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ABSTRACT
This paper introduces iProperty, a novel approach that fa-
cilitates incremental checking of programs based on a prop-
erty differencing technique. Specifically, iProperty aims to
reduce the cost of checking properties as they are initially
developed and as they co-evolve with the program. The key
novelty of iProperty is to compute the differences between
the new and old versions of expected properties to reduce the
number and size of the properties that need to be checked
during the initial development of the properties. Further-
more, property differencing is used in synergy with program
behavior differencing techniques to optimize common regres-
sion scenarios, such as detecting regression errors or checking
feature additions for conformance to new expected proper-
ties. Experimental results in the context of symbolic exe-
cution of Java programs annotated with properties written
as assertions show the effectiveness of iProperty in utilizing
change information to enable more efficient checking.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—assertion checkers; D.2.5 [Software Engineer-
ing]: Testing and Debugging—symbolic execution, testing
tools; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs—asser-
tions, invariants

General Terms
Verification, Algorithms

Keywords
Incremental symbolic execution, assertions, change-impact
analysis, Symbolic PathFinder, Daikon
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1. INTRODUCTION
Annotating functional correctness properties of code, e.g.,

using assertions [17] or executable contracts, such as those
supported by the Java Modeling Language [37] or Eiffel [39],
offers a number of benefits in automated conformance check-
ing of program behaviors to expected properties to support
bug finding [18, 22, 29, 30, 38, 57]. Effectively utilizing such
properties in practice is complicated by two basic factors.
One, it requires the properties to be written and maintained
meticulously, so they correctly reflect the expected behav-
iors of the code, even as it evolves. Two, it requires efficient
and cost-effective techniques to check the actual behaviors
of the code with respect to the given properties.

We believe an approach that integrates automated pro-
gram analyses with the development and maintenance of
code annotated with properties allows us to address both
factors by making it possible for developers to efficiently
check and correct the properties and the code they write.
Our focus in this paper is on reducing the computational
cost of such analyses, specifically in the context of change
– to properties or to code – due to bugs fixes or feature
additions (i.e., addition of new functionality).

In this work, we introduce iProperty, a novel approach
to compute differences between properties of related pro-
grams in a manner that facilitates more efficient incremen-
tal checking of conformance of programs to properties. The
key novelty of iProperty is to compute logical differences
between old and new versions of properties that undergo
change and facilitate the two development scenarios that
form our focus: (1) writing properties correctly for an ex-
isting program, where the developer writes partial correct-
ness properties, checks them, and then iteratively refines
and re-checks them, and (2) checking changes to code and
properties as they co-evolve to, for example, check feature
additions for conformance to new expected properties or to
check bug fixes for regression errors.

In a program annotated with properties that was checked
previously but has since undergone change, iProperty uti-
lizes the results of the previous analysis and information
about the change to the properties to reduce the number
of properties that need to be checked. Our insight is that
if a property Φ about program p holds at a control point l
in p and Φ implies another property Φ′, Φ′ also holds at l
in p. This simple observation forms the basis of our algo-
rithm for computing property differences, which checks for
implications between corresponding old and new properties
to minimize the set of properties that must be checked after



a property change is made and hence reduce the overall cost
of checking.

To improve incremental property checking, we leverage
the distinction between changes to properties, i.e., asser-
tions, and changes to the code that implements the program
functionality. iProperty, uses the property differences in con-
junction with code-based change impact analysis techniques
to direct checking onto relevant parts of code and properties,
thereby removing much of the redundancy otherwise present
in re-applying the checking technique. iProperty uses the
property differencing algorithm together with a previously
developed behavioral differencing technique [45,50].

iProperty supports incremental checking of properties writ-
ten as assertions or that can be mechanically transformed
into assertions.The assert statements in the source code
are de-sugared into if-then statements in the object-code,
which allows the use of traditional code change impact anal-
yses, e.g., to compute behavioral differences [11, 45, 50, 51].
Change impact analysis techniques do not distinguish be-
tween code that implements functionality and code that rep-
resents expected behaviors and thus, are unable to charac-
terize whether an assertion violation represents a regression
error, incorrect update to the property, or non-conformance
between addition of new features and properties.

To evaluate the efficacy of iProperty, we apply it in the
context of symbolic execution of Java programs annotated
with assertions to check for assertion violations. We use
subject programs from recent work on incremental symbolic
execution, which focused on changes to the code [45, 60].
To annotate these subjects with assertions and to simulate
assertion changes, we (a) write some assertions manually,
and (b) synthesize some assertions automatically using the
Daikon tool [19]. While our application of Daikon for asser-
tion synthesis was inspired by Daikon’s spirit of discovering
likely invariants, our specific context of symbolic execution
enabled us to systematically validate the output generated
by Daikon and make its output more precise, thereby lay-
ing the foundation of a future approach for more accurate
discovery of likely invariants [61]. This paper makes the fol-
lowing contributions:

◦ Property differencing. We introduce the idea of incre-
mental checking driven by property differencing.

◦ iProperty. We present algorithms to compute logical dif-
ferences between old and new properties and utilize checking
results from the previous analysis

◦ Assertion-driven incremental checking. Assertion
differences are combined with a change impact analysis tech-
nique [45] to detect regression errors and check conformance
of new functionality to new expected properties.

◦ Experimental evaluation. The experimental results
show that iProperty can (1) provide a reduction in the num-
ber of SMT solver calls and total analysis time required
for symbolic execution of Java programs compared to the
conventional approach of using the Symbolic PathFinder
tool [42, 43], and (2) enable verification of properties that
could not be verified in a non-incremental manner.

2. MOTIVATING EXAMPLE
This section presents a motivating example to illustrate

iProperty and how it is applied in the context of symbolic ex-

1 int median(int x, int y, int z) {
2 int m = z;
3 if (y < z) {
4 if (x < y)
5 m = y;
6 else if (x < z)
7 m = x;
8 }
9 else {

10 if (x > y)
11 m = y;
12 else if (x > z)
13 m = x;
14 }
15

16 assert x == y || x == z ? m == x : true; //#1
17 assert y == z ? m == y : true; //#2
18 assert x <= z && z <= y ? m == z : true; //#3
19 assert y <= z && z <= x ? m == z : true; //#4
20

21 return m;
22 }

Figure 1: Method to compute the middle value of
three input numbers [31] and expected properties
(Lines 16–19).

ecution [14,16,24,34]. Symbolic execution uses symbolic val-
ues in lieu of concrete values for program inputs and builds
a path condition along feasible execution paths. A path
condition consists of a set of constraints over the symbolic
input values and constants. Satisfiability of the constraints
is checked using off-the-shelf SMT solvers. In this work, we
use Symbolic PathFinder (SPF) [42,43], an open-source tool
for symbolic execution of Java programs built on top of the
Java PathFinder (JPF) model checker [57].

