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ABSTRACT

Attack graphs used in network security analysis are analyzed to determine

sequences of exploits that lead to successful acquisition of privileges or data

at critical assets. An attack graph edge corresponds to a vulnerability, tac-

itly assuming a connection exists and tacitly assuming the vulnerability is

known to exist. In this thesis, we explore use of uncertain graphs to extend

the paradigm to include lack of certainty in connection and/or existence of a

vulnerability. We extend the standard notion of uncertain graph (where the

existence of each edge is probabilistically independent) however, as signifi-

cant correlations on edge existence probabilities exist in practice, owing to

common underlying causes for disconnectivity and/or presence of vulnerabil-

ities. Our extension describes each edge probability as a Boolean expression

of independent indicator random variables. This thesis (i) shows that this

formalism is maximally descriptive in the sense that it can describe any joint

probability distribution function of edge existence, (ii) shows that when these

Boolean expressions are monotone then we can easily perform uncertainty

analysis of edge probabilities, and (iii) uses these results to model a partial

attack graph of the Stuxnet worm and a small enterprise network and to

answer important security-related questions in a probabilistic manner.
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CHAPTER 1

INTRODUCTION

As computers become more ubiquitous in critical infrastructures, evaluating

the effect of vulnerabilities becomes increasingly important. In order to make

decisions about defense measures, it is vital to study the paths that an at-

tacker might take to intrude into a target network and disrupt services. The

attack graph formalism [1] is a representation of the possible ways in which

an attacker can get to the desired target host by exploiting vulnerabilities on

network hosts while gaining the required privileges at each step. The first

step in attack graph generation is analyzing the connectivity of the network

components and is termed reachability analysis [2]. This information is used

to determine if a target host is reachable by an attacker from his current

host. Ideally, information about the network topology of the target network,

applications running on network hosts, access control rules for the network,

and the trust relationships between hosts is known to the modeler. Accu-

racy and exhaustiveness of network configuration information directly affects

accuracy of the generated attack graph [3].

Despite being a useful and well-developed tool, attack graphs have de-

terministic semantics and hence are not capable of expressing uncertainty

[4], which is inherent to any model. For our interests, uncertainty arises

mainly from three sources: there is the uncertainty about (i) the attacker

(e.g. his skill set, goal, and knowledge), (ii) the system being modeled (e.g.

the versions and configuration details of network services and their associated

vulnerabilities), and (iii) the environment in which the system is operated

(including the legitimate users and administrators). In each category, uncer-

tainty may also come in different shapes, due to either the lack, inadequacy,

inaccuracy, or sometimes inconsistency of information. Ideally we should be

able to use an attack graph not only to identify possible pathways of attack

but also to quantify uncertainty about those pathways.

This thesis aims to integrate uncertainty into security modeling and analy-
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sis of computer systems. As a first step, we choose to focus only on studying

uncertainty about the system. Hence, uncertainties about the attacker and

the environment (and their implications) will not be considered. Under this

setup, we propose to use uncertain graphs – graphs where potential edges are

labeled with an existence probability. Uncertain graphs have been success-

fully applied to various problems in different domains [5], [6], [7], [8] while

being deeply rooted in network reliability [9]. We use them to analyze uncer-

tainty of the existence of stepping stone attacks encoded in data structures

like attack graphs. However, the usual definition of uncertain graph assumes

edges exist independently of each other [10], [11], [12], a major issue when

applied to security modeling, e.g., as one vulnerability may simultaneously

enable attacks from and/or to multiple hosts. Furthermore, existing uncer-

tain graph research does not consider the precision of connectivity subjected

to change or to uncertainty in edge existences; in other contexts, uncertainty

analysis tells us in what cases a robust conclusion can be made in the face

of model input uncertainty.

A major portion of this work aims to address these two issues. For the first

issue, we extend the uncertain graph formalism and model the correlation

between edge existence due to common underlying causes. We describe com-

mon causes using independent Bernoulli random variables and use Boolean

expressions of the random variables to express the edge existence probabil-

ities. For the second issue, we show how uncertainty analysis of uncertain

graphs can be easily done when the Boolean expressions are monotone [13],

i.e. they do not use negation of random variables. In summary, our contri-

butions are fourfold:

1. To the best of our knowledge, we are the first to propose uncertain

graphs for security modeling and analysis of systems with uncertainty.

2. We extend the traditional uncertain graph formalism to model the cor-

relation between edge existence and prove theoretical results about the

expressiveness of uncertain graphs.

3. We perform uncertainty analysis of uncertain graphs by leveraging the

monotonicity of reachability.

4. We show how to use uncertain graphs to model systems with uncer-

tainty and how the graphs help answer different security-related ques-
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tions about the modeled systems in a probabilistic manner.

The rest of the thesis is organized as follows. Chapter 2 discusses the

related work, Chapter 3 discusses background on uncertain graphs, Chapter

4 extends the uncertain graph formalism and proves some theoretical results,

Chapter 5 describes uncertainty analysis of uncertain graphs, Chapters 6 and

7 show two case studies with numerical results, and Chapter 8 concludes the

thesis.
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CHAPTER 2

RELATED WORK

2.1 Uncertain graphs

Uncertain graphs, also known as probabilistic graphs, have been applied to

modeling of problems from various domains like interaction between pro-

teins using noisy and error-prone experimental data [5], entity resolution for

inexact machine learned models [6], optimal reachability in intermittently

connected networks with known routing algorithms [7], path queries on road

networks with unexpected traffic jams [8], and many others. The power of

uncertain graphs comes from their capability of modeling systems with uncer-

tainty, whether due to lack of knowledge about certain parts of the systems

[7], [8] or to noisy model data [5], [6]. Uncertain graphs are deeply rooted in

classical network reliability [9], [14], [15].

Reasoning with uncertain graphs is challenging since most problems in un-

certain graphs are computationally hard. For example, counting the number

of possible worlds of an uncertain graph in which vertex s reaches vertex t

is #P-complete (ST-CONNECTEDNESS [15]). Potamias et al. [16] derived

sampling-based approximation algorithms for the k-nearest neighbor problem

of uncertain graphs. Jin et al. [10] formulated the distance-constraint reach-

ability (DCR) problem and introduced efficient recursive sampling schemes

to estimate DCR of large uncertain graphs. Khan et al. [11] studied relia-

bility search problems of uncertain graphs, i.e. finding all vertices reachable

from some query vertices with probability no less than a given threshold,

using RQ-tree. Recently, [12] proposed recursive stratified sampling-based

estimators to reduce the variance of the standard Monte Carlo approach in

estimating uncertain graph properties.
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2.2 Scenario graphs

The operation of systems can be modeled to be in different states at different

instants of time. While most states might be benign, there exist critical

states that can lead the system to failure. A failure scenario is described

as a sequence of events that violate a correctness property defined for the

system. A scenario graph [17] is an exhaustive and succinct representation of

all failure scenarios. A special case of the scenario graph is an attack graph.

2.3 Attack graphs

An attack graph models the possible ways an attacker might get access to a

critical asset by exploiting a set of vulnerabilities on the services running on

the hosts. The vertices of the graph represent the privilege levels of the at-

tacker on the network hosts, and the edges represent the vulnerabilities that

the attacker could exploit [18]. Traditionally, teams of experts have looked

at the services running on hosts to determine vulnerability information and

have coupled this with network information, such as the connectivity of hosts,

to build out these attack graphs. Due to the manual nature of the construc-

tion of such attack graphs, they are prone to error and often not exhaustive.

Automated attack graph generation using model checking was introduced by

Ritchey and Ammann [19]. The model check, however, provided just a sin-

gle attack scenario. Sheyner et al. [20] use model checking on heterogeneous

networks to provide an exhaustive list of attack scenarios. A more scalable

solution for larger networks has been proposed in [21]. Another optimiza-

tion using the monotonicity property has been proposed by Ammann et al.

