
Validation of an Architectural Level Power Analysis Technique

Rita Yu Chen Robert M. Owens Mary Jane Irwin

Raminder S. Bajway

Department of Computer Science and Engineering

The Pennsylvania State University

ySemiconductor Research Laboratory

Hitachi America Ltd.

Abstract

This paper presents a technique used to do power analysis
of a real processor at the architectural level. The target
processor integrates a 16-bit DSP and a 32-bit RISC on a
single chip. Our power estimator provides power consump-
tion data of the architecture based on the instruction/data

ow stream. We demonstrate the accuracy of the estimator
by comparing the power values it produces against measure-
ments made by a gate level power simulator for the same
benchmark set. Our estimation approach has been shown
to provide very e�cient, accurate power analysis at the ar-
chitectural level.

1 Introduction

As power dissipation has become a critical issue in many
VLSI systems, power analysis at the architectural level has
become more important because of its e�ciency. It also
allows the designer to experiment with design tradeo�s to
lower power consumption. Most of the research in this area
falls in the category of empirical methods which \measure"
the power consumption of existing implementations and pro-
duce models based on those measurements. This macromod-
eling technique can be subdivided into three subcategories.

The �rst approach introduced in [7] is a �xed-activity
macromodeling strategy called the Power Factor Approxi-
mation (PFA) method. The energy models are parameter-
ized in terms of complexity parameters and a PFA propor-
tionality constant. Thus, the intrinsic internal activity is
captured through this PFA constant. This approach im-
plicitly assumes that the inputs do not a�ect the switching
activity of the hardware block.

To remedy this weakness of the �xed-activity approach,
activity-sensitive empirical energy models have been devel-
oped. They are based on predictable input signal statistics,
such as used in the SPA method [3, 4, 5]. Although the indi-
vidual models built in this way are relatively accurate (the
error rate is 10%� 15%), overall accuracy may be sacri�ced
for the reasons of unavailable correct input statistics or an
inability to model the interactions correctly.

The third empirical approach, transition-sensitive en-
ergy models, is based on input transitions rather than input
statistics. The method presented in [2] assumes an energy
model is provided for each functional unit - a table con-
taining the power consumed for each input transition. The
authors give a scheme for collapsing closely related input
transition vectors and energy patterns into clusters, thereby
reducing the size of the table for each functional unit. A
signi�cant reduction in the number of clusters, and also the
size of the tables and the e�ort necessary to generate them,
can be obtained while keeping the maximum error within
30% and the root mean square error within 10%� 15%. Af-
ter the energy models are built, it is not necessary to use any
knowledge of the unit's functionality or to have prior knowl-
edge of any input statistics during the analysis. However,
this approach has never been used to analyze real commer-
cial processors. Thus, it remains to be validated as a viable
technique. Our work follows the third approach. The accu-
racy of our power estimator will validate the correctness of
this methodology.

Our simulator imitates the behavior of the processor in
each clock cycle as it executes a set of benchmark programs.
It also collects power consumption data on the functional
units (ALU, MAC, etc.) exercised by the instruction and
its data. The results of our power estimator are compared
with the power consumption data provided by [6]. This
comparison con�rms the accuracy of our power estimation
technique.

The rest of this paper consists of four sections. Section 2
overviews the processor architecture and describes the sim-
ulation strategy. Section 3 presents the power estimation
approach. Section 4 covers the power benchmarks and dis-
cusses the validation results. Finally, section 5 draws the
conclusion and suggests the related future work.

2 Architectural Simulation of the Processor

2.1 Processor Overview

The processor considered in this research integrates a 32-bit
RISC processor and a 16-bit DSP on a single chip. Figure 1
shows its main block diagram. The processor core includes
the X-memory, the Y-memory, the buses, the CPU engine
and DSP engine. The CPU engine includes the instruc-
tion fetch/decode unit, the 32-bit ALU, the 16-bit Pointer
Arithmetic Unit (PAU), the 32-bit Addition Unit (AU) for
PC increment, and 16 general purpose 32-bit registers. As
the ALU calculates the X-memory address, the PAU can
calculate the Y-memory address. Additional registers in the

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

CPU support hardware looping and modulo addressing. The
DSP engine contains the MAC, the ALU, the shifter, and 8
registers (six 32 bits wide and two 40 bits wide).