Figure 1 shows the Java implementation of median, which
computes the middle value of its three integer inputs; the
code for median appears in previous work [31], but without
property annotations. We manually add partial correctness
properties, specifically post-conditions, to this example in
the form of assertions just before the method exit.
Version 1. Assume the user writes four assertions to check
expected properties. The two assertions on Lines 16–17
check median when at least two inputs are equal, i.e., x =
y ∨ x = z ⇒ m = x, and y = z ⇒ m = y. The two
assertions on Lines 18–19 check median when the definition
of m at Line 2 reaches the return statement, i.e., the pro-
gram behaves correctly when z is the middle value; specif-
ically, the user asserts x ≤ z ∧ z ≤ y ⇒ m = z, and
y ≤ z ∧ z ≤ x ⇒ m = z.

Symbolically executing this method using SPF checks the
given properties (Lines 16–19) and reports no assertion fail-
ures after 2 seconds. SPF explores 173 states and makes 172
calls to the underlying SMT solver.
Version 2: Property modification and addition. Hav-
ing gained some confidence in the implementation, assume
now the user decides to check the program after editing some
assertions and adding new assertions that check more pro-
gram behaviors. Specifically, the user (1) modifies the third
and fourth assertions to use ‘<’ instead of ‘<=’, e.g., to reduce
the overlap between the different sets of inputs each asser-
tion checks, and (2) adds four new assertions to check cases
previously unchecked. The following sequence of assertions
replaces the assertions in Version 1 (Lines 16–19).

23 assert x == y || x == z ? m == x : true; //#1
24 assert y == z ? m == y : true; //#2
25 assert x < z && z < y ? m == z : true; //#3’
26 assert y < z && z < x ? m == z : true; //#4’



27 assert x < y && y < z ? m == y : true; //#5
28 assert z < y && y < x ? m == y : true; //#6
29 assert y < x && x < z ? m == x : true; //#7
30 assert z < x && x < y ? m == x : true; //#8

Applying the conventional symbolic execution approach
to check the median program we invoke SPF once which re-
ports no assertion failures after 3 seconds; for this check,
SPF explores 301 states and makes 300 SMT solver calls. In
contrast, applying iProperty to check the median program
with this modified sequence of assertions we invoke SPF
three times. Two of these invocations focus on the modified
assertions (Lines 25–26) and the third invocation focuses on
the new assertions that were added (Lines 27–30). None
of the invocations involve previously checked assertions that
were not modified (Lines 23–24).

The first invocation directly checks whether the Version 1
assertion #3 (Line 18) implies the Version 2 assertion #3′

(Line 25) by checking if the following method causes an as-
sertion failure:

void checkImplies(int x, int y, int z, int m) {
if (x <= z && z <= y ? m == z : true)

assert x < z && z < y ? m == z : true;
}

This SPF invocation takes less than 1 second and reports
no assertion failure, i.e., the implication holds. Thus, the
validity of Version 1 assertion #3 guarantees the validity
of Version 2 assertion #3′ so it is not necessary to check
it against the implementation of median. In this case, SPF
explores 19 states and invokes the CVC3 solver 18 times.

The second invocation of SPF similarly checks that Ver-
sion 1 assertion #4 (Line 19) implies Version 2 assertion #4′

(Line 26) and hence Version 2 assertion #4′ is also valid and
does not need to be checked explicitly against the implemen-
tation of median. SPF takes less than 1 second, explores 19
states, and makes 18 CVC3 solver calls to perform the check.

The third invocation of SPF checks only the Version 2 as-
sertions #5–#8 against the implementation of median. This
invocation takes less than 1 second and reports no asser-
tion failure. In this invocation, SPF explores 121 states and
makes 120 calls to the CVC3 solver.

Overall, using iProperty to check the Version 2 properties
makes three invocations of SPF taking a total of 2 seconds
(versus 3 seconds in the conventional approach), requires
SPF to explore 159 states (versus 301 states in conventional
approach), and makes 156 solver calls to CVC3 (versus 300
calls in conventional approach). Thus, iProperty provides a
48% reduction in SMT solver calls compared to the conven-
tional approach using SPF for this small example.

3. APPROACH
In this section, we present the details of the iProperty ap-

proach that computes property differences for more efficient
incremental checking of evolving programs. iProperty oper-
ates on two program versions, p and p′, leverages the results
from checking p in order to compute the logical differences
in evolving properties. iProperty then combines the prop-
erty differences and a code change impact analysis to enable
efficient incremental property checking of p′.

Given two related program versions p and p′, where p is
annotated with one or more properties, and the properties
in p′ are changed with respect to p; for example, properties
are added, deleted, or modified in p′. Moreover, p′ may con-
tain changes to the code that result in functional differences,

e.g., added, changed, or removed program behaviors. As-
sume p was previously checked for property failures and the
results from checking p are available. Then the basic prob-
lem addressed by our technique is how to efficiently check
the properties in p′. Our technique addresses this problem
in two ways: 1) by defining a mechanism to compute prop-
erty differences between p and p′ that leverages the results
from checking p to automatically re-write the properties in
p′, retaining only the necessary parts of the properties, and
2) by checking p′ incrementally with respect to the impact
of the code changes along with the property differences.

Section 3.1 describes the initial property checking. Sec-
tion 3.2 describes the algorithmic details of computing dif-
ferences in properties specified as assert statements in Java
source code. Section 3.3 describes three checks that can be
performed using the property differences and the results of
a change impact analysis to efficiently check for regression
errors and conformance of new features in the code to the
additional properties.

3.1 Initial Property Checking
In this work, we analyze properties specified as Java as-

sert statements. We assume the specified properties are
side-effect free.

Definition 3.1. A is a set of assertions in a Java pro-
gram p such that each a ∈ A is an Java assertion “assert Φ”
where Φ specifies one or more properties as a conjunction of
clauses, Φa := φ0 ∧ . . . ∧ φm (m ≥ 0).

Each clause, φ, in a conjunction Φ can be an arbitrarily
complex boolean expression and may include one or more
invocations of pure functions (side-effect free).

iProperty uses the results from checking the previous ver-
sion of the properties in the property differencing algorithm
presented in Section 3.2. The results from analyzing a pro-
gram, p, with a given set of initial properties, A, are stored
for re-use by iProperty. During the initial analysis of the
program we record the outcome from checking a property—
whether the property passed or failed. In the case a property
fails, program analysis techniques such as symbolic execu-
tion generate a counterexample to show how the property
failed. We first define two data structures to store the anal-
ysis results: Outcome and Counterexample.

Definition 3.2. Outcome is a map Outp : A 7→ {Fail,
Not Fail, Unknown} that returns one of three possible out-
comes of checking an assertion a with respect to a program p
(1) Fail indicates that a violation of a was detected, (2) Not

Fail indicates no failure of a was found, and (3) Unknown

indicates that the results of checking a are not known.

Definition 3.3. Counterexample is a map Cexp : A 7→
2traces that returns a set of traces where each trace repre-
sents a feasible execution path from the start of the program
p to the violation of an assertion, a and Outp(a) := Fail.

The Outcome map for p is populated with the outcomes
generated when checking the corresponding assertions in A
against program p; while the Counterexample map is pop-
ulated with assertions which have the Fail outcome.