[22]. Work in [23] and [24] uses Bayesian networks to capture the uncer-

tainty of information in attack graphs. However, we believe that the acyclic

nature of Bayesian networks limits their ability to model the possible cyclic

relationships that arise in many practical situations.

Another related aspect is the process of reachablity analysis. Reachability

analysis of a network investigates the conditions under which a target host

can be reached by an attacking host. Network scanners [25] and vulnerability

discovery tools [26] can be leveraged to derive the configuration of the target

network.
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CHAPTER 3

UNCERTAIN GRAPHS

3.1 Overview of uncertain graphs

Uncertain graphs extend the definition of a deterministic graph by ascrib-

ing to each of a deterministic graph’s edges an existence probability [10],

[12], [16]. Formally, let G = (V,E) denote a deterministic graph1 where

V = {V1, . . . , Vn} and E = {E1, . . . , Em} are the set of vertices and edges.

The uncertain graph G = (V,E, p), where p = (p1, . . . , pm) ∈ [0, 1]m, allows

each edge Ei ∈ E to exist independently of the others and with probability

pi for i = 1, . . . ,m. We call p the probability assignment vector of E. An

uncertain graph may contain both certain edges – edges that exist with prob-

ability zero or one – and uncertain edges – edges that exist with probability

strictly greater than 0 and less than 1. When all edges are certain edges,

the uncertain graph degenerates to a deterministic graph. In the literature,

uncertain graphs are sometimes treated as generative models of determin-

istic graphs [10], [16]. In this view, every deterministic graph G = (V,E ′)

where E ′ ⊆ E is called a possible world (or possible outcome) of G. Slightly

abusing the notation, we denote this as G ∈ G. Similar to saying a fair coin

generates the head outcome with probability 0.5, we say the G generates G

with probability:

wG,G =
∏
Ei∈E′

pi
∏

Ei∈E\E′

(1− pi) (3.1)

The uncertain graph G generates an exponential number of 2m possible

worlds, out of which only 2m
′
exist with nonzero probabilities, where m′ ≤ m

is the number of uncertain edges in G. For example, the probability of Gi in

Figure 3.1 is wGi,G = p1p2(1 − p3)(1 − p4)p5. Obviously wG,G ∈ [0, 1] for all

1We only consider simple directed graphs.

6



s t

a

b

p1 p2

p4 p5

p3

G1 Gi G32

G

... ...
a

b
s t

a

b
s t

a

b
s t

Figure 3.1: A 4-vertex, 5-edge uncertain graph and three of its 32 possible
worlds. In security modeling, s denotes the starting point (e.g. a
compromised computer in the network) and t the ending point of the attack
(e.g. a critical computer that the attacker wants to gain access to).

G ∈ G and the law of total probability dictates that
∑

G∈G wG,G = 1.

An uncertain graph is distinguished from a Bayesian network [23], [24],

which was originally designed to summarize joint probability distributions.

While Bayesian networks are acyclic, cyclic relationships arise from many

practical situations and are allowed in uncertain graphs. Wang et al. [23]

circumvented the problem with cycles, but the technique relies on metric-

dependent properties. Uncertain graphs also do not assume the state tran-

sition modeled in transition systems [27] (e.g. Markov decision processes,

probabilistic automata.) Such transitions have a subtle drawback in security

modeling of computer networks since an attacker does not “jump” from one

place to the other. Instead, he gains access to more and more places as the

attack progresses and is capable of showing up at multiple places at the same

time.

3.2 Reachability of uncertain graphs

For any given graph property, a deterministic graph either has the property

or does not have it. Since edges in uncertain graphs are random, we will

speak of the probability that an uncertain graph has a given property, as the

sum of the probabilities of its possible worlds that possess that property. We

are particularly interested in reachability.
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Using mathematical symbols, given a deterministic graph G and two ver-

tices s and t, let function Rs,t(G) denote the s, t-reachability of G, formally:

Rs,t(G) =

1, if there is a path from s to t in G

0, otherwise

For example, in Figure 3.1, Rs,t(Gi) = Rs,t(G32) = 1 and Rs,t(G1) = 0. The

two vertices s and t remain mostly unchanged throughout the paper. When

the context is clear, we will refer to s, t-reachability simply as reachability.

Let G = (V,E, p) be an uncertain graph, the reachability of G is defined as the

reachability of an average possible world G in G weighted by its probability:

Rs,t(G) =
∑
G∈G

wG,G Rs,t(G)

=
∑
G∈G

 ∏
Ei∈E(G)

pi
∏

Ei∈E\E(G)

(1− pi) Rs,t(G)

 (3.2)

where we use E(G) to denote the set of edges in G. Using Equation 3.2, the

reachability of the uncertain graph in Figure 3.1 can be computed as follows

(after simplification):

Rs,t(G) = p1p2 + p4p5 + p1p3p5 − p1p2p3p5

− p1p2p4p5 − p1p3p4p5 + p1p2p3p4p5 (3.3)

Although this thesis only focuses on reachability, other graph-related proper-

ties can be translated to uncertain graphs in a similar fashion. For example,

for a deterministic graph G and two vertices s and t, if we denote Ds,t(G)

the length of shortest path (in term of hop count) from s to t in G, then

we can talk about the expected length of the shortest path from s to t in

an uncertain graph G, denoted as Ds,t(G), which can be defined similarly to

Equation 3.2 as follows:

Ds,t(G) =
∑
G∈G

wG,G Ds,t(G)

=
∑
G∈G

 ∏
Ei∈E(G)

pi
∏

Ei∈E\E(G)

(1− pi) Ds,t(G)

 (3.4)
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3.3 Estimating reachability of uncertain graphs

Most problems in uncertain graphs are #P-complete, including the problem

of computing reachability [15]. For that reason, sampling techniques have

been proposed to solving problems of large uncertain graphs [10], [12], [16],

[28] as the alternative to direct computation. A basic Monte Carlo method

for estimating the reachability of an uncertain graph G works as follows.

First, sample k possible worlds G1, . . . , Gk from G. This can be achieved by

sampling edges in G independently according to their existence probabilities.

Then, compute the reachability Rs,t(Gi) for each Gi, i = 1, . . . , k. The

reachability of the uncertain graph is estimated as:

R̂s,t(G) =
1

k

(
k∑
i=1

Rs,t(Gi)

)
(3.5)

The estimator R̂s,t(G) is a random variable whose mean isRs,t(G) (for this we

say the estimator is unbiased) and variance 1
k
Rs,t(G)(1−Rs,t(G)) [10], [28].

Advanced sampling techniques have been proposed to reduce the estimator

variance while requiring fewer samples [10], [12]. Those techniques rely on

the factor theorem [14] to recursively compute Rs,t(G) by conditioning on

the existence of an edge.
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CHAPTER 4

EXTENDED UNCERTAIN GRAPHS

While a promising tool, the existing uncertain graph formalism does not

support modeling of the correlation between edge existence. Such correlation

arises naturally from modeling various systems (Chapter 6 and 7). Here is

an example. Assume in a certain network, host 0 and host 1 can freely

communicate with all services running on host 1 and host 2, respectively.

Furthermore, both host 1 and host 2 run a similar set of services. If an

attacker from host 0 can gain access to host 1 by exploiting some vulnerability

of a service running on host 1, then surely he is also able to do so from host

1 to host 2. As we model the possibility of attacks in the network using an

uncertain graph, edge (0, 1) existence guarantees that edge (1, 2) also exists.

In other words, there is no possible world in which edge (0, 1) exists while

edge (1, 2) does not. This behavior cannot be modeled using the described

uncertain graphs where edges exist independently of one another (Section

4.4). As the result, an altered and more powerful formalism is required.

