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Abstract
Programming languages such as C for CUDA, OpenCL
or ISPC have contributed to increase the programmability
of SIMD accelerators and graphics processing units. How-
ever, these languages still lack the flexibility offered by low-
level SIMD programming on explicit vectors. To close this
expressiveness gap while preserving performance, this pa-
per introduces the notion of Call Re-Vectorization (CREV).
CREV allows changing the dimension of vectorization dur-
ing the execution of a kernel, exposing it as a nested parallel
kernel call. CREV affords programmability close to dynamic
parallelism, a feature that allows the invocation of kernels
from inside kernels, but at much lower cost. In this paper,
we present a formal semantics of CREV, and an implemen-
tation of it on the ISPC compiler. We have used CREV to im-
plement some classic algorithms, including string matching,
depth first search and Bellman-Ford, with minimum effort.
These algorithms, once compiled by ISPC to Intel-based
vector instructions, are as fast as state-of-the-art implemen-
tations, yet much simpler. Thus, CREV gives developers the
elegance of dynamic programming, and the performance of
explicit SIMD programming.

Categories and Subject Descriptors D - Software [D.3
Programming Languages]: D.3.4 Processors - Compilers

General Terms Languages, Performance

Keywords SIMD, SIMT, Function, Programmability

1. Introduction
New hardware asks for new programming idioms. As an
example, the appearance of general purpose Graphics Pro-
cessing Units (GPUs) has led to a revolution in programming
languages [12, 23], which has culminated in the materializa-
tion of languages such as C for CUDA [29], OpenCL [22],
ISPC [25] and PyCuda [18]. These Multi-Threaded (MT)
languages let programmers express computations as sin-
gle kernels executed by many threads. They target archi-
tectures that combine SIMD and multi-threaded execution,
like GPUs and multi-core CPUs with vector instructions.

However, such high-level abstractions come at a cost in
flexibility and composability. Most programming languages

that target hardware accelerators pack threads into SIMD
vectors or GPU warps1 for the whole duration of a kernel
call. They also suspend and resume individual threads to
simulate thread-dependent control flow. These constraints
affect device-side library functions, which cannot assume
any particular organization of parallelism nor thread activity.
For instance, invoking full SIMD functions within divergent
regions might lead to incorrect behavior. Consequently, li-
brary functions often contain two versions of each routine,
and dynamically dispatch the proper version depending on
whether threads diverge at the call site or not2.

On GPUs, developers circumvent the restrictions listed
above in two ways: via warp-synchronous programming, or
via dynamic parallelism. In the first case, programmers use
the knowledge that threads are grouped in warps to achieve
thread communication without synchronization or memory
sharing. Yet, warp-synchronous programming is not eas-
ily composable with classic multi-thread programming. Pro-
grammers must ensure that every thread in a warp partici-
pates in each collective operation; e.g., the CUDA shfl

function has undefined behavior when reading data from
an inactive thread. However, multi-thread programming puts
thread divergences out of the hands of programmers. Conse-
quently, such warp-synchronous functions may not be called
from multi-thread code that may have divergent control flow.

CUDA’s dynamic parallelism (or OpenCL’s device-side
enqueue) lets threads already in flight create new groups of
threads [36]. This feature gives developers the opportunity to
implement strikingly elegant algorithms [21]. However, this
construct is too heavyweight for our simpler purpose of re-
activating threads within a warp. For instance, invoking new
threads from within a thread in CUDA involves the global
scheduling of a new grid of threads [16], a very expensive
event. In short, currently, either we have the programma-
bility and elegance of the multi-threaded model, or the ef-
ficiency of warp-synchronous programming, but not both.

The goal of this paper is to allow the composability of
SIMD and MT through a programming construct syntacti-
cally similar to dynamic parallelism. To this end, we intro-

1 We shall call groups of threads that execute in lock-step a warp.
2 Ex.: see Trove at https://github.com/bryancatanzaro/trove.

https://github.com/bryancatanzaro/trove


duce the notion of Call Re-Vectorization (CREV). CREV is
a programming idiom that modifies function calls. Functions
marked with the crev tag, henceforth called r-functions, are
executed by all the threads in a SIMD unit. This implies a
context switch: to run a r-function, the runtime must change
the state of all the threads, including those inactive due to
divergent control flows. Upon completion, workers return
to their previous state, in the same way that a function call
is handled. Thus, we achieve a new level of recursion, in
which threads can spawn new threads in a stack-based fash-
ion. However, contrary to traditional dynamic parallelism,
CREV uses only the accelerator’s local memory (registers
and call stack) to save thread states; hence, it is cheaper.

To validate our ideas, we have implemented them in
ISPC [3, 25]3. ISPC is a programming language, plus its
compiler. This compiler produces industrial quality code
for SIMD units such as Intel Streaming SIMD Extensions
(SSE), Intel Advanced Vector Extensions (AVX) includ-
ing AVX-512 for Xeon Phi accelerators [31], or ARM
NEON. We chose to implement CREV in ISPC because
this framework supports the notion of unmasked or every-
where blocks [25]: the ability to activate – in a new context
– threads that are idle due to divergences. This feature is
a requirement of CREV. We have used this new ISPC’s ex-
tension to implement several classic algorithms using CREV.
We show that these implementations are as efficient as warp-
synchronous versions of them, and as clear and elegant as if
they had been implemented using dynamic parallelism.

Summary of our Contributions. The key contribution of
this paper is the notion of Call Re-Vectorization, which
comes out of the observation that it is possible to capital-
ize on divergent threads to help speedup the work of active
threads. We explain the concept of CREV through examples,
a formal semantics and an industrial quality implementation:
• Examples: Section 2 shows examples of algorithms that

benefit from our notion of Call Re-Vectorization. Further
examples are discussed in Section 4.
• Semantics: Section 3.2 formalizes the semantics of µ-

SIMD, a low-level instruction set sufficient to implement
CREV. We have written a Prolog interpreter to validate
that semantics. This interpreter made it easy to prototype
different implementations of CREV, until we had a de-
sign that we could graft into a state-of-the-art compiler.
• Translation: Section 3.3 describes the translation of the

high-level “crev” keyword into the low-level representa-
tion. Core properties of the final, low-level code, as pro-
duced by the translator, are listed in Section 3.4.
• Evaluation: Section 4 provides an empirical evaluation

of our implementation. To perform this evaluation, we
have implemented some algorithms, which are faster and
cleaner than their original versions without CREV.

