[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2808719.2812594acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Introduction to the workshop on computational health science

Published: 09 September 2015 Publication History

Abstract

This short paper introduces the rationale for a workshop on computational health science, and provides a brief overview of the workshop's content. We point out some of the recent research on mining social media data for health, define what we mean by computational health science, and argue the value of meaningful multi-disciplinary collaboration.

References

[1]
H. Achrekar, A. Gandhe, R. Lazarus, S.-H. Yu, and B. Liu. Predicting flu trends using twitter data. In Proceedings of the First IEEE INFOCOM International Workshop on Cyber-Physical Networking Systems, pages 713--718, 2011.
[2]
E. Aramaki, S. Masakawa, and M. Morita. Twitter catches the flu: Detecting influenza epidemics using twitter. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1568--1576, 2011.
[3]
J. Ayers, B. Althouse, K. Ribisl, and S. Emery. Digital detection for tobacco control: Online reactions to the united states' 2009 cigarette excise tax increase. Nicotine Tobacco Research, 16(5):576--583, 2014.
[4]
J. Ayers, K. Ribisl, and J. Brownstein. Using search query surveillance to monitor tax avoidance and smoking cessation following the united states' 2009 "schip" cigarette tax increase. PLOS One, 6(3):e16777, 2011.
[5]
C. Backinger, A. Pilsner, E. Augustson, A. Frydl, T. Phillips, and J. Rowden. Youtube as a source of quitting smoking information. Tobacco Control, 20(2):119--122, 2010.
[6]
S. Burton, R. Morris, J. Hansen, M. Dimond, C. Giraud-Carrier, J. West, C. Hanson, and M. Barnes. Public health community mining in youtube. In Proceedings of the Second International Health Informatics Symposium, pages 81--90, 2012.
[7]
C. Chew and G. Eysenbach. Pandemics in the age of twitter: Content analysis of tweets during the 2009 H1N1 outbreak. PLOS One, 5(11):e14118, 2010.
[8]
C. Corley, D. Cook, A. Mikler, and K. Singh. Text and structural data mining of influenza mentions in web and social media. International Journal of Environmental and Research in Public Health, 7(2):596--615, 2010.
[9]
J. Eichstaedt, H. Schwartz, M. Kern, G. Park, D. Labarthe, R. Merchant, S. Jha, M. Agrawal, L. Dziurzynski, M. Sap, C. Weeg, E. Larson, L. Ungar, and M. Seligman. Psychological language on twitter predicts county-level heart disease mortality. Psychological Science, 26(2):159--169, 2015.
[10]
P. Eke. Using social media for research and public health surveillance. Journal of Dental Research, 90(9):1045--1046, 2011.
[11]
D. Estrin and I. Sim. Open mhealth architecture: An engine for health care innovation. Science, 330(6005):759--760, 2010.
[12]
G. Eysenbach. Infodemiology: Tracking flu-related searches on the web for syndromic surveillance. In Proceedings of the AMIA Annual Symposium, pages 244--248, 2006.
[13]
A. Farmer, B. H. C. E. M., M. Cook, and S. Hearing. Social network sites: A novel portal for communication. Postgraduate Medical Journal, 85(1007):455--459, 2009.
[14]
J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and L. Brilliant. Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012--1014, 2009.
[15]
C. Hanson, S. Burton, C. Giraud-Carrier, J. West, M. Barnes, and B. Hansen. Tweaking and tweeting: Exploring twitter for nonmedical use of a psychostimulant drug (adderall) among college students. Journal of Medical Internet Research, 15(4):e62, 2013.
[16]
C. Hanson, B. Cannon, S. Burton, and C. Giraud-Carrier. An exploration of social circles and prescription drug abuse through twitter. Journal of Medical Internet Research, 15(9):e189, 2013.
[17]
N. Heaivilin, B. Gerbert, J. Page, and J. Gibbs. Public health surveillance of dental pain via twitter. Journal of Dental Research, 90(9):1047--1051, 2011.