This chapter is organized as follows. First, we formally define the correla-

tion between edges and extend the basic uncertain graph formalism to model

such property (Section 4.1). Next, we show how to compute reachability of

extended uncertain graphs using a slightly modified version of Equation 3.2

(Section 4.2). Then, we define the concept of stochastic mapping (Section

4.3) and use it to prove that modeling the correlation between edges indeed

expands the expressiveness of basic uncertain graphs, in the sense that there

exists an extended uncertain graph that has no equivalent basic uncertain

graph (Section 4.4). Lastly, we prove an important result which says that ex-

tended uncertain graphs can model an arbitrary stochastic mapping, making

the two models equivalent in term of expressiveness (Section 4.5).
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4.1 Formal definition

Define a tuple G = (V,E,X, p, q) where

• V = {V1, . . . , Vn} and E = {E1, . . . , Em} are the set of vertices and

edges as before,

• X = {X1, . . . , Xr} is the set of independent Bernoulli random variables,

i.e. Xi ∈ {0, 1} for all Xi ∈ X,

• p = (p1, . . . , pr) ∈ [0, 1]r is the probability assignment vector of X, i.e.

pi = Pr(Xi = 1) = 1− Pr(Xi = 0) for i = 1, . . . , r, and lastly

• q is the assignment function that associates each edge Ei ∈ E with a

Boolean expression of the random variables in X using three Boolean

operators AND (∧), OR (∨), and NOT (¬). The existence of edge Ei

directly depends on the evaluation of its Boolean expression p(Ei), i.e.

edge Ei exists if and only if q(Ei) = 1.

We refer to this tuple as the extended uncertain graph, in contrast to the ba-

sic uncertain graph G = (V,E, p) defined in Section 3.1. By sharing random

variable(s) across different Boolean expressions in the assignment function

q, dependency between edges can be explicitly modeled. An example of an

extended uncertain graph is shown in Figure 4.1. When the context is clear,

we use the term uncertain graphs to refer to both basic and extended un-

certain graphs. Every basic uncertain graph G = (V,E, p) has an equivalent

extended uncertain graph representation G = (V,E,X, p, q), which uses m

random variables and q(Ei) = Xi for i = 1, . . . ,m; however, as we shall see

the reverse is not true.

4.2 Reachability of extended uncertain graphs

To compute the s, t-reachability of an extended uncertain graph, we sum up

the probabilities of all of its possible worlds in which s reaches t. Unlike

before, however, computing the probability of a given possible world is not

so easy since edges no longer exist independently of each other. An easier

approach is to iterate through every realization of Xi’s, and for each realiza-

tion construct the corresponding possible world by evaluating the Boolean

11



Algorithm 1 Computing the reachability of an extended uncertain graph.

Input: G = (V,E,X, p, q), s, t
Output: Rs,t

1: function Reachability(G, s, t)
2: Rs,t ← 0
3: for X ′ ∈ 2X do
4: w ← 1
5: for i ∈ [1, 2, . . . , r] do
6: if Xi ∈ X ′ then
7: Xi ← 1
8: w ← wpi
9: else

10: Xi ← 0
11: w ← w(1− pi)
12: E ′ ← {Ei ∈ E : q(Ei) = 1}
13: GX′ ← (V,E ′)
14: if s reaches t in GX′ then
15: Rs,t ← Rs,t + w

return Rs,t

expression of every edge. As a result, computing the probability of a possi-

ble world now reduces to computing the probability of a realization of Xi’s,

which is simply a product of probabilities since Xi’s are independent by defi-

nition. Specifically, let X ′ be a subset of X and GX′ the deterministic graph

realized from G by evaluating Xi to 1 if Xi ∈ X ′, otherwise Xi = 0. It is

easy to see that G generates GX′ with probability:

wGX′ ,G =
∏
Xi∈X′

Pr(Xi = 1)
∏

Xj∈X\X′

Pr(Xj = 0)

=
∏
Xi∈X′

pi
∏

Xj∈X\X′

(1− pj) (4.1)

The reachability of G can then be computed as

Rs,t(G) =
∑
X′∈2X

wGX′ ,G Rs,t(GX′)

=
∑
X′∈2X

 ∏
Xi∈X′

pi
∏

Xj∈X\X′

(1− pj)

 Rs,t(GX′) (4.2)
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where 2X denotes the superset of X. A straightforward implementation of

Equation 4.2 is given in Algorithm 1. For other methods to compute the

reachability using cutsets and pathsets, please refer to [9].

4.3 Stochastic mapping

Before proving the expressiveness of basic and extended uncertain graphs,

we first define the concept of stochastic mapping. If we consider uncertain

graphs as generative models of deterministic graphs, then each uncertain

graph defines a mapping from the set of possible worlds to the unit interval

[0, 1]. Let ΓV denote the set of all deterministic graphs with vertex set

V and N = |ΓV | = 2n(n−1) the size of ΓV (i.e. we consider all possible

directed edges except self-loops). Define a mapping f : ΓV → [0, 1] that

associates with each deterministic graph G ∈ ΓV a real number wG,G ∈
[0, 1]. If the mapping f satisfies the condition

∑
G∈ΓV

f(G) = 1, then we call

it a stochastic mapping. A stochastic mapping is then a joint probability

distribution function over the space of deterministic graphs whose edges are

a subset of E. For a given uncertain graph G and stochastic mapping f

defined on the same edge set as G, if f(G) = wG,G for all G ∈ G, then we

call f the equivalent stochastic mapping of G; we denote that G ≡ f . Every

uncertain graph has an equivalent stochastic mapping and two uncertain

graphs are equivalent if they have the same stochastic mapping.

4.4 Expressiveness of basic uncertain graphs

In this section, we prove the following theorem:

Theorem 4.4.1. Extended uncertain graphs strictly expand the expressive-

ness of basic uncertain graphs, i.e. there exists an extended uncertain graph

that has no equivalent basic uncertain graph.

Proof. We prove this theorem by giving an example. Consider the extended

uncertain graph G in Figure 4.1. It has only two possible worlds G1 and

G2 with wG1,G = Pr(X1 = 0) = 0.5 and wG2,G = Pr(X1 = 1) = 0.5. We

will show that this extended uncertain graph has no equivalent basic uncer-

tain graph representation. Define the basic uncertain graph G ′ = (V,E, p)

13



s a t
X1 X1

G

s a t s a t

G1 G2

Pr(X1=1)=0.5

Figure 4.1: An extended uncertain graph and its only two possible worlds
with nonzero probabilities, wG1,G = wG2,G = 0.5. This graph does not have
an equivalent basic uncertain graph.

where V = (s, a, t), E = ((s, a), (a, s), (a, t), (t, a), (t, s), (s, t)) and p some

probability assignment vector. The definition of G ′ captures all possible ba-

sic uncertain graphs that can be constructed from three vertices s, a, t. The

probabilities of G1 and G2 in G ′ are:

wG1,G′ = (1− p1)(1− p2)(1− p3)(1− p4)(1− p5)(1− p6)

= (1− p1)(1− p3)Q

wG2,G′ = p1(1− p2)p3(1− p4)(1− p5)(1− p6)

= p1p3Q

where Q = (1 − p2)(1 − p4)(1 − p5)(1 − p6) and 0 < Q ≤ 1. Assume

by contradiction that G ′ produces the same stochastic mapping as G, or

equivalently wG1,G′ = wG2,G′ = 0.5, we have: 0 = wG1,G′ − wG2,G′ = (1 −
p1)(1 − p3)Q − p1p3Q = (1 − p1 − p3)Q. Since Q > 0, 1 − p1 − p3 = 0 or

p1 + p3 = 1. Moreover, 1 = wG1,G′ + wG2,G′ = (1 − p1)(1 − p3)Q + p1p3Q =

(1−p1−p3 + 2p1p3)Q = 2p1p3Q. Since Q ≤ 1, 2p1p3 = 1/Q ≥ 1. Combining

this with p1 + p3 = 1, we have (p1 + p3)2− 2p1p3 ≤ 12− 1 = 0 or p2
1 + p2

3 ≤ 0,

and therefore p1 = p3 = 0. This solution does not satisfy p1 + p3 = 1, hence

no basic uncertain graph equivalent to G exists.

