
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Rapport technique 2013                                     Open Access

This version of the publication is provided by the author(s) and made available in accordance with the 

copyright holder(s).

Self-composition of services with chemical reactions

De Angelis, Francesco; Di Marzo Serugendo, Giovanna; Fernandez Marquez, Jose Luis

How to cite

DE ANGELIS, Francesco, DI MARZO SERUGENDO, Giovanna, FERNANDEZ MARQUEZ, Jose Luis. 

Self-composition of services with chemical reactions. 2013

This publication URL: https://archive-ouverte.unige.ch/unige:32649

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:32649


Self-composition of services with chemical reactions

Francesco De Angelis, Giovanna di Marzo, Jose Luis Fernandez-Marquez
francesco.deangelis@unige.ch, JoseLuis.Fernandez@unige.ch, giovanna.dimarzo@unige.ch

University of Geneva, ISS
Battelle, Batiment A, Route de Drize 7, CH-1227

Carouge SWITZERLAND

Abstract—Service-oriented programming has dramatically
changed the way software applications are developed. Auto-
matic composition of services reduces human interaction on
choosing the set of services that satisfy a specific request.
Automatic composition has mainly been done in a centralised
way with the composition specified at design time or in a
decentralised manner through multi-agent systems planing.
These approaches present several limitations when used in
dynamically changing environments like pervasive computing
scenarios. Very few proposals investigate the design of the com-
position arising as a result of an ongoing self-organising process
that permanently adapts to context and environmental changes.
In this paper we define three chemically inspired approaches
for self-composition of services operating on top of a shared
tuple space. We show how tuple spaces can be exploited to
design spontaneous and emergent compositions that deal with
context information and a dynamic set of available services.
Then we prove that our algorithms can be generalised to
produce compositions of services with very common features.
and show how our algorithms can be easily implemented to
provide self-composition of actual Web services.

Keywords-Self-composition, chemical reactions, services,
context-awareness, dynamic environment

I. INTRODUCTION

A software service represents a functionality that can be
provided on demand in order to create higher level software
artifacts, such as applications or higher level services. The
notion of service allows applications to be easily developed
and to adapt by changing the different services, which the
application is composed by, at run-time.

Self-composition of services involves the automatic dis-
covery of new services by composing available ones, the
selection of services, the plan to execute them (i.e. services
execution order), and the adaptation of the composed service
when new requirements appear or a service disappears from
the system.

The static character of traditional composition approaches
such as orchestration and choreography has been recently
challenged by so-called dynamic service composition ap-
proaches, involving semantic relations, or AI planning tech-
niques to generate process automatically based on the
specification of a problem. Their basic goal is to analyse
a description of the services to compose and compute a
composition satisfying structural, behaviour and ontological

compliance of the result of composition as can be deduced
from information about the composites.

One of the main challenges of these approaches is their
limited scalability or context-awareness to environmental
conditions or to the appearance or disappearance of services.

This paper discusses a model and several approaches for
providing self-composition of services based on chemical
reactions occurring in an active shared tuple space. Descrip-
tions of services, their queries and their answers are injected
in the shared tuple space under the form of tuples. Chemical
reactions active in the tuple space act on the tuples causing
them to link with each other, and eventually leading to
zero, one or more compositions of services that can answer
the query (this depends on the actual services available).
Context-awareness is present in the system in different
manners: (1) available services are advertised in the system
through a tuple that describes them (functional or non-
functional information). If they disappear, their respective
tuple disappears as well; (2) the self-composition process
takes into account contextual information present in the
tuple space, such as availability or quality of service of
other services, partially built composition of services, or
environmental related information provided by sensors or
services themselves.

We also show how this model has been implemented on
an actual middleware and how actual Web services can be
wrapped and used to participate into self-compositions of
services. We also discuss complexity related issues and show
that both at the level of services and at the level of chemical
reactions, the approach is linear showing the scalability of
the approach.

Section II discusses related works. Section III presents
the system model, while Section IV presents our three
approaches for self-composition based on chemical reac-
tions. Section V shows an actual implementation involving
Web Services, and Section VI discusses conclusions and
perspectives.

II. RELATED WORK

On-the-fly service or components composition approaches
span from workflow based approaches or AI Planning [1] to
more dynamic ones where a central coordinator organises
the assembly of components [2], to more decentralised ones,



where devices, providing services, listen to channels for
messages or queries to process and a distributed conflict
resolution system solves competing issues among similar
services [3].

Multi-agent systems approaches to self-composition usu-
ally involve planification, where agents reason on their re-
spective services and the user’s needs [4]. In this area, recent
work on self-composition of methods fragments brings a
solution based on cooperative agents, each representing a
fragment and participating to the design of the fragments
composition [5].

Approaches specifically involving chemical reactions for
self-composition include the following. In the field of in-
dustrial robotics, Frei et al. [6] propose the use of chemical
reactions to build self-organising assembly systems that
participate in their own design by spontaneously organising
themselves in the shop floor layout in response to the arrival
of a product order. This approach shares similarities to the
one presented in this paper, since chemical reactions act
on a shared space containing robotic modules capabilities
and needs, and generic assembly instructions. However, this
approach does not use an actual middleware and the actual
chemical process is performed through specifications logic
rewriting in MAUDE.