3 The Intel SPMD Program Compiler (ISPC) is available at https://

github.com/ispc/

2. Overview
The goal of this section is to explain Warp-Synchronous Pro-
gramming, Dynamic Parallelism (DP), and our notion of
Call Re-Vectorization (CREV). To this end, we shall use
Algorithm 1 as an example. This program receives a book
bi, plus a pattern p. It then copies out all the lines l ∈ bi
that match p. Pattern matching is performed by memcmp, and
memory copying is done by memcpy. The book is repre-
sented as a matrix of characters; thus, each of its lines, and
also the pattern p, is a vector of up to N characters. Algo-
rithm 1 runs in parallel: tid is a thread identifier. Hence, each
thread is in charge of matching a line l in bi against p. In case
the match is positive, this thread must copy l to an output ma-
trix bo. For clarity, we assume a single warp in this example,
although the techniques we described can be applied inde-
pendently to multiple warps. The number of threads that run
simultaneously in Algorithm 1 is W , the warp width.

Algorithm 1: SIMD Book Filter

1 W ← warp size; tid ← thread index;
2 Function bFilter(mtx bi, mtx bo, vec p, int N )
3 for k ← tid to num lines(bi) - 1 step W do
4 l← bi[k];
5 if memcmp(l, p,N ) == 0 then
6 memcpy(l, bo[k], N );

A naive multi-thread implementation of memcpy iterates
sequentially over the arrays within each thread. This imple-
mentation is highly inefficient due to branch and memory
divergence. Branch divergence occurs if the number of it-
erations N differs across threads. Threads with few itera-
tion would finish the loop earlier and wait for threads with
more iterations in order to restore convergence at the end of
the loop. Memory divergence also happens as threads within
a warp access data in unrelated locations. Such accesses,
referred to as uncoalesced in the CUDA literature or as
gather/scatter on SIMD platforms, are bandwidth-inefficient
compared to accesses to consecutive elements.

2.1 Warp Synchronous Programming
It is possible to write function memcpy in a way that dis-
tributes operations on contiguous elements across consecu-
tive threads. Algorithm 2 does it. Function memcpy shfl is
aware of the SIMD nature of a warp. Variables are stored as
vectors, having each position belonging to a specific thread.
Instruction shfl(v, i) allows thread tid to read the value
stored in variable v, but in the register space of thread i.
This implementation give us an efficient way to copy data
between arrays, as copies are distributed evenly between
threads, removing most of the branch divergence. Memory
divergence is also eliminated as threads of a warp access
consecutive elements at each iteration of the loop on line 7.

https://github.com/ispc/
https://github.com/ispc/


Nevertheless, this function has an important limitation: it
requires all threads in the warp to be active. It cannot safely
be called from a point that has potential branch divergence.
Indeed, the loop on line 7 would skip elements if some
threads were inactive. To support calls to memcpy shfl

within divergent regions, we need a way to re-activate
threads and put them to work on the copy loop. In addi-
tion, the warp-synchronous programming construct is more
complex and error-prone than the naive implementation.

Algorithm 2: Warp synchronous memcpy
1 W ← warp size; tid ← thread index;
2 Function memcpy shfl(vec s, vec d, int N )
3 for j ← 0 to W − 1 do
4 dmy ← shfl(d, j);
5 smy ← shfl(s, j);
6 Nmy ← shfl(N, j);
7 for i← tid to Nmy − 1 step W do
8 dmy[i]← smy[i];

2.2 Dynamic Parallelism in CUDA
In NVIDIA’s CUDA and OpenCL 2.0, dynamic parallelism
(DP) is the ability to invoke a new kernel K2 from within
a kernel K1 [32]. In this case, programmers may request a
large number of threads, i.e., multiple new warps in multiple
thread blocks. As the innerK2 is a new kernel, all its threads
are active upon entry, regardless of branch divergence inK1.
Algorithm 3 shows an implementation of memcpy that we
could invoke from Algorithm 1 using dynamic parallelism.
This algorithm splits, among all the threads in a warp, the
work of copying vector s to vector d. Its main advantage is
simplicity; its disadvantage is efficiency.

Algorithm 3: Implementation of memcpy that could
be invoked dynamically from Algorithm 1.

1 W ← warp size; tid ← thread index;
2 Function memcpy dp(vec s, vec d, int N )
3 for k ← tid to N − 1 step W do
4 d[k]← s[k];

Wang et al. demonstrate that the overhead of a new ker-
nel launch can be as high as one millisecond [32]. The new
kernel must be scheduled and wait until there are resources
available for its execution. Then, the requested number of
warps and memory blocks must be allocated before execu-
tion starts. For large workloads, the overhead of launching
a nested kernel is paid off by the massive data parallelism
available in the GPU [8]. However, for small tasks, this ex-
tra cost might degrade performance.

2.3 Call Re-Vectorization
Introducing an inner dimension of parallelism is desirable
to implement irregular algorithms such as graph traver-
sal and recursive sorting. Unfortunately, current abstrac-
tions based on warp-synchronous programming or Dynamic
Parallelism either compromise efficiency or programma-
bility. To solve this conundrum, we introduce Call Re-
Vectorization (CREV), a new programming idiom. Syn-
tactically, CREV is akin to CUDA’s dynamic parallelism.
Semantically, it avoids the cost of scheduling new kernels.

CREV revisits the concept of everywhere (also known
as all or unmasked) blocks to temporarily re-enable in-
active threads within divergent regions. Such construction
was available in programming languages for SIMD ma-
chines, such as C* [26], MPL (MasPar Programming Lan-
guage) [20] or POMPC [15] in the late 1980s and early
1990s, and has made a recent comeback in ISPC [25]. In
these languages, an everywhere block is executed by every
processing element, regardless of its divergent state. At the
end of that block, threads are sent back to their original state.

The everywhere block is a low-level construct to support
the implementation of CREV; however, programmers do not
deal with it directly – this is the task of the code generator.
Algorithm 4 shows how Algorithm 1 looks like, once im-
plemented using CREV. Programmers use the crev keyword
at line 6 to re-vectorize functions. CREV maintains a stack
of thread states to track execution contexts, thus supporting
nested calls of r-functions. In terms of performance, a call to
a function using the crev directive is equivalent to a regular
function call – unlike the implementation of dynamic par-
allelism in CUDA, for instance. Thus, we favour the use of
CREV for fine grain nested parallelism. Section 3 will ex-
plain the nitty-gritties behind the CREV directive.

3. Semantics of CREV
This section presents the semantics of Call Re-Vectorization.
First, in Section 3.1, we state informally key features of
CREV. In Section 3.2, we introduce µ-SIMD, a low-level
programming language with a set of primitives that lets us

Algorithm 4: SIMD Book Filter using CREV

1 W ← warp size; tid ← thread index;
2 Function bFilter(mtx bi, mtx bo, vec p, int N )
3 for k ← tid to num lines(bi)-1 step W do
4 l← bi[k];
5 if memcmp(l, p,N ) = 0 then
6 crev memcpy crev(l, bo[k], N );

7 Function memcpy crev(vec s, vec d, int N )
8 for k ← tid to N − 1 step W do
9 d[k]← s[k];



implement CREV. In Section 3.3, we show how to imple-
ment the crev high-level construct using the building blocks
available in µ-SIMD. Finally, in Section 3.4, we use our se-
mantics to state some properties of CREV. Before we dive
in these details, Example 3.1 arms the reader with some in-
tuition on how CREV works.