Although extended uncertain graphs strictly expand the expressiveness of

basic uncertain graphs, there are cases in which the extended uncertain graph

model of the studied system can be reduced to an equivalent basic uncertain

graph using simple graph transformation tricks (Section 7.3).
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4.5 Expressiveness of extended uncertain graphs

In this section, we show that our definition of extended uncertain graphs is

maximally expressive, in the sense that for any stochastic mapping of ΓV ,

we can construct an extended uncertain graph whose joint edge existence

probability distribution is identically that of ΓV ’s stochastic mapping.

Theorem 4.5.1. Every stochastic mapping has an equivalent extended un-

certain graph.

Proof. Fix the set of vertices V . Let f be a stochastic mapping defined over

ΓV = {G1, . . . , GN}. Define f (i) for i = 1, . . . , N the following mapping:

f (i)(Gj) =


f(Gj)∑i
k=1 f(Gk)

if 1 ≤ j ≤ i

0 if i < j ≤ N

Without loss of generality, assume f(G1) > 0 so that every f (i) is well-

defined, and moreover, it is a valid stochastic mapping since
∑N

j=1 f
(i)(Gj) =

1. Especially, f (N) ≡ f . We will show how to iteratively construct an

equivalent extended uncertain graph G(i) of every f (i).

The first step is to show an equivalent extended uncertain graph G(1) of

f (1), a stochastic mapping that maps G1 to 1 and the rest in ΓV to 0. Define

the extended uncertain graph G(1) = (V,E,X(1), p(1), q(1)) as follows:

• V the set of vertices

• E the set of all n(n − 1) edges, i.e. G = (V,E) is a complete directed

graph

• X(1) = {X1}

• p(1) = (p1) where p1 = Pr(X1 = 1) = 1

• q(1) works as follows: ∀Ej ∈ E, if Ej ∈ E(G1) then q(1)(Ej) = X1, else

q(1)(Ej) = ¬X1

It can be easily seen that G(1) ≡ f (1).

Assume we have constructed G(i) = (V,E,X(i), p(i), q(i)) where X(i) =

{X1, . . . , Xi} and p(i) = (p1, . . . , pi) such that G(i) ≡ f (i) for some 1 ≤ i < N .
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f(G1)=0.5 f(G2)=0.2 f(G3)=0.3

(X1∧X2)∨ㄱX3

ㄱX1∧X2∧X3

(X
1 ∧X

2 )∨ㄱX
3

(ㄱX1∨ㄱX2)∧X3(X1∨ㄱX2)∧X3

X 1
∨
ㄱX 2

∨
ㄱX 3

Pr(X1=1)=1, Pr(X2=1)=5/7, Pr(X3=1)=7/10 

G

Figure 4.2: Top: a stochastic mapping f and three deterministic graphs
with non-zero probabilities f(G1) = 0.5, f(G2) = 0.2, f(G3) = 0.3. Bottom:
an equivalent extended uncertain graph G of f generated using the
construction described in Section 4.5.

If f(Gi+1) = 0 then f (i+1) ≡ f (i). Hence G(i+1) = G(i) is the equivalent ex-

tended uncertain graph of f (i+1). When f(Gi+1) > 0, the equivalent extended

uncertain graph:

G(i+1) = (V,E,X(i+1), p(i+1), q(i+1))

of f (i+1) can be constructed as follows:

• V the set of vertices

• E the set of all n(n− 1) edges

• X(i+1) = {X1, . . . , Xi, Xi+1} where Xi+1 is the newly introduced ran-

dom variable

• p(i+1) = (p1, . . . , pi, pi+1) where pi+1 =
∑i
j=1 f(Gj)∑i+1
j=1 f(Gj)

• q(i+1) works as follows: ∀Ej ∈ E, if Ej ∈ E(Gi+1) then q(i+1)(Ej) =

q(i)(Ej) ∨ ¬Xi+1, else q(i+1)(Ej) = q(i)(Ej) ∧Xi+1

The construction of G(i+1) works by scaling down the edge existence prob-

abilities in G(i) by a factor of pi+1 before adding the new graph Gi+1 with
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probability 1−pi+1 = 1−
∑i
j=1 f(Gj)∑i+1
j=1 f(Gj)

= f(Gi+1)∑i+1
j=1 f(Gj)

= f (i+1)(Gi+1). The last step

of the construction achieves this by first performing a logic AND operation

(∧) between the Boolean expression associated with every edge of G(i) and

the new random variable Xi+1, or formally q(i+1)(Ej) = q(i)(Ej)∧Xi+1. Then,

for every edge of G(i) that appears in Gi+1, we additionally perform a logic

OR operation (∨) between its associated Boolean expression and ¬Xi+1. The

whole purpose of doing so is to force G(i+1) to generate Gi+1 with probability

1−pi+1. Combining these two operations, the Boolean expression associated

with every edge of G(i+1) that appears in Gi+1 is:

q(i+1)(Ej) = (q(i)(Ej) ∧Xi+1) ∨ ¬Xi+1

= (q(i)(Ej) ∨ ¬Xi+1) ∧ (Xi+1 ∨ ¬Xi+1)

= q(i)(Ej) ∨ ¬Xi+1

This process allows us to construct an equivalent extended uncertain graph

G(i) of f (i) for i = 1, . . . , N . As the result, G = G(N) will be the equivalent

extended uncertain graph of f since f ≡ f (N) ≡ G(N).

The construction outlined here introduces a new random variable for every

deterministic graph that has a non-zero probability in f . Therefore, the total

number of random variables used by the final extended uncertain graph is

r = |{Gi|f(Gi) > 0 for i = 1, . . . , N}|. For example, the extended uncertain

graph in Figure 4.2 only uses three random variables to model an equivalent

stochastic mapping in which only three deterministic graphs have non-zero

probabilities G1, G2, and G3. After the first, second, and last iteration of

the construction, the Boolean expressions associated with edge (s, a) in G(1),

G(2), and G(3) are X1, X1∨¬X2, and X1∨¬X2∨¬X3, respectively. We notice

that both edge (s, t) and (t, a) in G are associated with the same Boolean

expression (X1 ∧ X2) ∨ ¬X3. This is because (s, t) and (t, a) coexist in all

deterministic graphs that have a non-zero probability in f . In general, basic

uncertain graphs are not capable of modeling such a behavior.

The main importance of this result is that our particular method for ex-

tending uncertain graphs, motivated by a particular need to describe cor-

relation among edges in an attack graph, is capable of describing any joint

distribution of edge existence probabilities. This is an important founda-

tional result in the theory of uncertain graphs.
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CHAPTER 5

UNCERTAINTY ANALYSIS

Uncertainty analysis plays an important role in understanding how uncer-

tainty in model inputs affects its output. While a selection of the probability

assignment vector p gives an expression of uncertainty, that expression itself

is likely inexact. This is partly because in many cases, p cannot be directly

computed or measured and hence some form of estimation is required. When

estimation is used, the resulting estimate usually comes with the form of a

mean, which is p, and an upper and lower bound. Analyses of uncertain

graphs therefore must be applied to p as well as its credible neighborhood so

that robust conclusions can be made [29]. Within the neighborhood of p, we

are interested in two probability assignment vectors under which the model

output, i.e. a property of the uncertain graph like reachability or expected

shortest path length, acquires its maximum and minimum value. Those ex-

trema tell us how much we should trust the value in the model output given

the uncertainty presented in the model input.

In this thesis, we focus on the reachability property of uncertain graphs

(first introduced in Section 3.2). Reachability has an intuitive interpreta-

tion in the context of security and forms the basis for answering numerous

security-related questions (Section 6.2). From now on, when we talk about

uncertainty analysis we will implicitly refer to uncertainty analysis with re-

spect to the reachability of uncertain graphs. In the remainder of this chap-

ter, we first formally define uncertainty analysis as the problem of finding the

extrema of the model output (Section 5.1). Then, we show how to quickly

identify the extrema using the monotonicity of reachability of the class of

monotone uncertain graphs (Section 5.2). Uncertain analysis of uncertain

graphs in general is NP-complete by reduction from a 3-SAT problem (Sec-

tion 5.3).

