �e

inserted browser-specific code is shown in the red box in Listing 1.

�e “-moz” prefixed selector declaration directs the layout engine

Automated Repair of Layout Cross Browser Issues Using Search-Based Techniques ISSTA’17, July 2017, Santa Barbara, CA, USA

to only use the included value if the browser type is Firefox (i.e.,

Mozilla), and other browsers’ layout engines will ignore this code.

1 <style>

2 .menubar {

3 position: relative;

4 }

5
6 @-moz-document url-prefix("") {

7 .menubar {

8 margin-top: 1.7%;

9 }

10 }

11
12 </style>

13 <body>

14 <div class="menubar">

15 ...

16 </div>

17 </body>

Listing 1: HTML and CSS excerpt of the IncredibleIndia example shown in
Figure 1. �e highlighted section (lines 6–10) represents the fix added to the
CSS to address the XBI.

�is particular example was chosen because the fix is straight-

forward and easy to explain. However, most XBIs are much more

difficult to resolve. Typically multiple elements may need to be

adjusted, and for each one multiple CSS properties may also need

to be modified. A fix itself may introduce new XBIs, meaning that

several alternate fixes may need to be considered.

3 APPROACH

�e goal of our approach is to find potential fixes that can repair

the layout XBIs detected in a web page. Layout XBIs1 result in the

inconsistent placement of UI elements in a web page across different

browsers. �e placement of a web page’s UI elements is controlled

by the page’s HTML elements and CSS properties. �erefore to

resolve the XBIs, our approach a�empts to find new values for CSS

properties that can make the faulty appearance match the correct

appearance as closely as possible.

Formally, XBIs are due to one or more HTML-based root causes.

A root cause is a tuple 〈e,p,v〉, where e is an HTML element in the

page, p is a CSS property of e , and v is the value of p. Given a set

of XBIs X for a page PUT and a set of potential root causes, our

approach seeks to find a set of fixes that resolve the XBIs in X . We

define a fix as a tuple 〈r ,v ′〉, where r is a root cause and v ′ is the

suggested new value for p in the root cause r . We refer to a set of

XBI-resolving fixes as a repair.

Our approach generates repairs using guided search-based tech-

niques [9, 17]. Two aspects of the XBI repair problem motivate this

choice of technique. �e first is that the number of possible repairs

is very large, since there can be multiple XBIs present in a page,

each of which may have several root causes, and for which the

relevant CSS properties range over a large set of possible values.

Second, fixes made for one particular XBI may interfere with those

for another, or, a fix for any individual XBI may itself cause addi-

tional XBIs, requiring a tradeoff to be made among possible fixes.

Search-based techniques are ideal for this type of problem because

they can explore large solution spaces intelligently and efficiently,

while also identifying solutions that effectively balance a number

1Herea�er, we refer to layout XBIs as simply XBIs.

of competing constraints. Furthermore, the visual manifestation of

XBIs also lends itself to quantification via a fitness function, which

is a necessary element for a search-based technique. A fitness func-

tion computes a numeric assessment of the “closeness” of candidate

solutions found during the search to the solution ultimately re-

quired. Our insight is that a good fitness function can be built that

leverages a measurement of the number of XBIs detected in a PUT ,

by using well-known XBI detection techniques, and the similarity

of the layout of the PUT when rendered in the reference and test

browsers, by comparing the size and positions of the bounding

boxes of the HTML elements involved in each XBI identified.

Our approach works by first detecting XBIs in a page and identi-

fying a set of possible root causes for those XBIs. �en our approach

utilizes two phases of guided search to find the best repair. �e first

search takes the CSS property of each root cause and tries to find

a new value for it that is most optimal with respect to the fitness

function. �is optimized property value is referred to as a candidate

fix. �e second search then seeks to find an optimal combination of

candidate fixes identified in the first phase. �is additional search is

necessary since not all candidate fixes may be required, as the CSS

properties involved may have duplicate or competing effects. For

instance, the CSS properties margin-top and padding-top may

both be identified as root causes for an XBI, but can be used to

achieve similar outcomes — meaning that only one may actually

need to be included in the repair. Conversely, other candidate fixes

may be required to be used in combination with one another to

fully resolve an XBI. For example, an HTML element may need to

be adjusted for both its width and height. Furthermore, candidate

fixes produced for one XBI may have knock-on effects on the results

of candidate fixes for other XBIs, or even introduce additional and

unwanted XBIs. By searching through different combinations of

candidate fixes, the second search aims to produce a suitable subset

— a repair — that resolves as many XBIs as possible for a page when

applied together.

We now introduce the steps of our approach in more detail,

beginning with an overview of the complete algorithm.

3.1 Overall Algorithm

�e top level algorithm of our approach is shown by Algorithm 1.

�ree inputs are required: the page under test, PUT , which exhibits

XBIs. �e PUT is obtained via a URL that points to a location on the

file system or network that provides access to all of the necessary

HTML, CSS, Javascript, and media files for rendering PUT . �e

second input is the reference browser, R, that shows the correct

rendering of PUT . �e third input is the test browser, T , in which

the rendering of PUT shows XBIs with respect to R. �e output of

our approach is a page, PUT ′, a repaired version of PUT .

�e overall algorithm, shown by Algorithm 1, comprises five

stages, as shown by the overview diagram in Figure 2.

Stage 1 — Initial XBI Detection. �e initial part of the algorithm

(lines 1–4) involves obtaining the set of XBIs X when PUT is ren-

dered in R and T . To identify XBIs, we use the X-PERT tool [42],

which is represented by the “getXBIs” function called on line 2.

X-PERT returns a set of identified XBIs, X , in which each XBI is

represented by a tuple of the form 〈label, 〈e1, e2〉〉, where e1 and

e2 are the XPaths of the two HTML elements of the PUT that are

rendered differently in T versus R, and label is a descriptor that

ISSTA’17, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

Subject	web	page	

Reference	browser	

Test	browser	

1.	Ini8al	XBI	

Detec8on	

2.	Extract	root	

causes	

3.	Search	for	

candidate	fixes	

4.	Search	for	best	combina8on	

of	candidate	fixes	

Poten8ally	

fixed	page	

Y	

N	

5.	Terminate?	

Figure 2: An overview of our search-based XBI repair approach, as detailed by Algorithm 1

denotes the original (correct) layout position of e1 that was violated

in T . For example, 〈top-align, e1, e2〉 indicates that e1 is pinned to

the top edge of e2 in R, but not inT . A�er identifying the XBIs, the

algorithm then enters its main loop, which comprises Stages 2–5.

Stage 2 — Extract Root Causes. �e second stage of the algorithm

(lines 6–16) extracts the root causes relevant to each XBI. �e key

step in this stage identifies CSS properties relevant to the XBI’s

label (shown as “getCSSProperties” at line 9). For example, for the

top-align label, the CSS properties margin-top and top can alter

the top alignment of an element with respect to another and would

therefore be identified in this stage. We identified this mapping

through analysis of the CSS properties and it holds true for all

web applications without requiring developer intervention. Each

relevant CSS property forms the basis of two root causes, one for

e1, and one for e2. �ese are added to the running set rootCauses,

with the values of the CSS properties extracted for each element

(v1 and v2 respectively) extracted from the DOM of the PUT when

it is rendered in T (lines 11 and 13).

