[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2999572.2999594acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

SlickFi: A Service Differentiation Scheme for High-Speed WLANs using Dual Radio APs

Published: 06 December 2016 Publication History

Abstract

Wireless LANs (WLANs) carry a diversemix of traffic, ranging from delay-sensitive real-time applications to bulk transfers. Using existing QoS mechanisms in high speed WLANs (e.g., 802.11n/ac) presents a tradeoff between maximizing the performance of real-time applications and achieving high throughput. We propose SlickFi, a service differentiation scheme for high-speed WLANs that addresses this tradeoff by leveraging existing dual radio WiFi access points (APs). SlickFi opportunistically adapts channel width on a per-frame basis based on application demands and communicates traffic information across radios to control aggregate frame sizes for improving channel efficiency. SlickFi can be readily deployed on commodity devices using only driver-level changes at the AP-side. We implemented SlickFi in the ath9k driver and using real testbed experiments, show that it can improve aggregate throughput by up to 1.8x and 2.2x over 802.11n and 802.11e, respectively and the PSNR of 1080p videos by up to 3.4x and 1.7x over 802.11n and 802.11e, respectively.

References

[1]
ath9k. http://linuxwireless.org/en/users/Drivers/ath9k/.
[2]
Tri-radio AP. http://https://goo.gl/gjU6W3.
[3]
802.11ac: The Fifth Generation of Wi-Fi. Cisco Technical White Paper. http://bit.ly/1MBCljm,.
[4]
ath9k spectral scan.
[5]
Cisco visual networking index: Forecast and methodology. http://bit.ly/1OdTJgJ.
[6]
Dual band access points. http://www.broadbandbuyer.com/store/dual-band-wifi/dual-band-access-points/.
[7]
Intel wifi link 5000. www.intel.com/products/wireless/adapters/5000/.
[8]
iperf. http://sourceforge.net/projects/iperf/.
[9]
Sipp. http://sipp.sourceforge.net/.
[10]
VQMT: Video Quality Measurement Tool. http://mmspg.epfl.ch/vqmt.
[11]
IEEE Standard for local and metropolitan area networks part 11; amendment 5: Enhancements for higher throughput, 2009. 802.11n.
[12]
P. Bahl, A. Adya, J. Padhye, and A. Wolman. Reconsidering wireless systems with multiple radios. In SIGCOMM CCR 2004.
[13]
G. Bianchi, I. Tinnirello, and L. Scalia. Understanding 802.11e contention-based prioritization mechanisms and their coexistence with legacy 802.11 stations. Network, IEEE, 19(4):28--34, July 2005.
[14]
S. Biswas, J. Bicket, E. Wong, R. Musaloiu-E, A. Bhartia, and D. Aguayo. Large-scale measurements of wireless network behavior. In SIGCOMM '15.
[15]
V. Brik, A. Mishra, and S. Banerjee. Eliminating handoff latencies in 802.11 wlans using multiple radios: Applications, experience, and evaluation. In IMC '05.
[16]
A. Chan, H. Lundgren, and T. Salonidis. Video-aware rate adaptation for mimo wlans. In ICNP'11.
[17]
A. Chan, K. Zeng, P. Mohapatra, S.-J. Lee, and S. Banerjee. Metrics for evaluating video streaming quality in lossy ieee 802.11 wireless networks. In INFOCOM'10.
[18]
K. Chintalapudi, B. Radunovic, V. Balan, M. Buettener, S. Yerramalli, V. Navda, and R. Ramjee. Wifi-nc: Wifi over narrow channels. In NSDI'12.
[19]
P. Deshpande and S. R. Das. Brave: Bit-rate adaptation in vehicular environments. In VANET '12.
[20]
P. Deshpande, Z. A. Qazi, and S. R. Das. Mrmv: Design and evaluation of a multi-radio multi-vehicle system for metro-wifi access. In VANET '13.
[21]
F. Guo and T. cker Chiueh. Software tdma for voip applications over ieee802.11 wireless lan. In INFOCOM'07.
[22]
D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 packet delivery from wireless channel measurements.
[23]
U. Ismail. Virtual pcf: Improving voip over wlan performance with legacy clients. Master's thesis, University of Waterloo, 2009.
[24]
S. Kakumanu and R. Sivakumar. Glia: A practical solution for effective high datarate wifi-arrays. In MobiCom 2009.
[25]
R. R. Kompella, S. Ramabhadran, I. Ramani, and A. C. Snoeren. Cooperative packet scheduling via pipelining in 802.11 wireless networks. In E-WIND '05.
[26]
E. B. S.-J. L. K. A. Lara Deek, Eduard Garcia-Villegas. The impact of channel bonding on 802.11n network management. In CoNEXT '11.
[27]
M.-H. Lu, P. Steenkiste, and T. Chen. A time-based adaptive retry strategy for video streaming in 802.11 wlans: Research articles. Wirel. Commun. Mob. Comput., 7(2):187--203, Feb. 2007.
[28]
E. Magistretti, K. K. Chintalapudi, B. Radunovic, and R. Ramjee. Wifi-nano: Reclaiming wifi efficiency through 800 ns slots. In MobiCom '11.
[29]
S. Nguyen, H. Vu, and L. Andrew. Service differentiation without prioritization in ieee 802.11 wlans. Mobile Computing, IEEE Transactions on, 12(10):2076--2090, Oct 2013.
[30]
K. Nishat, R. Anwar, M. Ali, Z. Akhtar, H. Niaz, and I. A. Qazi. Loss Differentiation: Moving onto High-Speed Wireless LANs. In INFOCOM '14.
[31]
M. Park. Ieee 802.11ac: Dynamic bandwidth channel access. In ICC'11.
[32]
G. S. Paschos, I. Papapanagiotou, S. A. Kotsopoulos, and G. K. Karagiannidis. A new mac protocol with pseudo-tdma behavior for supporting quality of service in 802.11 wireless lans. EURASIP J. Wirel. Commun. Netw., pages 76--84, Mar. 2006.
[33]
A. Patro, S. Govindan, and S. Banerjee. Observing home wireless experience through wifi aps. In MobiCom '13.
[34]
T. Pering, Y. Agarwal, R. Gupta, and R. Want. Coolspots: Reducing the power consumption of wireless mobile devices with multiple radio interfaces. In MobiSys '06.
[35]
A. Rao and I. Stoica. An overlay mac layer for 802.11 networks. In MobiSys '05.
[36]
J. Robinson, K. Papagiannaki, C. Diot, X. Guo, and L. Krishnamurthy. Experimenting with a multi-radio mesh networking testbed. In WiNMee Workshop 2005.
[37]
S. Sen, M. Griepentrog, J. Yoon, and S. Banerjee. Eliminating handoff latencies in 802.11 wlans using multiple radios: Applications, experience, and evaluation. In IMC '05.
[38]
S. B. R. C. Shravan Rayanchu, Vivek Shrivastava. Fluid: Improving throughputs in entreprise wireless lans through flexible channelization. In MobiCom '11.
[39]
V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee, S. Keshav, K. Papagiannaki, and A. Mishra. Centaur: Realizing the full potential of centralized wlans through a hybrid data path. In MobiCom '09.
[40]
K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang. Fine-grained channel access in wireless lan. In SIGCOMM '10.
[41]
P. Verkaik, Y. Agarwal, R. Gupta, and A. C. Snoeren. Softspeak: Making voip play well in existing 802.11 deployments. In NSDI 2009.
[42]
Z. Yang, J. Zhang, kun tan, Q. Zhang, and Y. Zhang. Enabling tdma for today's wireless lans. In INFOCOM '15.
[43]
J. Yoon, H. Zhang, S. Banerjee, and S. Rangarajan. Muvi: A multicast video delivery scheme for 4g cellular networks. In Mobicom '12.
[44]
J. Yu, S. Choi, and J. Lee. Enhancement of volp over ieee 802.11 wlan via dual queue strategy. In ICC'04.
[45]
S. Yun, D. Kim, and L. Qiu. Fine-grained spectrum adaptation in wifi networks. In MobiCom 2013.
[46]
M. Zhang, B. Karp, S. Floyd, and L. Peterson. Rr-tcp: A reordering-robust tcp with dsack. In ICNP '03.