Remark 1. It is important to note that for the supplied edge existence

probability, we never truly know the underlying probability (if one exists)
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and do not consider such a value in our model. Instead, the edge existence

probability is the numerical representation of our belief (and the bounds

our confidence in the number), given the information we have collected and

subjected to the assumptions we have made.

5.1 Uncertainty model and monotonicity

Let G = (V,E,X, p, q) denote an extended uncertain graph and Rs,t(G) the

probability that there exists a path from s to t in G. Define ε = (ε1, . . . , εr) ∈
[0, 1]r the perturbation vector and Hp,ε the hyperrectangle obtained by per-

turbing each entry pi in p by an amount of at most εi, or formally:

Hp,ε = {p′ ∈ [0, 1]r | |p′i − pi| ≤ εi ∀i = 1, . . . , r} (5.1)

The mean, upper and lower bound of estimates described earlier can be

modeled using the probability assignment vector and perturbation vector.

Uncertainty analysis of uncertain graphs aims to find the extrema of the

reachability Rs,t(G) in the hyperrectangle Hp,ε as well as two probability

assignment vectors pmin, pmax in the hyperrectangle where the reachability

reaches its extrema, i.e:

pmin = argmin
p′∈Hp,ε

Rs,t(V,E,X, p
′, q) (5.2)

pmax = argmax
p′∈Hp,ε

Rs,t(V,E,X, p
′, q) (5.3)

Here we use the notation Rs,t(V,E,X, p
′, q) to denote the reachability of the

extended uncertain graph G ′ = (V,E,X, p′, q).

Searching for pmin and pmax in Hp,ε is nontrivial, in part due to the #P-

completeness of computing reachability of uncertain graphs. Fortunately, the

monotonicity property of reachability allows us to quickly find pmin and pmax

without having to formulate and solve Equations 5.2 and 5.3 as optimization

problems. The monotonicity of reachability in the context of deterministic

graphs means (i) adding one or more edges to a deterministic graph does not

change its reachability status from 1 to 0 and vice versa, (ii) removing one

or more from the graph does not change its reachability status from 0 to 1.

The next section extends this property to the class of monotone uncertain
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graphs – uncertain graphs whose edges are associated with monotone Boolean

expressions – and the implication regarding how to find pmin and pmax.

5.2 Uncertainty analysis of monotone uncertain graphs

A monotone uncertain graph is defined as an extended uncertain graph where

the assignment functions are restricted to monotone Boolean expressions [13],

i.e. those that only use the AND and OR logic operator and omit the NOT

operator. We first start with some observations about extended uncertain

graphs in general and monotone uncertain graphs in particular.

Corollary 5.2.0.1. By restricting the assignment functions to only functions

of the following form:

∀Ei ∈ E : q(Ei) ∈ X or ¬q(Ei) ∈ X (5.4)

we have a simpler yet completely equivalent definition of extended uncertain

graphs.1

Proof. Given an extended uncertain graph G = (V,E,X, p, q), the Boolean

expression q(Ei) for any Ei ∈ E can always be rewritten into an equivalent

expression in conjunctive normal form (i.e., AND of ORs):

p(Ei) =
k∧
i=1

(
ni∨
j=1

Yi,j

)
(5.5)

where either Yi,j ∈ X or ¬Yi,j ∈ X for all i, j. In a similar fashion, edge

Ei can be “expanded” into a subgraph in which each edge is associated with

either a Bernoulli random variable in X or its negation. The expansion graph

encodes the logical AND and OR operators of Equation 5.5 using series and

parallel graph construction as shown in Figure 5.1. By replacing each and

every edge in an extended uncertain graph with its expansion graph, we

arrive at Condition 5.4.

1We require that X always contains the special random variable X∗ where Pr(X∗ =
1) = 1. This degenerate random variable is used for all certain edges introduced in the
expansion graphs in Figure 5.1.
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Figure 5.1: Expanding the Boolean expression in Equation 5.5 into an
extended uncertain graph that satisfies Condition 5.4. For all i, j, either
Yi,j ∈ X or ¬Yi,j ∈ X.
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X1∨X2 s t
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b
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s t
X1∧X2 s ta
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Figure 5.2: Two monotone uncertain graphs and their equivalent
representations satisfying Condition 5.6.

Using Condition 5.4, what is possible now is that two distinct edges may

be associated with the same Bernoulli random variable, or one edge to a

random variable and the other to its negation. As a special case, a monotone

uncertain graph can therefore be expanded into an uncertain graph in which

the assignment functions have the specific form

∀Ei ∈ E : q(Ei) ∈ X (5.6)

For example, Figure 5.2 shows two 2-vertex monotone uncertain graphs and

how they can be transformed into equivalent uncertain graphs that satisfy

Condition 5.6. This observation allows us to prove the monotonicity of reach-

ability of monotone uncertain graphs, which is stated below.

Theorem 5.2.1. Let G = (V,E,X, p, q) and G ′ = (V,E,X, p′, q) be two

monotone uncertain graphs. Furthermore, let pi ≥ p′i for i = 1, . . . , r. For

all s, t ∈ V , the following inequality holds: Rs,t(G) ≥ Rs,t(G ′).

Proof. Since G and G ′ are monotone uncertain graphs, without loss of gen-

erality, we can assume their assignment functions follow Condition 5.6. We

first prove a special case of Theorem 5.2.1 in which G ′ = (V,E,X, p′, q) where
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p′ = (p′1, p2, . . . , pr). Define E1 ⊆ E the set of all edges associated with the

random variable X1 and assume E1 6= ∅ (otherwise, redefine G and G ′ without

X1). Furthermore, define two following uncertain graphs:

G0 = (V,E\E1, X, (p2, p3 . . . , pr), q)

G1 = (V,E,X, (1, p2, . . . , pr), q)

Put simply, all possible worlds in G1 contain all edges in E1 while none in G0

contains any. The reachability of G and G ′ with respect to any s, t ∈ V can

be computed by conditioning on the random variable X1 as follows:

Rs,t(G) = p1Rs,t(G1) + (1− p1)Rs,t(G0)

Rs,t(G ′) = p′1Rs,t(G1) + (1− p′1)Rs,t(G0)

Hence:

Rs,t(G)−Rs,t(G ′) = (p1 − p′1)
(
Rs,t(G1)−Rs,t(G0)

)
Since p1 ≥ p′1, we only need to prove that Rs,t(G1) ≥ Rs,t(G0). For every

possible world G1 ∈ G1, the four following properties hold:

1. G1 contains all edges in E1,

2. G0, as the result of removing all edges in E1 from G1, is a possible

world in G0,

3. wG1,G1 = wG0,G0 , and lastly

4. Rs,t(G
1) ≥ Rs,t(G

0) according to the monotonicity of reachability of

deterministic graph.

Consequently:

wG1,G1Rs,t(G
1) ≥ wG0,G0Rs,t(G

0)∑
G1∈G1

wG1,G1Rs,t(G
1) ≥

∑
G0∈G0

wG0,G0Rs,t(G
0)

Rs,t(G1) ≥ Rs,t(G0)

Therefore, Rs,t(G) ≥ Rs,t(G ′) for a specific case in which G ′ = (V,E,X, p′, q)

where p′ = (p′1, p2, . . . , pr).

22



Define G(i) = (V,E,X, p(i), q) where p(i) = (p′1, . . . , p
′
i, pi+1, . . . , pr) for

i = 1, . . . , r. Note that G(0) = G and G(r) = G ′. By chaining the inequali-

ties in the following fashion where each holds as a specific case, Rs,t(G) =

Rs,t(G(0)) ≥ Rs,t(G(1)) ≥ . . . ≥ Rs,t(G(r−1)) ≥ Rs,t(G(r)) = Rs,t(G ′), the

theorem is proven.

