

Edinburgh Research Explorer

Fast and Efficient Dataflow Graph Generation

Citation for published version:
Bodin, B, Lesparre, Y, Delosme, J-M & Munier-Kordon, A 2014, Fast and Efficient Dataflow Graph
Generation. in Proceedings of the 17th International Workshop on Software and Compilers for Embedded
Systems. ACM, New York, NY, USA, pp. 40-49. https://doi.org/10.1145/2609248.2609258

Digital Object Identifier (DOI):
10.1145/2609248.2609258

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 17th International Workshop on Software and Compilers for Embedded Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2024

https://doi.org/10.1145/2609248.2609258
https://doi.org/10.1145/2609248.2609258
https://www.research.ed.ac.uk/en/publications/f0ab9286-abc7-4ff8-96c7-d502539d0002

Fast and Efficient Dataflow Graph Generation

Bruno BODIN‡, Youen LESPARRE?, Jean-Marc DELOSME†, and Alix MUNIER-KORDON?

bbodin@inf.ed.ac.uk, youen.lesparre@lip6.fr, delosme@ibisc.univ-evry.fr, alix.munier@lip6.fr

‡ School of Informatics,
University of Edinburgh,

Edinburgh, United-Kingdom

? Sorbonne Universités,
UPMC Univ Paris 06, UMR
7606, LIP6, F-75005, Paris,

France

† IBISC, Université
d’Évry-Val-D’Essonne,

91025 Évry, France

General Terms
Graph generation, Synchronous Dataflow, Cyclo-Static Data-
flow, Phased Computation Graph.

Keywords
Synchronous Dataflow Graph, SDFG, Cyclo-Static Dataflow
Graph, CSDFG, Phased Computation Graph, PCG, nor-
malization, random generation, initial markings.

ABSTRACT
Dataflow modeling is a highly regarded method for the de-
sign of embedded systems. Measuring the performance of
the associated analysis and compilation tools requires an ef-
ficient dataflow graph generator. This paper presents a new
graph generator for Phased Computation Graphs (PCG),
which augment Cyclo-Static Dataflow Graphs with both ini-
tial phases and thresholds.

A sufficient condition of liveness is first extended to the
PCG model. The determination of initial conditions mini-
mizing the total amount of initial data in the channels and
ensuring liveness can then be expressed using Integer Lin-
ear Programming. This contribution and other improve-
ments of previous works are incorporated in Turbine, a new
dataflow graph generator. Its effectiveness is demonstrated
experimentally by comparing it to two existing generators,
DFTools and SDF3.

1. INTRODUCTION
Dataflow modeling is a highly valued method for the de-

sign of embedded systems and, over the last decades, several
dataflow models have been proposed [16]. Applications are
usually represented by a set of actors (or tasks) that commu-
nicate data through unidirectional communication channels.
The model is therefore particularly well adapted to digital
signal processing (DSP) applications.

The Synchronous Dataflow Graph (SDFG) model [10] is
a simple dataflow model for which the amounts of data pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCOPES ’14 Schloss Rheinfels, St. Goar, Germany
Copyright 2014 ACM 978-1-4503-2941-5/14/06 ...$15.00.

duced or consumed at a time in each channel are fixed in-
tegers. This model is static, in the sense that the volumes
of data exchanged are known before the execution of the
application. Its behavior is thus predictable, with the con-
sequence that important questions such as graph liveness
or decision versions of optimization problems (in particular
minimization of resources) are decidable. This characteris-
tic allows then the development of efficient academic and
industrial tools to handle these restricted dataflow graphs.

Several more expressive (still static) extensions were de-
veloped afterwards to handle larger classes of applications or
particular resource constraints. The Cyclo-Static Dataflow
Graph (CSDFG) model [5], in which data is produced or
consumed piecemeal according to a fixed vector, is the most
commonly used today. The dataflow graphs considered in
this paper and generated by Turbine are Phased Computa-
tion Graphs (PCG) [19]. They extend the CSDFG model
by including initial phases and thresholds. Phased Com-
putation Graphs are usually considered in the context of
programming languages for many-core architectures [1, 8].

As pointed before, several authors developed optimiza-
tion methods with static dataflow graphs as inputs [2, 6,
20]. The first way to test the performance of their methods
is to experiment using dataflow graphs obtained for specific
applications, which can be obtained by analyzing directly
the data processing algorithms. This is illustrated by the
models of the H263 encoder [12], the MP3 playback [20] and
the Reed-Solomon decoder [3], which have been developed in
an academic context and do not contain more than 8 actors.
A second approach consists in using a dataflow language to
automatically generate the dataflow graph associated with
an application [7, 18, 19]. The number of actors for real-life
applications obtained by [4, 6] ranges from 38 up to 600.
The increase in the size of the instances keeps pace with
the evolution of embedded systems, with architectures soon
comprising more than a thousand processors. It is achieved
by assembling applications, corresponding to specific algo-
rithms, to form the applications for the new systems, and by
exploiting finer granularities, augmenting significantly the
number of actors to achieve a higher parallelism.

The best way to validate an optimization method is to
test it using randomly generated dataflow graph instances.
The size of the generated graphs must be compatible to
that of real instances, which can contain hundreds and even
thousands of actors. Moreover, the generator must be fast
enough not to slow down experimental validation of the op-
timization methods. General graph generation is a highly
productive research area [14], whereas, to the best of our

knowledge, only two dataflow graph generation tools have
been made available to system designers. The open source
dataflow library DFTools, developed in Java and mainly
used by the toolchain PREESM [13], supplies an SDFG
generator, while the widely used C++ library SDF3 [17]
provides both SDFG and CSDFG generation in addition to
dataflow analysis algorithms [21, 15]. Our generator Tur-

bine produces PCGs, hence also the more basic CSDFGs,
which are commonly used to model applications in the in-
dustrial context [7]. We show experimentally in Section 6
that Turbine is able to produce a CSDFG with 10,000 actors
within a reasonable time. Its performance is also compared,
to its advantage, to that of SDF3 and DFTools.

The critical step in dataflow graph generation is determin-
ing the initial conditions (i.e. computing the initial amount
of data in the channels) that ensure the liveness of the model.
The liveness of a static dataflow graph is decidable, but no
polynomial-time algorithm exists to answer this question ef-
ficiently. The algorithm employed by SDF3 and DFTools
is based on a simple sufficient condition of liveness for an
SDFG recalled in Section 3. Its extension to a CSDFG is
theoretically sound, but calls for an excessive initial amount
of data in the channels. Another important drawback is
the time-complexity of the algorithms used by SDF3 and
DFTools, which severely limits the scalability of these two
generators as shown experimentally in Section 6.