Example 3.1 A function is called with the crev prefix to
indicate that every thread, whether enabled or disabled,
should execute the function. Every thread should execute
the r-function multiple times if multiple enabled threads in
the warp call it. For instance, if the warp size is 32 and 7
threads are enabled when the program flow hits line 6 in
Algorithm 4, all 32 threads execute memcmp crev 7 times.
In each case, the 32 threads temporarily take on the local
state of the active thread that they are helping. Once done,
these workers all get their local state restored.

3.1 The Cornerstones of CREV
CREV is defined as follows: for each active thread that
reaches a call tagged with crev, we execute the target func-
tion once, forwarding global parameters (scalars) and ex-
tracting private ones per active thread (vectors). This prin-
ciple of Call Re-Vectorization lays on three pillars: thread
re-activation, SIMD function call and data distribution.

Thread Re-Activation. CREV does not lead to the creation
of new threads. A function invoked via a CREV call is exe-
cuted by every thread that is part of a warp, regardless of its
threads’ state. As mentioned in Section 2, a thread might be
inactive due to divergences. However, dormant threads are
re-activated to perform work. The former state of the thread
is saved into the context stack, used for divergence man-
agement. On software context stack implementations such
as used on AMD GPUs and Intel AVX-512 platforms, this
operation is performed entirely in software. For platforms
with hardware context stack implementations, like NVIDIA
GPUs, it will require a new machine instruction.

SIMD Function Call. Multi-thread and SIMD languages
have different definitions of function calls. In MT, a func-
tion call is only performed by active threads. Only register
lanes that correspond to active threads are saved. The other
threads are guaranteed to stay inactive during execution of
the function and need no context save. Although each thread
conceptually has its own private call stack, the call stacks of
a warp are typically synchronized for performance reasons
and to allow the sharing of a single scalar stack pointer for
a warp. Implementations of SIMD languages, on the other
hand, save whole vector registers on function calls, keeping
one stack pointer per warp. Unlike regular MT functions, r-
functions follow an SIMD application binary interface. This
ensures that all registers in-use are saved before being over-
written inside the function, including lanes of threads that
were inactive. Because no threads are created, context switch
is similar to the cost of invoking a new function.

branch if zero bz v, l
unconditional branch jmp l
branch if thread previously active jmp mask tid, l
write to shared memory ↑ vx = v
read from shared memory v =↓ vx
binary operations v1 = o1 ⊕ o2
copy v = o
shuffle data between lanes shfl(v, vlane)
synchronization barrier sync

halt the machine stop

begin everywhere block everywhere

end everywhere block end everywhere

Figure 1. µ-SIMD instruction set. Operands (o) can be
either variables or integer constants.

Labels (L) ::= l ∈ N
Constants (C) ::= c ∈ N
Variables (V ) ::= Tid ∪ {v1, v2, . . . }
Instructions (I) ::= Figure 1
Active Threads Θ ⊂ N
Local Memory σ ⊂ V 7→ Z
Local Memory Bank β ⊂ Tid 7→ σ
Shared Memory Σ ⊂ N 7→ Z
Synch Stack Π ⊂ (L×Θ× L×Θ×Π)
Context Stack Λ ⊂ (Θ×Π× Λ)
Program P ⊂ L 7→ I
Program Counter pc ∈ N

Figure 2. The state of µ-SIMD machine is a septuple
M(Θ, β,Σ,Π,Λ, P, pc). Θ is the set of active threads. A
thread t ∈ Θ has a local memory σ, accessible through
a memory bank β. Threads communicate through shared
memory Σ. The stack Π tracks control flow divergences. A
key component of Call Re-Vectorization is the thread stack
Λ. The program counter, pc, keeps track of the next instruc-
tion ι ∈ P to be executed. The program P is a linear se-
quence of instructions. Although it never changes, we in-
clude it as state for convenience.

Data Distribution. Each formerly active warp thread is
serialized to have a full warp operate on its data. As in
the warp-synchronous memcpy example (Algorithm 2), this
requires extracting and broadcasting each thread’s register
lane. Data distribution will be later detailed in Algorithm 5.

3.2 Low-Level Semantics
We formalize the notion of Call Re-Vectorization on top of
a core language, µ-SIMD. This language provides the low-
level constructs necessary to implement r-functions. Most of
the syntax of µ-SIMD comes from Sampaio et al. [28], who,
in turn, have reused ideas from Bougé et al. [2] and Farrell
et al. [10]. A µ-SIMD program is a sequence of instructions
indexed by a pc. Figure 1 shows µ-SIMD’s syntax.



split(Θ, β, v) = (Θ0,Θn) where
Θ0 = {t | t ∈ Θ and β[t] = σt and σt[v] = 0}
Θn = {t | t ∈ Θ and β[t] = σt and σt[v] 6= 0}

push([],Θn, pc, l) = [(pc, [], l,Θn)]

push((pc′, [], l′,Θ′
n) : Π,Θn, pc, l) = Π′ if pc 6= pc′

where Π′ = (pc, [], l,Θn) : (pc′, [], l′,Θ′
n) : Π

push((pc, [], l,Θ′
n) : Π,Θn, pc, l) = (pc, [], l,Θn ∪Θ′

n) : Π

Figure 3. Auxiliar functions used to define µ-SIMD. split
is a filter, dividing threads into two divergent sets (Θ0 and
Θn). Auxiliary function push updates the synchronization
stack Π due to control flow divergences.

Operational Semantics. The state M of a program is a tu-
ple (Θ, β,Σ,Π,Λ, P, pc), as described in Figure 2. Threads
are uniquely identified by a natural tid, having a local mem-
ory β[tid], and sharing a global memory Σ. Memory is vec-
torized, thus, a local address v denotes a vector of variables
v ∈ β[tid]; hence, each thread sees its private version of v.

