
CoCoTest: A Tool for Model-in-the-Loop Testing of
Continuous Controllers

Reza Matinnejad, Shiva Nejati, Lionel C. Briand
SnT Centre, University of Luxembourg, Luxembourg

{reza.matinnejad,shiva.nejati,lionel.briand}@uni.lu

Thomas Bruckmann
Delphi Automotive Systems, Luxembourg

{thomas.bruckmann}@delphi.com

ABSTRACT
We present CoCoTest, a tool for automated testing of continuous
controllers at the Model-in-the-Loop stage. CoCoTest combines
explorative and exploitative search algorithms to identify scenar-
ios in the controller input space that violate or are likely to violate
the controller requirements. This enables a scalable and systematic
way to test continuous properties of such controllers. Our experi-
ments show that CoCoTest identifies critical flaws in the controller
design that are rarely found by manual testing and go unnoticed
until late stages of embedded software system development.
Categories and Subject Descriptors [Software Engineering]:
Testing and Debugging
Keywords: Search-based testing; continuous controllers; automo-
tive software systems; MATLAB/Simulink models.

1. INTRODUCTION
The number and the complexity of software components embed-

ded in today’s vehicles is rapidly increasing. A large group of these
components monitor and control the operating conditions of phys-
ical low-level devices, e.g., components controlling the velocity of
a DC motor or the position of a flap. These controllers are known
as continuous controllers and comprise more than half of the con-
trollers used in industry [5]. To identify early design errors of con-
tinuous controllers, engineers create a model of the environment,
capturing the behavior of the device that interacts with a controller,
and perform testing and simulations of the controller and the en-
vironment models. This stage of testing is known as Model-in-
the-Loop (MiL) [9] testing and is performed in various embedded
system sectors such as the automotive domain. The subsequent
stages of controller development are referred to as Software-in-the-
Loop (SiL) and Hardware-in-the-Loop (HiL) [9]. Compared to SiL
and HiL, the development and testing at MiL level are considerably
faster as the engineers can quickly modify the controller model and
immediately test the system. In addition, MiL testing is much less
expensive than SiL or HiL testing.

Testing continuous aspects of control systems is challenging and
is not yet supported by existing tools and techniques [2, 9]. Many
existing approaches to testing embedded software systems focus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2648625.

on analyzing discrete or mixed discrete-continuous systems [2, 7].
These techniques, however, are not amenable to analyzing con-
trollers with pure continuous behavior. Search-based techniques
have been applied to Simulink models for generation of complex
input signals and test input data for Simulink models [1]. How-
ever, they do not address the generation of test cases with respect
to system requirements and do not provide any insight as to how
one can develop test oracles for the generated test inputs. Finally, a
number of commercial verification and testing tools have been de-
veloped, aiming to generate test cases for Simulink models, namely
the Simulink Design Verifier software [8], and Reactis Tester [6].
Currently, these tools handle only combinatorial and logical blocks
of the Simulink models, and fail to generate test cases that specifi-
cally evaluate continuous blocks (e.g., integrals or PIDs) [9].

In our earlier work, we proposed a search-based approach to MiL
testing of continuous controllers [3, 4]. We identified and formal-
ized a set of requirements for continuous controllers, and developed
a search-based technique to generate test cases with respect to these
requirements. Our proposed technique combines explorative and
exploitative search algorithms [4] to compute scenarios in the con-
troller input space that violate or are likely to violate the controller
requirements. In this paper, we present CoCoTest (Continuous
Controller Tester) that supports our automated approach to MiL
testing of continuous controllers [3, 4]. In addition, CoCoTest pro-
vides a full-fledged user interface, allowing engineers to create and
manipulate test configurations, tune search algorithms, monitor and
examine the resulting HeatMap diagrams [3] visualising the search
input space, and apply MiL testing for any desired input within the
controller search space. Our experiments show that CoCoTest is
effective and generates test cases violating requirements and that
had not been previously found by manual testing based on domain
expertise [4]. CoCoTest is developed in the context of our research-
based collaboration with Delphi in Luxembourg, a leading global
supplier of electronics and technologies to automotive companies.

