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ABSTRACT
Existing API mining algorithms can be difficult to use as
they require expensive parameter tuning and the returned set
of API calls can be large, highly redundant and difficult to
understand. To address this, we present PAM (Probabilistic
API Miner), a near parameter-free probabilistic algorithm for
mining the most interesting API call patterns. We show that
PAM significantly outperforms both MAPO and UPMiner,
achieving 69% test-set precision, at retrieving relevant API
call sequences from GitHub. Moreover, we focus on libraries
for which the developers have explicitly provided code exam-
ples, yielding over 300,000 LOC of hand-written API example
code from the 967 client projects in the data set. This evalu-
ation suggests that the hand-written examples actually have
limited coverage of real API usages.

CCS Concepts
•Software and its engineering → Documentation;

Keywords
API mining, sequential pattern mining

1. INTRODUCTION
Learning the application programming interface (API) of

an unfamiliar library or software framework can be a signifi-
cant obstacle for developers [32, 33]. This is only exacerbated
by the fact that API documentation can often be incomplete
or ambiguous [37]. Fortunately, an opportunity to address
this problem has arisen out of the simultaneous growth in the
amount of source code that is available online and the growth
of large scale data mining and machine learning methods.
This confluence has enabled the development of API mining
methods [44, 40], which aim to automatically extract a set
of API patterns, which are lists of API methods that are
usually used together, and that together characterize how an
API is used.
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Despite a number of interesting proposed tools, including
well known ones such as MAPO [44] and UPMiner [40], so far
API mining tools have not yet gained wide-spread adoption in
development environments such as Eclipse and Visual Studio.
We suggest that the fundamental reason for this is that the
quality of the extracted patterns is not yet high enough:
the patterns returned by current methods are numerous and
highly redundant (Section 5). For example, Figure 5 shows
the top ten API patterns extracted by two state of the art
methods. To a large extent, the patterns from both methods
are variations on a theme, repeating different variations of
ways to repeat the same few API methods.

The fundamental reason for this, we argue, is that current
API mining methods are built on statistically shaky ground.
Specifically, API mining algorithms largely employ frequent
sequence mining, which is a family of techniques from the data
mining literature that takes as input a database of sequences
and from those attempts to identify a set of patterns that
frequently occur as subsequences. In the context of API min-
ing, each sequence in the database is the list of API methods
called by some client method, and the subsequence patterns
that are mined are candidates for API patterns. Frequent
sequence mining methods are very good at their intended
purpose, which is to efficiently enumerate subsequences that
occur frequently. But they are not suitable for pattern mining
all by themselves, for a simple reason: frequent patterns are of-
ten uninteresting patterns. This problem is well known in the
data mining literature ([4], Chap. 5), and the technical rea-
son for it is easy to understand. Events that are individually
frequent but unrelated will also tend to frequently occur in a
sequence, simply by chance. Imagine running a frequent se-
quence mining algorithm on the sequence of events that occur
in the day of a typical academic. Perhaps the most frequent
individual events would be SendEmail and DrinkCoffee.
Then, a frequent sequence miner may well return the pattern
(SendEmail, DrinkCoffee) even if the two actions have
no direct statistical relationship, because frequent sequence
miners do not consider any notion of statistical correlation
or independence among items in the sequence. Within the
API mining literature, methods like MAPO and UPMiner
apply clustering methods precisely to reduce the number of
redundant API patterns that would be returned from the
frequent sequence miner; however, as we show in Section 5,
even with this step, substantial redundancy remains.

We address this problem by developing new a mining
algorithm that returns API patterns that not only occur
often, but also that occur in a sequence more often than
expected by chance, that is, the most interesting sequences
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([4], Chap. 5). In order to quantify what “most interesting”
means, we employ a powerful set of techniques from statistics
and machine learning called probabilistic modelling. That
is, we design a probability distribution over the list of API
methods called by client methods, and we evaluate a proposed
API pattern by whether it improves the quality of the model.
The quality of a probabilistic model can be measured simply
by whether it assigns high probability to a training set.

While numerous sequential probabilistic models of source
code have appeared in the literature [18, 7, 28, 31] these
all rely on n-gram language models. But an n-gram in this
context is a contiguous sequence of method calls, whereas
API patterns contain gaps, that is, the methods in an API
pattern do not always occur contiguously in a client method,
but instead can have other method calls interspersed between
them. For example, consider the methods in Figure 1 which
show real-world usage examples of a four line call sequence
to set up a twitter client. The first four lines of the last
method shows the basic call sequence but the other two
methods have additional calls interspersed between them,
e.g. the first method also turns on SSL support. Although
frequent sequence mining algorithms handle gaps in sequences
automatically, previous probabilistic models of code do not,
so we need to introduce a new probabilistic model.

To address this unsatisfactory state of affairs, we pro-
pose PAM (Probabilistic API Miner)1, a near parameter-free
probabilistic algorithm for mining the most interesting API
patterns. PAM makes use of a novel probabilistic model of
sequences, based on generating a sequence by interleaving a
group of subsequences. The list of component subsequences
are then the mined API patterns. This is a fully probabilis-
tic formulation of the frequent sequence mining problem, is
able to correctly represent both gaps in sequences, and —
unlike API mining approaches based on frequent sequence
mining — largely avoids returning sequences of items that
are individually frequent but uncorrelated.