The sufficient condition exploited by Turbine is an exten-
sion to PCGs of the sufficient condition of liveness expressed
in [11] for Weighted Event Graphs—a subclass of Petri nets
strictly equivalent to SDFGs. This condition has been ex-
tended to the CSDFG model in [4]. It is extended in Section
4 to the PCG model. Our generator is based on linear pro-
gramming to compute a minimum initial amount of data in
the channels such that our sufficient condition of liveness is
verified. The size of the linear program is a linear function of
the number of channels, and is thus independent of the num-
ber of phases. We show in Section 6 that the total number
of tokens (measuring the initial amount of data) generated
by Turbine is 2.6 (resp. 1.6) times smaller than with SDF3

(resp. DFTools).
Our paper is organized as follows. Section 2 presents the

PCG model supported by Turbine and all the classical static
dataflow models subsumed by this model. Some basic nota-
tions, followed by a brief presentation of SDF3 and DFTools,
are introduced in Section 3. Section 4 presents the sufficient
condition of liveness employed by Turbine. Section 5 briefly
describes Turbine. The limits of our generator and a com-
parison with SDF3 and DFTools are presented in Section 6.
Section 7 is our conclusion.

2. STATIC DATAFLOW MODELS
We present in this section the dataflow models supported

by Turbine. Phased Computation Graphs are described last
and encompass the models presented before.

2.1 Synchronous Dataflow Graph
Synchronous Dataflow Graphs (SDFG) were introduced

by Lee and Messerschmitt [10] to model data transfers for
embedded systems. An application is decomposed into ac-
tors (tasks, nodes) which communicate through FIFO buffers
(channels, edges). For each buffer, two positive integers
specify the number of tokens (data items) produced (resp.
consumed) when executing its input (resp. output) task.

These numbers are respectively noted pa and ca for buffer
a. The number of tokens in buffer a at the start of the
application is its initial marking, noted M0(a).

t t′
a

4 5
.0

Figure 1: A buffer a between two tasks t and t′ of an
SDFG with production weight pa = 4, consumption
weight ca = 5 and initial marking M0(a) = 0.

In the SDFG of Figure 1, pa = 4, ca = 5 and M0(a) = 0.
At the end of an execution of task t, 4 data items are stored
in buffer a. In order to be executed, task t′ requires 5 data
items, which will be consumed at the beginning of an exe-
cution.

2.2 Computation Graph
Following Karp and Miller [9], the Computation Graph

(CG) model extends the SDFG model with the specification
of thresholds. A threshold indicates how many data items
must be present in a buffer before the associated consumer
task can be executed. The threshold of buffer a is denoted
by θa; it satisfies θa ≥ ca by definition.

Figure 2 represents a CG with ca = 5 and θa = 7. A
threshold value appears—separated by a colon—after the as-
sociated consumption weight. Task t′ requires 7 data items
to be executed and consumes 5 items at each execution.

t t′
a

4 5:7
.0

Figure 2: A buffer a between two tasks t and t′ of a
CG. The consumption weight and the threshold are
respectively ca = 5 and θa = 7.

2.3 Cyclo-Static Dataflow Graph
The Cyclo-Static Dataflow Graph (CSDFG) model is an-

other extension of the SDFG model, in which the data items
are consumed or produced piecemeal [5]. Data production
and consumption are represented by vectors of non-negative
weights. Each execution of a task t is decomposed into a
fixed number of phases, φ(t). For each task t, two non-
negative integers, pa(k) and ca(k), denote respectively the
number of items produced into or consumed from a buffer a
during phase k, 1 ≤ k ≤ φ(t). The total of the productions
(resp. consumptions) over all the phases is denoted pa (resp.

ca), i.e. pa =
∑φ(t)
k=1 pa(k) and ca =

∑φ(t)
k=1 ca(k).

In the CSDFG of Figure 3, the vector of numbers of items
produced during the φ(t) = 2 phases of an execution of task
t is [pa(1), pa(2)] = [3, 1] with pa = 4, and the vector of
numbers of items consumed during the φ(t′) = 3 phases of
an execution of task t′ is [ca(1), ca(2), ca(3)] = [2, 1, 2] with
ca = 5.

2.4 Cyclo-Static Dataflow Graph with initial
phases

Initial phases allow to express the way a task in a dataflow
graph is initialized. The initialization of a task t is decom-

t t′
a

[3, 1] [2, 1, 2]
.0

Figure 3: A buffer a between two tasks t and t′ of
a CSDFG. The numbers of phases are φ(t) = 2 and
φ(t′) = 3. The two vectors associated to buffer a
are [pa(1), pa(2)] = [3, 1] on the production side and
[ca(1), ca(2), ca(3)] = [2, 1, 2] on the consumption side.

posed into σ(t) initial phases, which are executed once. The
phases of t are numbered from 1−σ(t) to φ(t); numbers k
belonging to {1−σ(t), · · · , 0} (resp. {1, · · · , φ(t)}) refer to
initial (resp. cyclic) phases.

In Figure 4, the vector of the numbers of items produced
(resp. consumed) in the initial phases appears, between
parentheses, just before the vector of numbers of items pro-
duced (resp. consumed) in the normal phases. For task t,
σ(t) = 2, pa(−1) = 1, pa(0) = 2, and, for task t′, σ(t′) = 2,
ca(−1) = 2, ca(0) = 3. Buffer a contains 3 data items af-
ter the two phases of initialization of task t, which executes
cyclically its normal phases afterwards.

t t′
a

(1, 2) [3, 1] (2, 3) [2, 1, 2]
.0

Figure 4: A buffer a between two tasks t and t′ of a
CSDFG with initial phases. The numbers of initial
phases are σ(t) = 2 and σ(t′) = 2. The two vectors
associated to buffer a are (pa(−1), pa(0)) = (1, 2) on
the production side and (ca(−1), ca(0)) = (2, 3) on the
consumption side.

2.5 Phased Computation Graph
The Phased Computation Graph (PCG) model [19] ex-

tends the CSDFG model by using both thresholds and ini-
tial phases. On the consumer side of a buffer, all the initial
phases have thresholds. The PCG notation extends that of
the CSDFG with initial phases by using θa(k) to denote—
for a task t consuming data from a buffer a—the threshold
of phase k, with 1−σ(t) ≤ k ≤ φ(t). For each phase k,
θa(k) ≥ ca(k) by definition of a threshold; θa(k) is indicated
only when it differs from ca(k). As in the CSDFG model,
pa (resp. ca) represents the sum of the numbers of items
produced into (resp. consumed from) buffer a by a task t
during its φ(t) normal phases.

In Figure 5 the thresholds for the phases of task t′ are
θa(−1) = 5, θa(0) = 3, θa(1) = 3, θa(2) = 1 and θa(3) = 2.

t t′
a

(1, 2) [3, 1] (2:5, 3) [2:3, 1, 2]
.0

Figure 5: A buffer a between two tasks t and t′ of a
PCG. Thresholds are θa(−1) = 5 and θa(0) = 3 for the
σ(t′) = 2 initial phases, and θa(1) = 3, θa(2) = 1 and
θa(3) = 2 for the φ(t′) = 3 normal phases.