Di Napoli et al. [7] show how a specified workflow can
be instantiated using chemical reactions. In this approach,
chemical reactions are used for ”binding” the services to
the pre-specified workflow. This differs from our approach,
where there is no predefined workflow. The actual compo-
sition design emerges from the chemical reactions at work.

Finally, Viroli et al. [8] propose an approach inspired by
chemical reactions combined with the notion of competition
among services. This approach addresses services that span
multiple hosts and permanently push data in a tuple space,
rather than services activated in response to queries.

III. REFERENCE MODEL

This section presents the reference model used to describe
our approach for self-composition of services.
The model we are dealing with is an abstraction of the active
tuple space model SAPERE [9], [10] inspired by chemical
reactions; here the system is composed of four entities:
tuples, chemical reactions, agents and services/applications
(Figure 1).
Tuples: A tuple T̄ is a vector of elements P̄i = (“Ni”, Vi)

called properties, thus:

T̄ = (P̄1, P̄2, . . . , P̄n)

where “Ni” is the name of the property and Vi is a value.
Tuples are passive entities located in a shared container
named tuple space. Tuples are dynamically updated by the
agents and the tuple space. They represent both services and
context information.

Tuple 
SpaceTuple 1

Tuple 2

Tuple 3

Tuple 4

Client 
Tuple

Service
1

Agent

Service
2

Agent 
2

Service
3

Agent

Service
4

Agent

Application

Agent

Chemical reactions

Bond Decay Aggregate

Figure 1: Reference model. Dotted lines represent interaction
between agents and their tuple in the tuple space; Solid lines
represent interactions among tuples.

Chemical reaction: If S is the set of tuples, then a chemical
reaction r is a function over the power set P(S):

r : P(S)→ P(S)

Chemical reactions provide the system with an automatic
way for tuples interactions, combining and updating them.
When chemical reactions are fired notifications are delivered
to agent associated with tuples which are modified in the
space.
Agents: An agent is an external active entity represented
in the tuple space by a tuple. Every agent interacts with
the tuple space updating-deleting tuples and receiving a
notification each time an interaction is performed on its tuple
by a chemical reaction. Agents are part of applications and
services.
Services/Applications: When an application or a service
wants to request or provide information, it creates an agent
that it uses as an interface to exchange data within the tuple
space. In order to invoke a service, applications create agents
that insert tuples containing input parameters for a request.
Such tuples are then managed by service agents which are
in charge of reading input parameters and passing them to
the service. When results are computed, service agents will
make them available to application agents by inserting them
as a new tuple in the space.

A. Chemical reactions and interactions

Chemical reactions fire automatically in the tuple space
and operate on tuples containing special data named opera-
tors. We define three basic chemical reactions: Bond, Decay
and Aggregate.
Bond. A bond is a kind of relationship between two proper-
ties of two different tuples and it is the main way to realise



Agent A

Bond
chemical
reaction

Tuple
Space

add new tuple with P

create new 
property P 

with vector *
and name N

new property 
P' with name 
N inserted or 

updated

bond
notification

Agent B

Figure 2: The bond chemical reaction.

an interaction among tuples.
When an agent A, associated with a tuple T̄A, wants its tuple
to react in presence of another tuple containing a property
P̄b = (“Nb”, Vb), it adds to T̄A a property filled up with the
“*” operator:

P̄ a = (“Nb”, Va) where Va = “ ∗ ”

From this moment on (Figure 2), the bond chemical reaction
takes care to deliver to A a notification each time a tuple
with a property named “Nb” appears in a tuple of the space,
changes its content or is removed from the tuple space. A
is then able to read the actual value Vb and use it to manage
additional computations, for example passing Vb as input
parameter to a service, requesting its invocation.
Decay. It provides a mechanism to free resources by remov-
ing tuples from the space. The agent A communicates that
its tuple T̄A has to be removed after trem units of time by
adding to it a property using the “Decay” operator:

P̄d = (“decay”, Vrem) where Vrem = trem

After the creation of P̄d, the decay chemical reaction is in
charge of delivering to A a notification after a temporal
period of length trem, before proceeding with removing T̄A

from the space (Figure 3).
Aggregate. It is in charge of merging together several
indexed tuples, producing a new one filled with synthesised
data:

P̄iR = (“aggregator”, ViR)

This reaction is carried on by using aggregation specifica-
tions contained in ViR , that are discussed in details in section
IV-D.