Definition 3.4. Transform is a map transform : A 7→
2clauses that returns the set of clauses contained in the con-
junction, Φa := φ0 ∧ . . . ∧ φm, for the assertion a ∈ A.



procedure PropertyDifferencing(A′, Cexp, Outp)
1: ∀a′ ∈ A′ . Cexp′(a

′) := ∅
2: for each a′ ∈ A′ do
3: if matchedAsserts(a′) 6= ⊥ then
4: 〈outcome, adiff 〉 := AssertDiff(a, a′)
5: else 〈outcome, adiff 〉 := 〈Unknown, transform(a′)〉
6: Outp′(a

′) := outcome
7: ∆A′,A(a′) := adiff

8: if outcome == Fail then
9: Cexp′(a

′) := Cexp(a)
10:
procedure AssertDiff(a′, a)
11: if Outp(a) == Unknown then
12: return 〈Unknown, transform(a′)〉
13: if LogicalDifference(a′, a) == ∅ then
14: return 〈Outp(a), ∅〉
15: if Outp(a) == Not Fail then
16: return 〈Unknown, {LogicalDifference(a′, a)}〉
17: else if Outp(a) == Fail then
18: return 〈Unknown, transform(a′)〉

Figure 2: The property differencing algorithm.

3.2 Property Differencing (No Code Changes)
The key idea our approach is to automatically re-write

assertions in p′, based on the logical differences between as-
sertions in p and p′. The logical differences are combined
with the information gathered from the previous analysis of
p, in order to reduce the number of properties that need to
be checked in p′. In this section we assume that there are
no code changes between programs p and p′, i.e., they are
syntactically the same and semantically equivalent when as-
sertions are turned off. In Section 3.3 we take into account
code changes.

At the heart of computing property differences is the no-
tion of logical difference between two properties. In this
work we define logical difference between two Java asser-
tions as follows:

Definition 3.5. LogicalDifference is a function that
takes as input two assertions a′ and a, and returns the set
of clauses in a′ where {φ′ ∈ transform(a′) | Φa 6⇒ φ′}.

The logical difference function returns the set of clauses
in a′ that are not subsumed, i.e., logically implied, by the
clauses in a. Moreover, if the logical difference function re-
turns the empty set, it follows that Φa ⇒ Φa′ , i.e., all of the
clauses in the conjunction of a′ are subsumed by those in a;
indicating there is no functional change going from a to a′.

Lemma 3.6. Assume checking p with a at location l shows
that assertion a holds. Let δ = LogicalDifference(a′, a).

Then, checking p with conjunction
∧|δ|
i=0 δi at control-point

l is equivalent to checking p with assertion a′ at l, i.e., the
set of executions of p that violate a′ at l equals the set of

executions of p that violate
∧|δ|
i=0 δi at l.

Lemma 3.7. If checking p with a at location l results in a
violation of a and a′ ⇒ a, then a′ is also violated at l in p.

The PropertyDifferencing algorithm is shown in Fig-
ure 2. The inputs to the algorithm are the set of all asser-
tion statements in p′ (A′), and the Outcome and Coun-
terexample maps from checking p, (Outp) and (Cexp) re-
spectively. As the PropertyDifferencing algorithm iterates
over each assertion in p′, it computes the logical difference
between matching assertions in p and p′ and uses the re-
sults from analyzing p to update i) the outcome map of p′,

Outp′ , ii) the counter-example map, Cexp′ , and iii) the map
of assertions differences, ∆A′,A, that contains for each as-
sertion in p′, the set of clauses in a′ that need to be checked
against p′. The entries in Outp′ and Cexp′ are initialized to
Unknown and ∅ respectively for each assertion at line 1 during
the initialization of the PropertyDifferencing algorithm.

The algorithm checks if a′ is a new assertion added to p′

by calling the function matchedAsserts at line 3 in Figure 2.
This function takes as input an assert statement in p′ and re-
turns the corresponding assert statement in p; when no cor-
responding assert statement is found, it returns ⊥. Assert
statements can be matched using various techniques such as
an AST matching algorithm [20] or an IDE monitor that
tracks the changes to the code. When no matching assert
statement in present in p, then the analysis concludes that a′

is a new assertion added to p′. In this case, the outcome for
a′ is set to Unknown (lines 5 and 6) and the set of clauses in a′

is added to ∆A′,A in order to be checked against p′ (line 7).
When the matchedAsserts function returns a matching as-
sert statement, a, at line 3, the PropertyDifferencing algo-
rithm computes the differences between a and a′ by invoking
the AssertDiff function.

The AssertDiff procedure shown at lines 11–18 in Fig-
ure 2 computes and returns the outcome and the logical
difference of a′ with respect to the matched assertion in p.
When the outcome of the matched assertion, a, is Unknown

with respect to p then a′ is treated as a new assertion by
setting its outcome to Unknown (lines 11− 12) and adding it
to the set of assertions to be checked in p′ (lines 6− 7).

When there is no logical difference between assertions a
and a′, and the outcome of a is either Fail or Not Fail,
then the outcome of a is returned as the outcome of a′ at
lines 13 − 14 in Figure 2. There are two cases to consider
when, however, there is a logical difference between asser-
tions a and a′. First consider the Not Fail case at lines 15
and 16. In the absence of code changes, the logical difference
between the assertions is added to the difference map ∆A′,A

to be checked for failures, and its outcome is set to Unknown.
Next, consider the Fail case at lines 17 and 18. Since there
is a difference between the two assertions we cannot reason
about whether the new assertion a′ will fail or not. Hence,
the outcome for a′ is set to Unknown and the set of clauses
in a′ is added to ∆A′,A.

We also use previously generated counterexamples to po-
tentially reduce the number of properties that need to be
checked using an an expensive analysis technique such as
symbolic execution. Often a program execution that is suc-
cessful in eliciting a violation of one property may be able
to detect a violation of another property as well. In order to
leverage this, we concretely execute inputs of the program
that lead to the counter-examples in Cexp and check for all
assertions, a′f , such that Outp′(a

′
f ) := Unknown if a violation

of the assertion is detected. For these additional failing as-
sertions their corresponding entries in the (a) outcome map
are marked as Fail, (b) difference map are marked as empty,
i.e., ∆A′,A(a′f ) := ∅, and (c) counterexample map are up-
dated with the error trace.

The algorithm in Figure 2 computes the map of assertion
differences, ∆A′,A. For every assertion a′, the map contains
a set of clauses (conjunction of clauses) that we need to check
with respect to program p′. Each entry in the map ∆A′,A is
mapped into assert statement assert Φ at the location of a′

in p′. The clauses set is re-written as a Java expression. We



analyze program p′ with re-written assertions using symbolic
execution for more efficient checking of the properties.

3.3 Property Checking (with Code Changes)
In this section, we present our incremental property check-

ing approach in the presence of code changes. Recall that
earlier, while computing the property differences we assumed
there are no code changes between p and p′—only property
changes. Our goal is to partition the incremental property
checking in a manner that allows more efficient detection of
regression errors introduced during bug fixes and checking
conformance of feature additions to new properties.