Stage 3 — Search for Candidate Fixes. Comprising the first phase

search, this stage produces individual candidate fixes for each root

cause (lines 17–22). �e fix is a new value for the CSS property

that is optimized according to a fitness function, with the aim

of producing a value that resolves, or is as close as possible to

resolving the layout deviation. �is optimization process occurs

in the “searchForCandidateFix” procedure, which we describe in

detail in Section 3.2.

Stage 4 — Search for the Best Combination of Candidate Fixes.

Comprising the second phase search, the algorithm makes a call to

the “searchForBestRepair” procedure (line 24) that takes the set of

candidate fixes in order to find a subset, repair , representing the

best overall repair. We describe this procedure in Section 3.3.

Stage 5 — Check Termination Criteria. �e final stage of the al-

gorithm (lines 25–36) determines whether the algorithm should

terminate or proceed to another iteration of the loop and two-phase

search. Initially, the fixes in the set repair are applied to a copy

of PUT by adding test browser (T) specific CSS code to produce a

modified version of the page PUT ′ (line 26). �e approach identi-

fies the set of XBIs, X ′ for PUT ′, with another call to the “getXBIs”

function (line 27).

Ideally, all of the XBIs in PUT will have been resolved by this

point, andX ′ will be empty. If this is the case, the algorithm returns

the repaired page PUT ′. If the set X ′ is identical to the original set

of XBIs X (originally determined on line 2), the algorithm has made

no improvement in this iteration of the algorithm, and so the PUT ′

is returned, having potentially only been partially fixed as a result

of the algorithm rectifying a subset of XBIs in a previous iteration

of the loop.

If the number of XBIs has increased, the current repair introduces

further layout deviations. In this situation, PUT is returned (which

may reflect partial fixes from a previous iteration of the loop, if

there were any). However, if the number of XBIs has been reduced,

the current repair represents an improvement that may be improved

further in another iteration of the algorithm.

Broadly, there are two scenarios under which our approach could

fail: (1) X-PERT does not initially include the faulty HTML element

in X ; or (2) the search does does not identify an acceptable fix,

which could happen due to the non-determinism of the search.

Algorithm 1 Overall Algorithm

Input: PUT : Web page under test
R : Reference browser
T : Test browser

Output: PUT ′: Modified PUT with repair applied
1: /* Stage 1 — Initial XBI Detection */

2: X ← getXBIs(PUT , R , T)
3: DOMR ← buildDOMTree(PUT , R)
4: DOMT ← buildDOMTree(PUT , T)
5: while true do

6: /* Stage 2 — Extract root causes */

7: rootCauses← {}
8: for each 〈label, 〈e1 , e2〉〉 ∈ X do
9: props← getCSSProperties(label)
10: for each p ∈ props do
11: v1 ← getValue(e1 , p , DOMT)
12: rootCauses← rootCauses ∪ 〈e1 , p , v1〉
13: v2 ← getValue(e2 , p , DOMT)
14: rootCauses← rootCauses ∪ 〈e2 , p , v2〉
15: end for
16: end for

17: /* Stage 3 — Search for Candidate Fixes */

18: candidateFixes← {}
19: for each 〈e , p , v 〉 ∈ rootCauses do
20: candidateFix← searchForCandidateFix(〈e , p , v〉, PUT , DOMR , T)
21: candidateFixes← candidateFixes ∪ candidateFix
22: end for

23: /* Stage 4 — Search for Best Combination of Candidate Fixes */

24: repair ← searchForBestRepair(candidateFixes, PUT , R , T)

25: /* Stage 5 — Check Termination Criteria */

26: PUT ′← applyRepair(PUT , repair)
27: X ′← getXBIs(PUT ′, R , T)

28: if X ′ = ∅ or X ′ = X then
29: return PUT ′

30: else if |X ′ | > |X | then
31: return PUT
32: else
33: X ← X ′

34: PUT ← PUT ′

35: DOMT ← buildDOMTree(PUT ′, T)
36: end if

37: end while

3.2 Search for Candidate Fixes

�e first search phase (represented as the procedure “searchForCan-

didateFix”) focuses on each potential root cause 〈e,p,v〉 in isolation

of the other root causes, and a�empts to find a new valuev ′ for the

root cause that improves the similarity of the page when rendered

in the reference browser R and the test browserT . Guidance to this

new value is provided by a fitness function that quantitatively com-

pares the relative layout discrepancies between e and the elements

that surround it when PUT is rendered in R and T . We begin by

Automated Repair of Layout Cross Browser Issues Using Search-Based Techniques ISSTA’17, July 2017, Santa Barbara, CA, USA

giving an overview of the search algorithm used, and then explain

the fitness function employed.

Algorithm 2 Fitness Function for Candidate Fixes

Input: e : XPath of HTML element under analysis
p : CSS property of HTML element, e
v̂ : Value of CSS property, p
PUT : Web page under test
DOMR : DOM tree of PUT rendered in R
T : Test browser

Output: fitness: Fitness value of the hypothesized fix 〈e , p , v̂〉

1: P̂UT ← applyValue(e , p , v̂ , PUT)

2: DOMT ← buildDOMTree(P̂UT , T)

3: /* Component 1 — Difference in location of e with respect to R and T */

4: 〈x t1 , y
t

1 , x
t

2 , y
t

2 〉 ← getBoundingBox(DOMT , e)

5: 〈xr1 , y
r

1 , x
r

2 , y
r

2 〉 ← getBoundingBox(DOMR , e)

6: DTL ←

√

(x t1 − x
r

1)
2
+ (yt1 − y

r

1)
2

7: DBR ←

√

(x t2 − x
r

2)
2
+ (yt2 − y

r

2)
2

8: ∆pos ← DTL + DBR

9: /* Component 2 — Difference in size of e with respect to R and T */

10: widthR ← xr2 − x
r

1

11: widthT ← x t2 − x
t

1

12: heightR ← yr2 − y
r

1

13: heightT ← yt2 − y
t

1
14: ∆size ← |widthR - widthT | + |heightR - heightT |

15: /* Component 3 — Differences in locations of neighboring elements of e */

16: neighborsT ← getNeighbors(e , DOMT , Nr)
17: ∆npos ← 0

18: for each n ∈ neighborsT do

19: n′← getMatchingElement(n, DOMR)

20: 〈x t1 , y
t

1 , x
t

2 , y
t

2 〉 ← getBoundingBox(DOMT , n)

21: 〈xr1 , y
r

1 , x
r

2 , y
r

2 〉 ← getBoundingBox(DOMR , n′)

22: DTL ←

√

(x t1 − x
r

1)
2
+ (yt1 − y

r

1)
2

23: DBR ←

√

(x t2 − x
r

2)
2
+ (yt2 − y

r

2)
2

24: ∆pos ← DTL + DBR
25: ∆npos ← ∆npos + ∆pos
26: end for

27: /* Compute final fitness value */

28: fitness← (w1 * ∆pos) + (w2 * ∆size) + (w3 * ∆npos)

29: return fitness

3.2.1 Search Algorithm. �e inputs to the search for a candidate

fix are the page under test, PUT , the test browser, T , the DOM

tree from the reference browser, DOMR , and the root cause tuple,

〈e,p,v〉. �e search a�empts to find a new value,v ′, forp in the root

cause. �e search process used to do this is inspired by the variable

search component of theAlternating Variable Method (AVM) [18, 19],

and specifically the use of “exploratory” and “pa�ern” moves to

optimize variable values. �e aim of exploratory moves is to probe

values neighboring the current value of v to find one that improves

fitness when evaluatedwith the fitness function. Exploratorymoves

involve adding small delta values (i.e., [-1 ,1]) tov and observing the

impact on the fitness score. If the fitness is observed to be improved,

pa�ern moves are made in the same “direction” as the exploratory

move to accelerate further fitness improvements through step sizes

that increase exponentially. If a pa�ern move fails to improve

fitness, the method establishes a new direction from the current

point in the search space through further exploratory moves. If ex-

ploratory moves fail to yield a new direction (i.e., a local optima had

been found), this value is returned as the best candidate fix value.