3. THREE-STEP GENERATORS OF STATIC
DATAFLOW GRAPHS

The two static dataflow graph generators SDF3 [17], tar-
getting SDFGs and CSDFGs, and DFTools [13], for SDFGs,
are surveyed in this section. Both illustrate a three-step
procedure to generate dataflow graphs: build a connected
oriented graph, compute arc weights ensuring consistency,
and find an initial live marking. As this procedure is very
general, this survey also provides an introduction to Tur-

bine.
The first subsection recalls the minimal properties required

of an SDFG and of a PCG; these properties are characteris-
tic of real-life applications executed on embedded systems.
The last three subsections describe the three-step procedure
used to generate dataflow graphs and its implementation in
SDF3 and DFTools.

3.1 Consistency and liveness of a PCG
A generator should produce instances that are both con-

sistent and live. Indeed, in most cases, a PCG model of a
real-life application should possess these properties, which
are briefly recalled below.

3.1.1 Consistency of a PCG
A PCG is consistent if there exists an initial marking

such that its actors may all be executed infinitely often with
bounded buffer sizes. This property, first introduced for the
SDFG model in [10], carries over to the refinements of that
model such as the CSDFG and PCG models [5].

Consider a PCG G = (T ,A). The elements of its topology
matrix Γ, of size |A| × |T |, are:

Γa,t =

 pa =
∑φ(t)
k=1 pa(k) if a = (t, t′)

−ca = −
∑φ(t)
k=1 ca(k) if a = (t′, t)

0 otherwise

.

When (and only when) Γ has rank |T | − 1, the graph
G is consistent. Then, the vectors X satisfying the matrix
equation Γ.XT = 0 are proportional to a vector with strictly
positive integer entries. The smallest such vector, whose
entries are coprime, is known as the repetition vector [10],
here noted R.

The SDFG and PCG pictured respectively in Figure 6 and
Figure 7 have the same topology matrix:

Γ =

 7 −6 0
0 2 −7
−1 0 3

 .
The rank of Γ is 2, hence both graphs are consistent. Their
repetition vector is R = [6, 7, 2].

3.1.2 Liveness of a PCG
A PCG with a fixed initial marking is live if each actor

may be fired infinitely often. Since it is independent of the
initial marking, consistency is not sufficient to ensure the
liveness of a PCG.

Consider first the simpler case of an SDFG. A firing se-
quence is a sequence ν of consecutive executions (firings) of
the actors t ∈ T where the symbol representing a firing is
simply the name t of the actor fired. A simple way to test
the liveness of a consistently marked SDFG is to construct,
if possible, a firing sequence νR in which each actor t ∈ T
is executed Rt times. Since such a sequence νR brings the
marking back to the initial marking, an infinite sequence is

obtained by infinitely repeating νR thus ensuring that each
actor is fired infinitely often.

The SDFG of Figure 6 is live as its actors may be executed
following the sequence νR = t1t2t2t3t1t1t1t2t2t2t3t1t1t2t2

with 6 executions of t1, 7 of t2 and 2 of t3.

t1 t2

t3

a1

a2a3

7 6

.6

2

7

.

7

3

1

. .
. .

. .
. .

. .
.

1

Figure 6: The SDFG is consistent; its repetition vec-
tor is R = [6, 7, 2]. It is live since the firing sequence
t1t2t2t3t1t1t1t2t2t2t3t1t1t2t2 may be repeated infinitely
often.

The sequence νR has length the 1-norm of R, ‖R‖ =∑
t∈T Rt, which unfortunately can be very large in practice.

In fact, as of today, there is no polynomial-time algorithm
for testing the liveness of an SDFG.

Now consider a PCG. The initial phases must all be exe-
cuted before a repetitive sequence νR can be reached. The
length of the initial sequence is not easily bounded. If a
cyclic sequence νR exists, since it is independent of the
thresholds, its length is the same as that of the underlying
CSDFG and is equal to the phase-weighted norm ‖R‖φ =∑
t∈T φ(t) ·Rt.
The PCG of Figure 7 is live. Its initial phases are executed

by the sequence t1t3t3 = t1(t3)2, which leads to the marking
M(a1) = 6, M(a2) = 1, M(a3) = 4. The actors may then
repeat the sequence νR = (t1)4(t2)11(t3)4(t1)2(t2)3(t3)2 of
length ‖R‖φ = 1 · 6 + 2 · 7 + 3 · 2 = 26.

t1 t2

t3

a1

a2a3

(2) [7] [2:4, 4]

.4

[1, 1]

(1:4, 2) [3, 2:4, 2]

.

4

(2, 1) [1, 2, 0]

(1:2) [1]

. .
. .

. .
. .

. .
.

2

Figure 7: The PCG is consistent, with repetition
vector R = [6, 7, 2]. The initial sequence t1(t3)2

may be followed by the infinitely repeated sequence
(t1)4(t2)11(t3)4(t1)2(t2)3(t3)2, hence the PCG is live.

A generator must build consistent and live dataflow graphs.
As liveness cannot be checked polynomially, a sufficient con-

dition must be applied to construct live instances.

3.2 Generation of a connected graph
In SDF3 and DFTools, and also in Turbine, an oriented

graph with a given number of vertices (tasks) and edges
(buffers) is built in two phases: first all actors are connected
by edges forming a tree (acyclic connected graph), then re-
maining edges are added (and oriented) randomly.

3.3 Weight Computation
This step consists in computing production/consumption

weights such that the resulting dataflow graph be consistent.
Various parameters may be used, such as setting minimum
and maximum values of the weights or fixing the norm ‖R‖
of the repetition vector.

SDF3 considers two cases for computing the weights. If
‖R‖ is set, the components of R are computed randomly
according to this constraint. Weights are then derived to
get a consistent graph by solving a linear system. If ‖R‖ is
not fixed, weights are set randomly on edges and a depth-
first search algorithm is used to modify some of them so that
the graph be consistent.

DFTools generates randomly a repetition vector R with
components comprised between two fixed values Rmin and
Rmax. Production/consumption weights are then easily com-
puted.

Our algorithm to compute weights is very similar and is
described in Section 5. The main difference is that it pro-
duces a PCG (and not just an SDFG or a CSDFG) and is
based on the normalization of a consistent SDFG.

3.4 Marking computation
The third step is the computation of an initial marking

for the consistent graph constructed by the first two steps.
The algorithm presented in [17] for use in SDF3 was clearly

abandoned because of its time complexity. The algorithms
implemented in SDF3 and DFTools are based on the follow-
ing simple sufficient condition of liveness:

Theorem 1 (SCA). Let G be a consistent SDFG with
initial marking M0. G is live if there is in every cycle µ =
(t1, a1, t

2, a2, · · · , tm, am, t1) of G at least one arc ai, i ∈
{1, · · · ,m} with M0(ai) = Rti · pai .

Since it fulfills the condition of Theorem 1, the SDFG of
Figure 6 with the marking M0(a1) = M0(a2) = 0, M0(a3) =
6 is live.

The computation of an initial marking following that suffi-
cient condition consists in selecting a subset of edges A′ ⊆ A
such that the subgraph G′ = (T ,A−A′) has no cycle and,
then, setting the initial marking to

M0(a) =

{
Rt · pa if a = (t, t′) ∈ A′
0 otherwise

.