By using the model and the interactions previously defined
we are able to define three approaches to perform self-
composition of services. As said above, we assume that each

Algorithm 1: Invoking all services - answer: Service
agent Ai

OnServiceInitialization():
insert T̄i = (P̄i) with P̄ ′i = (“xi”, Vi), Vi = “ ∗ ”;

OnServiceNotification():
xi = read input value Vi from tuple;
calculate yi = fi(xi);
insert T̄ri = (P̄ ′i ) with P̄ ′i = (“yi”, V

′
i ),V ′i = yi;

Agent
Decay

chemical reaction
Tuple
Space

add new tuple Ta with P

create new 
property P 
with decay 

value T

after t units
of time

decay
notification

remove Ta

Figure 3: The decay chemical reaction.

existing service Si has an agent Ai related to it, with a
tuple T̄i created in the tuple space that represents it. We
assume that every service takes as input just one parameter
xi and generates a single value yi (or a structured value
that has to be consider atomic) i.e. the service can be
mapped as a scalar function: yi = fi(xi). We are showing
how to remove this assumption in the section IV-D, where
we generalise our proposed algorithms for services which
accept a greater number of input parameters, i.e. for services
mapped as vector-valued functions: ȳi = fi(x̄i). For a
request to the service Si, the query of an application agent is
represented by a tuple containing xi, i.e. the specified input
parameter; similarly, when a service produces the result for
an invocation, the associated service agent inserts a new
tuple in the space containing the response yi.

IV. SELF-COMPOSITION ALGORITHMS

We present now our three approaches for self-
composition.

A. Executing all services

Our first approach consists in defining a strategy to trigger
a global process of callings all services related to the query,
thus leading up to the production of the result requested by



an application.
Input/Output: During its creation, each service agent Ai

instantiates the following tuple:

T̄i = (P̄i) where P̄i = (“xi”, Vi), Vi = “ ∗ ”

When the service agent receives the notification of a new
bond with a tuple containing a property filled with the input
parameter, it reads the value xi from the second tuple, it
calculates yi and it generates a new tuple T̄ri:

T̄ri = (P̄ ′i ) where P̄ ′i = (“yi”, V
′
i ), V ′i = yi

Query: A generic application that wants to get a value of
type “b” by providing a value of type “a” creates an agent
Ac that simply inserts a tuple T̄c:

T̄c = (P̄c1 P̄c2) where P̄c1 = (“a”, a), P̄c2 = (“b”, “ ∗ ”)

Composition: When T̄c is inserted in the tuple space, the
bond chemical reaction delivers the first notification to a
service S1 accepting a and producing y1. If the latter value
is the input for a second service S2 then the bond will deliver
a further notification event to its agent A2, which generates
a second value of type “y2”. This process, automatically
carried out by the system, continues for all n ≥ 1 services
involved and it stops when Ac receives the notification for
a bond with a tuple containing the requested result. At this
point, the application agent can read the value of type “b”
generated through the composition:

Algorithm 2: Invoking all services - query for values of
type “b” provided a: application agent Ac

OnApplicationInitialization():
insert T̄c = (P̄c1 , P̄c2) where P̄c1 = (“a”, a)

and P̄c2 = (“b”, “ ∗ ”);
OnApplicationResponse():
b = read input value from tuple;

b = (fn ◦ fn−1 ◦ · · · ◦ f1)(a) with n ≥ 1 (1)

The proposed approach is summarised in Algorithm 1 and
in Algorithm 2. Depending on how responses trigger the
invocation of services, this process may potentially involve
all the services of the space, even those which do not
contribute to generating b; an instance of tuple space at the
end of the answer generation is depicted in Figure 4.

B. Designing all compositions

The first approach may not stop in case of services whose
outputs generate a cyclic invocation of services, so additional
computations have to be executed to avoid loops during
the generation of a result. Moreover, there may be more
than one composition that leads at generating the result of
type “b” starting from a value “a” (i.e. several equations

T1
a = *

Tr1
b=f1(v))

Agent 
2

Application
Agent

T2
b = *

Agent 
1

Agent
3

T3
c = *

Tr2
c=f2(f1(v))

Tr3
d=f3(f2(f1(v)))

2

Tc
a=v
d=*

Agent
4

T4
b = *

Tr4
e=f4(f1(v))

Agent
5

T5
e = *

Tr5
e=f5(f4(f1(v)))

1 2

2

3

3

3

3

4

4

4

Tuple 
Space

Figure 4: Starting all services: generation of the requested
value. Continuos lines point out tuple triggering bonds with
other tuples in the space. Edge labels define instants of time
when tuples are created/activated. A query for a value of
type “a” (tuple T̄c) triggers the execution of all the services
but only tuple Tr3 is really used to carry on the result of
composition. In bold lines tuples related to services that are
activated in the process.

like Eq.(1)), so having the chance of selecting the sequence
of services to invoke could be useful for several reasons,
for example to satisfy level service agreements contracted
among applications and services.