�e fix tuple, 〈e,p,v,v ′〉, is then returned to the main algorithm

(line 20 of Algorithm 1).

D
TL
	

D
BR
	

D
TL
	

D
BR
	

(a) Component 1: ∆pos = DTL + DBR, where DTL and DBR is the Eu-

clidean distance between the top le� (TL) and bottom right (BR) cor-
ners, respectively, of e rendered inR andT . ∆pos decreases as the boxes
move closer.

w
T
	

w
R
	

w
T
	

w
R
	

h
T
	 h

R
	h

T
	 h

R
	

(b) Component 2: ∆size = |wR - wT | + |hR - hT |, where wR and hR are
the respective width and height of e rendered in R, and wT and hT are
the respective width and height of e rendered in T . ∆size decreases as
the boxes become similar in size.

D
TL
	

D
BR
	

D
TL
	

D
BR
	

e	 e	

n	 n	

(c) Component 3: ∆npos = DTL + DBR, where DTL and DBR is the Eu-

clidean distance between the top le� (TL) and bottom right (BR) cor-
ners, respectively, of e ’s neighbor n rendered in R and T . ∆npos de-
creases as e ’s boxes move closer, which causes n’s boxes to also move
closer.

Figure 3: Diagrammatic representation of the fitness function components.
Rectangles with a solid background correspond to the bounding boxes of ele-
ments rendered in R and the rectangles with diagonal lines correspond to the
bounding boxes of elements rendered in T .

3.2.2 Fitness Function. �e fitness function for producing a can-

didate fix is shown by Algorithm 2. �e goal of the fitness function

is to quantify the relative layout deviation for PUT when rendered

in R and T following the change to the value of a CSS property

for an HTML element. Given the element e in PUT , the fitness

function considers three components of layout deviation between

the two browsers: (1) the difference in the location of e; (2) the

difference in the size of e; and (3) any differences in the location

of e’s neighbors. Figure 3 shows a diagrammatic representation

of these components. Intuitively, all three components should be

minimized as the evaluated fixes make progress towards resolving

an XBI without introducing any new differences or introducing

further XBIs for e’s neighbors. �e fitness function for an evaluated

fix is the weighted sum of these three components.

�e first component, location difference of e , is computed by

lines 3–8 of Algorithm 2, and assigned to the variable ∆pos . �is

value is calculated as the sum of the Euclidean distance between

the top-le� (TL) and bo�om-right (BR) corners of the bounding box

of e when it is rendered in R and T . �e bounding box is obtained

from the DOM tree of the page for each browser.

ISSTA’17, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

�e second component, difference in size of e , is calculated by

lines 10–14 of the algorithm, and is assigned to the variable ∆size .

�e value is calculated as the sum of the differences of e’s width and

height when rendered in R and T . �e size information is obtained

from the bounding box of e obtained from the DOM tree of the

page in each browser.

�e third and final component of the fitness function, finding

the location difference of e’s neighbors occurs on lines 16–26 of

the algorithm, and is assigned to the variable ∆npos . �e neighbors

of e are the set of HTML elements that are within Nr hops from e

in PUT ’s DOM tree as rendered in T . For example, if Nr = 1, then

the neighbors of e are its parents and children. If Nr = 2, then the

neighbors are its parent, children, siblings, grandparent, and grand-

children. For each neighbor, the approach finds its corresponding

element in the DOM tree of PUT rendered in R and calculates ∆pos

for each pair of elements.

�e final fitness value is then formed from the weighted sum of

the three components ∆pos , ∆size , and ∆npos (line 28).

3.3 Search for the Best Combination of
Candidate Fixes

�e goal of the second search phase (represented by a call to “search-

ForBestRepair” at line 24 of Algorithm 1) is to identify a subset of

candidateFixes that together minimize the number of XBIs reported

for the PUT . �is step is included in the approach for two reasons.

Firstly, a fix involving one particular CSS property may only be

capable of partially resolving an XBI and may need to be combined

with another fix to fully address the XBI. Furthermore, the inter-

action of certain fixes may have emergent effects that result in

further unwanted layout problems. For example, suppose a submit

bu�on element appears below, rather than to the right of a text box.

Candidate fixes will address the layout problem for each HTML

element individually, a�empting to move the textbox down and

to the le�, and the bu�on up and to the right. Taking these fixes

together will result in the bu�on appearing to the top right corner

of the text box, rather than next to it. Identifying a selection of

fixes, a candidate repair, that avoids these issues is the goal of this

phase. To guide this search, we use the number of XBIs that appear

in the PUT a�er the candidate repair has been applied.

�e search begins by evaluating a candidate repair with a single

fix — the candidate fix that in the first search phase produced the

largest fitness improvement. Assuming this does not eradicate all

XBIs, the search continues by generating new candidate repairs

in a biased random fashion. Candidate repairs are produced by

iterating through the set of fixes. A fix is included in the repair

with a probability impfix/impmax , where impfix is the improvement

observed in the fitness score when the fix was evaluated in the first

search phase divided by the maximum improvement observed over

all of the fixes in candidateFixes. Each candidate repair is evaluated

for fitness in terms of the number of resulting XBIs, with the best

repair retained. A history of evaluated repairs is maintained, so that

any repeat solutions produced by the biased random generation

algorithm are not re-evaluated.

�e random search terminates when (a) a candidate repair is

found that fixes all XBIs, (b) a maximum threshold of candidate re-

pairs to be tried has been reached, or (c) the algorithm has produced

a sequence of candidate repairs with no improvement in fitness.

4 EVALUATION

We conducted empirical experiments to assess the effectiveness and

efficiency of our approach, with the aim of answering the following

four research questions:

RQ1: How effective is our approach at reducing layout XBIs?

RQ2: What is the impact on the cross-browser consistency of the

page when the suggested repairs are applied?

RQ3: How long does our approach take to find repairs?

RQ4: How similar in size are our approach generated repair patches

to the browser-specific code present in real-world websites?

4.1 Implementation

We implemented our approach in a prototype tool in Java, which

we named “XFix” [13]. We leveraged the Selenium WebDriver

library for making dynamic changes to web pages, such as applying

candidate fix values. For identifying the set of layout XBIs, we

used the latest publicly available version [7] of the well-known XBI

detection tool, X-PERT [42, 43]. We made minor changes to the

publicly available version to fix bugs and add accessor methods for

data structures. We used this modified version throughout the rest

of the evaluation. �e fitness function parameters for the search

of candidate fixes discussed in Section 3.2.2 are set as: Nr = 2, and

w1 = 1, w2 = 2, and w3 = 0.5 for the weights for ∆pos , ∆size , and

∆npos respectively. (�e weights assigned prioritize ∆size , ∆pos and

∆npos in that order. We deemed size of an element as most impor-

tant, because of its likely impact on all three components, followed

by location, which is likely to impact its neighbors.) For the termi-

nation conditions (b) and (c) of the search for the best combination

of candidate fixes (Section 3.3), the maximum threshold value is

set to 50 and the sequence value is set to 10. More implementation

details about XFix are available in our tool demo paper [24].