Furthermore, another drawback of current methods for API
mining is that they have multiple parameters that are very
hard to tune in practice, rendering them difficult to use with-
out expensive pre-training. First, frequent sequence mining
methods depend on a user-specified dataset-specific mini-
mum frequency threshold [5, 17]. This threshold is extremely
difficult to tune in practice as it is prone to exponential
blow-up: setting the threshold too low leads to billions of pat-
terns. Conversely, setting it too high leads to no patterns at
all. API mining algorithms also tend to employ hierarchical
clustering techniques in an attempt to reduce the inherent
redundancy of frequent sequence mining (which tends to
produce highly repetitive patterns). Choosing the number of
clusters/cutoff is considered somewhat of a black art and can
only be reliably inferred through computationally expensive
training procedures on a validation set [44, 40]. PAM, on
the other hand, is near parameter free in the sense that our
two user-specified parameters are independent of the dataset,
have simple intuitive interpretations and sensible default
values.

To showcase PAM, we apply it to mining API patterns
for 17 of the most popular Java libraries on the GitHub
hosting service. We collect all usages of these APIs on GitHub,
yielding a data set of 54,911 client methods from 967 client
projects totalling over 4 million lines of code (LOC). We focus

1https://github.com/mast-group/api-mining

on libraries that contain a specific examples/ subdirectory,
which allows us to automatically collect API usage examples
that the libraries’ developers thought were most salient. This
yields a corpus of 3,385 Java files comprising 300,000 LOC
solely of hand-written API usage examples. These two sources
of information allow us to perform extensive evaluation of
PAM compared to MAPO and UPMiner. We show that
PAM significantly outperforms both MAPO and UPMiner,
achieving 69% precision on our test set. Moreover, the set
of patterns that PAM returns is dramatically less redundant
than those from MAPO or UPMiner. To the best of our
knowledge, we are the first to mine API calls across the
entirety of GitHub, from a data set of 54,911 client methods
totalling over 4 million LOC.

We examine whether the API patterns mined by PAM
could be used to augment API examples that are provided
with popular projects. This is a new method of evaluat-
ing API mining algorithms. We show that there is substan-
tial overlap between mined patterns and developer-written
examples, providing evidence that the mined patterns are
meaningful, but that — even though our corpus averages
18,000 example LOC per project — the mined patterns de-
scribe many new patterns that appear in practice but are
not covered by the examples.

2. RELATED WORK
The first algorithm for mining API usage patterns from

source code was MAPO, proposed by Xie and Pei [41] and
extended by Zhong et al. [44]. MAPO [44] mines method
call sequences (that call a desired API) from code snippets
retrieved by code search engines. Sequences of called API
methods are first extracted from the code snippets and then
clustered according to a distance metric, computed as an
average of the similarity of method names, class names, and
the called API methods themselves. For each cluster, MAPO
mines the most frequent API calls using SPAM and feeds
them to an API usage recommender that ranks them based
on their similarity with the developer’s code context.

UP-Miner [40] extends MAPO in an attempt to further
reduce the redundancy of the mined API call sequences. This
is achieved through three principal approaches: using the
BIDE closed frequent sequence miner that returns only the
frequent sequences that have no subsequences with the same
frequency; using a clustering distance metric based on the set
of all API call sequence n-grams and an additional clustering
step on the mined call sequences from each cluster. Unlike
MAPO, the API call sequences are presented as probabilistic
graphs, ranked according to their frequency.

Acharya et al. [3] extract API usage scenarios among multi-
ple APIs as partial orders. Frequent API calls are first mined
from inter-procedural program traces, API call ordering rules
are then extracted from the frequent calls and presented as
partial order graphs.

Buse and Weimer [10] generate API usage documenta-
tion by extracting and synthesizing code examples from API
method call graphs annotated with control flow information.
Their approach first extracts method control flow paths from
files that use a desired API. Path predicates are then com-
puted for each statement relevant to a static instantiation
of a desired API type and assembled, along with the state-
ments, into API usage graphs. The API usage graphs are
then clustered based on their statement ordering and type
information, and an abstract usage graph is extracted from
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each cluster by merging its concrete API usages. Finally, each
abstract API usage graph is transformed into a code fragment
by extracting the most representative abstract statement or-
dering from the graph and assigning each abstract statement
a concrete name according to heuristics.

MUSE [25] uses static slicing to extract and rank code
examples that show how to use a specific method. For each rel-
evant method invocation, MUSE extracts an intra-procedural
backward slice, representing a raw code example. The raw
code examples are then clustered using type-2 clone detection
and the resulting groups of clones ranked according to their
popularity. A representative code example from each group
of clones is selected based on its readability and ease of reuse,
and each example is annotated with inline descriptions of
method parameters mined from the Javadoc.

Other API mining papers include Uddin et al. [38] who de-
tect API usage patterns in terms of their time of introduction
into client programs and Li and Zhou [22] who automatically
extract implicit programming rules in large software code. A
related approach that has been well-studied in the literature
is API code search, where text matching is used to find API
usage examples from a large, often online, corpus. SNIFF [11]
finds abstract code examples relevant to a natural language
query expressing a desired task. SNIFF annotates publicly
available source code with API documentation and the an-
notated code is then indexed for searching. In response to
a query, matching code examples are retrieved and concise
examples are extracted via a syntax-aware intersection, clus-
tered and ranked based on their frequency of occurrence.
Similarly, Keivanloo et al. [20] find abstract code examples
by combining textual similarity and clone detection tech-
niques, ranking the returned examples according to their
similarity to the query and the completeness and popularity
of their concrete usage patterns. Bajracharya et al. [9] find
concrete API usage examples by combining heuristics based
on structural and textual aspects of the code, based on the
assumption that code containing similar API usages is also
functionally similar.