CPUDSP

IDB[31:0]

YDB[15:0]

XDB[15:0]

IAB[31:0]

YAB[15:1]

XAB[15:1]

X Memory
ROM 24KB
RAM 8KB RAM 8KB

ROM 24KB

Y Memory

Register File

MAC

ALU

Decode

ALU

Register File

PAU

AU

Fetch & Decode

Figure 1: Block diagram of the processor

2.2 Architectural Simulation

An overview of the power estimator is shown in Figure 2.
The inputs of the estimator are a benchmark program and
energy models for each functional unit. The next section
will introduce the details of energy model production. This
section will only focus on the structural simulation of the
architecture. The architectural simulator consists of several
parts: the assembler, the controller, and the datapath imple-
mented as many functional units (the small blocks labeled
as m).

Power
Estimator

m m

m m

m m

m m

Program Energy Models

Output
Consumption
Power

Assembler

Controller

Figure 2: An overview of the power estimator

The �rst part of the simulation e�ort was to build an
assembler which generates machine codes from benchmark
programs written in the assembly language of the processor.
The second part is the controller generating control signals
for each functional unit when instructions are running on
the simulator. These signals will be used to control the be-
havior of the functional units. For example, when a load
instruction puts data from the memory to the IDB bus, the
\MEMtoIDB" control bit will be set. The third part of the

simulator speci�es each functional unit in the datapath. As
the control signals are set, the functional units are activated.
For each unit, there is a function routine which gathers all
event activities. Figure 3 shows an example of these speci-
�cation functions. In this example, when a control signal is
set, the IDB will receive data from one of its sources. This
input data to the functional unit will be used to determine
its power consumption.

toIDB()

{

 if ctr_bit[MEMtoIDB] is set

 read data from memory;

 put the data on IDB;

 if ctr_bit[MWBtoIDB] is set

 MWB buffer puts data on IDB;

 if ctr_bit[BIFtoIDB] is set

 BIF (Bus Interface) puts data on IDB;

}

Figure 3: Event activities in the IDB

Finally, the simulator will provide the precise behavior
and functional unit state information. The behavior in-
formation describes which instruction is executed in each
pipeline stage. The functional unit state information shows
the content of each register or bu�er, the data transferred on
each active bus, and the function to be performed by each
arithmetic unit (ALU, PAU, AU, MAC, etc.).

During the design of the simulator, the implementation
of the pipeline was complicated because of the processor's
unusual architecture. And it is necessary to use two pro-
gram counters and special PC increment units, because the
instruction stream for the processor is a mixture of 16-bit
and 32-bit instructions. The simulator also implemented
instruction loop bu�ers in the CPU engine.

3 Power Estimation of the Processor

Because dynamic power consumption is strongly dependent
on the input switching of the functional units, using only
the average power de�nitely causes a loss of accuracy. Our
analysis technique overcomes this loss of accuracy by taking
data and instruction streams into account.

The processor is separated into many functional units.
The energy consumed by each functional unit per access
can be computed as follows [1]

Em =
1

2
CmV dd

2
(1)

where Cm is the switch capacitance per access of the func-
tional unit and V dd is the supply voltage. For each active
functional unit, Cm is calculated from the energy model of
the unit based on the previous and present input vectors.
The functional units can be grouped into two classes: bit-
dependent functional units and bit-independent functional
units. They have di�erent energy characterization methods.
Here, the terms energy and power are used interchangeably.