Cited By

View all
  • (2023)A Study of the Active Access-Point Configuration Algorithm under Channel Bonding to Dual IEEE 802.11n and 11ac Interfaces in an Elastic WLAN System for IoT ApplicationsSignals10.3390/signals40200154:2(274-296)Online publication date: 3-Apr-2023
  • (2022)DiFi: A Go-as-You-Pay Wi-Fi Access SystemIEEE INFOCOM 2022 - IEEE Conference on Computer Communications10.1109/INFOCOM48880.2022.9796832(840-849)Online publication date: 2-May-2022
  • (2020)WiderCast: Enabling Wider Bandwidth for Wireless Multicast Over IEEE 802.11ac WLANsIEEE Transactions on Wireless Communications10.1109/TWC.2020.297883419:6(3854-3866)Online publication date: Jun-2020
  • Show More Cited By

Index Terms

  1. SlickFi: A Service Differentiation Scheme for High-Speed WLANs using Dual Radio APs

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CoNEXT '16: Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies
    December 2016
    524 pages
    ISBN:9781450342926
    DOI:10.1145/2999572
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 December 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 802.11
    2. qos
    3. service differentiation
    4. wlans

    Qualifiers

    • Research-article

    Conference

    CoNEXT '16
    Sponsor:

    Acceptance Rates

    CoNEXT '16 Paper Acceptance Rate 30 of 160 submissions, 19%;
    Overall Acceptance Rate 198 of 789 submissions, 25%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)A Study of the Active Access-Point Configuration Algorithm under Channel Bonding to Dual IEEE 802.11n and 11ac Interfaces in an Elastic WLAN System for IoT ApplicationsSignals10.3390/signals40200154:2(274-296)Online publication date: 3-Apr-2023
    • (2022)DiFi: A Go-as-You-Pay Wi-Fi Access SystemIEEE INFOCOM 2022 - IEEE Conference on Computer Communications10.1109/INFOCOM48880.2022.9796832(840-849)Online publication date: 2-May-2022
    • (2020)WiderCast: Enabling Wider Bandwidth for Wireless Multicast Over IEEE 802.11ac WLANsIEEE Transactions on Wireless Communications10.1109/TWC.2020.297883419:6(3854-3866)Online publication date: Jun-2020
    • (2020)FlexVi: PHY Aided Flexible Multicast for Video Streaming over IEEE 802.11 WLANsIEEE Transactions on Mobile Computing10.1109/TMC.2019.292399519:10(2299-2315)Online publication date: 1-Oct-2020
    • (2018)If you can't Beat Them, Augment Them: Improving Local WiFi with Only Above-Driver Changes2018 IEEE 26th International Conference on Network Protocols (ICNP)10.1109/ICNP.2018.00053(378-388)Online publication date: Sep-2018

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media