Our second approach, summarised in Algorithm 3 and
Algorithm 4, is structured in two phases: the discovery
process and the request process. The former aims to discover
one or more candidate sequences of services invocation S̄seq

providing the requested composition, the latter leads to the
actual execution of S̄seq , invoking the specified services in
the right order. During the discovery process, every service
agent Ai keeps a property P̄il = (“neighbours”, Vil)
updated with the list of all the agents Az able to provide
the value xi as a result of a computation. We call them
“neighbours” because we refer to them as agents able to
provide something that can be taken as input by Ai during
a composition. For the sake of clarity, from now on, Vil is
treated as a vector. For such an agents, Ai also keeps in its
memory a local copy of each Vjl within a set named Li.
Input/Output: When the service agent Ai is created, it
inserts the tuple T̄i in the space:

T̄i = (P̄i1 , P̄i2 , P̄i3 , P̄il) where P̄i1 = (“ xi”, “ ∗ ”)

P̄i2 = (“ yi”, “Ai”) P̄i3 = (“xi”, “ ∗ ”)

P̄il = (“neighbours”, “”)

(2)



Tuple 
Space

T1
_a = *

_b = A1
a = *

neighbours= 
""

Agent 
2

T2
_b = *

_c = A2
b = *

neighbours= "
a:A1:b:A2:c"

Agent 
1

Agent 
3

T3
_c = *

_d = A3
c = *

neighbours= "
a:A1:b:A2:c;
b:A2:c:A3:d"

Agent 
4

T4
_b = *

_e = A4
b = *

neighbours= "
a:A1:b:A4:e"

Agent 
5

T5
_e = *
_f = A5
e = *

neighbours="
a:A1:b:A4:e;
b:A4:c:A5:f"

1

1

2

2

Figure 5: An instance of the tuple space at the end of
the discovery process. Solid lines point out bonds between
tuples of services during the reading of their property
“neighbour”. Edge labels define instants of time when tuples
are created/activated.

The first property is used to inform other agents Aj whose
input parameter “xj” equals the output parameter of Ai that
Ai provides in output a result of type “yi” that they can
take as input for a computation. Similarly, P̄i2 is used to
let Ai discover agents Az with “yz” = “xi”, i.e. services
that provide values that can be taken as input by Ai. The
character “ vi” before the name of a variable vi is a notation
used to highlight the purpose of the bond we are dealing
with: we do not want to read a value of type vi, we are just
interested in discovering which agent is able to provide that
parameter. P̄i3 is used by Ai to be bond with requests for
services accepting inputs of type ‘xi”.

Composition Design: At the beginning, P̄il is empty;
each time the agent Ai receives a notification of a bond
with a tuple T̄z , it looks for property P̄zl . If it is existing
and if the content of P̄zl has changed since last notification it
reads all the properties of T̄z , it merges its own Vil with Vzl

and finally it adds to Vil (if not contained yet) the following
value:

“Ai : yi : xz : Az : yz” (3)

This 5-tuple is stating that if a service or an application
passes a value of type “xz” to agent “Az” then it produces
a value of type “yz” accepted as input by “Ai”, which finally
generates an output of type “yi”. So given Ai, the invariant
property that holds during the update of Vil is the following:

∀e = “t : u : xw : Aw : z” ∈ Vil ∃yi, Ah1 , . . . , Ahn−1 :

yi = (fi ◦ fh1 ◦ · · · ◦ fhn−1 ◦ fw)(xw) ∀t, u, z

with Aw, Ah1 , . . . , Ahn−1 service agents. In other words, Vil

contains the list of all the agents that triggers the execution
of Ai when they produce a result. At the end of the discovery
process each service agent Ai contributes to defining a graph
of “relations of tuples”, which looks like the one depicted in
Figure 5. If that graph does not contain loops, almost every
Ai is going to have just a partial view of it, saving memory
resources.
Query: When an application agent Ac wants to obtain a
value of type “b” starting from a type “a” (Algorithm 3), it
first inserts a tuple T̄c:

T̄c = (P̄c) where P̄c = (“ b”, “ ∗ ”))

Ac is going to receive as many bond notifications as the
number of services providing “b”; this happens because of
property P̄i2 in Eq.(2). At this point Ac reads the tuple T̄i, it
extracts Vil and it finds a sequence S̄seq = (Az, . . . , Ai) of
services invocations from each service agent Az accepting
“a” (i.e. “xz” = “a”) to Ai; this is equivalent to solve the
shortest-path problem related to finding a path from a to b
in the graph described above. S̄seq acts like an activator for
services invocation, in the sense that it contains the list of
services that have to be invoked to provide the the answer
for a query. By knowing S̄seq , Ac starts the request process
by inserting a new tuple T̄ ′c:

T̄ ′c = (P̄c1 , P̄c2 , P̄c3) where P̄c1 = (“b”, “ ∗ ”),
P̄c2 = (“a”, a)P̄c3 = (“activator”, S̄seq)



T1
_a = *

_b = A1
a = *

neighbours= 
""

Agent 
2

T2
_b = *

_c = A2
b = *

neighbours="
a:A1:b:A2:c"

Agent 
1

Agent 
3

T3
_c = *

_d = A3
c = *

neighbours= "
a:A1:b:A2:c;
b:A2:c:A3:d"

Agent 
4

T4
_b = *

_e = A4
b = *

neighbours="
a:A1:b:A4:e"

Agent 
5

T5
_e = *
_f = A5
e = *

neighbours= "
a:A1:b:A4:e;
b:A4:c:A5:f"

Application
Agent

Tc
a = v
_d = *
d = *

activator="
A1:A2:A3"

Tr1
b = f1(v)

activator="
S2:S3"

Tr2
c = f2(f1(v))

activator="
S3"

Tr3
d = f3(f2(f1(v)))

activator=""

1

2

3

3

3

4 5

5
4

Tuple 
Space

Figure 6: An instance of the tuple space at the end of the
request process. Solid lines point out tuple triggering bonds
with other tuples in the space. Edge labels define instants
of time when tuples are created/activated. Bold lines tuples
relate to services activated during the composition. A request
for a value of type “d” activates a sequence of executions
that do not involve services 4 and 5.