In the bit-dependent functional units, the switching of
one bit a�ects other bit slice's operations. Typical bit-
dependent functional units are adders, multipliers, decoders,
multiplexers, etc. Their energy characterization is based on
a lookup table consisting of a full energy transition matrix

where the row address is the previous input vector, the col-
umn address is the present input vector, and the matrix
value is the switch capacitance. All combinations of previ-
ous and present input vectors are contained in one table.
A major problem is that the size of this table grows expo-
nentially in the size of the inputs. A clustering algorithm
solves this problem and the sub-problems associated with it
by compressing similar energy patterns. The details of this
algorithm can be found in [2]. The capacitance data in the
energy characterization table is obtained from a switch level
simulation of the functional unit. The accuracy of switch
level analysis is not as good as circuit level simulation tools,
but is much faster.

In the bit-independent functional units, the switching of
one bit does not a�ect other bit slice's operations; for exam-
ple, registers, logic operations in the ALU, memories, etc.
The total energy consumption of the functional unit can be
calculated by summing the energy dissipation of the indi-
vidual bits. To model the energy dissipation of a bus, load
capacitance of each bit is used as an independent bit char-
acterization. Furthermore, each bit is assumed to have the
same load capacitance. The product of the load capacitance
and the number of bits is the Cm in equation (1).

Some energy models are not built from the complete
functional unit but from smaller subcells of these units. For
example, because a 4:1 multiplexer can be made from three
identical 2:1 multiplexers, its energy dissipation can be cal-
culated by using the energy model of a 2:1 multiplexer. This

reduces 26
2

= 4096 table entries to 23
2

= 64 entries. After
building the subcell energy model, energy routines will im-
plement those operations needed to calculate the functional
unit power dissipation from subcells.

Because we did not have access to the design of the con-
trol unit of the processor, average data is used to character-
ize its power consumption. Although the accuracy is not as
good as if we were able to build the transition dependent en-
ergy model, this average data reduces simulation time since
there is no table lookup involved.

4 Validation Results

4.1 The Power Benchmarks

A set of simple synthetic programs listed in Table 1 are used
as the benchmarks to validate our power analyzer. These are
the same benchmarks used to test the processor in [6]. Power
consumption of the instruction loop bu�er (ILB), memories,
buses, ALU, the multiplier and other functional units are
collected as the benchmarks are run. Data values used were
those which maximized the switching in the datapath.

Program Use ILB Main Loop Operation

pow032 No padd pmuls movx+ movy+
pow033 Yes padd pmuls movx+ movy+
pow035a Yes padd pmuls movx movy
pow034 No padd pmuls
pow035 Yes padd pmuls
pow035b Yes padd
pow035d No nop
pow035c Yes nop

Table 1: The Power Benchmark

In Table 1, \padd pmuls movx+ movy+" contains four

separate operations executed simultaneously. They are an
addition, a multiplication, two loads and two address incre-
ments. \Padd pmuls movx movy" is the same as the previ-
ous instruction except it contains no address increments.

4.2 Validation Results

The power simulation results generated by our architectural
level power analyzer are compared with the data gathered
by [6]. Overall, the average error rate of power analysis by
our simulator is 8:98%.

Figure 4 compares the estimated (by our simulator) and
reported (by [6]) power dissipation of the processor core in-
cluding the CPU engine and the DSP engine. The power
consumption data of each program is normalized to that
of the pow034 benchmark. As you can see, for most of
the benchmarks our simulator produces results very close
to those reported data in [6].

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 P
ow

er

pow032 pow033 pow035a pow034 pow035 pow035b pow035d pow035c
Benchmark

Power Consumption of Core (DSP+CPU)

Reported Core
Estimated Core

Figure 4: Core (DSP+CPU) estimated and reported power

In both the case of the pow035d benchmark and the
pow035c benchmark, the power consumption is underesti-
mated by our simulator. Possible reasons are that our power
estimator has not considered clock power and that the power
consumed by the control unit has not been accurately esti-
mated. These two benchmarks use the least power overall,
so that clock and control unit power account for a higher
percentage of the total power consumption.