Strathcona [19] is a code example recommendation tool
that automatically generates queries from the developer’s
current code context. The code examples relevant to the
queries are identified using six heuristics that compare the
structural context of the query against the structural context
of the classes and methods within an example repository.
The resulting code examples are ranked according to their
frequency in the final set of top examples returned by each
heuristic. Prompter [30] takes a similar approach, matching
the generated context-specific queries to Stack Overflow dis-
cussions and automatically recommending the discussions
most relevant to the developers’ task.

The API mining problem we consider (Section 3) is specif-
ically to return sequences of API methods that are used
together. Other important but distinct data mining problems
that are related to API usage include mining preconditions
of API methods [27], and mining code changes [23, 26]. An
important recent piece of infrastructure for large-scale min-
ing work on code is Boa [13]. Another interesting line of
work is to mine existing code to measure the popularity of
language constructs and APIs [14]; our work considers a
different mining problem, that of discovering combinations of
API methods that are used together, rather than measuring
the popularity of known language features.

Sequential pattern mining is an extremely well studied

problem with a huge number of published papers on the topic.
The problem was first introduced by Agrawal and Srikant
[5] in the context of market basket analysis, which led to a
number of other algorithms for frequent sequence mining,
including GSP [35], PrefixSpan [29], SPADE [43] and SPAM
[8]. Frequent sequence mining suffers from pattern explosion:
a huge number of highly redundant frequent sequences are
retrieved if the given minimum support threshold is too
low. One way to address this is by mining frequent closed
sequences, i.e., those that have no subsequences with the
same frequency, such as via the BIDE algorithm [39]. More
recently, there has been work on sequence mining that directly
addresses the pattern explosion issue, such as SQS-search
[36] and GoKrimp algorithm [21]. Our proposed approach
falls into this class of probabilistic sequential pattern mining
algorithms, and returns patterns that are of a quality that is
comparable to, if not better than, both SQS and GoKrimp
(see [15] for details).

There have also been sequential probabilistic models of
source code proposed in the software engineering literature.
Hindle et al. [18] develop an n-gram language model for
source code and apply it to a code completion task. Allamanis
et al. [7] use an n-gram language model to learn and suggest
variable naming conventions. Raychev et al. [31] develop an
n-gram language model that synthesizes code completions
for programs using APIs.

3. EXTRACTING API CALLS
First we describe the specific API mining problem that

we consider in this paper. For every client project that uses
a given API, we extract the sequence of API calls used by
each method in the project. The problem of mining API
calls is then to infer from these sequences of API calls those
subsequences that represent typical usage scenarios for the
API. These could then be either supplied in example docu-
mentation to client developers, or suggested in real time as
developers type.

For the purposes of this paper, we use a best-effort ap-
proach to extract API call sequences directly from source
code files. Following MAPO [44], we parse each Java source
file of interest using the Eclipse JDT parser and extract
method calls to API methods from a specified library us-
ing a depth-first traversal of the AST. For simplicity, unlike
MAPO, we do not attempt to enumerate all possible branches
of conditional statements. For example, for the code snippet
if(m1()) { m2(); } else { m3(); }, our method returns the
call sequence m1,m2,m3 whereas MAPO would return the call
sequences m1,m2 and m1,m3. If this example were indeed a
common API usage pattern, we would argue that returning
m1,m2,m3 is better in principle, because a subsequence like
m1,m2 would provide only incomplete information about what
the developer should write next.

Furthermore, unlike MAPO, we only consider method in-
vocations and class instance creations, and approximately
resolve their fully qualified names from the file import state-
ments. For simplicity, superclass methods (and their return
types), super method/constructor invocations and class cast
expressions are not considered.

We use an approach similar to the original MAPO paper
[41] to approximately resolve fully qualified method names.
We keep track of field and local variable declarations so that
we can resolve the fully qualified name of a method call on
the field/variable. We also keep track of import statements
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private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.

There are of course limitations to this approximation (as
noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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assigns to all client methods in the database. We search
for the set of API patterns that maximizes this probability,
specifically we perform this search under the framework
of a celebrated algorithm from statistics called expectation-
maximization (EM) [12], which has seen an enormous number
of applications. We use a particular variant called structural
EM [16], as this deals with the specific setting of learning
via search through a large combinatorial space, in our case,
the space of all possible sets of API patterns.

In the next sections, we give a high-level overview of each
of the aspects of the model. For ease of exposition, we do
not describe some of the more theoretical aspects; for those
we refer the reader to our paper [15] that describes a similar
model and algorithm for general sequential pattern mining.

4.1 Probabilistic Model
In this section, we describe the probabilistic model that

PAM is based on. The model is a probability distribution
that, based on a set of API patterns, defines a distribution
over all possible API patterns present in client code. When
a probabilistic model becomes more complex than one of
the well-known standard families, then it is often easiest to
explain by describing an algorithm to sample from it. This
is how we will proceed in this section.