[18]
S. Jain. Practicing medicine in the age of facebook. New England Journal of Medicine, 361(7):649--651, 2009.
[19]
J. Jashinsky, S. Burton, C. Hanson, J. West, C. Giraud-Carrier, M. Barnes, and T. Argyle. Tracking suicide risk factors through twitter in the US. Crisis: The Journal of Crisis Intervention and Suicide Prevention, 35(1):50--59, 2014.
[20]
C. Jo, J. Ayers, B. Althouse, S. Emery, J. Huang, and K. Ribisl. US consumer interest in non-cigarette tobacco products spikes around the 2009 federal tobacco tax increase. Nicotine & Tobacco Research, 24(4):395--399, 2014.
[21]
J. Keelan, V. Pavri-Garcia, G. Tomlinson, and K. Wilson. Youtube as a source of information on immunization: A content analysis. Journal of the American Medical Association, 298(21):2482--2484, 2007.
[22]
M. Krieck, J. Dreesman, L. Otrusina, and K. Denecke. A new age of public health: Identifying disease outbreaks by analyzing tweets. In Proceedings of the Health Web Science Workshop at the Third International ACM Conference on Web Science, 2011.
[23]
R. Merchant, S. Elmer, and N. Lurie. Integrating social media into emergency-preparedness efforts. New England Journal of Medicine, 365(4):289--291, 2011.
[24]
K. Murugiah, A. Vallakati, K. Rajput, A. Sood, and N. Challa. Youtube as a source of information on cardiopulmonary resuscitation. Resuscitation, 82(3):332--334, 2010.
[25]
A. Pandey, N. Patni, M. Singh, A. Sood, and G. Singh. Youtube as a source of information on the h1n1 influenza pandemic. American Journal of Preventive Medicine, 38(3):e1--3, 2010.
[26]
M. Paul and M. Dredze. You are what you tweet: Analyzing twitter for public health. In Proceedings of the Fifth International Conference on Weblogs and Social Media, 2011.
[27]
C. Pelat, C. Turbelin, A. Bar-Hen, A. Flahault, and A. Valleron. More diseases tracked by using google trends. Emerging Infectious Diseases, 15(8):1327--1328, 2009.
[28]
A. Pentland, D. Lazer, D. Brewer, and T. Heibeck. Using reality mining to improve public health and medicine. Studies in Health Technology and Informatics, 149:93--102, 2009.
[29]
P. Polgreen, Y. Chen, D. Pennock, and F. Nelson. Using internet searches for influenza surveillance. Clinical Infectious Disease, 47(11):1443--1448, 2008.
[30]
D. Scanfeld, V. Scanfeld, and L. E. L. Dissemination of health information through social networks: Twitter and antibiotics. American Journal of Infection Control, 38(3):182--188, 2010.
[31]
A. Sood, S. Sarangi, A. Pandey, and K. Murugiah. Youtube as a source of information on kidney stone disease. Urology, 77(3):558--562, 2010.
[32]
P. Steinberg, S. Wason, J. Stern, L. Deters, B. Kowal, and J. Seigne. Youtube as source of prostate cancer information. Urology, 75(3):619--622, 2010.
[33]
J. West, P. Hall, K. Prier, C. Hanson, C. Giraud-Carrier, E. Neeley, and M. Barnes. Temporal variability of problem drinking on twitter. Open Journal of Preventive Medicine, 2(1):43--48, 2012.
[34]
K. Wilson and J. Brownstein. Early detection of disease outbreaks using the internet. Canadian Medical Association Journal, 180(8):829--831, 2009.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
September 2015
683 pages
ISBN:9781450338530
DOI:10.1145/2808719
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 September 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational health science
  2. computing
  3. health science
  4. multidisciplinary research
  5. workshop

Qualifiers

  • Research-article

Funding Sources

Conference

BCB '15
Sponsor:

Acceptance Rates

BCB '15 Paper Acceptance Rate 48 of 141 submissions, 34%;
Overall Acceptance Rate 254 of 885 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 41
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media