Composition Activation: Each time a service Ai receives
a notification because of a bond related to the property P̄i3

in Eq.(2), it reads S̄seq from the tuple and it checks if its
identificator is present as first element of the sequence. If
not, it discards the notification. Otherwise, it reads xi, it
calculates yi = fi(xi), it removes the first element of S̄seq

producing S̄′seq and it finally inserts a new tuple T̄r:

T̄r = (P̄r1 , P̄r2) where P̄r1 = (“yi”, yi)

P̄r2 = (“activator”, S̄′seq)

The request process stops when the last agent of the se-
quence generates b, triggering a notification bond for Ac

which reads the tuple obtaining the final result. An instance
of the request process is shown in Figure 6.
Services Removal: We conclude this section showing how
to manage the removal of a service. When a service agent
Az is removed, its tuple T̄z has been removed as well from
the tuple space; in this case, every Ai having a bond with Az

receives a delete notification triggered by the bond chemical
reaction. Ai identifies what agent Az has disappeared, it
removes its local copy of P̄zl and then it updates P̄il as

follow:

H = {e = “s1 : s2 : s3 : Aj : s4” in Vil : Vzl ∈ Li}
Vil = (e1, . . . , en) where ej in Vzl ∨ ej in H,

Vzl ∈ Li for any s1, . . . , s4 ∀j = 1, . . . , n

After updating Vil , by using the bond chemical reaction, the
update is going to spread all over the agents by using the
same strategy used to provide the list of “neighbours” to
every service agent.

C. Reasoning on top of the compositions

In our third approach, the process of designing the best
composition of services to invoke procedure is entirely
performed through an intermediate agent, named “agent
proxy”, It takes care to realise the discovery process - in
a manner similar to our second approach - and to initialise
the request process.
Query: When a generic application wants to calculate a
value of type “b” starting from a value of type “a”, it
simply inserts a tuple T̄c containing three properties: one
for the input parameter, one for the output parameter and an
additional property triggering a bond with the proxy agent.
Composition Design and Activation: Once the proxy agent
receives a notification for a bond with an application, it



establishes a second bond with the service agent providing
the result, it calculates the sequence S̄seq and it inserts a
new tuple containing a, which starts the request process as
discussed in the previous section.
This third approach presents three important improvements:
application agents do not deal with the discovery process
anymore and the proxy agent may potentially pre-calculate
all the distinct compositions of services or store them,
speeding the discovery process. Moreover they may record
additional information about services, which contribute to
creating a global view of the features of the components
within the system. The first improvement simplifies the

Algorithm 3: Composition Design - query for values of
type “b” given input a: application agent Ac

OnApplicationInitialization():
insert T̄c = (P̄c) where P̄c = (“ b”, “ ∗ ”);

OnApplicationNotification():
if (tuple with bond contains a result) then

call OnApplicationRequestNotification();
else

Vil = read property “neighbours” from tuple;
define set St of agents in Vil accepting type “a”;
foreach (agent Aj ∈ St) do

calculate shortest path from Aj to Ai

end
S̄seq = get minimum shortest path;
insert tuple T̄i = (P̄c1 , P̄c2 , P̄c3) where
P̄c1 = (“b”, “ ∗ ”), P̄c2 = (“a”, a)
P̄c3 = (“activator”, S̄seq);

end
OnApplicationRequestNotification():

b = read input value from tuple;

design of an application agent, reducing its complexity. The
second one decreases the average amount of time to carry
out a discovery process: in case of n services with just one
input parameter, the number Nc of distinct compositions of
two or more services equals to n(n−1)

2 ; by using a cache of
Nc entries it is then possible to calculate the best sequence of
services just once. The third one ensures that the research of
the optimal sequence can take into account supplementary
metrics in addition to the number of services involved in
composition.

D. Generalization for services with n > 1 input parameters.

In this section we are going to show how to remove the
assumption about single parameter input, thus making our
approaches supporting any type of compositions, not only
sequences of compositions. Let us assume we are dealing
with the second strategy (the third would be approximatively
the same) and let Si be a service with input vector x̄i =
(xi1, . . . , xin), producing in output ȳi = (yi1, . . . , yim).