The model has two different types of parameters: a set of
API patterns and a set of probabilities. The API patterns
are straightforward: each API pattern is a sequence Sa =
(a1, . . . an) of method names from the API. We allow patterns
to occur more than once in the same client method. Therefore,
for each API pattern Sa, the model also includes a probability
distribution over the integers 0, 1, . . .M which represents how
likely a client method is to include the pattern S zero times,
one time, etc. We define I to be the set of all API patterns
Sa in the model. We assume that I also contains singleton
sequences (m) for every method m in the API — although
an API pattern with only one method call is not very useful,
so we never return such patterns to the user, we will see in
Section 4.2 that these are a technical device that is necessary
for the inference procedure.

Now we present an algorithm that will draw samples from
our model, which we call the generative algorithm. The gen-
erative algorithm says: hypothetically speaking, if our model
were correct, how would each client method be generated
assuming that the API patterns and probabilities are known?
We emphasize that the generative algorithm is simply an
explanatory tool that helps in understanding our approach,
and is never used while performing the API mining. The
algorithm has two main phases: First, from the set of all
interesting API patterns, we sample which ones will appear
in the client method that we are about to generate, and how
many times they will be used, which yields a multiset that
we call S. Then we randomly sample a way to interleave
the sampled API patterns, and this results in a hypothetical
client method. More formally:
1. For each unique API pattern S in the set of interesting

API patterns I, decide independently the number of times
S should be included in the client API sequence X, i.e.,
draw the count cS from a suitable probability distribution
over the integers.

2. Set S to be the multiset with counts cS of all the API
patterns S selected for inclusion in X, that is, S :=
{S : cS ≥ 1}. As S is a multiset, a single API pattern can
occur more than once in S.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together the API patterns in
the multiset S, i.e.,

P := {X : S partition of X,S ⊂ X ∀S ∈ S},

(see the discussion below for an illustrative example).
4. Sample X uniformly at random from P.
This algorithm defines a probability distribution over client
methods, which we can sample from simply by executing
it. First, let us clarify the meaning of the set P through an
example. To interleave two sequences S1 and S2, we mean
the placing of items from S1 into the gaps between items in
S2. For example, if S1 = (m1, m2) and S2 = (m3, m4), then the
set of all ways to interleave S1 and S2 is

P = {(m3, m4, m1, m2), (m3, m1, m4, m2),

(m3, m1, m2, m4), (m1, m3, m4, m2),

(m1, m3, m2, m4), (m1, m2, m3, m4)}.

It is possible to uniformly sample from P efficiently by merg-
ing in subsequences one at time, but we omit the details as
it is unnecessary in practice.

At this point, the generative algorithm may seem contrived.
Certainly we hope that developers do not write code in a
manner that is anything like this. To assuage the reader’s
conscience, we point out that popular methods such as the
n-gram language model and latent Dirichlet allocation, which
have been widely applied both to natural language and pro-
gramming language text, also have generative algorithms,
and those algorithms are similarly contrived. The reason
that these models are useful anyway is that we are primarily
interested not in the forward generative direction, in which
we use API patterns to generate client methods, but in the
reverse direction, in which we run the generative algorithm
backward to use client methods to infer API patterns. As we
will see in a moment, the backward version of this model is
much more intuitive and natural.

We have so far defined a probability distribution implicitly
using a generative algorithm, however we can now define it
explicitly, by giving a formula for the probability of a client
method X under our model. To do this, we need to intro-
duce notation to handle the fact that our model allows the
same API pattern to occur multiple times in a single client
method. We will consider each occurrence of an API pattern
S in a client API sequence X separately: let S[n] denote the
n-th occurrence of S in X i.e., by the notation (m1, m2)[3]

we mean “the 3rd time the API pattern (m1, m2) occurs in
a client sequence”. For example, X = (m1, m2, m3, m1, m2) con-

tains the API patterns (m1, m2)[1] and (m1, m2)[2] i.e., the first
and second occurrences of (m1, m2).

In light of this p((m1, m2)[3] ∈ X) is naturally defined as the
“probability of seeing (m1, m2) for the 3rd time given that we’ve

seen it for the 2nd time”, i.e., p((m1, m2)[3] ∈ X|(m1, m2)[2] ∈
X) = p((m1, m2)[3] ∈ X|(m1, m2, m1, m2) ∈ X) (since we are

allowing gaps in API patterns and so (m1, m2)[2] ∈ X =
(m1, m2, m1, m2) ∈ X). Formally, the associated probability

πS[n] for the n-th occurrence S[n] is simply the conditional

probability of seeing S[n] in a client sequence X given the
previous occurrence S[n−m1], i.e., πS[n] = p(S[n])/p(S[n−1]).

We also introduce the binary variable zS[n] := 1{cS≥n} to

indicate whether S[n] is included in X or not. For clarity of
exposition we will drop the explicit occurrence superscript
in the sequel.
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Now we can give an explicit formula for the probability of a
client method X under our model. Given a set of informative
API patterns I, let z,π denote the vectors of zS , πS for all
API patterns S ∈ I. Assuming z,π are fully determined, the
generative model implies that the probability of generating
a client API sequence X is:

p(X, z|π) =

{
1
|P|
∏

S∈I π
zS
S (1− πS)1−zS if X ∈ P,

0 otherwise.