To formalize the semantics of µ-SIMD, we use the auxil-
iary functions shown in Figure 3. The semantics of µ-SIMD
is given by Figures 4 and 5. The former shows the behav-
ior of instructions that change the program’s control flow;
the latter shows the behavior of logic and arithmetic instruc-
tions. The result of executing a control flow instruction is a
triple (Θ, β,Σ). The interface between Figure 4 and Figure 5
is performed by Rules IT and TL. The result of executing an
arithmetic or logic instruction is a pair (β,Σ), i.e., they only
update the program memory.
The semantics of control flow divergences. To simulate the
effect of divergences, µ-SIMD has a stack Π. Each element
in Π is a tuple (lid,Θdone, lnext,Θtodo), which indicates the
point where divergent threads must re-converge. A new tuple
is pushed onto Π due to a conditional branch, located at lid,
that has caused a divergence, as described by Rules BT, BF
and BD, in Figure 4. Θdone is the set of threads that have
reached the synchronization point. Θtodo is the set of threads
waiting to execute. These threads, once active, will resume
execution at label lnext. The stack is popped by instructions
sync, whose behavior is given by Rules SS and SP.
The Thread Stack. To implement CREV, we have added
a thread stack Λ to µ-SIMD. This stack is fundamental to
the implementation of everywhere blocks. Λ holds pairs
(Θ,Π). Figure 4 shows that instructions everywhere (Rule
EB) push elements onto Λ, and instructions end everywhere

(Rule EE) pop it. The first element in this tuple is the set
of threads active immediately before the execution of an
everywhere block. The second element is the divergence
stack, also in the state before the execution of the last
everywhere block traversed by the program flow. In Rule EB
(Fig. 4), Θall represents all the threads available in a warp.

(SP)
P [pc] = stop

(Θ, β,Σ, ∅,Λ, P, pc)→ (Θ, β,Σ)

(JP)
P [pc] = jmp l (Θ, β,Σ,Π,Λ, P, l)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(BT)

P [pc] = bz v, l
split(Θ, β, v) = (Θ, ∅) push(Π, ∅, pc, l) = Π′

(Θ, β,Σ,Π′,Λ, P, l)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(BF)

P [pc] = bz v, l
split(Θ, β, v) = (∅,Θ) push(Π, ∅, pc, l) = Π′

(Θ, β,Σ,Π′,Λ, P, pc + 1)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(BD)

P [pc] = bz v, l split(Θ, β, v) = (Θ0,Θn)
pc′ = pc + 1 push(Π,Θn, pc, l) = Π′

(Θ0, β,Σ,Π
′,Λ, P, pc′)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(BA)

P [pc] = jmp mask Tid, l Tid ∈ Θ′

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, l)→ (Θ′′, β′,Σ′)

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, pc)→ (Θ′′, β′,Σ′)

(BI)

P [pc] = jmp mask Tid, l Tid 6∈ Θ′

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, pc + 1)→ (Θ′′, β′,Σ′)

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, pc)→ (Θ′′, β′,Σ′)

(SS)

P [pc] = sync Θn 6= ∅
(Θn, β,Σ, (pc

′,Θ0, l, ∅) : Π,Λ, P, l)→ (Θ′, β′,Σ′)

(Θ, β,Σ, (pc′, ∅, l,Θn) : Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(SI)

P [pc] = sync pc′ = pc + 1
(Θn, β,Σ, ( , ∅, ,Θ0) : Π,Λ, P, pc′)→ (Θ′, β′,Σ′)

(Θ0 ∪Θn, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(EB)

P [pc] = everywhere

(Θall, β,Σ, ∅, (Θ,Π) : Λ, P, pc + 1)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(EE)

P [pc] = end everywhere

(Θ, β,Σ,Π,Λ, P, pc + 1)→ (Θ′, β′,Σ′)

( , β,Σ, ∅, (Θ,Π) : Λ, P, pc)→ (Θ′, β′,Σ′)

(IT)

P [pc] = ι ι 6= Control Flow Instruction
(Θ, β,Σ,Θmask, ι)→ (β′,Σ′) pc′ = pc + 1

(Θ, β′,Σ′,Π, (Θmask,Π
′) : Λ, pc′)→ (Θ′, β′′,Σ′′)

(Θ, β,Σ,Π, (Θmask,Π
′) : Λ, P, pc)→ (Θ′, β′′,Σ′′)

Figure 4. Semantics of µ-SIMD’s control flow instructions.

The thread stack lets us represent an unbounded number of
different thread contexts; hence, programs might contain an



(MM)
Σ(v) = c

Σ ` v = c
(TL)

(t, β,Σ,Θmask, ι)→ (σt,Σ
′) (Θ, β \ [β[t] 7→ σt],Σ

′,Θmask, ι)→ (β”,Σ”)

({t} ∪Θ, β,Σ,Θmask, ι)→ (β”,Σ”)

(MT) t, β ` tid = t (BP)
t, β ` v2 = c2 t, β ` v3 = c3 β[t] = σt c1 = c2 ⊕ c3

(t, β,Σ, , v1 = v2 ⊕ v3)→ (σt \ [v1 7→ c1],Σ)

(MV)
β[t] = σt σt(v) = c

t, β ` v = c
(SI)

t, β ` v1 = c1 t, β ` vlane = clane β[t] = σt clane 6∈ Θmask

(t, β,Σ,Θmask, shfl(v1, vlane))→ (σt \ [v1 7→ ],Σ)

(SV)
t, β ` v1 = c1 t, β ` vlane = clane β[t] = σt clane ∈ Θmask β[clane] = σlane σlane(v1) = c2

(t, β,Σ,Θmask, shfl(v1, vlane))→ (σt \ [v1 7→ c2],Σ)

(CT)
β[t] = σt

(t, β,Σ, , v = c)→ (σt \ [v 7→ c],Σ)
(AS)

t, β ` v′ = c β[t] = σt

(t, β,Σ, , v = v′)→ (σt \ [v 7→ c],Σ)

(LD)
t, β ` vx = cx β[t] = σt Σ ` cx = c

(t, β,Σ, , v =↓ vx)→ (σt \ [v 7→ c],Σ)
(ST)

t, β ` vx = cx t, β ` v = cβ[t] = σt

(t, β,Σ, , ↑ vx = v)→ (σt,Σ \ [cx 7→ c])

Figure 5. Semantics of arithmetic, logic and data-related instructions. Rule TL loops over every thread t ∈ Θ, and for each
one of them, executes instruction ι. No assumption can be made on the order in which instructions run.

Instructions
v0 = ↓tid Address 0 1 2 3
v1 = (v0 == 0) Contents 0 1 1 0
bz v1, Done Address 4 5 6 7
v2 = 4 * (tid + 1) Contents 2 1 3 4
everywhere Address 8 9 10 11
v8 = 0 Contents 1 5 6 1

Loop jmp_mask v8, Call Address 12 13 14 15
jmp Next Contents 2 3 1 7

Call v3 = shfl(v2, v8) Address 16 17 18 19
v4 = v3 + tid Contents 1 3 4 0
v5 = ↓v4
v6 = v5 + 1
↑v4 = v6

Next v8 = v8 + 1 Address v0 v1 v2 v3
v7 = (v8 == 4) Contents * * * *
bz v7, Loop Address v4 v5 v6 v7
end_everywhere Contents * * * *
↑tid = 1 Address v8

Done sync Contents *

Shared Memory

Private Memory

Figure 6. Program written in µ-SIMD, plus its initial state.

arbitrary number of nested everywhere blocks. After exe-
cuting the instruction end everywhere, threads previously
inactive will go back into sleeping mode. In other words,
after end everywhere, the pair (Θ,Π) at the top of Λ is
popped, and the diverging configuration Π becomes part of
the current state of threads. If necessary to check if a thread
is active due to an everywhere block, then µ-SIMD provides
a conditinal jmp mask. The statement jmp mask(tid, l) will
divert execution to l if tid is active in the mask at Λ’s top.
Example 3.2 illustrates the behavior of these instructions.