SDF3 computes an initial marking by selecting the edges
in A′ using a depth-first algorithm. DFTools first selects a
set of tasks T ′ ⊆ T such that the subgraph G′′ = (T −T ′,A)
is acyclic, then it sets A′ = {a = (t, t′) ∈ A, t ∈ T ′}. In
both cases, the solutions obtained do not minimize the total
amount of data.

Theorem 1 extends easily to CSDFGs. However, because
of the presence of both thresholds and initial phases, its ex-
tension to PCGs is quite tricky. Instead, Turbine computes

an initial marking for a PCG based on another sufficient
condition of liveness, presented in the next section.

4. A SUFFICIENT CONDITION OF LIVE-
NESS FOR A PCG

The aim of this section is to prove a sufficient condition
for the liveness of a PCG. This condition is fundamental to
ensure that the initial marking associated with a generated
PCG is live.

Subsection 4.1 is dedicated to the extension to a PCG of
the notion of normalization known for SDFGs and CSDFGs.
Normalization is a simple polynomial transformation of the
graph which does not modify the feasible firing sequences.
This transformation is used to obtain lower bounds on the
amount of data on the graph cycles to ensure liveness. Sub-
section 4.2 presents additional useful notations. Subsection
4.3 recalls the definition of a feasible sequence and shows
that the markings can be restricted to a particular set of
values. Our sufficient condition of liveness is presented and
proved in Subsection 4.4. Subsection 4.5 presents a polyno-
mial algorithm to check the sufficient condition on a PCG.
Subsection 4.6 develops a possible application of this condi-
tion to compute the minimum buffer size required to guar-
antee liveness.

4.1 Normalization of a PCG
Normalization is a reversible transformation which greatly

simplifies the weights of a consistent SDFG or CSDFG with-
out modifying the constraints induced by the buffers on the
actors’ executions. It was introduced by Marchetti and Mu-
nier in [11] for Weighted Event Graphs, a subclass of Petri
Nets strictly equivalent to SDFGs.

Setting K = lcma=(t,t′)∈A(Rt ·pa), where lcm denotes the
least common multiple, SDFG normalization replaces by the
value Zt = K/Rt all production/consumption weights adja-
cent to each actor t ∈ T . This transformation amounts to
multiplying by the integer δa = Zt

pa
= K

Rt· pa = K
Rt′ · ca

=
Zt′
ca

the parameters of each buffer a = (t, t′) ∈ A, marking in-
cluded.

For the SDFG of Figure 6, K = lcm(42, 14, 6) = 42 so
that Zt1 = 7, Zt2 = 6 and Zt3 = 21. As δa1 = 1, δa2 = 3
and δa3 = 7, the initial marking of the normalized graph is
M0(a1) = 1 · 6 = 6, M0(a2) = 3 · 7 = 21, M0(a3) = 7 · 1 = 7.
The equivalent normalized SDFG is shown in Figure 8.

Normalization has been extended to the CSDFG model
by Benazouz et al. [4]. The extension to the PCG model
is immediate. Indeed, for each buffer a = (t, t′) ∈ A, all
the values pa(k), 1−σ(t) ≤ k ≤ φ(t), and θa(k′) and ca(k′),
1−σ(t′) ≤ k′ ≤ φ(t′), can be normalized by multiplying
them by the scaling factor δa, since it is a positive integer.

The normalization of the PCG of Figure 7 yields the equiv-
alent PCG shown in Figure 9.

4.2 Additional notations
Consider a PCG G = (T ,A). A task t ∈ T has σ(t) initial

phases and φ(t) cyclic phases.
The nth execution of the kth phase of task t is denoted

by (tk, n), where n is a positive integer. If n = 1, k belongs
to s(t) = {1− σ(t), · · · , 0, 1, · · · , φ(t)} and the non-positive
values of k are related to the initial phases of t. Otherwise,
n > 1 and k ∈ {1, · · · , φ(t)} relates to t’s normal phases.

t1 t2

t3

a1

a2a3

7 6

.6

6

21

.
21

21

7

. .
. .

. .
. .

. .
.

7

Figure 8: SDFG resulting from the normalization of
the SDFG of Figure 6. The normalization factors
applied to the buffer parameters are δa1 = 1, δa2 = 3
and δa3 = 7.

t1 t2

t3

a1

a2a3

(2) [7] [2:4, 4]

.4

[3, 3]

(3:12, 6) [9, 6:12, 6]

.

12

(14, 7) [7, 14, 0]

(7:14) [7]

. .
. .

. .
. .

. .
.

14

Figure 9: PCG resulting from the normalization of
the PCG of Figure 7. The normalization factors
applied to the buffer parameters are δa1 = 1, δa2 = 3
and δa3 = 7.

Pr(tk, n) is the phase execution preceding (tk, n). It is
formally defined as:

Pr(tk, n) =

 (tk−1, n) if k > 1 and n > 1
(tφ(t), n− 1) if k = 1 and n > 1
(tk−1, 1) if k ≥ 1− σ(t) and n = 1

Execution (t−σ(t), 1) is fictitious and precedes (t1−σ(t), 1).
Consider an execution (tk, n) of task t and denote by

Pa(tk, n) the total amount of data produced by t in a from
its first phase to the end of (tk, n). The cumulated produc-
tion Pa(tk, n) satisfies the recurrence equation

Pa(tk, n) = PaPr(tk, n) + pa(k) (1)

with Pa(t−σ(t), 1) = 0.
Now if, for any execution (tk, n) with k ∈ {1, · · · , φ(t)},

Pφa (tk, n) denotes the cumulated production without con-
sidering the initial phases—as if G was a CSDFG—hence
starting with Pφa (tφ(t), 0) = 0, then, for any execution (tk, n)
with k ∈ s(t), the cumulated production Pa(tk, n) may be
expressed as

Pa(tk, n) = Pa(tk, 1) + Pφa (tφ(t), n− 1) . (2)

Consider for instance buffer a = (t, t′) in Figure 5: φ(t) =

2, Pa(t−1, 1) = 1, Pa(t0, 1) = 3, Pa(t1, 1) = 6, Pa(t2, 1) = 7.
For any positive integer n, Pφa (t2, n − 1) = 4(n − 1). Thus,
for any execution (tk, n) of t, Pa(tk, n) = Pa(tk, 1)+4(n−1).

Now consider an execution (t′k, n) of task t′ and denote
by Ca(t′k, n) the total amount of data consumed by t′ in
buffer a until the end of (t′k, n). The cumulated consumption
Ca(t′k, n) satisfies the recurrence equation

Ca(t′k, n) = CaPr(t
′
k, n) + ca(k). (3)

with Ca(t−σ(t′), 1) = 0.