Calculating |P| may seem problematic, however it turns out
to be rather straightforward. Pick an arbitrary ordering s =
1, . . . , |S| for the selected API pattern S ∈ S and observe that
in our iterative sampling algorithm, when merging Sa into
Sb, we have |Sb|+ 1 points to splice |Sa| elements into, that

is |Sb|+ 1 multichoose |Sa|, denoted
((|Sb|+1
|Sa|

))
=
(|Sb|+|Sa|
|Sb|

)
.

To see how to compute this, consider a sequence of k = |Sa|
stars (∗) and n = |Sb| bars (|). The number of ways that
these two sequences can be spliced together is equal to the
number of ways to place the k stars into n+ 1 bins delimited
by the bars (this is by definition n+ 1 multichoose k). This
can be equivalently viewed as the number of ways to arrange
the n bars amongst the k stars and n bars (which is clearly
n+ k choose n). Applying this formula iteratively we obtain:

|P| =
|S|∏
s=1

((
1 +

∑s−1
t=1 |St|
|Ss|

))
=

|S|∏
s=1

(∑s
t=1|St|

)
!

|Ss|!
(∑s−1

t=1 |St|
)
!
.

4.2 Inference
Inference in a probabilistic model is the task of running

a generative procedure backwards. In our model, this is
the task of: given a client method X, infer the vector z,
which indicates which API patterns were used in the method.
While the generative algorithm provides a way to sample
from the joint distribution p(X, z|π), inference is focused
on the conditional distribution p(z|X,π). Essentially the
inference procedure amounts to computing a partition of the
API calls in X according to the mined API patterns.

At this point the reader may well be wondering why we
need to do inference at all? For a specific client method X,
can’t we just look up the API patterns that X subsumes?
The answer is that the mined API patterns overlap, and this
is what we want, because we would like to be able to learn
more general and more specific versions of the same pattern.
Consider the case where we have to choose between returning
a more general pattern such as:

builder.<init>
builder.setCommonProperty
builder.build

and a more specific one such as:

builder.<init>
builder.setCommonProperty
builder.setRareValue
builder.build

We want these two patterns to compete with each other
to explain each client method, and the fact that we use a
partitioning approach means that each API call in a client
can be explained by at most one API pattern. At the end of
the day, the effect is that the more specific pattern will only
survive into the final list of mined patterns if it manages to
be used to explain enough client methods. In other words,
because we have probabilities associated with each of the two

API patterns, we are able to choose the more interesting of
the two in a well-defined and rigorous statistical way.

More formally, the inference procedure assumes that the
vector of probabilities π is known (we learn it in the next
section). To infer the best z for a client API sequence X, the
natural probabilistic way of asking this question is using the
conditional distribution p(z|X,π). Specifically, we search for
the vector z that maximizes log p(z|X,π). Sadly, it can be
shown that this problem is NP-hard in general. Happily, this
problem can be approximately solved using a simple greedy
algorithm (cf. Algorithm 1 in [15]), and we find that the
greedy algorithm works well in practice. The greedy algorithm
repeatedly chooses an API pattern S that maximizes the
improvement in log probability divided by the number of
methods in S that have not yet been explained. In order to
minimize CPU time, we cache the API patterns and coverings
for each API client sequence as needed.

Now we can see why we have insisted on including singleton
sequences for API patterns into I even though we would never
return them to a user. Including the singleton sequences, and
allowing them to be repeated arbitrarily many times, ensures
that every client method has at least one valid partitioning.

4.3 Learning
Given a set of interesting API patterns I, consider now

the case where both variables z,π in the model are unknown.
There is an obvious chicken and egg problem here: the most
interesting API patterns S are determined by maximizing
log p(z|X,π) for zS , which means we we need to know πS .
But the probability πS of an API pattern S depends on
how often that pattern is used in a client API sequence X.
To get round this we can use the expectation maximization
(EM) algorithm [12] which is an algorithm for estimating
parameters in a model that has unobserved variables. The
EM algorithm is a clever way to get around the chicken and
egg problem, by iteratively solving for the best z given the
current value of π, then solving for the best value of π. Of
course, EM needs an initial guess for the unobserved variables
π and a good first guess is simply the relative support (i.e.,
relative frequency of occurrence) of each API pattern in I
(in fact this guess is correct if all the API patterns in I are
independent of each other). For the mathematical details, we
refer the interested reader to Algorithm 2 in [15].

4.4 Inferring new API patterns
Now that we have shown how to learn the parameters of

our probabilistic model, the astute reader may well note that
we still haven’t got anywhere as we have no way of inferring
which sequences to include in the set of interesting API
patterns I. However, we can once again turn to the statistical
community for a solution, in the form of the structural EM
algorithm [16]. As the name suggests, this is a variant of
the EM algorithm that lets us grow the set of interesting
API patterns I. In particular, we can add a candidate API
pattern S′ to the set of interesting API patterns I if doing so
improves the value of log p(z|X,π) averaged across all client
API sequences X.

To get an estimate of maximum benefit to including can-
didate S′, we must carefully choose an initial value of πS′

that is not too low, to avoid getting stuck in a local opti-
mum. To infer a good πS′ , we force the candidate S′ to
explain all API client sequences it supports by initializing
πS′ = (0, 1, . . . , 1)T and update πS′ with the probability cor-
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responding to its actual usage once we have inferred all the
zS . As before, structural EM also needs an initial guess for
the set of interesting API calls I and associated probabilities
π and we can simply initialize I with all the API methods in
the dataset and π with their relative supports. Once again,
we omit the mathematical details of the algorithm, but refer
the interested reader to Algorithm 3 in [15].