The next result immediately follows Theorem 5.2.1:

Corollary 5.2.1.1. Let G = (V,E,X, p, q) be a monotone uncertain graph,

ε ∈ [0, 1]r a perturbation vector such that pi − εi ≥ 0 and pi + εi ≤ 1 for

i = 1, . . . , r. We have: pmin = p− ε and pmax = p+ ε.

As the main result of this section, Corollary 5.2.1.1 shows us how to per-

form uncertainty analysis of monotone uncertain graphs. The set of all mono-

tone uncertain graphs contains all basic uncertain graphs but strictly sub-

sumes the set of all extended uncertain graphs, as one might expect. If we

take the extended uncertain graph in Figure 4.1 and change the Boolean ex-

pression associated with edge (a, t) from X1 to ¬X1, then we obtain a graph

that does not have an equivalent monotone uncertain graph representation.

5.3 Uncertainty analysis of extended uncertain graphs

In the last section of this chapter, we show that uncertainty analysis of

extended uncertain graphs in general is a hard problem by showing that

any 3-SAT problem can be reduced to the problem of finding the maxi-

mum reachability of an extended uncertain graph where the probability as-

signment vector is defined within a certain hyperrectangle. Specifically, let

x = (x1, x2, . . . , xr) be the set of r Boolean variables and:

F =
n∧
i=1

(ci,1 ∨ ci,2 ∨ ci,3) (5.7)

is an n-clauses Boolean formula where ci,j are the literals, i.e. either ci,j ∈
x or ¬ci,j ∈ x. Consider the following extended uncertain graph G =

(V,E,X, p, q) constructed after F :

• V = {V1, V2, . . . , Vn+1}, s ≡ V1 and t ≡ Vn+1,
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• E = {E1, E2, . . . , En} where Ei = (Vi, Vi+1),

• X = {X1, X2, . . . , Xr},

• pi = Pr(Xi = 1) = 0.5 for i = 1, 2, . . . , r, and

• q(Ei) = Ci,1 ∨ Ci,2 ∨ Ci,3 which mimics the i-th clause of the Boolean

formula F in the sense that if ci,j = xk then Ci,j = Xk, otherwise if

ci,j = ¬xk then Ci,j = ¬Xk.

Finally, let us define the search space Hp,ε where ε = 0.5 – in other words,

the search space is exactly the unit hypercube Hp,ε ≡ [0, 1]r. We then have

the following result.

Corollary 5.3.0.1. F is satisfiable if and only if max
p′∈[0,1]r

Rs,t(V,E,X, p
′, q) =

1.

Proof. The “only if” part of the Corollary is straightforward given the con-

struction. For the “if” part, note that if max
p′∈[0,1]r

Rs,t(V,E,X, p
′, q) = 1 then

p∗ = argmax
p′∈[0,1]r

Rs,t(V,E,X, p
′, q) is a binary vector, i.e. either p∗i = 0 or p∗i = 1

for all i. This comes from the fact that Rs,t(V,E,X, p
′, q) is a linear function

of p′i for all i. Given the binary probability assignment vector p∗, we can

easily find the corresponding truth assignment to xi’s that satisfies F .

We have just shown that a 3-SAT problem can be reduced to the uncer-

tainty analysis problem of extended uncertain graphs. As a result, uncer-

tainty analysis of extended uncertain graphs is NP-complete. Not surpris-

ingly, this is usually the price we have to pay for extending the expressiveness

of a modeling formalism. However, since the NOT logic operator is not re-

quired in the modeling examples in Chapters 6 and 7, uncertainty analysis

can be performed efficiently in both cases.

Remark 2. Incorporating uncertainty into the model input is one step

toward producing more trustworthy analyses. However, a large amount of

uncertainty in the model input will likely produce a large amount of uncer-

tainty in the model output. Although uncertainty analysis helps us quantify

this relation, it does not tell exactly what part of the input’s uncertainty

contributes the most to the output’s. This information is crucial to a mod-

eler who desires to draw a more robust conclusion about the system and who
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wants to know the best places to spend on reducing uncertainty (by collect-

ing more information, adding more details into the model, etc.) When this

is the case, a different but closely related form of analysis called sensitivity

analysis should be considered.
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CHAPTER 6

CASE STUDY: STUXNET PARTIAL
ATTACK GRAPH

In the first modeling example, we show how to use an uncertain graph to

model a partial attack graph of the Stuxnet worm (Figure 6.1), the infamous

cyberweapon that sabotaged the Iranian nuclear program in 2009.

6.1 Modeling approach

On a high level, Stuxnet can be abstracted using logical steps that allow the

worm to get access to the control system network of an air-gapped nuclear

facility (Figure 6.1). Converting the Stuxnet partial attack graph (denoted as

GStux) to an uncertain graph (denoted as GStux) is relatively straightforward.

GStux uses the same set of vertices as in GStux. Each random variable of GStux
represents a unique edge label of GStux, so we will have a random variable for

“Targeted Email With Dropper”, another for “Infected USB Drive”, and so

on. Multiple edges of GStux that share the same starting and ending vertex

are merged into a single edge of GStux. Each edge of GStux is associated with a

disjunction of random variables where each variable represents an edge label

of GStux. For example if Ei = (con, lap) (Table 6.1) then q(Ei) = XS7∨XUSB

(Table 6.2 and Table 6.3). The complete description of GStux is given below:

• V = { web, splc, his, eng, tra, ecn, oss, wrm, vic, wrk, edr, cas, plc,

emp, win, lap, con} (please refer to Table 6.1 for descriptions).

• E = {(web, eng), (web, oss), (web, win), (splc, vic), (his, oss), (his,

cas), (eng, plc), (eng, splc), (tra, emp), (ecn, his), (ecn, cas), (oss, plc),

(wrm, con), (wrm, emp), (wrm, tra), (wrk, cas), (wrk, eng), (wrk, ecn),

(edr, ecn), (cas, web), (plc, vic), (emp, wrk), (emp, wrk), (win, oss),

(win, eng), (lap, ecn), (con, emp), (con, lap), (con, cas), (con, eng),

(con, edr)}.
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Figure 6.1: Stuxnet partial attack graph (figure reprinted from [30])

• X = {XUSB, XIOMOD, XCRA, XERA, XS7, XSHR, XEMAIL, XWINCC ,

XLMOD, XPRINT , XSERV , XSAB, XLNK} (please refer to Table 6.2 for

descriptions).

• p = (p0, p1, . . . , p12) where p0 = Pr(XUSB = 1), p1 = Pr(XIOMOD =

1), and so on.

• q is given in Table 6.3.

The remaining task is to come up with numerical values for the probability

assignment vector of GStux. Those numbers, which may include both the
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means and their bounds, can be obtained after performing a full security

auditing of the system.

Table 6.1: Vertices of GStux.

Index Vertex Description

0 web Web Nav Server
1 splc S7-417 Safety PLCs
2 his Historian Managers Workstation
3 eng Engineering Station
4 tra Tradeshow
5 ecn ECN Servers
6 oss OS Server
7 wrm Worm Creator
8 vic Target Industrial Process
9 wrk Employee Workstation
10 edr External Drive
11 cas CAS Server
12 plc S7-315 PLCs
13 emp Employee
14 win WinCC Server
15 lap Laptop
16 con Contractor

Table 6.2: Random variables used in GStux.

Index Random variable Description

0 XUSB Infected USB Drive
1 XIOMOD IO Modification
2 XCRA Contractor Remote Access
3 XERA Employee Remote Access
4 XS7 S7 Project Files
5 XSHR Network Share
6 XEMAIL Targeted Email With Dropper
7 XWINCC WinCC DB Exploit
8 XLMOD Logic Modification
9 XPRINT Print Server Vulnerability
10 XSERV Server Service Vulnerability
11 XSAB Sabotage
12 XLNK Lnk Vulnerability

Define s as the wrm vertex and t the vic vertex, using Algorithm 1 for sym-

bolic computation, the reachability of the monotone uncertain graph GStux
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Table 6.3: Assignment functions used in GStux.