Input/Output: Every service agent Ai, during its initial-
ization, is going to insert the following tuple T̄i:

T̄i = (P̄i11 , . . . , P̄i1n , P̄i21 , . . . , P̄i2m , P̄i31 , . . . , P̄i3n , P̄il)

where P̄i1j = (“ xij”, “ ∗ ”) ∀j = 1, . . . , n

P̄i2j = (“ yij”, “Ai”) ∀j = 1, . . . ,m

P̄i3j = (“xij”, “ ∗ ”) ∀j = 1, . . . , n P̄il = (“neighbours”, “”)

Composition Design: The discovery process equals the one
reported in section IV-B except for the kind of properties
used; now each agent must export the interfaces for each
input and output parameter. Properties P̄i3j are used to create
bonds with tuples containing at least one input parameter:
during the bond notification it is up to the agent Ai to check
if a tuple contains all of the required inputs. This means
that a service can take as input a subset of the elements
contained in a (vector) result produced by another service.
The “neighbours” property P̄il now is going to contain
elements of the following type:

“Ai : yi1 : · · · : yim : xz1 : · · · : xzn : Az : yz1 : · · · : yzm”

which are the generalization of Eq.(3). Tuples are now
indexed by using a property P̄id ; they also define a prop-
erty P̄iR which contains a set of aggregation specifications
defining the synthesis of several tuples, allowing services
to take as input vectors containing results from several
service invocations. There exist two kinds of specifications;
the first ones are elaborated by service agents and they are
represented by strings of this type:

“idz : xz1 : · · · : xzm : idk” (4)

which are stating that if a service agent Ai is elaborating a
request triggered by a tuple with index idz containing input
parameters xz1, . . . , xzm then the tuple containing the result
has to be indexed with id idk. The second type are elaborated
by the Aggregate chemical reaction and are represented by
strings of this type:

“idz : idk” (5)

Specifications of this kind state that all tuples with index
idz

have to be merged together in a new tuple with index
idz . In other terms, specifications of type (4) identify results
whereas specifications of type (5) define a way to combine
them in order to obtain a vector of results to pass to another
service. During a computation of a service, properties P̄id

have to be copied in the tuple containing the result of the
computation; similarly, during an aggregation, specifications
for tuples being merged flow into the property P̄iR of the
final tuple. This way, specifications can be interpreted by all
the agents involved in a composition. An application agent
(or a proxy agent) has to calculate the right sequence of
service invocations for all the temporary results used in a
composition; this is performed again by using the discovery
process as mentioned before.
Query and Composition Activation: When this process



ends, the agent starts the request process creating as many
tuples as the number of input parameters needed in the
composition, each one containing the set of specifications
that leads up to the specified composition.
For example, let us assume that we have three services
represented by the following functions:

c = f1(a) d = f2(b) e = f3(c, d)

We want to calculate e knowing a and b. At the beginning,
the tuple space contains:

T̄1 = ((“ a”, “ ∗ ”), (“ c”, “A1”), (“a”, “ ∗ ”),

(“neighbours”, “”)) T̄2 = ((“ b”,= “ ∗ ”),

(“ d”, “A2”), (“b”, (“ ∗ ”)), (“neighbours”, “”))

T̄3 = ((“ c”, “ ∗ ”), (“ d”, “ ∗ ”), (“ e”, “A3”),

(“c”, “ ∗ ”), (“neighbours”, “”), (“d”, “ ∗ ”),

(6)

At the end of the discovery process, by solving two distinct
shortest-path problems, the application has discovered that e
can be produced from f3(c, d) with f1(a) and f2(b), values
calculated starting from a and b. At this point, it generates
the following set of specifications:

V1R = V2R ={“id1 : a : id3”, “id2 : b : id3”,
“id3 : id4”, “id4 : a : b : id5”}

then it starts the request process by inserting its main tuple:

T̄c = ((“e”, “ ∗ ”))

along with two additional tuples:

T̄c1 = ((“a”, a), (“activator”, (“A1”, “A3”)),

(“aggregator”, V1R)), P̄c1d) P̄c1d = (“id”, id1)

T̄c2 = ((“b”, a), (“activator”, (“A2”, “A3”)),

(“aggregator”, V2d)), P̄c2d) P̄c2d = (“id”, id2)

When service agent A1 generates b = f1(a) it creates T̄r1

associating it with index id3; A2 does the same, inserting c =
f2(b) in T̄r2 and setting the index id4. Finally the Aggregate
chemical reaction, applies the third specification, merges the
above-mentioned tuples producing:

T̄c11 = ((“c”, f1(a)), (“d”, f2(b)), (“activator”, “A3”))

It is important to note that the activator is always the same
for all the tuples being merged, so there is no additional
computation to update it. When T̄c11 is created, it triggers
a bond with T̄3 and the service agent A3 produces e in a
tuple with id id5; at this point, the application agent Ac

receives a notification and it reads the final result. This
process provides an automatic way for parallel execution of
services as soon as tuples containing their input vectors are
ready in the space.
The following theorem states that any composition of n ≥ 1
services can be defined by using specifications (4) and (5).

Theorem 1. Let f (n)(x1, . . . , xk) be a function of k pa-
rameters defined as composition of n ≥ 1 nested functions
(i.e. simulating f (n) on a machine with a pushdown-stack,
the stack reaches a depth equals to n at least once). Then
it exists a list Rn of specifications (4) and (5) which can be
used to realise f (n).