4.5 Candidate Generation
However, we are not quite done yet. The structural EM

algorithm requires a method to generate new candidate se-
quences S′ that are to be considered for inclusion in the set of
interesting API patterns I. One possibility would be to use a
standard frequent sequence mining algorithm to recursively
suggest larger API patterns starting from all the API meth-
ods in the dataset, however preliminary experiments found
this was not the most efficient method. For this reason we
take a somewhat different approach and recursively combine
the interesting API patterns in I with the highest support
first. In this way our candidate generation algorithm is more
likely to propose viable candidate API patterns earlier and
we find that this heuristic works well in practice. Although
the algorithm is straightforward, it adds little to the expo-
sition and we omit the details here and refer the interested
reader to Algorithm 4 in [15].

4.6 Mining Interesting API Patterns
Finally, we can present our complete Probabilistic API

Mining (PAM) algorithm in Algorithm 1. As all operations

Algorithm 1 Probabilistic API Miner (PAM)

Input: Client method API call sequences X(1), . . . , X(m)

Initialize I with singleton API patterns and π with their
supports
while not converged do

Add API patterns to I,π using structural EM
(Algorithm 2 in [15])

Optimize parameters for I,π using EM
(Algorithm 1 in [15])

end while
Remove all singleton API patterns from I
return I,π

on API client sequences in our algorithm are independent,
and so trivially parallelizable, we perform the E and M -steps
in both the EM and structural EM algorithms in parallel.

We can rank the retrieved API patterns according to their
interestingness, that is how likely they are under the proba-
bilistic model, and therefore we rank the API patterns S ∈ I
according to their probabilities πS under the model.

An important property of formulating PAM as a pattern
covering problem on each API client sequence is that it
strongly favours adding only API patterns of associated
methods, i.e., methods that largely co-occur in the code.

5. EXPERIMENTS
In this section we perform a comprehensive evaluation of

PAM across GitHub, comparing and contrasting it against
MAPO and UPMiner. In particular, we aim to answer the
following three research questions.

RQ1: Are the API patterns mined by PAM more preva-
lent? This research question evaluates the quality of the

API call sequences mined by PAM, as we would expect a
set of more representative API call sequences to be more
prevalent in a held-out corpus of code. By performing a ran-
dom 50/50 split of a suitable API call dataset, we can see if
sequences mined from one half of the dataset are prevalent
on the other half and thus if they are representative. Note
that performing such a test/train split is standard practice
in the evaluation of machine learning algorithms.

RQ2: Are the API patterns mined by PAM more di-
verse? We would also expect a more representative set of
API patterns to have lower redundancy, as a list in which
every pattern uses the same few methods will be both redun-
dant and non-diverse. However a redundancy of zero is not
necessarily desirable: As mentioned previously (Section 4.2),
a good list of patterns may contain both more general and
more specific versions of the same pattern. That said, a highly
redundant list is clearly problematic.

RQ3: Could the API patterns mined by PAM supple-
ment existing developer-written API examples? Fi-
nally, we investigate if the mined API patterns can be useful
in practice. To do so, we look at libraries and frameworks that
explicitly contain directories of API examples provided by
the library’s developers. This allows us to measure whether
API call sequences present in API example directories are
returned by PAM, and also vice versa, i.e., whether the hand-
built example directories can be improved by including API
patterns mined from client code by PAM. We will show both
that (a) there is substantial overlap between the mined pat-
terns and the developer-written examples, indicating that
PAM does indeed find patterns that the project developers
believe are meaningful, but also (b) PAM identifies a large
number of patterns that do not occur in examples, which
could serve as a useful supplement.

Evaluation Metrics A good measure of the quality of
mined API call sequences is to see what proportion are con-
tained in a set of relevant gold standard sequences, a measure
we term sequence precision. This allows us to measure the
degree to which the mined patterns represent relevant API
call sequences. Similarly, we also define sequence recall as the
proportion of relevant gold standard sequences that contain
a mined call sequence. This allows us to measure the degree
to which the API miner is able to retrieve relevant API call
sequences. In other words, sequence precision measures the
percentage of mined sequences that are somewhere used,
and sequence recall measures the degree to which the mined
sequences cover the usages in the gold standard data set.
We present these metrics in a precision/recall curve, as is
standard practice in the information retrieval literature [24].
Each point on the precision/recall curve corresponds to a
different point in the ranked list of API patterns returned
by each method, and indicates what the sequence precision
and sequence recall would be if we forced the method to
stop returning patterns at that point in the list. In a preci-
sion/recall curve, being up and to the right is better, as it
means that the system returns more accurate results for any
fixed recall value. For MAPO and UPMiner, we rank the list
of API patterns by support, whereas for PAM we rank the
patterns by their probability under PAM’s statistical model.
As for redundancy, we measure how redundant the set of
mined sequences is by calculating the average over each API
pattern of the number of other, larger API patterns that
contain it (we call this no. containing sequences).
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Table 1: Example dataset extracted from the GitHub Java corpus. Each row is a separate library or framework
for which we mine a set of API patterns. Each Client file set contains all source files that import a class
belonging to the respective package or one of its subpackages. Each Example file set contains all source files
that are present in the project’s example directory. Note that both file sets exclude duplicate files.