Index Edge Assignment function

0 (web, eng) XS7 XSHR

1 (web, oss) XSHR

2 (web, win) XSHR ∨XWINCC ∨XSERV

3 (splc, vic) XIOMOD

4 (his, oss) XUSB

5 (his, cas) XWINCC

6 (eng, plc) XLMOD

7 (eng, splc) XLMOD

8 (tra, emp) XUSB

9 (ecn, his) XSHR

10 (ecn, cas) XSHR

11 (oss, plc) XLMOD

12 (wrm, con) XUSB ∨XEMAIL ∨XSAB

13 (wrm, emp) XEMAIL

14 (wrm, tra) XSAB

15 (wrk, cas) XERA

16 (wrk, eng) XERA

17 (wrk, ecn) XSHR ∨XPRINT ∨XSERV

18 (edr, ecn) XS7 ∨XLNK

19 (cas, web) XS7vXSHR ∨XWINCC ∨XPRINT ∨XSERV

20 (plc, vic) XIOMOD

21 (emp, wrk) XUSB

22 (emp, wrk) XS7

23 (win, oss) XSHR

24 (win, eng) XSHR

25 (lap, ecn) XSHR ∨XPRINT

26 (con, emp) XUSB ∨XS7

27 (con, lap) XUSB ∨XS7

28 (con, cas) XCRA

29 (con, eng) XCRA

30 (con, edr) XS7

can be computed as (after simplification)Rs,t(GStux) = p1p8(p0p11p2p3p4p5p6−
p0p11p2p3p4p5 − p0p11p2p3p4p6 + p0p11p2p3p4 − p0p11p2p4p5p6 + p0p11p2p4p5 +

p0p11p2p6− p0p11p2− p0p11p3p4p5p6 + p0p11p3p4p5 + p0p11p3p4p6− p0p11p3p4 +

p0p11p4p5p6 − p0p11p4p5 − p0p2p3p4p5p6 + p0p2p3p4p6 + p0p2p3p5 − p0p2p3 +

p0p2p4p5p6− p0p2p5− p0p2p6 + p0p2 + p0p3p4p5p6− p0p3p4p6− p0p3p5 + p0p3−
p0p4p5p6 + p0p5 − p11p2p3p4p5p6 + p11p2p3p4p5 + p11p2p3p4p6 − p11p2p3p4 +
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p11p2p4p5p6−p11p2p4p5−p11p2p6+p11p2+p11p3p4p5p6−p11p3p4p5−p11p3p4p6+

p11p3p4 − p11p4p5p6 + p11p4p5 + p2p3p4p5p6 − p2p3p4p6 − p2p4p5p6 + p2p6 −
p3p4p5p6 + p3p4p6 + p4p5p6). Even without knowing the values of the proba-

bility assignment vector, there are two immediate observations we can make

here.

First, in the formula ofRs,t(GStux) there are four missing parameters. They

are p7, p9, p10, and p12, which correspond to the random variables XWINCC ,

XPRINT , XSERV , and XLNK , respectively (Table 6.2). The reason why those

four parameters are eliminated from the formula can be attributed to the

specific structure and the assignment functions of the Stuxnet graph. To

understand this, consider a much simpler example in Figure 6.2. In this

uncertain graph G, s reaches t via a when X1 = X2 = 1, but if X1 = 1 then

s can also get to t via b. Hence X1 is the only deciding factor that dictates

whether s can reach t or not; in other words, Rs,t(G) = Pr(X1 = 1).

Second, the reachability formula of GStux can be factored into a product

of three terms. The first two are p1 and p8, which correspond to the random

variables XIOMOD and XLMOD, respectively. This factorization can be un-

derstood by visually inspecting the Stuxnet graph. By setting either XLMOD

or XIOMOD to 0, the attack graph is partitioned at the control system net-

work layer. Therefore, all paths from the wrm vertex to the vic vertex are

disabled. Hence, these two are among the deciding factors regarding whether

wrm can reach vic or not. The third term of the product is a rather lengthy

formula that cannot be factored any further – this means there is no other

single factor that can singlehandedly disable all paths from wrm to vic like

XLMOD or XIOMOD.

6.2 Security analysis

The resulting uncertain graph GStux, its reachability formula Rs,t(GStux), and

the uncertainty analysis in the previous chapter allow an analyst to answer

the following security-related questions:

1. What is the probability that there exists a path from outside of the

system to a targeted industrial process?

2. To what extent should I trust the computed reachability probability –
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Figure 6.2: An extended uncertain graph with a redundant edge (a, t).

in other words, how sensitive is it to perturbation of model input?

3. If some form of network hardening is applied to the system and the

probability assignment vector re-estimated, will reachability probabil-

ity be reduced, and if so, by how much?

4. Instead of performing network hardening, I want to deploy an intrusion

detection system (IDS) to detect ongoing attacks. Assume I choose to

monitor a specific set of hosts, what is the probability that I miss an

attack?

5. What should I do if the outcome of the analysis is not precise enough

to draw any conclusion?

Questions 1 and 3 ask about the reachability of the uncertain graph which

is estimated by means of sampling as shown in Section 3.3. Since the size

of Rs,t(GStux) is relatively small, reachability can be directly computed using

Equation 3.2 and Algorithm 1. Uncertainty analysis in Chapter 5 answers

Question 2 since GStux is a monotone uncertain graph. Question 4 can be

rephrased into the problem of estimating reachability of uncertain graphs;

i.e., if I remove the set of vertices that correspond to the set of monitored

hosts (together with all edges that connect to and from those vertices), what

is the probability that t remains reachable from s? Question 5 is likely to

arise in practice and usually indicates that the given amount of information

is not sufficient to reason about the security posture of the system (refer to

Remark 2 at the end of Chapter 5).

To complete the chapter, we include some numerical result in Figure 6.3.

When pi is set to 0.2 for all i, the reachability of the Stuxnet uncertain graph

is Rs,t(GStux) = 0.00687 as shown in the solid horizontal line. To study the

effect of pi’s on the overall reachability, we pick one parameter at a time,

31



0 2 4 6 8 10 12
pi

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

st
(

St
ux

)

pi = 0
pi = 1

Figure 6.3: Reachability of the Stuxnet uncertain graph under different
probability assignment vectors.

set it to 0 (dashed line marked with black circle) or to 1 (solid line marked

with x) and recompute the reachability. It is obvious that p1 (XIOMOD) and

p8 (XLMOD) contribute the most to the change in reachability, which was

observed from the formula earlier on. The figure also shows us some other

information that was not obvious from before, e.g. after p1 and p8, p0 (XUSB)

and p2 (XCRA) are the next important parameters to consider.
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CHAPTER 7

CASE STUDY: NETWORK SECURITY
WITH SERVICE UNCERTAINTY

In the second modeling example, we show how to use uncertain graphs to

model a computer network with incomplete information about the network

services, or service uncertainty. We first introduce the studied network and

some basic networking concepts (Section 7.1). Then we define the threat

model (Section 7.2) and propose an approach to model service uncertainty

using uncertain graph (Section 7.3). We conclude the section with a note

on how the probability assignment vector can be estimated using available

information obtained from the common vulnerability databases.

7.1 Network model

Figure 7.1 shows a simple enterprise network consisting of 3 firewalls and 8

hosts. The firewall rules regulate the communication traffic in the network

and define which hosts can directly talk to the other. For example, the 5-

tuple rule <6,0,1,*,80> of firewall 1 allows all TCP traffic (protocol type

6) from any port on host 0 to port 80 on host 1. The deny-by-default policy

is applied to all firewalls. As a result, firewall 1 blocks all TCP traffic from

any port on host 0 to port 25 on host 1. The given enterprise network and

the firewall rulesets effectively define a flow graph of logically connected hosts

(Figure 7.2). The flow graph is a directed graph where each vertex represents

a host in the enterprise network and each directed edge a flow, i.e. a logical

connection. For example, the directed edge from vertex 0 to vertex 1 with the

label <80> in Figure 7.2 represents a 3-tuple flow <6:0-65535:80-80> (i.e.

the protocol, the source and destination port). There can be more than one

flow from one host to another and in that case, the flow graph is a directed

multigraph.