2. BACKGROUND AND MOTIVATION
In this section, we provide background on MiL testing of con-

tinuous controllers, and motivate CoCoTest using the needs of the
automotive domain. Figure 1(a) shows an overview of a controller
and a plant (environment) model in a feedback loop. The system
input and output are respectively shown as desired and actual in
Figure 1(a). Input (desired) represents the position we need a valve
(plant) to arrive at, for instance, and output (actual) represents the
actual position of the valve (plant). The actual value is expected to
reach the desired value over a certain time limit, making the error,
i.e., the difference between the actual and desired values, eventu-
ally zero or practically negligible. The task of the controller is to
eliminate the error by manipulating the plant to obtain the desired
effect on the actual status of the plant.

(a)

In
iti

al
 D

es
ire

d
(ID

)
Desired ValueI (input)
Actual Value (output)

Fi
na

l D
es

ire
d

(F
D)

Fsm

Fr

Fst

time
T' T

T 0 + ⌧

(b)

Plant
Model+

-
⌃

Desired
Value

Actual Value

System
Output

ErrorSystem
Input

Controller
(SUT)

Figure 1: Continuous Controllers: (a) Overview and (b) In-
put/output diagrams.

Continuous controllers are typically specified in Simulink. Fig-
ure 1(b) shows simulations representing the input and output of a
controller. The input, i.e., desired, is shown by a dashed line and
is given as a step signal. Specifically, this input signal first sets the
controller at an initial desired (ID) value until time T ′, and then
requires the controller to move to a final desired (FD) value by
time T . The output, i.e., actual, shown by a solid line, starts at
zero, and gradually moves to reach and stabilize at the initial de-
sired (ID), and then it moves towards the final desired (FD) and
stabilizes there.

To test a controller, engineers simulate the controller using dif-
ferent input step signals by varying ID and FD. For each simula-
tion, they generate the output signal, i.e., the actual signal in Fig-
ure 1(b), and check if the output conforms to the following three
main requirements that we identified in our previous work [3, 4]:
Stability: The controller shall guarantee that the output will reach
and stabilize at the input after a time limit. Smoothness: The ac-
tual value shall not change abruptly when it is close to the input.
Responsiveness: The controller shall respond within a time limit.

We define three objective functions Fst, Fsm and Fr over the
output signal to estimate quantitative values for stability, smooth-
ness and responsiveness requirements, respectively. We provided
formal definitions of these functions in our earlier work [3, 4].
Briefly, Fst (stability) measures the maximum difference between
input and output over the time periods shown by thin dashed arrows
in Figure 1(b). Function Fsm (smoothness) measures the maxi-
mum undershoot and overshoot of the output signal. Function Fr

(responsiveness) measures the response time intervals of the output
as shown in Figure 1(b).

We provide an input to the controller Simulink model, and use
the generated output signal to compute Fst, Fsm and Fr . The input
to the controller includes values for ID and FD, which characterize
the input step signal. Having computed these three functions over
an output signal, engineers can then decide, based on their domain
knowledge and thresholds provided in the requirements, whether
the controller under analysis satisfies each of the controller require-
ments or not. The higher the objective function value, the more
likely it is that the controller violates the requirement correspond-
ing to that objective function.

In our earlier work, we proposed a search-based approach for
testing continuous controllers [3, 4]. We developed search algo-
rithms maximizing Fst, Fsm and Fr within an input search space
with two dimensions: ID and FD. For example, consider a con-
troller with float variables ID and FD ranging from 0 to 1. The
input search space of this controller with dimensions ID and FD is

ID = 0.82

FD = 0.08

time(s)
1.0 2.001.00.90.80.70.60.50.40.30.20.10.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ID

FD

Desired Value (input)

Actual Value (output)

(a) (b)

Figure 2: An example representing application of CoCoTest to
a faulty controller: (a) a HeatMap diagram, and (b) a scenario
violating the stability requirement.