Proof: We proceed by induction on n.
Base n = 1 In this case, it exists g(x1, . . . , xk) such that
f (n)(x1, . . . , xk) = g(x1, . . . , xk). Let assume that the j-th
parameter xj is contained into a tuple with index idj . Then

R1 ={“id1 : idinput”, . . . , “idk : idinput”,

“idinput : x1 : · · · : xk : idg”}

This way, a new tuple containing the input vector
(x1, . . . , xk) is created and it triggers the execution of g,
which generates a tuple with index idg containing the result.
Step Hypothesis: for every f (i), with i ≤ n − 1, it exists a
set Ri of specifications to generate f (i).
We prove that Rn exists for f (n). In the most general case,
f (n) can be written as following:

f (n)(x1, . . . , xk) =

g(f1(x1, . . . , xk), . . . , fj(x1, . . . , xk)) with j ≥ 1
(7)

where fi either equals to a variable xh (for any h ∈
{1, . . . , k }) or it is a function f

(l)
i with l ≤ n − 1. For

the sake of completeness, since a service can use as input
any subset of the elements produced by another service,
Eq.(7) should be written making use of additional functions
to select the input parameters for service functions, in order
to make compositions compatible:

e(i1,...,im)
n (x1, . . . , xn) = (xi1 , . . . , xim)

im ∈ {1, . . . , n} ∀m ∈ {1, . . . , n}

As previously mentioned, agent receive notifications for
tuples containing at least one input parameter and at a later
stage they check the existence of the whole input vector, so
functions e(i1,...,im)

n have been implicitly hidden in functions
f (i) to make the equation more readable. There are two
possible cases.
Case j > 1 If fi equals to xh then the latter is contained
into a tuple with index idh, we add “idh : idtemp” to Rn. In
the second case, if the tuple containing the output of f (l)

i has
index idfi (for the inductive hypothesis the index in defined
in one specification of Rl), we add to Rn the specification
“idfi : x1 : · · · : xn : idtemp”. Moreover, for the inductive
hypothesis, for each f

(l)
i there exists a set of specification

Rl; we add all the elements of Rl to Rn. Now all the tuples
used as input by g have index idtemp, we have to merge them
within a single tuple, so we finally add “idtemp, idresult”
and “idtemp : y1 : · · · : yj : idg” to Rn; the first one
combines all the inputs for g into a single tuple, which will
trigger the execution of g. The second one assigns the index



idg to the tuple containing the value of the composition,
where yi = fi(x1, . . . , xk) for all i = 1, . . . , j (they can
be vectors, so for sake of clarity, in the specification we
consider their expansion in basic elements).
Case j = 1 In this case we have f (n)(x1, . . . , xk) =
g(f (n−1)(x1, . . . , xk)) and for the inductive hypothesis the
index of the tuple containing the result of f (n−1) must
have a index defined in Rn−1, let suppose id1. Then it is
sufficient to add the specification “id1 : y1 : idg” to Rn to
produce the tuple (with index idg) containing the result of
the composition. Again, y1 is the type of the value generated
by f (n−1).

E. Complexities of our approaches.
The complexities of our approaches are simple to calculate

if we do not consider metrics depending on the implemen-
tation of our model: this is the reason why, at first, we
are interested in the number of tuples inserted in the tuple
space used to generate an answer, since this metric is strictly
related to the number of services automatically executed to
to realise the desired composition. Let us assume that each
service agent generates a result that can potentially trigger
the execution of at most m service agents (information
depending on the topology of relations among services
represented in the tuple space); if a request generated by
an application involves the composition of d services then
the complexity of the first approach is:

c1,tuples ∈ O(dm)

By using the second and the third approach we obtain:

c2,tuples = c3,tuples ∈ O(d)

It is clear that in these cases, thanks to the discovery
process, the request is going to require just the execution
of services which take part in the generation of the final
result, so their complexity is linear. Regarding the approach
for services with more than one input, let assume that h is
the maximum number of inputs accepted by a service. By
using the activator property, the complexity cn>1,tuples is:

cn>1,tuples ∈ O(hd) = O(d)

Since we are dealing with a chemical tuple space, we may
also be interested in the number of chemical interactions
that are fired in each approach; so we know consider the
number of bonds triggered by our algorithms. By using the
same variables defined above, we obtain that the complexity
c1,bonds of the first approach is:

c1,bonds ∈ O(dm)

because a notification is sent for each service invocation.
For the second approach we have to take into account the
complexity for the discovery process and for the request
process, so we obtain:

c2,bonds ∈ O(d + m)

The first term is due to interactions that take place
among service agents to spread the “neighbours” proper-
ties, whereas the second term is related to the incremental
construction of the answer. If we assume that the number
of services does not change over time or this term is not
relevant, we obtain the same complexity associated with the
number of tuples inserted in the tuple spaces. Similarly, for
third approach we obtain:

c3,bonds ∈ O(h(d + 1) + m) = O(hd + m)