The flow graph is a general description of the types of traffic allowed be-
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Figure 7.1: An enterprise network with 3 firewalls and 8 hosts (example
adopted from [31], slightly modified for illustration purposes).
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Figure 7.2: Flow graph representation of the enterprise network in Figure
7.1. Label <80> on flow from vertex 0 to vertex 1 is short for
<6:0-65535:80-80>. Flows without label allow any traffic.

tween hosts in the network. Knowing that flow <6:0-65535:80-80> from

host 0 to host 1 exists, we can make an educated guess that host 1 runs some

form of an http service. For the purpose of security modeling and analysis,

we are also interested in knowing the version and configuration details of the

service. Without such information, the existence of a flow does not necessar-

ily imply that an attacker can utilize it as a part of his lateral movement. In

fact, the flow might exist while its corresponding service is not running at all.

Security modeling and analysis under unquantified input uncertainty will not

produce any significant result since any outcome is equally likely. However, if

we are allowed to make further assumptions, which are reasonable ones, then

the service uncertainty in flow graphs can be greatly reduced and reasonably

estimated using augmented information from the public domain.
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7.2 Threat model

We assume the attacker has already gained access to host 0. His ultimate

goal is to gain access to host 6, which we know as a critical asset in the

system. To simplify the discussion, we make some further assumptions:

• The attacker only exploits vulnerability of network services running on

the receiving host of flows. As a result, if no flow from host 0 to host

1 is allowed or host 1 does not run any vulnerable service, then the

attacker cannot launch a direct attack from host 0 to host 1.

• The flow graph remains unchanged throughout the attack period, mean-

ing the attacker does not attempt to attack the firewalls and modify

the rulesets to enable new flows.

• Local attacks are not modeled; we assume the attacker is capable of

performing privilege escalation to acquire the highest access level after

getting access to a machine.

7.3 Modeling approach

Define X1,80 and X1,!80 as the random variables that denote whether host

1 runs a vulnerable service on port 80 and on some other port. The flow

graph in Figure 7.2 indicates the correlation between exploitability of flows

in the following sense. If host 1 runs a vulnerable http service on port 80,

or X1,80 = 1, then an attacker on either host 0 or 2 can use the existing

flows to attack host 1. In contrast, if host 1 does not run any vulnerable

http service on port 80, or X1,80 = 0, the attacker cannot attack host 1

from host 0. However, he might be able to do so from host 2, given that

host 1 runs a vulnerable service on some other port, i.e. X1,!80 = 1. If we

convert the flow graph to an extended uncertain graph with the same set of

vertices and edges, then such a property can be modeled by associating edge

(0, 1) with X1,80 and edge (2, 1) with X1,80 ∨ X1,!80. Repeating this process

to other edges and vertices, we can build an extended uncertain graph that

models the service uncertainty and the correlation between edge existence

of the flow graph in Figure 7.2. In this modeling example, by using simple

graph transformation tricks we can further reduce such an extended uncertain
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Figure 7.3: Basic uncertain graph representation of the flow graph in Figure
7.2.

graph to an equivalent basic uncertain graph GServ as shown in Figure 7.3

and tabulated in Table 7.1. The transformation introduces artifacts like

certain edges, i.e. edges that exist with probability one (solid arrows), and

extra vertices (bold circles). Defining s as vertex 0 and t vertex 6, and using

Algorithm 1 for symbolic computation, the reachability of the basic uncertain

graph GServ can be computed as (after simplification):

Rs,t(GServ) = (p2 + p4 − p2p4)(p0p6p10 + p1p7p8

+ p7p8p10 − p1p7p8p10 − p0p6p7p8p10) (7.1)

As before, we notice that the reachability formula can be nicely factored into

a product form. To double check the result, we can examine the first term

of the formula (p2 + p4− p2p4), which is equal to 0 if both p2 = 0 and p4 = 4.

This translates to removing both uncertain edges (1a, 1) and (2a, 2) from

GServ, which in turn disables every path from vertex 0 to vertex 6 as seen

from Figure 7.3, causing Rs,t(GServ) = 0. We also notice a few parameters

missing from the formula. They are p3, p5, and p9, which correspond to

random variables X1,!80, X2,!21, and X5,!22, respectively.

In the last part the section, we briefly discuss how to estimate the prob-

ability assignment vector for the constructed uncertain graph. The security

analyst may assume (or he may learn from the system administrator) that

without exception, all network services run on standard network ports, i.e.

http services on port 80, ftp services on port 21, smtp services on port 25, and

so on. The problem of service uncertainty still persists but the uncertainty
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Table 7.1: Uncertain edges and associated random variables in GServ.

Index Edge Random variable Probability

0 (3, 7) X7,25 p0

1 (5, 6) X6,!21 p1

2 (1a, 1) X1,80 p2

3 (1b, 1) X1,!80 p3

4 (2a, 2) X2,21 p4

5 (2b, 2) X2,!21 p5

6 (3a, 3) X3 p6

7 (4a, 4) X7 p7

8 (5a, 5) X5,22 p8

9 (5b, 5) X5,!22 p9

10 (6a, 6) X6,21 p10

is now greatly reduced, since the analyst can infer that in order to make a

direct lateral movement from host 0 to host 1, host 1 must run a vulnerable

http service. The probability that host 1 runs a vulnerable http service, i.e.

Pr(X1,80 = 1), can be estimated as follows. For each http implementation

h, the analyst searches in the common vulnerability databases (e.g. the Na-

tional Vulnerability Database1) to see if there exists any vulnerability of h

that can be exploited to compromise the hosting machine. Denote v(h) = 1

if the analyst finds at least one vulnerability and v(h) = 0 otherwise. The

probability assigned to X1,80 can be estimated as:

Pr(X1,80 = 1) =

∑
hwhv(h)∑
hwh

(7.2)

where wh is the relative weight assigned to implementation h. If no further

information is given, all implementations carry the same weight. This ap-

proach allows her to compute the most part of the probability assignment

vector used in Equation 7.1 except for p1 = Pr(X6,!21 = 1). To estimate p1,

the analyst needs to find out all other services running on host 6 and use

Equation 7.2 to compute the aggregated probability. If no further informa-

tion is given, the analyst may assume host 6 has some default probability

pdef of running a vulnerable network service. The probability assignment

1https://nvd.nist.gov/
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p10 = Pr(X6,21 = 1), p1 = Pr(X6,!21 = 1) and pdef are related according to:

pdef = p1 + p10 − p1p10 (7.3)

Therefore, p1 can be computed as:

p1 =
pdef − p10

1− p10

(7.4)

Numerical results of the analyses are not reported in this thesis and will

be a significant topic in follow-up work, in which we study larger and more

realistic systems.
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CHAPTER 8

CONCLUSION

In this thesis, we show how to use uncertain graphs for the security modeling

and analysis of computer systems with uncertainty. In doing so, we have

extended the traditional uncertain graph formalism to model the correlation

between edge existence and prove theoretical results about the expressiveness

of basic and extended uncertain graphs. We also show how to perform uncer-

tainty analysis of monotone uncertain graphs. Modeling-wise, the developed

examples serve as a starting point for taking on larger and more complex

systems. In such systems, uncertainty arises from modeling at different lay-

ers of abstraction and from the presence of humans-in-the-loop. Regarding

humans, uncertain graphs can use existing human-related models to plug

holes in the overall attack graph and model the probability that a phishing

campaign succeeds or the probability that a power grid operator plugs in

the USB stick he received at the conference. Analysis-wise, we are also in-

terested in formulating and solving optimization problems to find the best

defense actions, which minimizes the probability of a successful attack, given

a limited budget. These aspects will be explored in subsequent studies.
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