4.2 Subjects

For our evaluation we used 15 real-world subjects as listed by

Table 1. �e columns labeled “#HTML” and “#CSS” report the total

number of HTML elements present in theDOM tree of a subject, and

the total number of CSS properties defined for the HTML elements

in the page respectively. �ese metrics of size give an estimate of a

page’s complexity in debugging and finding potential fixes for the

observed XBIs. �e “Ref” column indicates the reference browser

in which the subject displays the correct layout; while the column

“Test” refers to the browser in which the subject shows a layout

XBI. In these columns, “CH”, “FF”, and “IE” refer to the Chrome,

Firefox, and Internet Explorer browsers respectively.

We collected the subjects from three sources: (1) websites used

in the evaluation of X-PERT [42], (2) the authors’ prior interaction

with websites exhibiting XBIs, and (3) the random URL generator,

UROULETTE [53]. �e “GrantaBooks” subject came from the first

source. �e other subjects from X-PERT’s evaluation could not be

used because their GUI had been reskinned or the latest version of

Automated Repair of Layout Cross Browser Issues Using Search-Based Techniques ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 1: Subjects

Name URL #HTML #CSS Ref Test

BenjaminLees h�p://www.benjaminlees.com 317 1,525 CH FF
Bitcoin h�ps://bitcoin.org/en/ 207 1,957 FF IE
Eboss h�p://www.e-boss.gr 439 789 IE FF
EquilibriumFans h�p://www.equilibriumfans.com 340 868 CH FF
GrantaBooks h�p://grantabooks.com 325 6,545 FF IE
HenryCountyOhio h�p://www.henrycountyohio.com 300 983 IE FF
HotwireHotel h�ps://goo.gl/pH9d6d 1,457 10,618 FF IE
IncredibleIndia h�p://incredibleindia.org 251 2,172 IE FF
Leris h�p://clear.uconn.edu/leris/ 195 1,262 FF CH
Minix3 h�p://www.minix3.org 118 821 IE CH
Newark h�p://www.ci.newark.ca.us 598 17,426 FF IE
Ofa h�p://www.ofa.org 578 5,381 IE CH
PMA h�p://www.pilatesmethodalliance.org 456 10,159 FF IE
StephenHunt h�p://stephenhunt.net 497 13,743 FF IE
WIT h�p://www.wit.edu 300 3,249 FF IE

the IE browser now rendered the pages correctly. �e “HotwireHo-

tel” subject was chosen from the second source, and the remaining

thirteen subjects were gathered from the third source.

�e goal of the selection process was to select subjects that exhib-

ited human perceptible layout XBIs. We did not use X-PERT for an

initial selection of subjects because we found that it reported many

subjects with XBIs that were difficult to observe. For selecting the

subjects, we used the following process: (1) render the page, PUT ,

in the three browser types; (2) visually inspect the rendered PUT in

the three browsers to find layout XBIs; (3) if layout XBIs were found

in the PUT , select the browser showing a layout problem, such as

overlapping, wrapping, or distortion of content, as the test browser,

and one of the other two browsers showing the correct rendering

as the reference browser; (4) try to manually fix the PUT by using

the developer tools in browsers, such as Firebug for Firefox, and

record the HTML elements to which the fix was applied; (5) run

X-PERT on the PUT with the selected reference and test browsers;

and (6) use the PUT as a subject, if the manually recorded fixed

HTML elements were present in the set of elements reported by

X-PERT. We included steps 4–6 in the selection process to ensure

that if X-PERT reported false negatives, they would not bias our

evaluation results.

4.3 Methodology

For the experiments, the latest stable versions of the browsers,

Mozilla Firefox 46.0.1, Internet Explorer 11.0.33, and Google Chrome

51.0, were used. �ese browsers were selected for the evalua-

tion as they represent the top three most widely used desktop

browsers [36, 50]. �e experiments were run on a 64-bit Windows

10 machine with 32GB memory and a 3rd Generation Intel Core i7-

3770 processor. Since the set of XBIs reported by X-PERT can vary

based on screen resolution, we also report our test monitor setup,

which had a resolution of 1920 × 1080 and size of 23 inches. �e

subjects were rendered in the browsers with the browser viewport

size set to the screen size.

Each subject was downloaded using the Scrapbook-X Firefox

plugin and the wget utility, which download an HTML page along

with all of the files (e.g., CSS, JavaScript, images, etc.) it needs to

display. We then commented out portions of the JavaScript files

and HTML code that made active connections with the server, such

as Google Analytics, so that the subjects could be run locally in an

offline mode. �e downloaded subjects were then hosted on a local

Apache web server.

We ran X-PERT on each of the subjects to collect the set of initial

XBIs present in the page. We then ran XFix 30 times on each of the

subjects to mitigate non-determinism in the search, and measured

the run time in seconds. A�er each run of XFix on a subject, we

ran X-PERT on the repaired subject and recorded the remaining

number of XBIs reported, if any.

We also conducted a human study with the aim of judging XFix

with respect to the human-perceptible XBIs, and to gauge the

change in the cross-browser consistency of the repaired page. Our

study involved 11 participants consisting of PhD and post-doctoral

researchers whose field of study was So�ware Engineering. For the

study, we first captured three screenshots of each subject page: (1)

rendered in the reference browser, (2) rendered in the test browser

before applyingXFix’s suggested repair, and (3) rendered in the test

browser a�er applying the suggested fixes. We embedded these

screenshots in HTML pages provided to the participants. We varied

the order in which the before (pre-XFix) and a�er (post-XFix) ver-

sions were presented to participants, to minimize the influence of

learning on the results and referred to them in the study as version1
and version2 based on the order of their presentation.

Each participant received a link to an online questionnaire and

a set of printouts of the renderings of the page. We instructed

the participants to individually (i.e., without consultation) answer

four questions per subject: �e first question asked the users to

compare the reference and version1 by opening them in different

tabs of the same browser and circle the areas of observed visual

differences on the corresponding printout. �e second question

asked the participants to rate the similarity of version1 and reference

on a scale of 0–10, where 0 represents no similarity and 10 means

identical. Note that the similarity rating includes the participants

reaction to intrinsic browser differences as well since we did not

ask them to exclude these. �e third and fourth questions in the

questionnaire were the same, but for version2.

For RQ1, we used X-PERT to determine the initial number of

XBIs in a subject and the average number of XBIs remaining a�er

each of the 30 runs of XFix. From these numbers we calculated the

reduction of XBIs as a percentage.

For RQ2, we classified the similarity rating results from the

human study into three categories for each subject: (1) improved:

the a�er similarity rating was higher than that of the before version,

(2) same: the a�er and before similarity ratings were exactly the

same, and (3) decreased: the a�er similarity rating was lower than

that of the before version. �e human study data can be found at

the project website [13].

For RQ3, we collected the average total running times of XFix

and for Stages 3 and 4, the search phases, of our algorithm.