In order to verify the above suspicion, the simulation ac-
curacy of each major functional unit (the DSP engine, the
CPU engine, the memory and the top-level buses) was also
analyzed and is shown in Figure 5. The estimated power
distribution rate is compared to that reported by [6]. The
distance from a symbol to the 1:1 line indicates the accu-
racy. The power simulation of the top-level buses is the least
accurate of the four units - the average error rate is 10:2%.
One of the reason for this is that the \top level interconnect"
in [6] consists not only of the buses we considered but also
the control and clock lines. The random control logic is also
a large part of the total power consumption, but we were
not able to build the energy model for the control unit since
we did not have access to the design. Thus, the accuracy of
the CPU engine power estimation is not as good as that of
the DSP engine and memory, though the average error rate
is only 5:7%.

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Estimated DSP Power (% of total)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

R
ep

or
te

d
D

S
P

 P
ow

er
 (

%
 o

f t
ot

al
)

Power Consumption of DSP
AvgErr = 5.6%

10.0 15.0 20.0 25.0 30.0 35.0
Estimated CPU Power (% of total)

10.0

15.0

20.0

25.0

30.0

35.0

R
ep

or
te

d
C

P
U

 P
ow

er
 (

%
 o

f t
ot

al
)

Power Consumption of CPU
AvgErr = 5.7%

15.0 25.0 35.0 45.0
Estimated Memory Power (% of total)

15.0

25.0

35.0

45.0

R
ep

or
te

d
M

em
or

y
P

ow
er

 (
%

 o
f t

ot
al

)

Power Consumption of Memory
AvgErr = 4.97%

5.0 10.0 15.0 20.0 25.0
Estimated Top−buses Power (% of total)

5.0

10.0

15.0

20.0

25.0

R
ep

or
te

d
T

op
−b

us
es

 P
ow

er
 (

%
 o

f t
ot

al
)

Power Consumption of Top−level Buses
AvgErr = 10.2%

Figure 5: Power distribution comparison

5 Conclusion and Future Work

In this work, we implemented an accurate, high level power
estimator for a real processor. Our estimation technique
needs to do energy characterization for each functional unit
(ALU, MAC, etc.) only once. When the operations of the
functional units are speci�ed by the instruction stream, the
power consumed in each functional unit is calculated from
its energy model. The simulation results clearly veri�ed the
correctness of our power analysis methodology. Without loss
of accuracy, the running time of power estimation for each
benchmark program was less than 90 CPU seconds. This
time saving feature of our power estimator is bene�cial for
reducing the design cycle time. The structural simulator is
also applicable for power optimization research at the archi-
tecture, system software, and application software levels.

The following are some of the factors which have not
been taken into account during the power estimation:

� Clock power

� Transition dependent control logic power

� I/O pad power

� Varying signal arrival times

� The e�ects of functional unit placement and routing

Finding a better interconnect energy model also is a valu-
able research goal. Our future work to improve our power
estimator will include all of the above. We are also investi-
gating, running and testing more complicated benchmarks.

References

[1] H. Mehta, R.M. Owens, and M.J. Irwin. Instruc-
tion level power pro�ling. In International Conference
on Acoustics, Speech and Signal Processing (1996).

[2] H. Mehta, R.M. Owens, and M.J. Irwin. Module
energy characterization using clustering. In Proceedings
of 33rd Design Automation Conference (June 1996).

[3] P. Landman, and J. Rabaey. Power estimation for
high level synthesis. In EDAC-EUROASIC (1993),
pp. 361{366.

[4] P. Landman, and J. Rabaey. Black-box capacitance
models for architectural power analysis. In 1994 Interna-
tional Symposium on Low Power Electronics and Design
(April 1994), pp. 165{170.

[5] P. Landman, and J. Rabaey. Activity-sensitive ar-
chitectural power analysis for the control path. In 1995
International Symposium on Low Power Electronics and
Design (April 1995), pp. 93{98.

[6] R. Bajwa, N. Schumann, and H. Kojima. Power anal-
ysis of a 32-bit RISC microcontroller integrated with a
16-bit DSP. In 1997 International Symposium on Low
Power Electronics and Design (1997), pp. 137{142.

[7] S.R. Powell, and P.M. Chau. Estimating power dis-
sipation of VLSI signal processing chips: The PFA tech-
nique. In VLSI Signal Processing IV (1990), pp. 250{
259.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