Example 3.2 Figure 6 shows a program written in µ-SIMD.
We assume |Θall| = 4. This program increments a 4 × 4
matrix; however, line i is incremented only if Σ[tid] = 0.
The figure shows the initial state of the shared (Σ) and
local memory of each thread (σ). The initial state of the

variables in the local memory is immaterial for this example.
Figure 7 shows a trace of the execution of the program, given
its initial state. Only threads tid = 0 and tid = 3 will
enter the everywhere section, because Σ[0] = Σ[3] = 0.
Nevertheless, all the four threads will execute the commands
within that block. Instruction v3 = shfl(v2, v8) lets each
thread read into v3 the value of v2 seen by thread v8.

3.3 High-Level Semantics
The µ-SIMD assembly gives us the primitive building blocks
to implement CREV in higher-level languages. As a proof
of concept, we have implemented CREV onto ISPC, using
instructions of ISPC that are equivalent to those seen in µ-
SIMD. By focusing on an abstract notation, µ-SIMD, instead
of on a concrete language, such as ISPC, we claim gener-
ality: CREV can be implemented in any environment that
supports our notions of everywhere and shuffle. In this sec-
tion we show how to implement the crev modifier, which
marks a function call as an r-function. For simplicity, our
high-level language provides only syntax to declare and in-
voke functions. A function declaration consists of a name f ,
plus a list of formal parameters, e.g.: f(T p1, . . . , T pn). We
let T denote a type modifier, which can be either uniform or
varying. We have borrowed this notation from ISPC. Other
programming languages have different ways to express these
modifiers. For instance, in CUDA we have shared and global
allocation filling the role of ISPC’s uniform variables.

Figure 8 shows the code that we produce for a r-function
call f(a1, . . . , an), where each ai, 1 ≤ i ≤ n is an actual
argument of f . Such an r-function call will trigger up to |Θ|
executions of f , one for each active thread t ∈ Θ. The test
in lines 3 or 8 in Figure 8 are used to single out the function



Instructions Var 0 1 2 3 0 1 2 3
v0 = ↓tid v0 0 1 1 0 ✓ ✓ ✓ ✓
v1 = (v0 == 0) v1 1 0 0 1 ✓ ✓ ✓ ✓
bz v1, Done F T T F ✓ ✓ ✓ ✓
v2 = 4 * (tid + 1) v2 4 * * 16 ✓ • • ✓
everywhere ✓ • • ✓
v8 = 0 v8 0 0 0 0 ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call T T T T ✓ ✓ ✓ ✓
jmp Next F F F F ✓ ✓ ✓ ✓

Call v3 = shfl(v2, v8) v3 4 4 4 4 ✓ ✓ ✓ ✓
v4 = v3 + tid v4 4 5 6 7 ✓ ✓ ✓ ✓
v5 = ↓v4 v5 2 1 3 4 ✓ ✓ ✓ ✓
v6 = v5 + 1 v6 3 2 4 5 ✓ ✓ ✓ ✓
↑v4 = v6 ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 1 1 1 1 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 0 0 0 0 ✓ ✓ ✓ ✓
bz v7, Loop T T T T ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call F F F F ✓ ✓ ✓ ✓
jmp Next T T T T ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 2 2 2 2 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 0 0 0 0 ✓ ✓ ✓ ✓
bz v7, Loop T T T T ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call F F F F ✓ ✓ ✓ ✓
jmp Next T T T T ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 3 3 3 3 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 0 0 0 0 ✓ ✓ ✓ ✓
bz v7, Loop T T T T ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call T T T T ✓ ✓ ✓ ✓
jmp Next F F F F ✓ ✓ ✓ ✓

Call v3 = shfl(v2, v8) v3 16 16 16 16 ✓ ✓ ✓ ✓
v4 = v3 + tid v4 16 17 18 19 ✓ ✓ ✓ ✓
v5 = ↓v4 v5 1 3 4 0 ✓ ✓ ✓ ✓
v6 = v5 + 1 v6 2 4 5 1 ✓ ✓ ✓ ✓
↑v4 = v6 ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 4 4 4 4 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 1 1 1 1 ✓ ✓ ✓ ✓
bz v7, Loop F F F F ✓ ✓ ✓ ✓
end_everywhere ✓ • • ✓
↑tid = 1 ✓ • • ✓

Done sync ✓ ✓ ✓ ✓

Tid Tid

Figure 7. Execution trace of the program in Figure 6.
Column Var shows contents of last variable assigned. T
indicates branch taken; F indicates otherwise. The symbol
• marks inactive threads. For the syntax of instructions, we
refer the reader to Fig. 1; for their semantics, Figs. 4 and 5.

1 everywhere ; ; begin CREV
2 i = 0 ; ; Loop counter
3 loop : jmp mask i, call
4 jmp next ; ; Skip idle threads
5 call : extract(tn, pn, an, i) ; ; Algorithm 5
6 “call” f ; ; function call
7 next : i = i+ 1
8 bnz(i 6= W ) loop
9 end everywhere ; ; end CREV

Figure 8. Low-level code produced to call r-function f .

invocation performed by each thread. A different call will
happen due to each handlet label. In another dimension
of parallelism, each function call will be executed by Θall

threads, due to the everywhere block at lines 10 and 13.
Thus, we might have up to Θ2

all computations.

Algorithm 5: Data distribution

1 Function declaration: f(p1, . . . , pn);
2 Function call: f(t1 a1, . . . , tn an);
3 Function extract(tn, pn, an, i)
4 for k ∈ 1 . . . n do
5 if tk == uniform then
6 pk = ak;

7 if tk == varying then
8 shfl(ak, i);

main

T0 T1 T2 T3

foo(a = 0) a = 1 a = 2 a = 3

bar(b = 1) b = 2 b = 3 b = 4

baz(c = 2) c = 2 c = 2 c = 2

T0 T1 T2 T3

T0 T1 T2 T3

T0 T1 T2 T3

d = 3 d = 3 d = 3 d = 3

main() {
    var int a = Tid;
    crev foo(a);
}

foo(uni int a) {
    var int b = a+Tid;
    crev bar(b)
}

bar(uni int b) {
    uni int c = b+1;
    crev baz(c)
}

baz(uni int c) {
    var int d = c+1;
}

• • •

• • •

• • •

Figure 9. A program written in ISPC, and the tree showing
function calls for T0.