1. Setup

HeatMap

2. Exploration

generates

Random
exploration

Single-state
search

finds

3. Search

Test case list

creates

Controller model
under test

Test workspace

Plant ⌃

Controller

Test setup by
the user

Figure 3: An overview of the MiL testing approach for con-
trollers implemented in CoCoTest.

shown in Figure 2(a). Our approach has two steps: exploration and
search. For each objective function, our approach first computes
that function for points randomly selected from the input space (ex-
ploration step). We divide the input space into a number of regions,
e.g., 100 equal regions in Figure 2(a), and shade each region based
on the objective function output. The resulting diagram is called a
HeatMap diagram. For example, Figure 2(a) is a HeatMap diagram
generated based on the stability objective function values for 1000
points. Specifically, in a HeatMap diagram, the points in darker
regions yield a higher average objective function output than the
points in lighter regions. Hence, darker regions are more likely to
include input values violating the controller requirements. In the
search step, we apply a single-state search algorithm to selected
dark regions entailing higher risks, e.g., of damaging the controlled
device, to find points that maximize our objective functions, and
hence, are more likely to violate the requirements.

For example, the HeatMap in Figure 2(a) is generated by Co-
CoTest based on the output of the stability objective function Fst

applied to a faulty controller. The controller satisfies the stabil-
ity requirement for all the input signals related to the points in the
clear-shaded regions. However, applying CoCoTest to the dark re-
gion of (ID = [0.8..0.9] and FD=[0..0.1]) in Figure 2(a) results in
finding the simulation in Figure 2(b) which clearly violates the sta-
bility requirement. Note that since the controller behavior for most
of the input space (more than 95%) conforms to the stability re-
quirement, it is very unlikely that one can discover the faulty be-
havior by manually selecting and running a few simulations.

3. TOOL OVERVIEW
Figure 3 shows an overview of CoCoTest that consists of three

main steps: (1) Creating and initializing a test workspace, i.e., a
container for the test inputs and configuration data, by the user
(setup), (2) exploring the input space of the controller and gener-
ating HeatMap diagrams (exploration), and (3) identifying the crit-
ical regions of the input space and computing the worst-case test
scenarios in those regions (search). Critical regions are those that
are more likely to include test scenarios violating the controller re-
quirements, e.g., boundary regions are typically more critical since
controllers are more likely to damage devices at boundary regions.
CoCoTest offers end-to-end support for the process in Figure 3.
Below, we discuss the three steps of the process in Figure 3.

Figure 4: Configuring HeatMap diagrams in CoCoTest.

3.1 Setup
In the Setup step, the user creates a test workspace, which is a

structure used to store the input data, HeatMap configurations, and
the test results. CoCoTest provides the user with a wizard consist-
ing of the following three steps to create a test workspace: (1) First,
the user selects the Simulink file (*.mdl file) of the controller-plant
model. (2) Second, the user provides the simulation time (T in Fig-
ure 1), the model variables corresponding to ID and FD variables,
and the ranges of these variables. (3) Third, the user configures
the layout and the setting of the HeatMap diagrams used to visu-
alize the exploration results. Specifically, the user provides (i) the
number of regions in a HeatMap, (ii) the minimum number of test
cases to be generated in each region, and (iii) the critical operating
regions of the controller.

Figure 4 shows the last step of the wizard for a DC motor con-
troller [4]. For this example, the value ranges of ID and FD are
between 0 and 160, resulting in the HeatMap layout in Figure 4.
The user, then, chooses to divide the diagram into 64 regions, and
in addition, specifies that at least five test cases should be generated
and executed in each region of the diagram. Then, the user specifies
the critical regions by clicking on the appropriate HeatMap regions.
These selected critical regions are candidate inputs regions for the
search step (step 3). For example in Figure 4, the regions where ei-
ther the initial or the final DC motor speed is between 120 and 160
are selected as the critical operating regions of the controller. This
is because the controller is likely to damage the DC motor when
the motor speed is at least 75% of its maximum speed, or when the
motor is accelerating to reach at least 75% of its maximum speed.
Finally, the user can specify the number of worst-case scenarios to
be generated per requirement, e.g. three in Figure 4.

CoCoTest estimates the running time of the test (exploration and
search steps) based on the given data, e.g., five minutes and 20s in
Figure 4. CoCoTest can also be executed in a maintenance mode,
allowing an advanced user to choose search algorithms for the ex-
ploration and search steps and to configure the specific parameters
of these algorithms.