The incremental property checking algorithm combines in
a novel way results computed by the property differencing
algorithm in Section 3.2 and our previous work on Directed
Incremental Symbolic Execution (DiSE) [45, 50] that gen-
erates the set of program behaviors impacted by the code
changes. The combination of the property differences with
DiSE allows us to partition the incremental analysis into
three different checks: (i) Check I analyzes the changed or
impacted program behaviors with respect to the assertion
differences; (ii) Check II analyzes the changed or impacted
behaviors with respect to the original (preserved) assertions;
and (iii) Check III analyzes the unchanged program be-
haviors with respect to the assertion differences. The three
checks can be performed independent of each other. The
partitioning also provides insight into whether the property
violation was caused by the property differences (incorrect
update of properties), code changes (regression errors), or a
combination of property differences and code changes (new
feature additions do not conform to the new properties).

3.3.1 Directed Incremental Symbolic Execution
We first present a brief overview of the DiSE methodol-

ogy. Given two related program versions p and p′, (1) DiSE
constructs the change set, C, which contains the set of pro-
gram statements that are syntactically different between p
and p′, (2) DiSE then uses the change set C as the slicing
criterion to statically compute the impact set, I, the set of
program statements that may be impacted by the changes
in p′, and (3) Symbolic execution of p′ is then directed along
the program locations in the impact set, I, in order to gen-
erate the program behaviors impacted by the changes in C.

1 int a, b;
2 public int test(int x, int y) {
3 if (x > 0) a = x+1;
4 else a = x-1;
5

6 if (y == 0) b = y+1;
7 else b = y+2; // change
8 }

The simple program shown above contains two global vari-
ables a and b, and two input parameters x and y. Updates to
the global variables are made based on the values of the in-
put variables. Suppose the assignment b := y+ 2 is changed
to b := y − 1 (line 7). The program statement impacted by
this change is the conditional statement (y == 0). The exe-
cution of the changed statement is control dependent on the
false branch of the conditional statement. DiSE uses this
impact information to direct symbolic execution. There are
four possible paths through the program defined by these
path constraints (a) x > 0 ∧ y == 0, (b) x > 0 ∧ y 6= 0,
(c) x ≤ 0 ∧ y == 0, and (d) x ≤ 0 ∧ y 6= 0. DiSE, how-
ever generates only two paths out of the four. In its default

1: Input : Assertion free p 7→ pf ; Assertions A
2: Assertion free p′ 7→ p′f ; Assertions A′

3:
4: C′

p := SyntaticDiff(pf , p
′
f )

5: I ′p := ImpactAnalyis(C′
p, p

′
f )

6:
7: /∗ Check I: Impacted behaviors & assertion diffs ∗/
8: DirectedSymbolicExecution((p′f ◦∆A′,A), Ip′)
9:

10: /∗ Check II: Impacted behaviors & original assertions ∗/
11: OldAssertions := ∅
12: for each a ∈ A ∧ matchedAsserts(a) 6= ⊥ do
13: OldAssertions := OldAssertions ∪ {a}
14: DirectedSymbolicExecution((p′f ◦OldAssertions), Ip′)
15:
16: /∗ Check III: Unchanged behaviors & assertion diffs ∗/
17: Up′ := Statements(p′f ) \ Ip′
18: DirectedSymbolicExecution((p′f ◦∆A′,A), Up′)

Figure 3: Three cases for incremental property
checking.

search strategy DiSE will explore paths (a) and (b), and then
prune the other paths since all the impacted program behav-
iors (operations on y and b) have been explored in paths (a)
and (b). DiSE has been shown to be an efficient technique
for characterizing evolving program behaviors. [5, 45,50].

3.3.2 Three Types of Property Checks
The three types of property checks in our incremental

analysis are shown in Figure 3: (Check I) analyze the im-
pacted program behaviors with respect to the property dif-
ferences, (Check II) analyze the impacted program behav-
iors with respect to the preserved properties, and (Check
III) analyze unchanged program behaviors with respect to
the property differences. Programs pf and p′f are assertion-
free program versions of p and p′ respectively, A and Ap′ are
the sets of assertions in p and p′ respectively, and ∆A′,A is
the set of assertion differences computed by the algorithm
in Figure 2.

We leverage the conservative approximation of impacted
behaviors computed by DiSE in the checks in Figure 3. At
lines 4 and 5 in Figure 3, the change and impact sets (Cp′ and
Ip′) are computed from the assertion-free program versions
pf and p′f . This generates the set of program statements in
the code that may be impacted by changes to only the code
and not to the assertions. The ImpactAnalysis computes
the set of program statements within the program slice us-
ing the change set as a slicing criterion. A forward as well
as a backward slice is computed in order to account for all
program statements that may impact the program behav-
ior. Control and data dependence information is used by
the impact analysis to construct the program slice. This is
a conservative analysis—any program statement that may
be dependent on a program statement in the change set is
included in the impact set. The forward slice computes the
flow of impact from the change set to the other statements
while the backward slice accounts for control and data flow
from program statements to those in the change set.

A violation of an assertion during Check I indicates that
a new feature addition or modification does not conform to
the new properties. In Check I, we check the assertion differ-
ences with respect to the changed behaviors in p′f , shown at
line 8 in Figure 3. A safe approximation of the impacted be-
haviors is generated by the symbolic execution performed by
DiSE (the DirectedSymbolicExecution procedure). Sym-
bolic execution is directed along the program statements in



the impact set (Ip′) to generate the set of impacted behav-
iors in p′. The assertion differences, ∆A′,A, which have been
rewritten as assertions in p′ are checked on-the-fly as the
search is directed along the impacted program executions
by DirectedSymbolicExecution.

A violation of an assertion during Check II indicates a
regression error. In Check II, we analyze the original (pre-
served) assertions with respect to the changed behaviors at
lines 10 through 13. The set OldAssertions is initialized as
empty at line 10. We add to this set all assertions in A that
have a matched assertion in p′. This check ensures that as-
sertions removed in A′ are not added to the OldAssertions
set. We check the assertions in the OldAssertions set with
respect to the changed behaviors in p′. Check II serves as
a regression metric where the analysis ensures that changes
to the code do not violate the preserved properties.

A violation of an assertion during Check III indicates a
potential incorrect update to the property. In Check III,
we analyze the assertion differences with respect to the be-
haviors that are unchanged between p and p′. In order to
explore the preserved behaviors we generate the set of pro-
gram statements that are not impacted by the code changes.
At line 17 in Figure 3 the set, Up′ , contains any program
statement that is not in the impact set (Ip′). Now we direct
symbolic execution along program statements in Up′ to gen-
erate the set of unchanged behaviors. We check the assertion
differences with respect to these unchanged behaviors.

4. EVALUATION
We empirically evaluate the effectiveness of our technique

for incremental property differencing and checking. Our
evaluation addresses the following research questions:

◦ RQ1: How does the efficiency of checking assertion differ-
ences compare with checking the full assertions using sym-
bolic execution?

◦ RQ2: How does the cost of checking an implication be-
tween an old assertion and a clause in a new assertion com-
pare with checking the clause against the program?

◦ RQ3: How does the performance of the incremental prop-
erty checking, in the presence of code changes, compare with
full symbolic execution in detecting (a) regression errors and
(b) conformance of new features to additional properties?