If, for any execution (t′k, n) with 1 ≤ k ≤ φ(t′), Cφa (t′k, n)
denotes the cumulated consumption without considering the
initial phases, hence starting with Cφa (t′φ(t′), 0) = 0, then,

for any execution (t′k, n) with k ∈ s(t′), the cumulated con-
sumption Ca(t′k, n) may be expressed as

Ca(t′k, n) = Ca(t′k, 1) + Cφa (t′φ(t′), n− 1). (4)

Pursuing with Figure 5’s example, φ(t′) = 3, Ca(t′−1, 1) =
2, Ca(t′0, 1) = 5, Ca(t′1, 1) = 7, Ca(t′2, 1) = 8, Ca(t′3, 1) = 10.
For any positive integer n, Cφa (t′3, n−1) = 5(n−1) and thus,
for any execution (t′k, n) of t′, Ca(t′k, n) = Ca(t′k, 1)+5(n−1).

4.3 Feasible sequences and useful tokens
A sequence of firings ν is defined by a sequence of ac-

tors ν = t1t2 · · · tp, ti ∈ T for i ∈ {1, · · · , p}, that are
executed (fired) consecutively. Furthermore, the execution
of t reached at the end of the subsequence t1 · · · ti of ν,
i ∈ {1, · · · , p}, is denoted by (tk(i,t), n

i
t). The sequence ν is

then feasible if the following two conditions hold:

1. For any arc a = (t, t′) ∈ A and any value i ∈ {1, · · · , p},
the marking of a is non negative after the execution of
the subsequence t1 · · · ti, thus M0(a) +Pa(tk(i,t), n

i
t)

−Ca(t′k(i,t′), n
i
t′) ≥ 0.

2. For any arc a = (t, t′) ∈ A and any value i ∈ {1, · · · , p},
a contains at least θa(k(i, t′)) data items before the ex-
ecution of (t′k(i,t′), n

i
t′), thus M0(a) + Pa(tk(i,t), n

i
t)

−CaPr(t′k(i,t′), nit′)− θa(k(i, t′)) ≥ 0.

Note that, as θa(k(i, t′)) ≥ ca(k(i, t′)), the second condition
is more restrictive. The first one can thus be omitted.

The notion of useful token is a limitation on the initial
markings. It was first introduced by Marchetti and Munier
in [11] and extended to CSDFGs by Benazouz et al. in [4].
Its generalization to PCGs is guaranted by the following
lemma.

Lemma 1 (Useful tokens). In a PCG G = (T ,A),
replacing for each arc a = (t, t′) ∈ A, M0(a) by M?

0 (a) =
bM0(a)/hac · ha, with ha = gcd(pa(1−σ(t)), · · · , pa(φ(t)),
ca(1−σ(t′)), · · · , ca(φ(t′)), θa(1−σ(t′)), · · · , θa(φ(t′))), has
no incidence on the feasible sequences.

Proof. For any sequence ν = t1t2 · · · tp, and for any
value i ∈ {1, · · · , p}, the condition of feasibility associated
to the arc a = (t, t′) is strictly equivalent to

M?
0 (a) +Pa(tk(i,t), n

i
t)−CaPr(t′k(i,t′), nit′)− θa(k(i, t′)) ≥ 0,

as ha is a divisor of all the terms of the inequality. This
proves the assertion.

We suppose in the sequel that the initial marking fulfills the
condition of Lemma 1.

4.4 A sufficient condition of liveness for a PCG
Lemma 2 is a technical result related to the total number

of data items produced into a buffer.

Lemma 2. The cumulated production Pa into buffer
a = (t, t′) ∈ A satisfies, for any execution (tk, n) of t with n
a positive integer,

PaPr(tk, n) = Pφa (tφ(t), n− 1) + PaPr(tk, 1).

Proof. Three cases must be considered:

• If k > 1 and n > 1, then Pr(tk, n) = (tk−1, n) and
Pr(tk, 1) = (tk−1, 1). The equation is true following
equality (2).

• If k = 1 and n > 1, then Pr(t1, n) = (tφ(t), n− 1) and
Pr(t1, 1) = (t0, 1). Now, by equality (2),

Pa(tφ(t), n− 1) = Pφa (tφ(t), n− 2) + Pa(tφ(t), 1).

As Pa(tφ(t), 1) = Pa(t0, 1) + Zt and Pφa (tφ(t), n− 1) =

Pφa (tφ(t), n− 2) + Zt, we get

Pa(tφ(t), n− 1) = Pφa (tφ(t), n− 1) + Pa(t0, 1),

hence the equation is true.

• Lastly, if k ≥ 1 − σ(t) and n = 1, then Pr(tk, 1) =
(tk−1, 1) and, since Pφa (tφ(t), 0) = 0 by convention, the
equation is true. �

Lemma 3 is similarly true for consumption weights. Its
proof is therefore ommitted.

Lemma 3. The cumulated consumption Ca from buffer
a = (t, t′) ∈ A satisfies, for any execution (t′k, n) of t′ with
n a positive integer,

CaPr(t
′
k, n) = Cφa (tφ(t′), n− 1) + CaPr(t

′
k, 1).

The core of our proof is to characterize a deadlock. A
cycle µ = (t1, a1, t

2, a2, · · · , tm, am, t1) is said to be blocked
if there exists a set of executions S = {(tiki , ni), t

i ∈ T }
and a feasible sequence of firings reaching all the executions
Pr(tiki , ni), t

i ∈ T , such that no execution from S can be
fired because of µ. G initially marked by M0 is then live if
no cycle may be blocked.

Note that, since G is normalized, the total amount of data
remains constant in every cycle. The following lemma pro-
vides an upper bound on the total amount of data in a
blocked cycle.

Lemma 4. Let G be a normalized PCG. If a cycle µ =
(t1, a1, t

2, a2, · · · , tm, am, t1), with am = a0, is blocked, then
there exists ki ∈ s(ti), i ∈ {1, · · · ,m}, such that

m∑
i=1

M0(ai) +

m∑
i=1

w(i, ki) ≤ −
m∑
i=1

hai

with w(i, ki) = PaiPr(t
i
ki
, 1)− Cai−1Pr(t

i
ki
, 1)− θai−1(ki).

Proof. Suppose that the cycle µ is blocked, then there
exists a feasible sequence of firings such that each actor ti,
i ∈ {1, · · · ,m}, has reached execution Pr(tiki , ni) but cannot

execute (tiki , ni).

Thus, for any arc ai = (ti, ti+1) of µ, with tm+1 = t1,

M0(ai)+PaiPr(t
i
ki , ni)−CaiPr(t

i+1
ki+1

, ni+1)−θai(ki+1) < 0.

Now it follows from Lemmas 2 and 3 that

PaiPr(t
i
ki , ni) = Pφai(t

i
φ(ti), ni − 1) + PaiPr(t

i
ki , 1)

CaiPr(t
i+1
ki+1

, ni+1) = Cφai(t
i+1
φ(ti+1)

, ni+1−1)+CaiPr(t
i+1
ki+1

, 1)

so that the above inequality may be rewritten as

M0(ai) + Pφai(t
i
φ(ti), ni − 1) + PaiPr(t

i
ki
, 1)

− Cφai(t
i+1
φ(ti+1)

, ni+1 − 1)−CaiPr(t
i+1
ki+1

, 1)− θai(ki+1) < 0.