3.2 Exploration
During exploration, CoCoTest applies an adaptive random (un-

guided) search to the entire input space in order to identify the high
risk areas. The search selects inputs in the search space randomly

Figure 5: Test results form in CoCoTest.

in order to provide an unbiased estimate of the average objective
function values in different regions. These regions and the com-
puted averages are then visualized using HeatMap diagrams. Co-
CoTest provides two options for explorative search algorithm: ran-
dom search and adaptive random search [4].

The overall structure of both random and adaptive random search
algorithms are implemented as MATLAB script templates with
some placeholders in CoCoTest. These templates are then instanti-
ated and populated using the test workspace created by the user in
the setup step. For example, the number of iterations of the search
is a placeholder that has to be filled based on the number of the test
cases that the user wishes to generate and execute in each region.

The exploration step produces one HeatMap diagram for each
controller requirement (see Figure 5). CoCoTest allows the user to
select a requirement from a drop down list to retrieve the HeatMap
diagram corresponding to that requirement. In addition, the user
can run any arbitrary test case by simply double clicking on a point
on the HeatMap, or entering the ID and FD values and pushing the
Run Model button (see Figure 5). For example in Figure 5, pushing
the Run Model button causes the test case with ID=140 and FD=20
to be executed. A yellow rectangle indicates the position of the
selected test case on the HeatMap diagram.

3.3 Search
During the search step, CoCoTest applies a heuristic single-state

search to a few selected regions in order to find worst-case test sce-
narios that are likely to violate the controller requirements. Given
a HeatMap region, the search starts with the point with the high-
est objective function value among those computed during explo-
ration, and then, it iteratively generates new points by tweaking the
current point. The specific tweak operators used in our search are
discussed in [4]. After a number of iterations, it reports the point
with the worst (highest) objective function value as the worst-case
test scenario in the given region. In the maintenance mode, one can
choose and configure one of the following single-state search al-
gorithms: Hill-Climbing, Hill-Climbing with Random Restarts and
Simulated Annealing algorithms for single-state search [4].

Similar to the exploration algorithm, different single-state search
algorithms are implemented as MATLAB script templates. For
each HeatMap region, CoCoTest instantiates the search algorithm
template file with the given values during the setup step and the

boundaries of the critical region. It then calls MATLAB to run the
instantiated search script and computes the worst-case test scenario
in the region. The output of the search step is a list of worst-case
test scenarios for each controller requirement. By selecting a re-
quirement from the drop down list at the top in Figure 5, the list of
worst-case test scenarios corresponding to that requirement appears
in the list at the bottom of that figure. Each test case is characterised
by the ID and FD values, e.g., ID=159.94 and FD=20.562 for the
third generated test case in Figure 5. The user can rerun each of
these test cases to view simulation results by double clicking on
the test cases in the list.

4. EVALUATION
We evaluated the practical utility of CoCoTest by applying it to a

representative industrial case study from automotive domain (with
443 Simulink blocks) and to a publicly available controller 1 (with
21 Simulink blocks) [3, 4]. Our experiments show that CoCoTest
automatically generates several test cases for which the MiL level
simulations indicate potential errors in the controller model. Fur-
thermore, the resulting test cases had not been previously found
by manual testing based on domain expertise. For example, re-
garding smoothness, CoCoTest found a test scenario with an un-
dershoot around %20 for the industrial controller. The maximum
undershoot/overshoot for the same controller identified by manual
testing was around %5. Similarly, for the responsiveness property,
CoCoTest found a scenario in which it takes 150ms for the actual
value to get close enough to the desired value while the maximum
corresponding value in manual testing was around 50ms.

We have made CoCoTest available to Delphi, our partner com-
pany, and have presented it in a hands-on tutorial to eight Delphi
engineers. Post training, the engineers were able to independently
use CoCoTest. We received positive feedback after the tutorial.
According to the engineers, CoCoTest is particularly useful at early
stages of controller design to identify and detect design flaws. They
noted that the HeatMap diagrams, in addition to enabling the iden-
tification of critical regions, can be used in the following ways:
(1) They can gain confidence about the controller behaviors over
the light shaded regions of the diagrams. (2) The diagrams enable
them to investigate potential anomalies in the controller behavior.
Specifically, since controllers have continuous behaviors, we ex-
pect a smooth shade change over the search space going from clear
to dark. A sharp contrast such as a dark region neighboring a light-
shaded region may potentially indicate an abnormal behavior that
needs to be further investigated.