For the first two research questions, we restrict the program
differences to assertion changes only; for the third research
question we analyze programs with changes to both the code
and the assertions.

4.1 Tool Support
We implement our approach using Symbolic PathFinder

(SPF) [42,43], the symbolic execution extension to the Java
PathFinder (JPF) model checker [57] for analyzing Java pro-
grams. SPF uses lazy initialization [33] to handle symbolic
inputs of complex (user-defined) types. We use CVC3 [8] as
the backend solver for all subjects except Apollo which con-
tains non-linear constraints. We use the CORAL [53] solver
for Apollo. We use the DiSE extension to JPF to perform
incremental property checking [45,50].

Checking assertions with SPF When checking asser-
tions with SPF, we use an interactive approach, stopping
at the first violation of an assertion. We then remove the

failing assertion, and recheck the program until the next as-
sertion fails or SPF completes, e.g., reaches a depth bound.
SPF supports finding multiple assertion violations in a sin-
gle invocation, however, this approach would also find all
possible ways of violating each assertion and result in un-
necessary overhead, particularly when our goal is simply to
determine for each assertion, if there exists any feasible ex-
ecution that violates it.

4.1.1 Property Differencing: Checking Implications
To check if the property Φa in assertion a implies a clause,

φ′, (RQ2) we (1) create a symbolic driver method with body
“if (Φa) assert φ′;” where Φa is the conjunction of clauses
in a, and the formal parameters are based on the free vari-
ables of Φa and φ′; and (2) symbolically execute the driver.
If symbolic execution does not lead to an assertion violation,
the implication holds; otherwise, it may not hold. Concep-
tually, symbolic execution of the driver checks the formula
“∀ v0, . . . , vk | Φa ⇒ φ′” where v0, . . . , vk are the free vari-
ables in Φa and φ′. If this formula holds, then the clauses
in a imply c′ since the formula checks the implication for
all possible values for v0, . . . , vk and only a subset of these
values can reach the control point of a.

If Φa or φ′ invoke other method(s), symbolic execution
dynamically traces through the bodies of the invoked meth-
ods. However, the cost of implication checking then depends
on the number of (bounded) paths in the methods invoked
by assertions. To optimize implication checking, we over-
approximate the outcome of the calls to boolean methods by
introducing non-deterministic boolean variables to conserva-
tively model the results of method invocation [6]. Specifi-
cally, (1) for each unique boolean method invocation m(...)

(based on method name and arguments) in “if (Φa) assert

φ′;”, declare a fresh boolean variable and initialize it using a
non-deterministic choice (i.e., Verify.getBoolean() in SPF);
(2) insert these variable declarations before the implication
check; and (3) replace all occurrences of boolean method
invocations in the implication check by the corresponding
boolean variables. Thus, we conservatively capture the be-
havior of the boolean methods invoked: if no assertion vio-
lation is found in the generated program, then the original
implication holds. Recall we assume the assertions are with-
out side-effects.

4.2 Artifacts
In our evaluation, we use four artifacts with manually cre-

ated assertions and three artifacts with dynamically inferred
invariants that we transform into Java assert statements.

4.2.1 Triangle Classification Artifact
The artifacts with manually created assertions include a

Java version of the classic triangle classification program
by Ammann and Offutt [2] annotated with assertions. The
triangle classification program trityp takes as inputs three
numbers and outputs whether they represent sides of a valid
scalene, isosceles, or equilateral triangle, or an invalid trian-
gle. The classification logic of the trityp program is imple-
mented by the Triang method using 53 lines of Java code 1

which seem deceptively simple, but are non-trivial to rea-
son about. The assertions for this artifact were developed
following an evolutionary process.

1In the textbook by Ammann and Offutt (Figures 3.2–3.3,
Lines 29–81, [2])



Table 1: Data structure subjects.
Subject #Versions Invariants

SortedList 5 Acyclicity
First element is smallest
Last element is largest
List is sorted
List has unique elements (if unique inserts)

HeapArray 3 Root is largest
Max-heap property
Reverse-sorted array is max-heap

BST 4 Acyclicity
Left-most leaf is smallest
Right-most leaf is largest
Binary search constraints

Assertions for trityp. We consider three versions of asser-
tions for trityp (based on the actual experiences of one of
the authors). Let A, B, and C be the three input numbers
and T represent the output, where T = 1 means “scalene”,
T = 2 means “isosceles”, T = 3 means “equilateral”, and
T = 4 means “invalid”.
Version V1. The initial set of the trityp assertions includes
the following assertions:

/*A0*/ assert T != 0;
/*A1*/ assert A <= 0 || B <= 0 || C <= 0 ? T==4 : true;
/*A2*/ assert A+B >= C ? T==4 : true;
/*A3*/ assert A+C >= B ? T==4 : true;
/*A4*/ assert B+C >= A ? T==4 : true;
/*A5*/ assert A==B && B==C ? T==3 : true;
/*A6*/ assert A==B && C < A+B ? T==2 : true;
/*A7*/ assert A==C && B < A+C ? T==2 : true;
/*A8*/ assert B==C && A < B+C ? T==2 : true;
/*A9*/ assert A != B && A != C && B != C &&

A+B > C && A+C > B && B+C > A ? T==1 : true;

Version V2 . Analysis of the trityp example revealed that
assertions A2–A8 are invalid in the initial version and are
therefore edited to:

/*A2’*/ assert A+B <= C ? T==4 : true;
/*A3’*/ assert A+C <= B ? T==4 : true;
/*A4’*/ assert B+C <= A ? T==4 : true;
/*A5’*/ assert A==B && B==C && A>0 ? T==3 : true;
/*A6’*/ assert A==B && C < A+B && C > 0 ? T==2 : true;
/*A7’*/ assert A==C && B < A+C && B > 0 ? T==2 : true;
/*A8’*/ assert B==C && A < B+C && A > 0 ? T==2 : true;

V2 of the assertions thus includes the following 10 asser-
tions in order: A0, A1, A2′–A8′, A9.

Version 3 . After checking version V2, assertions A6′–A8′ in
V2 are still invalid and edited to:

/*A6"*/ assert A==B && A != C && C < A+B && C > 0 ?
T==2 : true;

/*A7"*/ assert A==C && A != B && B < A+C && B > 0 ?
T==2 : true;

/*A8"*/ assert B==C && B != A && A < B+C && A > 0 ?
T==2 : true;

V3 of the assertions thus includes the following ten assertions
in order: A0, A1, A2′–A5′, A6′′–A8′′, A9.

4.2.2 Data Structure Artifacts
Three artifacts with manually created assertions are data

structure subjects with assertions based on structural repre-
sentation invariants. Some of the data structure invariants
were developed in previous work [13]; we adapt and augment
them in this work to create multiple assertion versions.

Assertions for Data Structure Artifacts. Table 1
summarizes the data structure artifacts. For each artifact,
we create a symbolic execution driver, which is common

Table 2: Results for checking the tritype assertions.
Version CheckFull CheckDiff

#SMT #States T[s] #SMT Red. #States T[s] #Conc.