By Lemma 1, the initial marking is supposed to be divis-
ible by ha, and so are all the terms of the last inequality.
This inequality may thus be rewritten as

M0(ai) + Pφai(t
i
φ(ti), ni − 1) + PaiPr(t

i
ki
, 1)

−Cφai(t
i+1
φ(ti+1)

, ni+1− 1)−CaiPr(t
i+1
ki+1

, 1)− θai(ki+1)≤−hai .

As G is normalized, Cφai(t
i
φ(ti), ni−1) = Pφai(t

i
φ(ti), ni−1).

Summing the previous inequalities yields∑m
i=1M0(ai) +

∑m
i=1 w(i, ki) ≤ −

∑m
i=1 hai ,

with w(i, ki) = PaiPr(t
i
ki
, 1)− Cai−1Pr(t

i
ki
, 1)− θai−1(ki),

the result which was to be proven.

The next theorem is based on Lemma 4 and expresses a
general sufficient condition of liveness of a PCG.

Theorem 2 (SCB). Let G be a normalized PCG. G is
live if for every cycle µ = (t1, a1, t

2, a2, · · · , tm, am, t1) of G,
with am = a0, the following inequality is true:

m∑
i=1

M0(ai) >

m∑
i=1

W (ai−1, ai),

with W (ai−1, ai) = maxk∈s(ti)[Cai−1Pr(t
i
k, 1) + θai−1(k) −

PaiPr(t
i
k, 1)]− hai .

Proof. Suppose that the condition expressed by the the-
orem is true for any cycle µ = (t1, a1, t

2, a2, · · · , tm, am).
Since −w(i, k) − hai ≤ W (ai−1, ai), ∀i ∈ {1, · · · ,m}, ∀k ∈
s(ti), for any sequence of ki ∈ s(ti),∑m

i=1M0(ai) >
∑m
i=1W (ai−1, ai)

>
∑m
i=1−w(i, ki)−

∑m
i=1 hai .

Since this inequality is true for any sequence of ki ∈ s(ti),
i ∈ T , by taking the contraposition of Lemma 4, cycle µ
is not blocked. The consequence is that G does not con-
tain any blocked cycle and hence is live, thus proving the
theorem.

Note that, if the graph G is an SDFG, then for any couple
of arcs a = (t, t′) and a′ = (t′, t′′), s(t′) = {1}, CaPr(t1, 1) =
Ca(t0, 1) = 0 and Pa′Pr(t1, 1) = Pa′(t0, 1) = 0. We get
then W (a, a′) = Zt − gcd(Zt, Zt′), leading to the following
theorem proved initially by Marchetti and Munier in [11]:

Theorem 3 ([11]). Let G be a normalized SDFG. G is
live if for every cycle µ = (t1, a1, t

2, a2, · · · , tm, am, t1) of G,
with am = a0, the following inequality is true:

m∑
i=1

M0(ai) >

m∑
i=1

Zti −
m∑
i=1

gcd(Zti , Zti+1).

4.5 Computation of the sufficient condition
We suppose in this subsection that G = (T ,A) is a nor-

malized PCG, initially marked by M0, and show that our
sufficient condition of liveness (SCB) can be tested polyno-
mially.

Consider the valued graph H = (A, E , v) defined as fol-
lows:

1. The vertices of H are the buffers;

2. An arc e = (a, a′) in E valued by v(e) = W (a, a′) −
M0(a′) is associated to any couple of buffers a = (t, t′)
and a′ = (t′, t′′).

(SCB) is then true if and only if
∑
e∈c v(e) < 0 for every

circuit c of H.
The graph H corresponding to the PCG pictured in Fig-

ure 9 is shown in Figure 10. The only circuit in H, c =
(a1, a2, a3), verifies

∑
e∈c v(e) = 0− 2− 6 < 0, and thus the

PCG is live.

a1

a2a3

v(e) = 0

v(e) = −2

v(e) = −6

Figure 10: The valued graph H = (A, E , v) associated
to the PCG of Figure 9.

The computation of v(e) for a fixed arc e = (a, a′) is
bounded by O(maxt∈T (φ(t) + σ(t)). The computation of H
has a complexity of O(|A|2 × (maxt∈T (φ(t) + σ(t)). Check-
ing the condition can be done using the Bellmann-Ford al-
gorithm coupled with a depth-first algorithm in time com-
plexity O(|A|3) as described in [11].

4.6 Lower bound for buffer sizing
Computation of lower bounds for the buffer sizes is a sim-

ple application of the two sufficient conditions of liveness
(SCA) and (SCB). Indeed, if a buffer a = (t, t′) has a lim-
ited size ∆, an associated backward arc a′ = (t′, t) may be
added ensuring that this size limit will be verified by any
feasible sequence of firings. The parameters of a′ for a PCG
are then set to:

∀k′ ∈ s(t′), pa′(k
′) = ca(k′)

∀k ∈ s(t), ca′(k) = pa(k)
∀k ∈ s(t), θa′(k) = pa(k)

M0(a′) = ∆−M0(a)

Figure 11 represents a buffer with size limited to ∆ = 10.

The sufficient condition (SCA) can be applied to bound
the buffer size in an SDFG or a CSDFG. The lower bound
obtained is then

∆A = Rt · pa = Rt ·
φ(t)∑
k=1

pa(k).

The sufficient condition (SCB) yields for an SDFG the
lower bound ∆B = Zt + Zt′ − gcd(Zt, Zt′). This value is
proved to be optimum in [11] (i.e. it is the minimum buffer

t t′

a

a′

(1, 2) [3, 1] (2:5, 3) [2:3, 1, 2].0

(2, 3) [2, 1, 2](1, 2) [3, 1]10

Figure 11: A buffer a with size limited to 10 between
two tasks t and t′ of a PCG.

size ensuring liveness), and thus ∆B ≤ ∆A. These two val-
ues may be different. For instance, for the SDFG of Figure
1, ∆A = 20 while the minimum buffer size ensuring liveness
is ∆B = 4 + 5− 1 = 8.

The following theorem expresses the lower bound obtained
using condition (SCB) for a general PCG.

Theorem 4. The value

∆B = max
k∈s(t)

pa(k) + max
k′∈s(t′)

θa(k′)− ha

is an upper bound of the minimum size for any buffer a =
(t, t′).

Proof. For any value k ∈ s(t),

Ca′Pr(tk, 1) = Ca′(tk−1, 1) =
∑k−1
`=1−σ(t) ca′(`)

=
∑k−1
`=1−σ(t) pa(`)

= Pa(tk−1, 1) = PaPr(tk, 1).

Hence, for any k ∈ s(t),
θa′(k) + Ca′Pr(tk, 1)− PaPr(tk, 1) = θa′(k)
and

W (a′, a) = maxk∈s(t) θa′(k)− ha
= maxk∈s(t) pa(k)− ha

Similarly, CaPr(t
′
k′ , 1) = Pa′Pr(t

′
k′ , 1) for any k′ ∈ s(t′),

and thus

W (a, a′) = max
k′∈s(t′)

θa(k′)− ha.