Project Package Name Client LOC Example LOC Description

AndEngine org.andengine 18,274 19,529 Android 2D OpenGL game engine
Apache Camel org.apache.camel 141,454 15,256 Enterprise application integration framework
Cloud9 edu.umd.cloud9 35,523 10,466 Cloud-based IDE
Drools org.drools 187,809 15,390 Business rules management system
Apache Hadoop org.apache.hadoop 1,951,653 26,162 Map-reduce framework
HornetQ org.hornetq 30,564 22,541 Embeddable asynchronous messaging system
Apache Mahout org.apache.mahout 48,206 11,772 Scalable machine learning environment
Neo4j org.neo4j 239,825 7,710 Graph Database
Netty io.netty 8,196 9,725 Network application framework
RESTEasy org.jboss.resteasy 131,447 16,055 RESTful application framework
Restlet Framework org.restlet 208,395 41,078 RESTful web API framework
Spring Data MongoDB org.springframework

.data.mongodb
16,567 18,786 Spring framework MongoDB integration

Spring Data Neo4J org.springframework
.data.neo4j

6,600 9,915 Spring framework Neo4j integration

Twitter4J twitter4j 96,010 6,560 Twitter API
Project Wonder com.webobjects 375,064 37,181 WebObjects frameworks
Weld org.jboss.weld 23,298 9,489 Contexts and Dependency Injection API
Apache Wicket org.apache.wicket 564,418 33,025 Web application framework

TOTAL 4,083,303 310,640

Dataset In order to asses the performance of PAM and
perform a thorough comparison with MAPO and UPMiner
we assemble a data set of target libraries and frameworks from
the GitHub Java corpus [6]. We focus on those projects that
contain an examples/ directory of code examples, so that we
can compare mined patterns to those written by the library’s
developers. We include in our data set all Java projects on
Github that are (1) sufficiently popular, (2) imported by a
sufficient number of other projects, and (3) that contain a
sufficiently large examples/ directory.

Specifically, we first find all Java projects in the corpus that
have an example directory (i.e., matching *example*|*Example*)
containing more than 10K LOC. From these projects we then
select those that are in the top 1, 000 projects in the corpus,
ranked according to popularity. Popularity in the GitHub
corpus is calculated as the sum of the number of project
forks and watchers, where each is separately normalized into
a z-score. From these top projects, we determine which of
these are called from 50 or more methods belonging to other
projects in the corpus, leaving us with the 17 projects in
Table 1. We call this set of projects and associated client
code the Example dataset, to emphasize the fact that we
focus on libraries and frameworks that include examples.

Each of these 17 projects is a library or framework, which
we will call a target project, for which we wish to extract API
patterns. For each target project, we perform API mining
separately, and all results are reported as an average over the
17 target projects. To extract a set of client methods for each
target project, we search the entire GitHub Java corpus for
all source files that import a class belonging to the respective
package or one of its subpackages and this set of files (ex-
cluding duplicates) formed the Client file set. Extracting, for
each project, all source files in the aforementioned example
directory (excluding duplicates) formed the Example file set.
Statistics on both file sets are given in Table 1.

Experimental Setup As public implementations were un-
available, we implemented MAPO [44] and UPMiner [40]
based on the descriptions in their respective papers. We used
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Figure 2: Average test-set precision against recall
for PAM, MAPO and UPMiner on the Example
dataset, using the top-k mined train-set sequences
as a threshold.

a clustering threshold of 40% for MAPO as this gave con-
sistent performance and 20% for UPMiner as this matched
the natural cutoff in the dendrogram. The minimum support
thresholds for both algorithms were set as low as was practi-
cally feasible for each run. We ran PAM for 10, 000 iterations
with a priority queue size limit of 100, 000 candidates.

RQ1: Are the API call sequences mined by PAM more
prevalent? As previously mentioned, in an attempt to
answer this question we divide our dataset of API calls in half
and see if sequences mined from one half of the dataset are
prevalent in the other half. Specifically, we randomly divide
the Client file set (cf. Table 1) into two (roughly) equal train
and test sets. This enables us to mine API call subsequences
from the training set and evaluate them using the sequence
precision and recall metrics against the API call sequences
in the test set. Figure 2 shows the sequence precision against
recall, averaged across all projects in the dataset. It is evident
that PAM has significantly higher precision and recall than
both MAPO and UPMiner, reaching a precision of 69%.
MAPO performs especially poorly, as its precision degrades
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Figure 3: Average no. containing sequences for PAM,
MAPO and UPMiner on the Example dataset, us-
ing the top-k mined sequences.

significantly as the recall increases. We can therefore say
with certainty that the API call sequences mined by PAM
are more prevalent. Note that while the best recall that
PAM achieves is 44%, this is actually close to the theoretical
maximum recall on the test set. This can be approximated
by the proportion of test set sequences that contain training
set sequences, which is around 45%.

RQ2: Are the API call sequences mined by PAM more
diverse? We now turn our attention to the complete dataset
and mine call sequences from the entire Client file set for each
project (cf. Table 1). We can then use the no. containing
sequences metric to determine how redundant the set of
mined call sequences is. Figure 3 shows the average no. of
sequences containing other sequences in the set of top-k
mined sequences as k varies. One can see that PAM has
consistently the lowest figure, around 0.5, showing that it is
the least redundant and therefore most diverse. One of the
key motivations of our method is that the list of patterns
returned by sequence mining methods is redundant. This
figure shows that, even after the extra steps that MAPO and
UPMiner take to reduce the redundancy of the raw output
of frequent sequence mining, the patterns returned by PAM
are still less redundant.