Algorithm 5 generates code that implements data distri-
bution. Data distribution determines how actual parameters
are bound to formal parameters, given that actual parameters
can have one of two types: uniform or varying. By construc-
tion, r-functions have only uniform parameters. The loop in
line 4 will go over all the function arguments, comparing for-
mal (p) and actual (a) parameters. We let the type of ai be
ti. If an actual argument is uniform, then parameter passing
is trivially implemented as a copy between variables. Line 5
of Algorithm 5 generates code under such circumstance. If
an actual parameter has type varying, then we generate code
to perform a broadcast, as seen in line 7 of Algorithm 5.

Example 3.3 The program in Figure 9 shows three functions
called via crev. We are assuming an architecture with four
SIMD lanes, i.e., Θall = {T0, T1, T2, T3}. When foo is in-
voked, the value of a, main’s local variable, is broadcasted
to foo’s formal parameter. Thus, T0 sees foo(0), T1 sees
foo(1), etc. When T0 calls bar from foo, the same behav-
ior is observed. However, when T0 calls baz from bar, all
the four threads activated into this context see baz(2), be-
cause baz receives a uniform argument. The fact that baz’s



local variable d is marked as varying is immaterial in this
example, as this variable is initialized with uniform values.

3.4 Properties of CREV
The semantics of CREV, given by µ-SIMD’s primitive build-
ing blocks, and the translator seen in Section 3.3, lets us es-
tablish a few properties that are true about this programming
abstraction. In this section we go over a few of these proper-
ties. They are valid under the assumption that programs are
well-formed. We define well-formed programs below:

Definition 3.4 (Well-Formed Program) A µ-SIMD program
is well-formed if any occurrence of an everywhere in-
struction at label l1 is matched by an occurrence of an
end everywhere instruction at label l2, and these two la-
bels are control equivalent.

Definition 3.4 borrows the concept of control equivalence
from Ferrante et al. [11]. Two points, l1 and l2, in a pro-
gram’s control flow graph are said to be control equivalent
if l1 dominates l2, and l2 post-dominates l1. We say that l1
dominates l2 if, and only if, any path from the root of the
CFG to l2 must cross l1. Dually, l2 post-dominates l1 if, and
only if, any path from l1 to the end of the CFG must cross
l2. Our translator produces well-formed programs, as long
as the program flow cannot leave a function through points
other than its return address.

Theorem 3.5 (Well-Formed Translation) The translator
of Figure 8 produces well-formed programs.

Proof: This result follows trivially from the fact that
an everywhere block surrounds only Algorithm 5 and
the r-function. Well-formedness holds as long as none of
these routines let the program flow escape the enclos-
ing end everywhere instruction. This implies that the r-
function cannot throw exceptions, for instance.

Composability. CREV allows the nesting of everywhere
blocks. Composition happens due to nested function calls.
The thread stack Λ ensures that the last invoked r-function
will be the first to remove pending computation. In what
follows, we visit three consequences of this property.
Composition is multiplicative. An crev call will put all the
warp threads in active mode. By coupling this observation
with composibility, we have that, in the absence of diver-
gences, a sequence of n nested crev calls will create |Θall|N
tasks. Notice that CREV produces new tasks, but not new
threads: we still have only |Θall| threads to solve these tasks.
Commutativity. The translator of Figure 8 calls an r-
function in a lexicographic order defined by thread iden-
tifiers. However, µ-SIMD’s primitives do not impose any
order on the threads pushed onto Λ. Therefore, the multiple
SIMD calls of an r-function can be handled in any order.
Synchronization parity. There is no distinction between
the top level of parallelism and the inner level of paral-
lelism with regards to the synchronization primitive. In other

Thread Stack

T0: foo
T1: foo
T2: foo
T3: foo
T0: foo; T0: bar
T0: foo; T1: bar
T0: foo; T2: bar
T0: foo; T3: bar
T0: foo; T0: bar; T0: baz
T0: foo; T0: bar; T1: baz
T0: foo; T0: bar; T2: baz
T0: foo; T0: bar; T3: baz

Activation Stack

main() {
    var int a = Tid;
    crev foo(a);
}
foo(uni int a) {
    var int b = a+Tid;
    crev bar(b)
}
bar(uni int b) {
    uni int c = b+1;
    crev baz(c)
}
baz(uni int c) {
    var int d = c+1;
}

T0 T1 T2 T3

0 1 2 3

1 2 3 4

1

3 3 3 3

main:
a

foo:
b

bar:
c

baz:
d

2

Program

Figure 10. Example of three nested calls to r-functions.
Calls currently in the activation stack are highlighted.

words, divergences are handled transparently by the syn-
chronization stack Π, and, from a synchronization stand-
point, it is not possible to tell if execution exists within
the context of an r-function or not. To ensure this property,
µ-SIMD’s everywhere instruction pushes onto Λ, together
with the set of active threads, the divergent state Π.

The interplay between CREV and nested function calls.
The implementation of CREV does not interfere with the
implementation of function calls. Programming languages
that support recursion use a structure known as activation
stack to manage function calls. Entries in the activation stack
are called activation records, and they store functions’ local
variables, return address, arguments, etc. Upon invocation,
the activation record of a function is pushed onto the activa-
tion stack. For each thread pushed onto the thread stack there
will exist one activation record on the activation stack. The
multiplicative nature of CREV also implies on a multipli-
cation of activation records. Therefore, n nested r-calls will
generate |Θall|n activation records; however, the maximum
depth of the activation stack is still n+ 1: activation records
owned by different threads will not exist simultaneously.

Example 3.6 Figure 10 reuse the program from Example 3.3
to illustrate these points. Again, we assume |Θall| = 4. Thus,
three non-divergent nested r-calls will create 4×4×4×4 =
256 tasks. At any time, the thread stack will contain at most
4+4+4+4 = 16 tasks waiting for execution. The activation
stack will contain, at any given point, at most 4 activation
records, corresponding to the activation of functions main,
foo, bar and baz.

4. Evaluation
To evaluate the ideas presented in this paper, we have im-
plemented CREV on ISPC. We use this implementation to
demonstrate that CREV allies the efficiency of warp syn-
chronous programming with the clarity and elegance of dy-



namic parallelism; hence, avoiding the complexity of the for-
mer, and the heavy scheduling cost of the latter.