For RQ4, we compared the size, measured by the number of

CSS properties, of browser specific code found in real-world web-

sites to that of our automatically generated repairs. We used size

for comparing similarity because CSS has a simple structure and

does not contain any branching or looping constructs. We used

wget to download the homepages of 480 websites in the Alexa Top

500 Global Sites [3] and analyzed their CSS to find the number of

websites containing browser specific code. Twenty sites could not

be downloaded as they pointed to URLs without UIs — for instance

the googleadservices.com and twimg.com web services. To find

whether a website has browser specific CSS, we parsed its CSS files

ISSTA’17, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

Table 2: Number of XBIs reported by X-PERT

Subject #Before XBIs Avg. #A�er XBIs Reduction (%)

BenjaminLees 25 0 100
Bitcoin 37 0 100
Eboss 49 29 41
EquilibriumFans 117 6 95
GrantaBooks 16 0 100
HenryCountyOhio 11 0 100
HotwireHotel 40 4 90
IncredibleIndia 20 12 40
Leris 13 0 100
Minix3 11 0.73 93
Newark 42 2 95
Ofa 16 3 83
PMA 39 10 75
StephenHunt 159 33 79
WIT 40 3 92

Mean 42 7 86
Median 37 3 93

using the CSS Parser tool [48] and searched for browser specific CSS

selectors, such as the one shown in Listing 1, based on well-known

prefix declarations: -moz for Firefox, -ms for IE, and -webkit for

Chrome. To calculate the size, we summed the numbers of CSS

properties declared in each browser specific selector. To establish a

comparable size metric for each subject web page used with XFix,

we added the size of each subject’s previously existing browser

specific code forT , the test browser, to the average size of the repair

generated for T .

4.4 �reats to Validity

External Validity: �e first potential threat is that we used a

manual selection of the subjects. To minimize this threat, we only

performed a manual filtering of the subjects to ensure that the

subjects showed human perceptible XBIs and that X-PERT did

not miss the observed XBIs (i.e., have a false negative). We also

selected subjects from three different sources, including a random

URL generator, to make the selection process generalizable across

a wide variety of subjects. All our subjects had multiple XBIs

reported by X-PERT (Table 2), and a mix of single (e.g., Bitcoin and

IncredibleIndia) and multiple (e.g., HotwireHotel and Grantabooks)

human-observable XBIs. A second potential threat is the use of only

three browsers. To mitigate this threat, we selected the three most

widely used browsers, as reported by different commercial agencies

studying browser statistics [36, 50]. Furthermore, our approach

is not dependent on the choice of browsers, so our results should

generalize to other browsers.

Internal Validity: One potential threat is the use of X-PERT.

However, there are no other publicly available tools for detecting

XBIs that report the level of detail required by XFix to produce

repairs. A further threat is represented by the changes we made to

X-PERT favored our approach. However, the changes made were

to provide access to existing information (and so do not change

XBI-identifying behavior) or to address specific bugs. An example

of one of the defects we found was a mismatch in the data type

of a DomNode object being checked to see if it is contained in an

array of String specifying the HTML tags to be ignored. We

corrected this defect by adding a call to the getTagName() method

of the DomNode object that returns the String HTML tag name of

the node. We have made our patched version of X-PERT publicly

available [13], with the download containing a README.txt file

detailing the defects that were corrected.

Table 3: Average run time in seconds

Subject Search for Candidate Fixes Search for Best Combination Total

BenjaminLees 159 14 204
Bitcoin 144 42 358
Eboss 1,729 780 2,685
EquilibriumFans 822 225 1,208
GrantaBooks 41 7 86
HenryCountyOhio 219 41 291
HotwireHotel 3,281 2,036 5,582
IncredibleIndia 599 247 908
Leris 105 46 169
Minix3 18 6 43
Newark 477 232 841
Ofa 122 113 257
PMA 3,050 1,384 4,488
StephenHunt 5,535 1,114 6,639
WIT 3,725 1,409 4,980

Mean 369 90 1916
Median 194 48 841

�e fact that the authors’ judgment was used to determine which

browser rendering was the reference is not a threat to validity. �is

is because the metrics used were relative comparisons (e.g., consis-

tency) and flipping the choice of reference rendering would have

produced the same difference. Human participant understanding

as to what constituted an XBI was not a threat to the correctness

of our protocol either since we only asked them to spot differences

between the renderings.

A potential threat is the number of real-world (Alexa) websites

found to be using browser-specific styling. �ere exist numerous

other ways to declare browser specific styling [5, 58] than the simple

prefix selector declarations we used, and therefore the number of

Alexa websites we found to be using browser-specific styling and

the browser-specific code sizes calculated for each only represents

a lower bound.

Construct Validity: A potential threat is that the similarity

metric used in the human study is subjective. To mitigate this

threat we used the relative similarity ratings given by the users,

as opposed to the absolute value, to understand the participants’

relative notion of consistency quality. A second potential threat

to validity is that screenshots of the subjects were used in the

human study instead of actual HTML pages. We opted for this

mechanism as not all of the users had our required environment (OS

and browsers). Also, to mitigate this threat we designed the HTML

pages containing the screenshots to scale based on the width of the

user’s screen. Another potential threat is that the browser-specific

code found in real-world (Alexa) websites might not necessarily

be repair code for XBIs, so it might not be fair to compare that

with our repair patches. However, to the best of our knowledge the

primary purpose of browser-specific code is to target a particular

browser and ensure cross-browser consistency.

4.5 Discussion of Results

4.5.1 RQ1: Reduction of XBIs. Table 2 shows the results of RQ1.

�e results show that XFix reported an average 86% reduction in

XBIs, with a median of 93%. �is shows that XFix was effective in

finding XBI fixes. Of the 15 subjects, XFix was able to resolve all

of the reported XBIs for 33% of the subjects and was able to resolve

more than 90% of the XBIs for 67% of the subjects.

We investigated the results to understand why our approach was

not able to find suitable fixes for all of the XBIs. We found that the

dominant reason for this was that there were pixel-level differences

Automated Repair of Layout Cross Browser Issues Using Search-Based Techniques ISSTA’17, July 2017, Santa Barbara, CA, USA

between the HTML elements in the test and reference browsers

that were reported as XBIs. In many cases, perfect matching at

the pixel level was not feasible due to the complex interaction

among the HTML elements and CSS properties of a web page.

Also, the different implementations of the layout engines of the

browser meant that a few pixel-level differences were unavoidable.

A�er examining these cases, we hypothesized that these differences

would not be human perceptible.

To investigate this hypothesis, we inspected the user-marked

printouts of the before and a�er versions from the human study. We

filtered out the areas of visual differences that represented inherent

browser-level differences, such as font styling, font face, and native

bu�on appearance, leaving only the areas corresponding to XBIs.

We found that, for all but one subject, the majority of partici-

pants had correctly identified the areas containing layout XBIs in

the before version of the page but had not marked the correspond-

ing areas again in the a�er version. �is indicated that the a�er

version did not show the layout XBIs a�er they had been resolved

by XFix. Overall, this analysis showed an average 99% reduction

in the human observable XBIs (median 100%), confirming our hy-

pothesis that almost all of the remaining XBIs reported by X-PERT

were not actually human observable.

RQ1: XFix reduced X-PERT-reported XBIs by a mean average of

86% (median 93%). Human-observable layout XBIs were reduced by

a mean of 99% (median 100%).

4.5.2 RQ2: Impact on Cross-browser Consistency. We calculated

the impact of our approach on the cross-browser consistency of a

subject based on the user ratings classifications, improved, same, or

decreased. We found that 78% of the user ratings reported an im-

proved similarity of the a�er version, implying that the consistency

of the subject pages had improved with our suggested fixes. 14% of

the user ratings reported the consistency quality as same, and only

8% of the user ratings reported a decreased consistency. Figure 4

shows the distribution of the participant ratings for each of the

subjects. As can be seen, all of the subjects, except two (Eboss and

Leris), show a majority agreement among the participants in giving

the verdict of improved cross-browser consistency. �e improved

ratings without considering Eboss and Leris rise to 85%, with the

ratings for same and decrease dropping to 10% and 4%, respectively.