The sufficient condition of liveness of Theorem 2 is thus:

∆B > max
k∈s(t)

pa(k) + max
k′∈s(t′)

θa(k′)− ha′ − ha.

Since ha is a divisor of ha′ , the value ∆B = M0(a) +M0(a′)
is divisible by ha. The lowest feasible value fulfilling the in-
equality is thus ∆B = maxk∈s(t) pa(k)+maxk′∈s(t′) θa(k′)−ha′ .
This completes the proof.

For example, the minimum size for the PCG of Figure 5
is ∆B = 3 + 5− 1 = 7.

The question of the optimality of ∆B is an interesting
challenge, even for CSDFGs.

5. DESCRIPTION OF TURBINE
This section briefly presents our generator Turbine. Sub-

section 5.1 provides the list of input parameters and some
implementation details. Subsection 5.2 explains how the
various weights of a PCG are determined. The last subsec-
tion is devoted to the computation of an initial live marking,
which is the most important contribution of our generator.

5.1 Overview
Turbine generates randomly PCGs, as well as all the sub-

classes described in Section 2. Several parameters must be
fixed. Some parameters, such as the total number of ac-
tors |T | and bounds of the degree of the actors, relate di-
rectly to the graph structure. The other parameters control
the generation of random weight vectors; they are the av-
erage value of the repetition vector, RT = ‖R‖ /|T | with
‖R‖ =

∑
t∈T Rt, the average number φT of cyclic phases

and the average number of initial phases of a task.
Turbine is implemented using Python and the graph li-

brary NetworkX. The dataflow graphs are generated using
the XML format issued from SDF3. The Linear Program-
ming Solver used for the determination of a live marking is
GLPK.

The overall structure of Turbine reflects a natural division
in three steps. The connected graph generation step is very
similar to that of SDF3 and DFTools. The weight compu-
tation step generates randomly (following a uniform law) a
normalized dataflow graph. The live marking computation
step is based on sufficient condition (SCB).

5.2 Weight computation
This step generates randomly all the weight vectors as-

sociated with the buffers, ensuring that the final PCG be
consistent. First the components Rt of the repetition vec-
tor are generated randomly, with average the value RT se-
lected by the user, and are redrawn whenever needed to
enforce gcd(R1, R2, · · · , R|T |) = 1. The normalized weights
Zt, t ∈ T , are then deduced as detailed in Subsection 4.1.

Next, the numbers of phases φ(t) and σ(t), t ∈ T , are
randomly generated with given averages. Finally, for every
buffer a = (t, t′) ∈ A, the vectors pa, ca and θa are randomly

generated such that
∑φ(t)
k=1 pa(k) = Zt,

∑φ(t′)
k′=1 ca(k) = Zt′

and, for any k′ ∈ {1− σ(t′), · · ·φ(t)}, θa(k′) ≥ ca(k′).

5.3 Marking computation
The third PCG generation step is the computation of a

live initial marking. This step is critical and takes much
more time than the other two.

The input is a normalized PCG G = (T ,A). A couple of
buffers (a, a′) such that a = (t, t′) ∈ A and a′ = (t′, t′′) ∈ A,
with t, t′ and t′′ ∈ T , defines an edge e = (a, a′) in the
graph H = (A, E) with arc weight W (e) = W (a, a′) defined
in Subsection 4.4.

The minimization of the total amount of initial data en-
suring that the sufficient condition of liveness expressed by
Theorem 2 is met can be modeled by the following Integer
Linear Program:

Minimize
∑
a∈AM0(a)

subject to :
γa′ − γa +M0(a)− ε ≥W (a, a′) ∀(a, a′) ∈ E
M0(a) = ha ·m0(a) ∀a ∈ A
M0(a) ∈ N,m0(a) ∈ N ∀a ∈ A
γa ∈ R ∀a ∈ A

The value of the parameter ε is set to 1/|T |. By mini-
mizing the total amount of data, we ensure that the buffers
with a strictly positive number of initial items necessarily
belong to cycles, i.e. any buffer a which is not in a cycle
verifies M0(a) = 0.

Now suppose that c = (t1, a1, t
2, a2, · · · , tm, am, t1) is a

cycle of G. Summing the m inequalities associated with ai,
i ∈ {1, · · · ,m}, gives:

m∑
i=1

M0(ai)−m.ε ≥
m∑
i=1

W (ai, ai+1).

As any value M0(a), a ∈ A, is divisible by ha, the condition
of Theorem 2 is met and the marking is live.

The exact resolution of this integer linear program is un-
fortunately not possible within a reasonable time. The idea
is thus to solve a linear programming relaxation of that prob-
lem by replacing M0(a) ∈ N and m0(a) ∈ N, ∀a ∈ A, by
M0(a) ∈ R+ and m0(a) ∈ R+. A feasible solution is then
derived from the optimal real solution mreal

0 (a), ∀a ∈ A, by
setting M0(a) = dmreal

0 (a)e · ha.

6. EXPERIMENTAL RESULTS
This section is devoted to experiments on Turbine and

experimental comparisons with the generators SDF3 and
DFTools. Subsection 6.1 presents the experimental con-
ditions. Performances of Turbine as a function of several
parameters (size of the instances, average values of the rep-
etition vector components and of the number of phases) are
discussed in Subsection 6.2. The performances and the sum
of the initial markings for the three generators are compared
in the last two subsections.

6.1 Experimental conditions
All our algorithms were coded using Python 2.6.6. Origi-

nal source codes of SDF3 and DFTools were used.
Most of the experiments were performed on an Intel Core2-

Duo E7500@3GHz using 2GB of RAM with a 32-bit OS. A
server with two Xeon E5-2637 and 128GB was used to com-
pute large instances with DFTools since it requires a Java
Virtual Machine with 32GB of RAM.

Each experiment was launched 100 times, and the aver-
age value of interest (time or sum of initial markings) was
returned. Four graph sizes have been selected: Tiny for 10
actors, Small for 100, Medium for 1000 and Large for 10,000.
Both input and output degree of the actors belong to the set
{1, 2, 3, 4, 5}. The average value RT of the components of
the repetition vector is set to 5. For CSDFGs and PCGs the
number of phases (initial and cyclic) belongs to {1, 2, 3, 4, 5}
with an average φT = 3.

6.2 Performance of Turbine
Table 1 presents the average generation time of a PCG as

a function of graph size. The generation time grows roughly
quadratically with |T |, thus approaching a linear growth
with respect to the number of buffers.

Table 1: Average PCG generation time for Turbine.

|T | generation time
Tiny 0.01s
Small 0.3s
Medium 53s
Large 2h7mn15s

The influence on Turbine’s generation time of the average
values of the repetition vector components, RT , and of the
number of phases, φT , was measured for medium-size graphs
with RT ∈ {5, 10, 15} and φT ∈ {5, 10, 15}. The results
do not vary significantly. Indeed, both parameters have no

influence on the size of the linear program, which depends
linearly on the number of buffers.