Experimental Setup. Because CREV is a novel concept
within ISPC, this compilation framework does not provide
benchmarks that use it. Thus, we have re-implemented seven
classic algorithms using the new keyword crev. Our seven
benchmarks are: (bk) Book Filter (Algorithm 1); (sm) String
Matching; (bf) Bellman-Ford [1]; (df) Depth-First Search;
(le) Leader Election; (qs) quick-sort; and (ms) merge-sort.
Runtime Environment. We have implemented CREV onto
ISPC v 1.9.1, and have used it to target a 6-core 2.00 GHz In-
tel Xeon E5-2620 CPU with 8-wide AVX vector units, run-
ning Linux Ubuntu 12.04 3.2.0. This running environment
gives us warps with eight threads, e.g., |Θall| = 8.
The Competing Approaches. We compare four different
ways to implement our benchmarks.
• Seq: serial implementation of each algorithm, as defined

in Cormen’s book [5]. String-matching was implemented
after the Knuth–Morris–Pratt (KMP) [19] algorithm.
• Par: warp synchronous implementation using constructs

available in the ISPC language, but without CREV.
• Launch: dynamic parallelism, implemented via the launch

keyword, which starts a new PThread per function call.
• CREV: the implementation of the algorithms using the

ideas introduced in this paper.
The Seq version of each benchmark is implemented in C++,
and is compiled with clang version 3.7.1, with the optimiza-
tion flags -O2/-std=c++11. Benchmarks in the other three
categories (Par, Launch and CREV) are compiled with ISPC.
The Launch and CREV implementations look the same, ex-
cept for the keyword that precedes function calls: launch in
the first case, and crev in the second. The implementations
in the Par group are different: they do not contain function
calls within divergent regions, to ensure correctness.

Implementations are not available for all the programs.
Even though it is trivial to implement quick-sort or merge-
sort with dynamic parallelism or with CREV, the craft of a
warp synchronous implementation of them is not obvious;
hence, we omit them. Additionally, we omit a sequential im-
plementation of book filter, because this problem does not
have a canonical, textbook-like, solution. Notice, however,
that this algorithm reuses two r-functions: string match (sm),
and memcpy (Algorithm 2). Thus, we show results for se-
quential string matching, but not for sequential book filter.
How to read our results. Results are measured in millions
of execution cycles, as reported by ISPC’s testing environ-
ment. Numbers are the average of five, out of six samples.
We have removed the first, to avoid cold-start discrepancies.
The reader must bear four observations in mind, when an-
alyzing our results: (i) speedups of CREV over pure ISPC
(Par) are due to the better load distribution that CREV ac-
complishes by transporting work to inactive threads; (ii) the
large slowdowns observed with Launch are due to the heavy
cost of scheduling millions of new Posix threads to perform

Pg Seq Par Launch CREV
bk × 8,530.99 7,857.98 7,405.17
sm 6,649.28 3,576.14 393,166.27 2,737.94
bf 141,088.73 493,619.69 • 529,856.06
df 3,754.10 3,786.26 • 3,790.44
le 4,054.66 3,983.09 5,272.92 3,984.79
qs 2.87 × 204.28 2.87
ms 7.30 × 104.98 4.11

Figure 11. Execution time, in millions of cycles. We use
× to indicate that the implementation of a benchmark is not
available, and • to indicate that the implementation of the
benchmark does not run successfully until completion.

small chunks of work. (iii) CREV’s slowdowns are due to the
boilerplate code necessary to serialize threads, before invok-
ing r-functions; (iv) we are comparing against an industrial-
strength compiler; hence, speedups tend to be modest.

4.1 Results and Discussion
Figure 11 summarizes our results. The table shows runtime,
measured as number of execution cycles (in millions), for
all the implementations that we have of the seven different
benchmarks. These numbers are produced with the largest
inputs that we have for each benchmark:
• bk: 10K strings of 0s and 1s, each with 20K bits, and

random target pattern with 16 bits.
• sm: 256MB taken from books available in the Project

Gutenberg, and a target pattern with 16 characters.
• bf: random Erdös-Rényi [9] graph with 2,048 nodes and

80% edge probability.
• df,le: 8-ary complete tree, depth 5 (root + five full levels).
• qs,ms: 16K random integers in the range [0, 100000).

Figure 11 shows that ISPC, with or without CREV, is
competitive against mainstream compilers: Seq is the best
C implementation that we could produce of each algorithm;
furthermore, these programs are compiled with clang -O2
(which was faster than clang -O3 in this experiment). Nev-
ertheless, CREV and Par outperform these implementations
in several cases, although they are not embarrassingly paral-
lel. The table also reveals that Launch is sometimes orders
of magnitude slower than the other approaches, being the
fastest in only one case: bk. In bf and df, the excessive num-
ber of threads created by Launch forced earlier termination.

CREV usually outperforms Par by a small margin. How-
ever, the main benefit of the former over the latter is not
performance. Rather, it is readability. The Launch and the
CREV versions of each benchmark are exactly the same, ex-
cept that whereas in one case we prepend the call of func-
tions with the launch keywork, in the other we use crev.
On the other hand, the Par implementations are very differ-
ent, because they cannot call functions within potentially di-
vergent regions. To circumvent this restriction, the five Par
benchmarks forgo recursion. As an example, the ISPC ver-



sion of depth-first search uses a stack of tasks, instead of
performing recursive functions to traverse the graph.

Algorithm 6: Pattern matching: CREV vs. Naı̈ve
1 P ← pattern; T ← target text;
2 W ← warp size; tid ← thread index;
3 Function memcmp(Offset k)
4 m← True;
5 for i← tid to |P | do
6 if P [i] 6= T [i+ k] then m← False ;

7 if all (m = True) then Found(k) ;

8 Function StringMatch

9 for i← tid to (|T | − |P |) step W do
10 if P [0] = T [i] then crev memcmp(i) ;

11 Function ParStringMatch

12 for i← tid to (|T | − |P |) step W do
13 j ← 0; k ← i;
14 while j < |P | and P [j] = T [k] do
15 j ← j + 1; k ← k + 1;

16 if j = |P | then Found(k) ;

As another example, Algorithm 6 shows the CREV-
based implementation of string matching. This is a warp-
synchronous implementation of parallel matching: each
thread tid tries to match P at positions T [tid + n × W ],
where n ≤ |T |, and W is the warp size. Thus, in the best
scenario, runtime is divided by W . This implementation is
irregular: divergences might happen at lines 6 and 10. Each
call to memcmp4 will commence a CREV sequence of com-
putations. Figure 12 compares our implementation, seen in
Algorithm 6 (StringMatch) against the equivalent Par ver-
sion, which does not perform any function call.