V1 812 821 18 - - - - -
V2 763 767 16 32 95.8% 33 1 6
V3 786 787 13 212 73.0% 213 3 1

across all versions: “T o = new T (); o.add(x1); ...; o.add(x5);”
for symbolic variables x1, . . . , x5 and data structure type T .
Next, we create k versions, where k is the number of invari-
ants for the subject. Let the invariants be I1, . . . , Ik and ver-
sions be V1, . . . , Vk. Each version consists of the symbolic ex-
ecution driver followed by a sequence of assert statements,
where V1 contains “assert I1;”, and version Vi (1 < i ≤ k)
contains “assert I1; ...; assert Ii”. Thus, each new version
adds the corresponding new assertion.

4.2.3 Artifacts with Synthesized Assertions
We also use three subject programs, WBS, TCAS, and

Apollo with mechanically synthesized assertions. These ar-
tifacts were used in two recent papers [45, 60] on incremen-
tal symbolic execution. The focus of these papers was on
changes to code in general and these artifacts did not con-
tain assertions. To synthesize assertions for our experiments,
we use the Daikon tool for invariant discovery [19]. Specifi-
cally, we apply Daikon on each subject to discover relevant
valid invariants, which we transform to assertions. Our spe-
cific focus is the method pre-conditions and post-conditions
generated by Daikon in Java.

Daikon requires a test suite to execute the program under
analysis and detect its likely invariants. Among the arti-
facts, only TCAS had a test suite available in the Software
Infrastructure Repository [52]. We used this test suite con-
taining 1608 tests for TCAS. For WBS and Apollo, we wrote
a random test generator to create a test suite with 1000 tests
for each artifact. Our goal is to use Daikon to generate rele-
vant valid invariants. However, dynamic invariant discovery
can generate invariants which are irrelevant or invalid [46].
To filter such invariants, we remove any invariant that does
not mention some method input or the return value, or is
invalidated by symbolic execution.

4.3 Results and Analysis
4.3.1 RQ1: Checking Assertion Differences

We check the trityp program with respect to each of the
three assertion versions comparing checking assertion differ-
ences with checking the full assertions using symbolic exe-
cution. The results are shown in Table 2. For each artifact
and its versions, we show the results for checking full as-
sertions (CheckFull) and the results for checking assertions
differences that are computed by our property differencing
algorithm (CheckDiff). #SMT is the number of SMT calls
made, #States is the number of states explored during sym-
bolic execution, T[s] is the wall clock time in seconds for
symbolic execution, and Red. is the reduction in SMT calls
achieved by checking only the assertion differences. The
#Conc. column indicates the number of concrete execu-
tions used to check the counterexamples from the previous
version. The results in Table 2 show the cumulative results
for all invocations of SPF. For the trityp artifact, our prop-
erty differencing algorithm reduces the number of assertions
that need to be checked by symbolic execution; consequently
it reduces the SMT calls by 95.8% for V2 and 73.0% for V3.



Table 3: Subjects with mechanically synthesized assertions using Daikon.
Subject Method Daikon application Version generation

#Tests #Invariants #Versions #Invariants in each version

WBS update 1000 4 4 V1 : 1, V2 : 2, V3 : 3, V4 : 4
TCAS alt_sep_test 1608 35 5 V1 : 15, V2 : 20, V3 : 25, V4 : 30, V5 : 35

Non_Crossing_Biased_Climb 1608 53 5 V1 : 10, V2 : 20, V3 : 30, V4 : 40, V5 : 53
Non_Crossing_Biased_Descend 1608 56 5 V1 : 15, V2 : 25, V3 : 35, V4 : 45, V5 : 56

Apollo Reaction_Jet_Control0.Main1 1000 5 5 V1 : 1, V2 : 2, V3 : 3, V4 : 4, V5 : 5

Table 4: Results for checking data structure asser-
tions.

Subject Version CheckFull CheckDiff
#SMT #States T[s] #SMT Red. #States T[s]

SortedList V1 238 239 6 - - - -
V2 1438 1439 30 1438 0% 1439 24
V3 4630 4631 101 3430 25.9% 3431 59
V4 8958 8959 209 1198 86.6% 1199 21
V5 10316 10317 204 652 93.6% 653 12

HeapArray V1 1492 1493 28 - - - -
V2 3510 3511 73 2340 33.3% 2341 44
V3 4292 4293 99 1104 74.2% 1105 22

BST V1 2162 2163 64 - - - -
V2 9364 9365 225 9364 0% 9365 223
V3 16566 16567 392 9364 43.4% 9365 221
V4 36256 36257 836 21852 39.7% 21853 451

In Table 4 we present the results of checking full asser-
tions and checking assertion differences on the data struc-
ture artifacts. Versions V 1 and V 2 of SortedList and Bina-

rySearchTree (BST) artifacts contain properties that assert
acyclicity. These assertions are checked using lazy initial-
ization that concretizes complex data structures and does
not require any constraint solving during symbolic execu-
tion. Currently our reductions are targeted for programs and
properties that do use constraint solving; hence the num-
ber of states generated and the number of SMT calls in the
CheckFull and CheckDiff columns for version V 2 of Sort-

edList and BinarySearchTree (BST) artifacts are the same.
Checking assertion differences in other versions requires fewer
SMT calls than checking all assertions and costs less in
time and states visited. Checking assertion differences in
the SortedList example provides up to 93.6% reduction in
the number of SMT calls compared to checking full asser-
tions. In the HeapArray artifact, we observe up to 74.2%
reduction in the number of SMT calls compared to checking
full assertions. Whereas in the BinarySearchTree example,
checking assertion differences provides up to 43.4% reduc-
tion in the number of SMT calls compared to checking full
assertions. Overall, experiments with trityp, SortedList,
HeapArray, and BinarySearchTree show that checking asser-
tion differences based on the property differencing algorithm
outperforms checking full assertions in terms of the number
of SMT solver calls, number of states explored, and the time
taken for symbolic execution.

Table 3 summarizes the artifacts with mechanically syn-
thesized assertions and lists the methods we consider, the
number of tests used to run Daikon, the relevant valid in-
variants reported by Daikon, the number of assertion ver-
sions we create using those invariants, and the number of
assertions in each version. We create four and five versions
of the WBS and Apollo artifacts respectively, using the rel-
evant and valid invariants generated by Daikon. The first
version consists of one randomly selected invariant, and each
subsequent version contains all the invariants from the pre-
vious version and one additional invariant also selected at

Table 5: Results for checking WBS, TCAS, and
Apollo.