6.3 Comparison of the generation time
The comparison of the performances of SDF3, DFTools

and Turbine is only possible for SDFGs.
Table 2 presents the average generation time of the three

generators for the four graph sizes, from tiny to large. All
three generators support instances of up to medium size
within a reasonable time.

Table 2: Comparison of the SDFG generation times
of Turbine, SDF3 and DFTools. A ? indicates that
the time was measured on a two-Xeon server.

|T | Turbine SDF3 DFTools
Tiny 0.01s 0.03s 0.2s
Small 0.1s 2s 0.5s
Medium 2.8s 1h10mn30s 11.5s
Large 10mn14s - 1h2mn36s?

Table 3 presents a comparison between Turbine and SDF3

for the generation of CSDFGs (DFTools only generates SD-
FGs). The comparison was only possible for up to small
instances since SDF3 takes more than a day to generate a
single CSDFG of medium size.

Table 3: Comparison of the CSDFG generation
times of Turbine and SDF3.

|T | Turbine SDF3

Tiny 0.01s 0.02s
Small 0.1s 3.8s
Medium 46s -

In all cases, Turbine substantially outperforms SDF3 and
DFTools. It is the only one able to generate large SDFGs
and medium to large CSDFGs on a regular desktop com-
puter.

6.4 Comparison of the initial markings
Averages of the sum of the initial markings were measured

when using SDF3, DFTools and Turbine for SDFGs and
CSDFGs.

Table 4 shows that for SDFGs the average sums of the
initial markings grow linearly with the number of actors for
all three generators. As illustrated in Figure 12, the propor-
tionality factors are in the ratios 1 : 1.6 : 2.6 for Turbine,
DFTools and SDF3, respectively.

Table 4: Average sums of the initial markings for
SDFGs generated by SDF3, DFTools and Turbine.

|T | Turbine SDF3 DFTools

Tiny 3.5× 103 9.2× 103 5.2× 103

Small 1.2× 105 3.1× 105 2.1× 105

Medium 1.2× 106 3.1× 106 2.1× 106

Large 1.2× 107 - 2.1× 107

The comparison of initial markings between SDF3 and
Turbine for CSDFGs is not displayed as it is already not
possible for graphs of medium size because of the excessive
generation time of SDF3.

Figure 12: Comparison of the average sums of initial
markings for SDFGs using Turbine as reference (set
to 100).

7. CONCLUSION
This paper presents the first scalable generator for live

Phased Computation Graphs (PCG). The PCG model is
employed in an industrial context for a new generation of
embedded systems. It extends the CSDFG model by in-
cluding initial phases and thresholds.

Another major contribution is the extension to the PCG
model of mathematical results—the normalization and a
necessary sufficient condition of liveness—previously known
for the SDFG and CSDFG models.

Our generator Turbine uses fruitfully these results for
the computation of initial conditions minimizing the total
amount of initial data in the channels. The scalability of
Turbine is experimentally established for PCGs of 10,000
actors. Its performances (time, total amount of initial data)
for SDFGs and CSDFGs compare favorably with those of
the two existent generators SDF3 and DFTools.

8. REFERENCES
[1] www.tilera.com.

[2] M. A. Bamakhrama, J. T. Zhai, H. Nikolov, and
T. Stefanov. A methodology for automated design of
hard-real-time embedded streaming systems. In
Design, Automation & Test in Europe (DATE’12),
pages 941–946, Mar. 2012.

[3] M. Benazouz, O. Marchetti, A. Munier-Kordon, and
T. Michel. A new method for minimizing buffer sizes
for cyclo-static dataflow graphs. In 8th IEEE
Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMedia’10), pages 11–20, 2010.

[4] M. Benazouz, A. Munier-Kordon, T. Hujsa, and
B. Bodin. Liveness Evaluation of a Cyclo-Static
DataFlow Graph. In Design Automation Conference
(DAC’13), pages 3–7, 2013.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. A.
Peperstraete. Cyclo-static data flow. IEEE
Transactions on Signal Processing, pages 3255–3258,
1995.

[6] B. Bodin, A. Munier-Kordon, and B. Dupont de
Dinechin. Periodic Schedules for Cyclo-Static
Dataflow. In 11th IEEE Workshop on Embedded
Systems for Real-Time Multimedia (ESTIMedia’13),
pages 105–114, 2013.

[7] T. Goubier, R. Sirdey, S. Louise, and V. David. ΣC: A
programming model and language for embedded
manycores. 11th International Conference on
Algorithms and Architectures for Parallel Processing
(ICA3PP’11), pages 385–394, 2011.

[8] Kalray. Manycore processors for embedded computing.
www.kalray.eu.

[9] R. M. Karp and R. E. Miller. Properties of a model
for parallel computations: Determinacy, termination,
queueing. SIAM Journal on Applied Mathematics,
14(6):1390–1411, 1966.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous
dataflow. Proceedings of the IEEE, 75(9):1235–1245,
1987.

[11] O. Marchetti and A. Munier-Kordon. A sufficient
condition for the liveness of weighted event graphs.
European Journal of Operational Research,
197(2):532–540, Sept. 2009.

[12] H. Oh and S. Ha. Efficient code synthesis from
extended dataflow graphs for multimedia applications.
In Design Automation Conference (DAC ’02), pages
275–280, 2002.

[13] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F.
Nezan. An Open Framework for Rapid Prototyping of
Signal Processing Applications. EURASIP Journal on
Embedded Systems, pages 1–13, 2009.

[14] R. Read. A survey of graph generation techniques.
Combinatorial Mathematics VIII, pages 77–89, 1981.

[15] F. Siyoum, M. Geilen, O. Moreira, and H. Corporaal.
Worst-case throughput analysis of real-time dynamic
streaming applications. 8th International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’12), pages 463–472, 2012.

[16] S. Sriram and S. S. Bhattacharyya. Embedded
multiprocessors: Scheduling and synchronization.
CRC, second edition, 2009.

[17] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For
Free. In 6th International Conference on Application
of Concurrency to System Design (ACSD’06), pages
276–278, 2006.

[18] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A language for streaming applications.
Compiler Construction, pages 179–196, 2002.

[19] W. Thies, J. Lin, and S. Amarasinghe. Phased
computation graphs in the polyhedral model.
Technical Report LCS-TM-630, MIT Laboratory for
Computer Science, 2002.

[20] M. H. Wiggers, M. J. Bekooij, P. G. Jansen, and G. J.
Smit. Efficient Computation of Buffer Capacities for
Cyclo-Static Real-Time Systems with Back-Pressure.
13th IEEE Real Time and Embedded Technology and
Applications Symposium (RTAS’07), pages 281–292,
Apr. 2007.

[21] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and
H. Corporaal. Exploring Trade-offs between
Performance and Resource Requirements for
Synchronous Dataflow Graphs. In 7th IEEE Workshop
on Embedded Systems for Real-Time Multimedia
(ESTIMedia’09), pages 96–105, 2009.