The Impact of Data on Runtime. The numbers seen in
Figure 11 are input dependent. However, the overall conclu-
sions remain the same, once we feed our benchmarks with
inputs of different sizes. Figure 12 compares the runtime dif-
ferent implementations of string-matching and leader elec-
tion. In string-matching, we omitted the Launch-based ver-
sion, as it was too slow. Notice that KMP has lower asymp-
totic complexity than Algorithm 6. It runs in O(|T | + |P |),
whereas Algorithm 6 runs in O(|T | × |P |/|W |). For this
experiment, we searched for prefixes of the pattern “She
had been watching him the la”, of sizes 4, 8, . . . , 28, 32 in
Jane Austen’s book Pride and Prejudice, taken from Project
Gutenberg5. CREV is always faster than ParStringMatch,
and runs faster than KMP in more than half the cases.
CREV beats plain parallelism because it distributes func-
tion memcmp among the eight available vector lanes. On the
other hand, ParStringMatch has a potentially long diver-
gent block in line 14. In our best result, observed for pat-

4 Function memcmp is also used at line 5 of Algorithm 1
5 https://www.gutenberg.org/ebooks/42671
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Figure 12. (Top) String-Matching. X-axis shows pattern
sizes, in number of characters. Target text contains 256MB
divided among 5,058,121 lines. (Bottom) Leader-Election.
X-axis shows graph size, in number of edges. In both charts,
Y-axis shows runtime, in millions of cycles. Boxes show
percentage of speedup: white is CREV over Par; grey is
CREV over Seq, and black is CREV over Launch.

terns of size eight, CREV runs in 44% of the time taken by
ParStringMatch, and in 40% of the time taken by KMP.

Figure 12 (Bottom) shows a comparison between the four
implementations of leader-election. Dynamic parallelism is
still the slowest, overall; however, we notice that it tends to
catch up with the other approaches for very large inputs, in
this benchmark. This behavior is expected: if the amount of
parallel work is large, then the greater flexibility and inde-
pendence of pthreads start paying for the cost of creating
them. Nevertheless, depending on how the algorithm is im-
plemented, dynamic parallelism might lead to the creation
of a very large number of threads, as the size of the input
grows. Due to this observation, we have not been able to
run the Launch versions of df and bf for the largest avail-
able inputs. On the other hand, in the case of leader-election
(le), parallelism is coarser: each thread receives the task of
finding strong components in a graph. Thus, even though the
number of threads grows as the size of the input increases,
this growth is less accentuated than in df and bf.

5. Related Work
GPUs’ increasing programmability and decreasing costs
have made them very popular for the development of gen-
eral purpose high performance applications [23]. This pop-
ularity has attracted the interest of programming language
researchers. Control flow divergences have been a particu-
larly important source of attention. Therefore, the compiler-

https://www.gutenberg.org/ebooks/42671


related literature contains a vast body of work describing
analyses [6, 27, 28, 30] and optimizations [6, 7, 35, 37] that
reduce the effects of divergences in GPGPU code. CREV
is not a competitor of these analyses and optimizations. On
the contrary, Call Re-Vectorization complements such tech-
niques, giving programmers a tool that lets them deal with
divergences at the software level. In the rest of this section
we touch work that is more closely related to ours.
Everywhere Blocks. The problem of expressing nested
SIMD loops in multi-thread style is not new. Some data-
parallel programming languages for SIMD computers in
the 80’s and 90’s allow to re-enable temporarily dormant
threads. The C* language [26], the Maspar Programming
Language [20] and the POMPC language [15] incorporate
a control flow construct named either everywhere or all
to this end. We have re-used these instructions to implement
CREV. However, these are low-level primitives: they are not
programmer-friendly, nor have any interface with function
calls. Using everywhere directly is difficult, as this abstrac-
tion has no knowledge nor control over the state of dormant
threads. CREV, on the contrary, is as easy to use as dynamic
parallelism. It manages register saves and restores automati-
cally, relieving the programmer from this task.
Warp-level convergence guarantees. Previous work en-
force guarantees on where threads converge after control
divergences to make warp-synchronous programming safer.
For instance, Pharr et al. have proposed the maximal conver-
gence guarantee [25], and Gaster has proposed a divergence-
aware execution model for OpenCL [13]. CREV goes fur-
ther by actually enforcing convergence at arbitrary program
points, allowing warp-synchronous functions to be called
from divergent sections. To the best of our knowledge, this is
the first attempt to provide developers with such possibility.
Grid-level Dynamic Parallelism. Much effort has been
spent to reduce the overhead of dynamic parallelism. Alter-
natives to CUDA Dynamic Parallelism such as DTBL [33],
Free Launch [4] and LaPerm [34] reduce sub-kernel launch
overhead or improve cache locality. By relying on global
schedulers, they allow load-balancing between GPU stream
multiprocessors. We are not competing with these efforts,
because CREV is not an alternative to dynamic paral-
lelism. CREV is a static code transformation with no dy-
namic scheduling; hence, it does not create extra paral-
lelism. In other words, we move work to threads that are
already in flight, instead of spawning new threads. The main
benefit of CREV, when compared to these previous work
comes in terms of programmability and efficiency: by sup-
porting composability of multi-thread and SIMD code, we
give developers the chance to benefit from efficient warp-
synchronous idioms without neither having to deal with
primitives like shuffle, vote and population count, nor having
to worry about saving the context of threads.
Thread-level divergence aware optimizations. Compil-
ers may reorder computations across loop iterations within

each thread to mitigate branch divergence [6, 14, 17, 24].
However, each thread performs the same set of tasks as in
the original version, so divergences induced by load unbal-
ance between threads of a warp remains an issue. CREV is a
way to deal with irregular programs whose performance di-
vergences hurt. However, CREV is not an optimization im-
plemented by the compiler: programmers must adapt algo-
rithms to use this construct. CREV deals well with diver-
gences because it lets developers balance workload between
threads in flight. In other words, it changes the loop structure
by distributing iterations across different threads.

6. Final Thoughts
Primitives such as warp vote and shuffle have given experts
the possibility of writing efficient SIMD code, by program-
ming from the point of view of one warp. This coding style
has been used in CUB and many other CUDA libraries6.
However, warp-synchronous code does not play well with
branch divergence. Most warp-synchronous algorithms re-
quire all threads in a warp to be active. This is a problem
for the common usage scenario of a simple MT-style CUDA
kernel that calls warp-synchronous library functions. It is
our vision that the application developer writing the ker-
nel should not be concerned with the internal implemen-
tation of library functions, and should be able to call any
function inside divergent program regions. To meet the de-
mands of this vision, this paper has introduced the notion of
Call Re-Vectorization(CREV). We have described the build-
ing blocks necessary to implement CREV. Looking towards
compatibility with future hardware, we have proposed low-
level primitives with well-defined semantics and a high-level
interface, the crev idiom, that makes programmer intent ex-
plicit. Thus, our notion of CREV does not rely implicitly on
current hardware behavior, which might eventually change.
We have implemented CREV into ISPC, using Intel instruc-
tions, and have shown how to code irregular algorithms in
this environment. Our implementations are not only clearer
than non-CREV based approaches, but also more efficient,
as they balance work among inactive warp threads.
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