We investigated the two outliers, Eboss and Leris, to understand

the reason for high discordance among the participants. We found

that the reason for this disagreement was the significant number of

inherent browser-level differences related to font styling and font

face in the pages. Both of the subject pages are text intensive and

contain specific fonts that were rendered very differently by the

respective reference and test browsers. In fact, we found that the

browser-level differences were so dominant in these two subjects

that some of the participants did not even mark the areas of layout

XBIs in the before version. Since our approach does not suggest

fixes for resolving inherent browser-level differences, the judgment

of consistency was likely heavily influenced by these differences,

thereby causing high disagreement among the users. To further

quantify the impact of the intrinsic browser differences on partici-

pant ratings, we controlled for intrinsic differences, as discussed

0

1

2

3

4

5

6

7

8

9

10

11

B
en

ja
m

in
Le

es

B
itc

oi
n

E
bo

ss

E
qu

ili
br

iu
m

fa
ns

G
ra

nt
aB

oo
ks

H
en

ry
C
ou

nt
yO

hi
o

H
ot

w
ire

H
ot

el

In
cr

ed
ib
le
In

di
a

Le
ris

M
in
ix
3

N
ew

ar
k

O
fa

P
M

A

S
te

ph
en

H
un

t

W
IT

U
s
e

rs

improvement same decrease

Figure 4: Similarity ratings given by participants in the human study

FF IE CH

0

5

10

15

20

25

30

S
iz

e
 o

f
B

ro
w

s
e
r

S
p
e
c
if
ic

 C
o
d
e

●●

●

●

●

●
●

●

●

●

●

●

●●

●

Figure 5: Size of browser specific code observed in real-world (Alexa) websites
(shown by boxes) and XFix subjects (shown by circles)

in Section 4.5.1. �is controlled analysis showed a mean of 99%

reduction in XBIs, a value consistent with the results in Table 2.

RQ2: 78% of participant responses reported an improvement in the

cross-browser consistency of pages fixed by XFix.

4.5.3 RQ3: Time Needed to RunXFix. Table 3 shows the average

time results over the 30 runs for each subject. �ese results show

that the total analysis time of our approach ranged from 43 seconds

to 110 minutes, with a median of 14 minutes. �e table also reports

time spent in the two search routines. �e “searchForCandidateFix”

procedure was found to be the most time consuming, taking up

67% of the total runtime, with “searchForBestRepair” occupying

32%. (�e remaining 1% was spent in other parts of the overall

algorithm, for example the setup stage.) �e time for the two search

techniques was dependent on the size of the page and the number

of XBIs reported by X-PERT. Although the runtime is lengthy for

some subjects, it can be further improved via parallelization, as has

been achieved in related work [20, 28].

RQ3: XFix had a median runtime of 14 minutes to resolve XBIs.

ISSTA’17, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

4.5.4 RQ4: Similarity of Repair Patches to Real-world Websites’

Code. Our analysis of the 480 Alexa websites revealed that browser

specific code was present in almost 80% of the websites and there-

fore highly prevalent. �is indicates that the patch structure of

XFix’s repairs, which employs browser specific CSS code blocks,

follows a widely adopted practice of writing browser specific code.

Figure 5 shows a box plot for browser specific code size observed

in the Alexa websites and XFix subjects. �e boxes represent the

distribution of browser specific code size for the Alexa websites for

each browser (i.e., Firefox (FF), Internet Explorer (IE), and Chrome

(CH)), while the circles show the data points for XFix subjects. In

each box, the horizontal line and the upper and lower edges show

the median and the upper and lower quartiles for the distribution

of browser specific code sizes, respectively. As the plot shows, the

size of the browser specific code reported by Alexa websites and

XFix subjects are in a comparable range, with both reporting an

average size of 9 CSS properties across all three browsers (Alexa:

FF = 9, IE = 7, CH = 10 and XFix: FF = 9, IE = 13, CH = 6).

RQ4: XFix generates repair patches that are comparable in size to

browser specific code found in real-world websites.

5 RELATED WORK

Automatic repair of so�ware programs has for long been an area

of active research. Several techniques that use search-based algo-

rithms have been proposed. Two examples include GenProg [20, 56],

which uses genetic programming to find viable repairs for C pro-

grams, and SPR [23], which uses a staged repair strategy to search

through a large space of candidate fixes. Alternative analytical

approaches also exist, including FixWizard [39], which analyzes

bug fixes in a piece of code and suggests comparable fixes to similar

parts of the code base; and FlowFixer [62], which repairs sequences

of GUI interactions in modified test scripts for Java programs. A

group of techniques exists that can detect and repair HTML syntax

problems in web applications [38, 45]. However, these techniques

cannot find XBIs and repair them. Another technique [55] can auto-

matically repair dynamic web applications for a given presentation

change (fix). However, this technique cannot find the fix automati-

cally. To our knowledge, no techniques have been proposed that

repair presentation problems, such as XBIs, in web applications.

Simple CSS rese�ing techniques, such as Normalize CSS [14]

and YUI 3 CSS Reset [41], establish a consistent CSS baseline for

different browsers to minimize the browser differences that can

lead to XBIs. However, such techniques cannot handle complex

XBIs that are application dependent and are caused by complex

interaction between HTML and CSS. When applied to our 15 eval-

uation subjects, Normalize CSS and YUI 3 CSS Reset could not fix

any of the reported layout XBIs, but rather introduced new layout

failures in some of them.

Cross Browser Testing (XBT) techniques, such as X-PERT [8, 42,

44], CrossT [32], Browserbite [47], Browsera [4], andWebmate [12],

are effective in detecting XBIs. However, debugging the reported

XBIs and finding fixes when using these techniques must still be

performed manually. Crossfire [10] presents a protocol for XBI

debugging by extending browser developer tools, such as Firefox’s

Firebug, to enable cross-browser support. However, the task of

using the debugger to find potential fixes is developer-driven.

�ere exist several detection and localization techniques in the

field of web app presentation testing. Techniques such as Web-

See [25–27] and FieryEye [28, 29], focus on detecting presentation

failures — a discrepancy in the actual and intended appearance of a

web page — and localizing them to HTML elements and CSS prop-

erties in the page. GWALI [2] focuses on detecting presentation

failures in internationalized web pages and finding faulty HTML

elements. �e ReDeCheck technique [54] uses a layout graph to

find regression failures in responsive web pages that adjust their

layout according to the size of the browser’s viewport. However,

debugging and finding potential fixes for presentation problems

detected by these techniques is still a manual process.

Another technique, Cassius [40], helps debug and repair faulty

CSS using automated reasoning. However, it does not specifically

focus on repairing XBIs and can only handle repairs for a single

browser with different browser se�ings.

A group of web testing techniques (e.g., Cucumber [11], Sikuli [6,

61], Crawljax [33], Selenium [46], Cornipickle [16]) require develop-

ers to manually write test cases or specify invariants to be checked

against the application. However, unless developers exhaustively

specify a correctness variant for each element and style combina-

tion, they cannot be reliably used to localize faults and fix them.

Browser plug-ins, such as “PerfectPixel” [57] for Chrome and

“Pixel Perfect” [34] for Firefox, can help developers in detecting

XBIs by overlaying a screenshot of the reference browser rendered

web page on the test browser. Similarly, the tool, “Fighting Layout

Bugs” can be used to automatically find application agnostic XBIs,

such as overlapping text. However, the process of finding fixes for

such XBIs is still a manual process.