Subject Version CheckFull CheckDiff
#SMT #States T[s] #SMT Red. #States T[s]

WBS V1 72 73 1 - - - -
V2 84 85 1 72 14.2% 73 1
V3 96 97 1 72 25% 73 1
V4 108 109 1 72 33.3% 73 1

TCAS1 V1 3182 3183 155 - - - -
V2 4270 4271 210 1822 57.3% 1823 89
V3 4814 4815 222 1278 73.4% 1279 62
V4 5494 5495 249 1414 74.2% 1415 68
V5 6582 6583 323 1822 72.3% 1823 89

TCAS2 V1 2054 2055 129 - - - -
V2 3014 3015 193 2054 31.8% 2055 136
V3 3974 3975 252 2054 48.3% 2055 125
V4 5510 5511 348 2630 52.5% 2631 164
V5 7046 7047 457 2630 62.6% 2631 159

TCAS3 V1 7686 7687 483 - - - -
V2 8934 8935 555 6918 22.5% 6919 426
V3 9894 9895 621 6630 32.9% 6631 407
V4 10854 10855 680 6630 38.9% 6631 387
V5 11910 11911 724 6726 43.5% 6727 409

Apollo V1 1014 1016 590 - - - -
V2 1557 1559 946 1020 34.4% 1022 544
V3 1728 1730 1100 591 65.7% 593 266
V4 7330 7332 4100 6937 5.3% 6939 3382
V5 TO TO >28800 29729 N/A 29731 15100

random. Daikon’s invariant generation is particularly effec-
tive for TCAS [19], so we are able to create versions with
larger numbers of relevant valid invariants. We create five
versions for each chosen method in TCAS, where the first
version consists of randomly selected invariants, and each
subsequent version contains a number of additional invari-
ants also selected at random.

In all the versions, each assertion contains a single clause
that corresponds to one relevant valid invariant. We use in-
formation about how the different versions are constructed
in order to manually mark the changed and added assertions
between consecutive versions. However, a Unix diff could be
used to compute the changes, and it only takes a few mil-
liseconds to run Unix diff for any two consecutive versions.

Table 5 presents the results of checking full assertions and
checking assertion differences on WBS, TCAS, and Apollo.
TCAS1 refers to first TCAS method listed in Table 3, i.e,
TCAS.alt_sep_test, TCAS2 refers the second, etc. Checking
full assertions in V5 of Apollo times out (TO) after 8 hours,
whereas, checking assertion differences based on property
differencing successfully completes for all artifacts. More-
over, checking assertion differences outperforms checking full
assertions in terms of states visited and time taken for sym-
bolic execution, and provides between 5.3% and 74.2% re-
duction in SMT calls across the different versions. While
these results show the benefit of using iProperty for more
efficient checking of these subjects, the underlying cost of
symbolic execution still is a considerable factor in the scal-
ability of the overall incremental approach.



Table 6: Implication checking results using symbolic execution. “Exp1” is the first experiment. “Exp2” is the
second experiment.

Subject Check implication“φa ⇒ φa′” Check “assert φa′;” in code
#SMT #States T[s] #SMT #States T[s]

min max ave min max ave min max ave min max ave min max ave min max ave

Exp1: WBS 4 6 4 5 7 5 <1 <1 <1 72 72 72 73 73 73 1 1 1
Exp2: WBS 4 4 4 5 5 5 <1 <1 <1 72 72 72 73 73 73 1 1 1
Exp1: TCAS1 2 2 2 3 3 3 <1 <1 <1 870 1278 951 871 1279 952 41 60 45
Exp2: TCAS1 4 8 4 5 9 5 <1 <1 <1 870 870 870 871 871 871 42 44 42
Exp1: TCAS2 1 2 1 3 4 3 <1 <1 <1 1190 1190 1190 1191 1191 1191 67 72 69
Exp2: TCAS2 0 4 2 5 7 5 <1 <1 <1 1190 1478 1305 1191 1479 1306 68 97 78
Exp1: TCAS3 2 2 2 3 3 3 <1 <1 <1 5766 5766 5766 5767 5767 5767 336 356 344
Exp2: TCAS3 4 4 4 5 5 5 <1 <1 <1 5766 5766 5766 5767 5767 5767 333 339 335
Exp1: Apollo 0 0 0 6 6 6 <1 <1 <1 591 29729 7858 593 29731 7860 270 15100 3987
Exp2: Apollo 0 0 0 7 7 7 <1 <1 <1 591 29729 7858 593 29731 7860 270 15100 3987

Table 7: Results for checking regression errors.
Version SPF DiSE

#SMT #States T[s] #SMT Red. #States T[s]

WBS’ 15 16 1 15 0% 16 1
TCAS1’ 3238 3239 138 3238 0% 3239 163
TCAS2’ 2198 2199 155 107 95.1% 108 7
TCAS3’ 7958 7959 506 158 98.0% 159 10
Apollo’ 158 159 456 4 97.5% 5 4

4.3.2 RQ2: Implication Checking
To address RQ2 we analyzed assertion pairs, (a, a′) where

assertion a is in program p and its matching assertion a′ is
in program p′. In our experiments Φa and Φa′ each contain
a single clause φa and φa′ respectively. Hence, for each as-
sertion pair we symbolically execute “if (φa) assert φa′;”
to check if the implication holds as described in Section 3.2.
We compare the cost of checking the implication with the
cost of checking “assert φa′;” in the relevant method body
at the corresponding exit point.

We conduct two different experiments, each with five as-
sertion pairs. In the first experiment, we create assertion
pairs by selecting an invariant (φa) at random from the set
of relevant valid invariants. In the second experiment, we
create pairs by applying mechanical transformations [1]; for
invariant φa selected at random: (1) if φa contains the ‘>’
comparison operator, we create φa′ by mutating ‘>’ to ‘>=’
to form assertion pair 〈a, a′〉; (2) if φa contains the ‘<’ com-
parison operator, we create φa′ by mutating ‘<’ to ‘<=’ to
form assertion pair 〈a, a′〉; (3) if φa contains a numeric ex-
pression of the form “l op r” we generate φa′ by adding a
constant c ∈ {−100, . . . , 100}, selected at random, to both
sides of the expression in φa to form assertion pair 〈a, a′〉;
and (4) if φa invokes a Daikon library method, we select
an invariant φa′ (6= φa) at random to create assertion pair
〈(φa ∧ φa′) ∨ (φa ∧ ¬φa′), a〉.

Table 6 shows experimental results for implication check-
ing for the two experiments. All implications for the first
experiment were false (as expected since implication is un-
likely to hold between two invariants selected at random);
all implications for the second experiment were true (as
expected given the design of the transformations). Thus,
the two experiments together cover both possible outcomes
for implication checking. Some invariants, including all of
the Apollo invariants, invoke Daikon library methods, e.g.,
daikon.Quant.memberOf(this.NumeratorTerms_5557, arg1), and
therefore, the resulting implication check is handled by our
implication check optimization which uses non-deterministic
choice to model boolean method invocations (Section 4.1.1).
Thus, some cells have 0 SMT calls – SPF state exploration

Table 8: Results for checking conformance between
code change and property change.

Version SPF DiSE
#SMT #States T[s] #SMT Red. #States T[s]

WBS’ 15 16 1 15 0% 16 2
TCAS1’ 1878 1879 94 1878 0% 1879 93
TCAS2’ 2198 2199 83 107 95.1% 108 7
TCAS3’ 7062 7063 418 142 98.0% 143 10
Apollo’ 158 159 254 4 97.5% 5 2

does not require SMT if the implication only consists of
boolean methods and boolean operators.