To further evaluate CoCoTest, we seeded 3 faults into the indus-
trial controller model, and used CoCoTest to find those faults. The
faults were provided by Delphi engineers and were chosen based
on years of debugging experience. For all these faulty models,
CoCoTest was able to find test cases violating at least one of the
requirements. For example, the HeatMap and test scenario in Fig-
ure 2, representing a test case violating the stability requirement,
are obtained by applying CoCoTest to a fault-seeded controller.

5. IMPLEMENTATION
Figure 6 shows the architectural view of CoCoTest (https:

//sites.google.com/site/cocotesttool/). CoCoTest adopts a
three-tier architecture with an extra service layer which handles the
configuration management. The exploration and search algorithms
are implemented in MATLAB script templates as described in sec-
tion 3. The templates execute model simulations to compute the ob-
jective function values. CoCoTest calls MATLAB from command
1
http://www.mathworks.com/matlabcentral/fileexchange/

11587-dac-motor-model-simulink

Test workspace

Presentation layer

Business layer

Data layerSe
rv

ic
e

la
ye

r

MATLAB
functions

instantiates
uses

runs

stores retrieves
Configurations

manages

Controller model
under test

executes

generatesshows

MATLAB script
templates

HeatMap Test case list

Plant ⌃

Controller

MATLAB output

writes

Figure 6: CoCoTest architectural view.

line to run the MATLAB scripts. It redirects MATLAB output to a
file and periodically reads the file to know when the test execution
is finished and the test results are ready.

CoCoTest is implemented in Microsoft Visual Studio 2010 and
Microsoft .NET 4.0. It is an object-oriented program in Visual C#
with 65 classes and roughly 30K lines of code excluding comments.
The main functionalities of CoCoTest have been tested with a test
suite containing 200 test cases. CoCoTest requires Simulink to be
installed and operational on the same machine to be able to execute
controller-plant model simulations. We have tested CoCoTest on
Windows XP and Windows 7, and with MATLAB 2007b. MAT-
LAB 2007 was selected due to compatibility with Delphi models.

6. CONCLUSION
We presented a tool, CoCoTest, to automate MiL testing of con-

tinuous controllers. The tool enables users to setup test workspaces,
explore and visualise the controller input search space, select the
critical operating regions of controllers, and identify worst-case test
scenarios in the selected regions. Our evaluation on realistic case
studies indicates that CoCoTest is able to generate test cases for
which the MiL level simulations indicate potential errors in the con-
troller model. Furthermore, the test cases generated by CoCoTest
had not been previously found by manual testing based on domain
expertise. CoCoTest is implemented as part of an industry-driven
research effort to devise cost-effective and scalable techniques to
test automotive software components.

Acknowledgments
Supported by the Fonds National de la Recherche, Luxembourg
(FNR/P10/03 - Verification and Validation Laboratory, and FNR
4878364), and Delphi Automotive Systems, Luxembourg.

7. REFERENCES
[1] F. Elberzhager, A. Rosbach, and T. Bauer. Analysis and testing of Matlab

Simulink models: A systematic mapping study. In JAMAICA 2013. ACM, 2013.
[2] T. Henzinger and J. Sifakis. The embedded systems design challenge. In FM,

pages 1–15, 2006.
[3] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull. Automated

model-in-the-loop testing of continuous controllers using search. In Search
Based Software Engineering, pages 141–157. Springer, 2013.

[4] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull. Search-based
automated testing of continuous controllers: Framework, tool support, and case
studies. Information and Software Technology, 2014.

[5] N. S. Nise. Control Systems Engineering. John-Wiely Sons, 4th edition, 2004.
[6] Reactive Systems Inc. Reactis Tester. http://www.reactive-systems.

com/simulink-testing-validation.html, 2010.
[7] T. Stauner. Properties of hybrid systems-a computer science perspective. Formal

Methods in System Design, 24(3):223–259, 2004.
[8] The MathWorks Inc. Simulink.

http://www.mathworks.nl/products/simulink, 2003.
[9] J. Zander, I. Schieferdecker, and P. J. Mosterman. Model-based testing for

embedded systems, volume 13. CRC Press, 2012.