Finally, work in the area of GUI testing by Memon et al. [31,

35, 37, 60] tests the behavior of a so�ware system by triggering

event sequences from the GUI. �eir work is not focused on fixing

presentation issues (e.g., XBIs), in the GUI, but rather on using the

GUI as a driver to find behavioral problems in the system.

6 CONCLUSION

In this paper, we introduced a novel search-based approach for

repairing layout XBIs in web applications. Our approach uses two

phases of guided search. �e first phase finds candidate fixes for

each of the root causes identified for an XBI. �e second phase then

finds a subset of the candidate fixes that together minimizes the

number of XBIs in the web page. In the evaluation, our approach

was able to resolve 86% of the X-PERT reported XBIs and 99% of the

human observed XBIs. In a human study assessing the improvement

in consistency between the repaired and reference page, 78% of the

participant ratings reported an improvement in the cross-browser

consistency of the repaired web pages. Our repair patches were

comparable in size to the browser-specific code present in real-

world websites. Overall, these are strong results and indicate that

our approach can be useful and effective in repairing layout XBIs

in web pages.

ACKNOWLEDGMENTS

�is work was supported by U.S. National Science Foundation grant

CCF-1528163.

Automated Repair of Layout Cross Browser Issues Using Search-Based Techniques ISSTA’17, July 2017, Santa Barbara, CA, USA

REFERENCES
[1] 2015. How Do Browsers Display Web Pages, and Why Don’t �ey Ever

Look the Same? Retrieved Jan 2017 from h�p://www.makeuseof.com/tag/
how-do-browsers-display-web-pages-and-why-dont-they-ever-look-the-same/

[2] Abdulmajeed Alameer, Sonal Mahajan, andWilliam G.J. Halfond. 2016. Detecting
and Localizing Internationalization Presentation Failures in Web Applications. In
Proceeding of the 9th IEEE International Conference on So�ware Testing, Verification,
and Validation (ICST).

[3] Alexa. 2017. Alexa Top 500 Global Sites. Retrieved Jan 2017 from h�p://www.
alexa.com/topsites

[4] Browsera. 2017. Automated Browser Compatibility Testing. Retrieved Jan 2017
from h�p://www.browsera.com/

[5] browserhacks.com. 2016. Browser Specific CSS Hacks. Retrieved Jan 2017 from
h�p://browserhacks.com/

[6] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. 2010. GUI Testing Using
Computer Vision. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY, USA, 1535–1544.

[7] Shauvik Roy Choudhary. 2015. X-PERT Code. Retrieved Jan 2017 from h�ps:
//github.com/gatech/xpert

[8] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2012. Cross-
Check: Combining Crawling and Differencing to Be�er Detect Cross-browser
Incompatibilities in Web Applications. In Proceedings of the IEEE Fi�h Interna-
tional Conference on So�ware Testing, Verification and Validation (ICST). IEEE
Computer Society, Washington, DC, USA, 171–180.

[9] John Clarke, Jose Javier Dolado, Mark Harman, Rob Hierons, Bryan Jones, Mary
Lumkin, Brian Mitchell, Spiros Mancoridis, Kearton Rees, Marc Roper, and
others. 2003. Reformulating so�ware engineering as a search problem. In IEE
Proceedings-So�ware, Vol. 150. IET, 161–175.

[10] Michael G. Collins and John J. Barton. 2011. Crossfire: Multiprocess, Cross-
browser, Open-web Debugging Protocol. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion (OOPSLA). 115–124.

[11] Cucumber. 2017. Cucumber for BDD. Retrieved Jan 2017 from h�ps://cucumber.
io/

[12] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller. 2012. Web-
Mate: A Tool for Testing Web 2.0 Applications. In Proceedings of the Workshop
on JavaScript Tools (JSTools). ACM, 11–15.

[13] Sonal Mahajan et. al. 2016. XFix Project Page. Retrieved Jan 2017 from h�ps:
//github.com/sonalmahajan/xfix

[14] Nicolas Gallagher and Jonathan Neal. 2016. Normalize CSS. Retrieved Jan 2017
from h�ps://necolas.github.io/normalize.css/

[15] Firebug Working Group. 2017. Firebug. Retrieved Jan 2017 from h�ps://addons.
mozilla.org/en-US/firefox/addon/firebug/

[16] Sylvain Hallé, Nicolas Bergeron, Francis Guerin, and Gabriel Le Breton. 2015.
Testing Web Applications Through Layout Constraints. In 8th IEEE International
Conference on So�ware Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015. 1–8.

[17] Mark Harman and Bryan F Jones. 2001. Search-based so�ware engineering. In
Information and so�ware Technology, Vol. 43. Elsevier, 833–839.

[18] Joseph Kempka, Phil McMinn, and Dirk Sudholt. 2015. Design and Analysis of
Different Alternating Variable Searches for Search-Based So�ware Testing. In
�eor. Comput. Sci., Vol. 605. 1–20.

[19] B. Korel. 1990. Automated So�ware Test Data Generation. In IEEE Trans. So�w.
Eng., Vol. 16. 870–879.

[20] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proceedings of the 34th International Conference on So�ware
Engineering (ICSE). 3–13.

[21] Gi�e Lindgaard, Cathy Dudek, Devjani Sen, Livia Sumegi, and Patrick Noonan.
2011. An Exploration of Relations Between Visual Appeal, Trustworthiness
and Perceived Usability of Homepages. In ACM Trans. Comput.-Hum. Interact.,
Vol. 18. 1:1–1:30.

[22] Gi�e Lindgaard, Gary Fernandes, Cathy Dudek, and Brown J. 2006. A�ention
web designers: You have 50 milliseconds to make a good first impression!. In
Behaviour & Information Technology, Vol. 25. 115–126.

[23] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of So�ware
Engineering (ESEC/FSE 2015). 166–178.

[24] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Halfond.
2017. XFix: Automated Tool for Repair of Layout Cross Browser Issues. In
Proceedings of the 26th International Symposium on So�ware Testing and Analysis
(ISSTA) – Tool Track.

[25] Sonal Mahajan andWilliam G. J. Halfond. 2014. Finding HTML Presentation Fail-
ures Using Image Comparison Techniques. In Proceedings of the 29th IEEE/ACM
International Conference on Automated So�ware Engineering (ASE) – New Ideas
track.

[26] Sonal Mahajan and William G. J. Halfond. 2015. Detection and Localization of
HTML Presentation Failures Using Computer Vision-Based Techniques. In Pro-
ceedings of the 8th IEEE International Conference on So�ware Testing, Verification
and Validation (ICST).

[27] Sonal Mahajan and William G. J. Halfond. 2015. WebSee: A Tool for Debug-
ging HTML Presentation Failures. In Proceedings of the 8th IEEE International
Conference on So�ware Testing, Verification and Validation (ICST) – Tool track.

[28] Sonal Mahajan, Bailan Li, Pooyan Behnamghader, and William G. J. Halfond.
2016. Using Visual Symptoms for Debugging Presentation Failures in Web
Applications. In Proceedings of the 9th IEEE International Conference on So�ware
Testing, Verification and Validation (ICST).

[29] Sonal Mahajan, Bailan Li, and William G. J. Halfond. 2014. Root Cause Analysis
for HTML Presentation Failures Using Search-based Techniques. In Proceedings
of the 7th International Workshop on Search-Based So�ware Testing (SBST).