RQ3: Could the API patterns mined by PAM supple-
ment existing developer-written API examples? We
measure whether the mined API patterns correspond to hand-
written examples in the dataset. We therefore mine, for each
project, call sequences from the Client file set and evaluate
them against call sequences in the Example file set. Figure 4
shows the sequence precision against recall, averaged across
all projects. Again, PAM has evidently better precision and
recall than MAPO and UPMiner. The best recall achieved
by PAM is 28%, significantly better than the other methods,
and for any fixed recall value, PAM has higher precision
than the other methods. This suggests that the API patterns
returned by PAM could better supplement developer-written
examples than those returned by MAPO or UPMiner.

In an absolute sense, the level of agreement between PAM
and the hand-written examples, although substantial, might
not seem especially high. This raises an interesting question:
Does this level of disagreement occur because the PAM pat-
terns are not representative of the client code they were mined
from, or because the hand-written examples themselves are
not fully representative of the client code? Although previous
work has explored what it means for a single API example
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Figure 4: Average example-set interpolated precision
against recall for PAM, MAPO and UPMiner on the
Example dataset2, using the top-k mined sequences
as a threshold.

to be useful [42, 34], there seems to be much less work about
what it means for a set of examples to be useful, and how
well example directories in popular projects reflect all of the
actual common uses of an API.

We can however make an initial assessment of this question
by going back to the held-out test set of client code that we
used in RQ1. We can measure how well the client test set
and the handwritten examples agree by measuring sequence
precision and recall if we take the handwritten examples as
if they were API patterns and the client test set as the gold
standard. When we do this, we find that the handwritten
examples have a recall of 27%, meaning that three-quarters
of client API method sequences are not contained within
any of the handwritten examples. Turning to precision, the
handwritten examples have a precision of 36%, meaning that
two-thirds of API sequences from the example code are not
used by any client method (where “used by” means “fully
contained by”). This is significantly lower than the precision
between the training set of client methods and the test set,
suggesting that the training set is more representative of the
test set than the handwritten examples are. Although this
might be seen as a suggestive result, we caution that this has
an important threat to validity: handwritten examples may
include scaffolding code that is unnecessary in client methods.
For this reason, we advise caution about drawing strong
conclusions from the precision of handwritten examples, but
we note that this threat does not apply to the recall.

These results suggest that even in very well documented
projects with extensive sets of examples, the API usage exam-
ples written by developers are still incomplete. While it may
not seem surprising that developer-written example directo-
ries would be incomplete, recall that we specifically chose our
data set to consist only of popular libraries with extensive
handwritten examples — indeed, our data set averages 18,000
lines of example code per target API. It is striking that even
with projects that are so extensively documented, PAM is
still able to infer a list of coverage with substantially greater
coverage of the API.

To gain further insight into this issue, we randomly selected
three projects from our dataset and looked at the top five

2This figure excludes hadoop as we had problems with our
implementation of MAPO and UPMiner running out of mem-
ory (hadoop has around 2 million client LOC). While PAM
had no issues, we excluded it for a fair comparison.
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TwitterFactory.<init> TwitterFactory.<init> TwitterFactory.<init>
TwitterFactory.getInstance TwitterFactory.getInstance TwitterFactory.getInstance

Status.getUser TwitterFactory.getInstance TwitterFactory.<init>
Status.getText Twitter.setOAuthConsumer TwitterFactory.getInstance

Twitter.setOAuthConsumer
ConfigurationBuilder.<init> TwitterFactory.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build TwitterFactory.getInstance

Twitter.setOAuthConsumer Status.getUser
ConfigurationBuilder.<init> Status.getText
TwitterFactory.<init> Status.getUser

Status.getText auth.AccessToken.getToken
ConfigurationBuilder.<init> auth.AccessToken.getTokenSecret
ConfigurationBuilder.setOAuthConsumerKey Twitter.setOAuthConsumer

Twitter.setOAuthAccessToken ConfigurationBuilder.<init>
ConfigurationBuilder.build ConfigurationBuilder.build
TwitterFactory.<init> TwitterFactory.<init> TwitterFactory.<init>

TwitterFactory.getInstance TwitterFactory.getInstance
ConfigurationBuilder.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build Status.getId
TwitterFactory.<init> ConfigurationBuilder.<init> Status.getId

TwitterFactory.<init>
ConfigurationBuilder.<init> ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey ConfigurationBuilder.<init> ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.build TwitterFactory.<init> ConfigurationBuilder.setOAuthConsumerSecret

TwitterFactory.getInstance ConfigurationBuilder.build
ConfigurationBuilder.setOAuthConsumerKey TwitterFactory.<init>
ConfigurationBuilder.build auth.AccessToken.<init> TwitterFactory.getInstance

Twitter.setOAuthAccessToken
User.getId http.AccessToken.getToken
User.getId TwitterFactory.<init> http.AccessToken.getTokenSecret

TwitterFactory.getInstance
Twitter.setOAuthConsumer Twitter.getOAuthAccessToken
Twitter.setOAuthAccessToken auth.AccessToken.getToken

auth.AccessToken.getTokenSecret

ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret

Figure 5: Top twitter4j.* API patterns mined by MAPO [44] (left), UPMiner [40] (middle), and PAM (right).

API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the efficacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.
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