The results show that the number of SMT calls for the
implication check φa ⇒ φa′ is at most 8.3%, 1%, and 0% for
WBS, TCAS, and Apollo respectively, of the cost to check
“assert φa′;” in the code. Overall, the cost of checking an
implication between an assertion in p and a new clause in
the assertion a′ is substantially less than the cost of checking
the clause against p′.

4.3.3 RQ3: Incremental Assertion Checking
To address RQ3 we analyze programs that contain changes

to both code and properties. We compare the performance
of incremental property checking with full symbolic execu-
tion in (a) detecting regression errors, and (b) checking con-
formance of new features to additional properties. We create
the version pairs by manually making changes to the code
that were annotated with relevant and valid Daikon invari-
ants; we then also make changes to the properties by adding
additional Daikon invariants. We choose to make manual
changes to the code in order to simulate potential regression
errors and non-conformance between code and properties.
We create one version for each subject listed in Table 5.

To compare the performance in finding regression errors
we perform DiSE and full symbolic execution as implemented
in SPF on the program p′ annotated with the OldAssertions
as defined in Check II Figure 3 of Section 3.3. An assertion
violation in p′ is indicative of a regression error. Table 7
shows the experimental results for this experiment. DiSE
and SPF make the same number of SMT calls for WBS’ and
TCAS1’. For TCAS1’, all the paths in the code are marked
impacted by the code changes, thus DiSE explores all the
paths; for WBS’, both SPF and DiSE detect an assertion
violation. While in other versions, DiSE achieves substan-
tial reduction, for example, there is 97.5% reduction in the
number of SMT calls in Apollo’. The same pattern of re-
sults is seen in the the number of states explored by symbolic
execution in SPF and DiSE and also total wall clock time
taken in seconds. Due to the overhead of static analysis per-
formed by DiSE, for TCAS1’, DiSE takes a small amount of



additional analysis time compared to symbolic execution in
SPF; however, even when reductions are not possible, the
overhead is very small.

In order to check conformance between code changes and
properties changes, we perform DiSE and full symbolic ex-
ecution as implemented in SPF on p′ with the annotated
property differences ∆A′,A as described in Check I of Fig-
ure 3. We compare the cost of performing DiSE with the
cost of performing symbolic execution in SPF in each experi-
ment. Table 8 shows the results. In a manner similar to the
results observed in Table 7, for some versions, e.g., WBS’
and TCAS1’, DiSE and symbolic execution in SPF explore
the same number of states and make the same number of
SMT calls. For some versions, however, such TCAS2’, DiSE
makes fewer SMT calls, explores fewer states, and takes less
time compared to symbolic execution in SPF.

4.4 Threats to Validity
The primary threats to external validity in our study are

the use of SPF and DiSE, the selection of artifacts and prop-
erties, and the changes made to create versions of the code
and properties. Although our observations may not general-
ize to other artifacts, properties, and changes, we attempted
to mitigate these threats by analyzing multiple artifacts,
all of which have been used in previous studies of symbolic
execution based techniques, with respect to properties (as-
sertions) that were both manually developed and mechan-
ically synthesized. Further evaluation of our technique on
a broader range of program types, property specifications,
and change types would address this threat.

The primary threats to internal validity are the poten-
tial faults in the implementation of our algorithms and in
SPF and DiSE. We controlled for this threat by testing the
tools and implementations of the algorithms on examples
that could be manually verified. With respect to threats to
construct validity, the metrics we selected to evaluate the
cost of our algorithms are commonly used to measure the
cost of symbolic execution based techniques.

5. RELATED WORK
Incremental program analysis techniques which leverage

change impact analysis results [4, 5, 28, 44, 45, 48, 59] have
been widely studied to help reduce the cost of program anal-
ysis by enabling incremental analysis of previously checked
programs. Recent work has also focused on techniques which
reuse verification results to help reduce the cost of program
analysis [10, 56, 60] and reuse of reachability information
through similarity checking of test goals represented as au-
tomata to reduce the cost of test input generation [9]. iProp-
erty partitions the analysis of code and property specifica-
tions, leveraging the results of a change impact analysis and
reusing the verification results from checking the previous
version of the program against the property specifications
to reduce the cost of property checking.

A number of recent techniques optimize symbolic exe-
cution for one program version using compositional anal-
ysis [23], abstraction [3], and partitioning [54]. The idea of
optimizing symbolic execution in the context of code that
undergoes change was introduced by DiSE [45], which first
uses a static analysis as we describe and utilize in this pa-
per. An alternative optimization of storing results of sym-
bolic execution and re-using them is taken by Green [56]
and Memoise [60]. Since property differencing likely reduces

the number of paths to explore using symbolic execution,
we expect it to offer a reduction in the exploration space for
Memoise and Green, similar to DiSE.

Recent work explores program differencing in the context
of assertions [32,35,36,47]. Lahiri et al. present differential
contract checking [36] which uses static analysis to deter-
mine possible inputs that will cause a contract to evaluate
differently between two versions. Joshi et al. employ asser-
tion checking to limit false alarms during static concurrency
analysis of open systems [32]. In more recent work, Lahiri et
al. present a differential assertion checking technique (DAC)
for comparing relative correctness of the program [35]: do
the two programs versions perform consistent memory ac-
cesses?, at a cost that is lower than absolute correctness.

We believe that core algorithms in iProperty can be ex-
tended to handle other lightweight specifications as well,
e.g., JML [37], Eiffel [39], and Spec# [7]. These specification
languages provide developers the ability to specify proper-
ties at a component, module, or method-level in a manner
very similar to assertions.

There is a large body of the work on property-based slicing
and property-aware testing and verification of programs [12,
15, 18, 21, 25, 26] as well as on change-impact analysis, e.g.,
for regression test selection [27, 41, 49]. The key difference
between iProperty and previous work is our property differ-
encing technique and its synergistic application with change-
impact analysis that characterizes impacted behaviors to
enable more efficient checking of code conformance to be-
havioral properties. Property differencing as a stand-alone
problem has also been addressed by a number of previous
projects, e.g., in the context of UML models [40, 58], and
Object-Z [55]; however, previous work on property differ-
encing has not considered using the differences to optimize
checking of code.

6. CONCLUSION
This paper introduced iProperty, a novel approach to com-

pute differences between properties of related programs in a
manner that facilitates more efficient incremental checking
of conformance of programs to properties. The key novelty
of iProperty is to compute logical differences between old
and new versions of properties that undergo change and fa-
cilitate two development scenarios that form our focus: (1)
writing properties correctly for an existing program, and
(2) checking changes to code and properties as they co-
evolve. We evaluate iProperty on Java programs with man-
ually written and mechanically synthesized assertions. The
experimental results show that iProperty reduces the num-
ber of SMT solver calls – a key metric for the cost of symbolic
execution – in comparison with the conventional approach.
We believe iProperty provides a promising approach to not
only reduce the cost of checking properties but also to make
it easier to formulate correct properties – manually or me-
chanically. While our focus in this paper was on sym-
bolic execution, we believe property differencing can enable
scalable incremental checking using other software analyses,
such as model checking and static analysis.
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