[30] David Sawyer McFarland. 2006. CSS: �e Missing Manual. O’Reilly.
[31] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. What Test

Oracle Should I Use for Effective GUI Testing?. In Proceedings of the International
Conference on Automated So!ware Engineering (ASE). 164–173.

[32] Ali Mesbah and Mukul R. Prasad. 2011. Automated cross-browser compatibility
testing. In Proceedings of the 33rd International Conference on So�ware Engineering
(ICSE). ACM, New York, NY, USA, 561–570.

[33] Ali Mesbah and Arie van Deursen. 2009. Invariant-based automatic testing
of AJAX user interfaces. In Proceedings of the 31st International Conference on
So�ware Engineering (ICSE). IEEE Computer Society, Washington, DC, USA,
210–220.

[34] JanOdvarkoMike Buckley, LorneMarkham. 2017. Pixel Perfect Firefox. Retrieved
Jan 2017 from h�ps://addons.mozilla.org/en-us/firefox/addon/pixel-perfect/

[35] Rodrigo M. L. M. Moreira, Ana C. R. Paiva, and Atif Memon. 2013. A Pa�ern-
Based Approach for GUI Modeling and Testing. In Proceedings of the International
Symposium on So�ware Reliability Engineering (ISSRE). 288 – 297.

[36] NetMarketShare. 2017. Browser Net Market Share. Retrieved Jan 2017 from
h�ps://www.netmarketshare.com/

[37] Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. 2014. GUITAR:
An Innovative Tool for Automated Testing of GUI-driven So�ware. In Automated
So�ware Engg., Vol. 21. 65–105.

[38] HungViet Nguyen, HoanAnhNguyen, Tung�anhNguyen, and TienN. Nguyen.
2011. Auto-locating and Fix-propagating for HTML Validation Errors to PHP
Server-side Code. In Proceedings of the 2011 26th IEEE/ACM International Confer-
ence on Automated So�ware Engineering (ASE). IEEE Computer Society, Wash-
ington, DC, USA, 13–22.

[39] Tung �anh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and
Tien N. Nguyen. 2010. Recurring Bug Fixes in Object-oriented Programs. In Pro-
ceedings of the 32Nd ACM/IEEE International Conference on So�ware Engineering
- Volume 1 (ICSE). 315–324.

[40] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page
Layout. In Proceedings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[41] CSS Reset. 2016. YUI 3 CSS Reset. Retrieved Jan 2017 from h�p://cssreset.com/
scripts/yahoo-css-reset-yui-3/

[42] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2013. X-PERT:
Accurate Identification of Cross-browser Issues in Web Applications. In Proceed-
ings of the 2013 International Conference on So�ware Engineering (ICSE). 702–711.

[43] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2014. X-PERT:
A Web Application Testing Tool for Cross-browser Inconsistency Detection.
In Proceedings of the International Symposium on So�ware Testing and Analysis
(ISSTA). 417–420.

[44] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBD-
IFF: Automated Identification of Cross-browser Issues in Web Applications. In
Proceedings of the IEEE International Conference on So�ware Maintenance (ICSM).
1–10.

[45] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. 2012. Automated Repair of HTML Generation Errors in PHP Ap-
plications Using String Constraint Solving. In Proceedings of the International
Conference on So�ware Engineering (ICSE). 277–287.

[46] Selenium. 2017. Selenium HQ. Retrieved Jan 2017 from h�p://docs.seleniumhq.
org/

[47] Nataliia Semenenko, Marlon Dumas, and Tnis Saar. 2013. Browserbite: Accurate
Cross-Browser Testing via Machine Learning over Image Features. In Proceed-
ings of the IEEE International Conference on So�ware Maintenance (ICSM). IEEE
Computer Society, Washington, DC, USA, 528–531.

[48] Sourceforge. 2017. CSS Parser. Retrieved Jan 2017 from h�p://cssparser.
sourceforge.net/

[49] Stackoverflow. 2017. Stackoverflow Cross-browser Posts. Retrieved Jan 2017
from h�p://stackoverflow.com/questions/tagged/cross-browser

[50] StatCounter. 2016. Browser Statcounter. Retrieved Jan 2017 from h�p://gs.
statcounter.com/#desktop-browser-ww-monthly-201506-201606-bar

[51] Noam Tractinsky, Avivit Cokhavi, Moti Kirschenbaum, and Tal Sharfi. 2006.
Evaluating the Consistency of Immediate Aesthetic Perceptions of Web Pages.
In International booktitle of Human-Computer Studies, Vol. 64. 1071 – 1083.

ISSTA’17, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

[52] AlexandreN. Tuch, Eva E. Presslaber, Markus StöCklin, KlausOpwis, and Javier A.
Bargas-Avila. 2012. The Role of Visual Complexity and Prototypicality Regard-
ing First Impression of Websites: Working Towards Understanding Aesthetic
Judgments. In Int. J. Hum.-Comput. Stud., Vol. 70.

[53] Uroule�e. 2017. Random URL Generator. Retrieved Jan 2017 from h�p://www.
uroule�e.com/

[54] �omas A. Walsh, Phil McMinn, and Gregory M. Kap�ammer. 2015. Automatic
Detection of Potential Layout Faults Following Changes to Responsive Web
Pages. In International Conference on Automated So�ware Engineering (ASE).
ACM, 709–714.

[55] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Au-
tomating Presentation Changes in Dynamic Web Applications via Collaborative
Hybrid Analysis. In Proceedings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of So�ware Engineering (FSE). ACM, New York, NY, USA,
16:1–16:11.

[56] Westley Weimer, �anhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of
the 31st International Conference on So�ware Engineering (ICSE). 364–374.

[57] WellDoneCode. 2017. Perfect Pixel Chrome. Retrieved Jan 2017
from h�ps://chrome.google.com/webstore/detail/perfectpixel-by-welldonec/
dkaagdgjmgdmbnecmcefdhjekcoceebi?hl=en

[58] Wikipedia. 2016. CSS Hacks. Retrieved Jan 2017 from h�ps://en.wikipedia.org/
wiki/CSS hack

[59] Wikipedia. 2017. List of Browsers. Retrieved Jan 2017 from h�ps://en.wikipedia.
org/wiki/List of web browsers

[60] Qing Xie and Atif M. Memon. 2006. Studying the Characteristics of a ”Good”
GUI Test Suite. In Proceedings of the 17th International Symposium on So�ware
Reliability Engineering (ISSRE). IEEE Computer Society, Washington, DC, USA,
159–168.

[61] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI
Screenshots for Search and Automation. In Proceedings of the 22Nd Annual ACM
Symposium on User Interface So�ware and Technology (UIST). ACM, New York,
NY, USA, 183–192.

[62] Sai Zhang, Hao Lü, and Michael D. Ernst. 2013. Automatically Repairing Broken
Workflows for Evolving GUI Applications. In Proceedings of the International
Symposium on So�ware Testing and Analysis (ISSTA). 45–55.

	Abstract
	1 Introduction
	2 Background and Example
	3 Approach
	3.1 Overall Algorithm
	3.2 Search for Candidate Fixes
	3.3 Search for the Best Combination of Candidate Fixes

	4 Evaluation
	4.1 Implementation
	4.2 Subjects
	4.3 Methodology
	4.4 Threats to Validity
	4.5 Discussion of Results

	5 Related Work
	6 Conclusion
	References