Algorithm 4: Request process - answer: service agent
Ai

OnServiceRequest():
S̄seq = read “activator” value from tuple;
if (firstElementOf(S̄seq) not equals to Ai)
then

wait for another notification;
end
xi = read input value from tuple;
calculate yi = fi(xi);
removeFirstElement(S̄seq);
S̄′seq = S̄seq;
insert T̄ri = (P̄r1 , P̄r2) where r1 = (“yi”, yi)

P̄r2 = (“activator”, S̄′seq);
OnServiceDeleteNotification():

identify agent Az removed from tuple space;
remove P̄zl from Li;
calculate H where
H = {e = “s1 : s2 : s3 : Aj : s4” in Vil : Vzl ∈ Li};
set Vil = (e1, . . . , en) where

ej in Vzl ∨ ej in H,Vzl ∈ Li ∀j = 1, . . . , n;

V. IMPLEMENTATION

A. SAPERE middleware

For the implementation of our tests, we have used the
SAPERE middleware [9], a framework that aims to support
the decentralised deployment and execution of distributed
adaptive and self-aware applications. The SAPERE model is
composed of: an LSA space, Eco-laws, an Eco-laws engine
and agents. The LSA space is a lightweight tuple space that
stores structured tuples named Live Semantic Annotations
(LSA), supporting their injection, removal, reading and
update. The LSA space is hosted in each node of the network
and LSAs can be moved from an LSA space to another.
LSAs are manipulated by chemical reactions named Eco-
laws; the Eco-laws engine is the active component that takes
care of activating Eco-laws periodically or when precondi-
tions for their invocations are satisfied. Beyond Bond, Decay
and Aggregate there exists an additional eco-law Spread



Name W.S. 1 W.S. 2 W.S. 3 W.S. 4 W.S. 5
Input gps-data gps-data city nation nation

Output city nation weather UTC season

Table I: Summary of our Web services.

for spreading LSAs among several LSA tuple spaces. Each
LSA is associated with an agent, a Java external entity
which interacts with the tuple space receiving notifications
for tuples and inserting, deleting, and updating them. An
application (for example a service) that wants to interact
with others implements one or more agents, uses them to
receives input data and to share the related outputs.

B. Case study

In order to validate our approach, we used the SAPERE
middleware to implement a case study with the approaches
discussed in this paper. We have developed five Web ser-
vices summarised in Table I. All Web services accept one
input parameter and produce one output and they provide
several information about a city, like weather forecast and
Coordinated Universal Time. We want to map this system
in our model in order to let self-compositions of services
produce data suitable for an application providing the GPS
position of the device which it is running on. In section IV
simple input-output values have been employed but in real
applications Web services have to be represented in the tuple
space using more descriptive interfaces. One of the most
easiest way to do it consists in using a tag-based system
to describe them, because of its ease and expressiveness
in defining values that will be matched to instantiate a
bond. Table II shows how interfaces are represented in LSAs
using an XML specification carrying additional information.
Depending on the selected approach, the parameters reported

Name Input/Output

W.S. 1 <param name=“gps.data” type=“vector.double(2)” />
<param name=“city” type=“string” />

W.S. 2 <param name=“gps.data” type=“vector.double(2)” />
<param name=“nation” type=“string” />

W.S. 3 <param name=“city” type=“string” />
<param name=“weather” type=“string” />

W.S. 4 <param name=“nation” type=“string” />
<param name=“UTC” type=“time” />

W.S. 5 <param name=“nation” type=“string” />
<param name=“season” type=“string” />

Table II: Interfaces of services interacting with the LSA
space.

in Table II may be inserted in the tuple space during the
invocation of a service or during the discovery and request
process. Thanks to the shared tuple space, to be reachable
by the others each service has just to instantiate an agent
that injects a tuple with the mentioned parameters. By
selecting the first approach, the development of applications
and service agents is simple. We are interested in using the

Name Offering/Requesting with “*” operator

application <param name=“gps.data” type=“vector.double(2)” />
<param name=“weather” type=“string” />

Table III: Implementation of an application agent interacting
with the LSA space.

Web services reported above to get weather forecasts for a
place whose latitude and longitude are known. The code of
the application is composed of a few lines of Java: it uses the
SAPERE middleware to create an agent that injects a tuple
with the values reported in Table III; the second property of
that tuple is filled with the “*” operator, in order to receive
the notification for a bond with W.S.3 when it produces
the weather forecast. When the agent inserts the LSA, the
SAPERE middleware automatically realises the composition
by using the mechanisms discussed so far; the application
agent has just to read the weather forecast from the tuple
for which it receives a notification bond. Even the code
of a service agent is quite short: during the initialization,
each service creates an agent that insert an LSA containing
a property requesting the input parameters for the service.
When the service agent receives a notification for a bond,
it reads the input variables from the tuple, it generates a
SOAP request for the Web service and finally it inserts the
related result in a new LSA when the latter is available. At
the end of the process, the LSA space contains the LSAs
reported in Table IV. Tuples with index belonging to range
1-5 are created during the initialization of service agents
and they are used to obtain the input parameters for each
service. When the application agent requests the weather
forecast, it inserts tuple 6, passing a vector filled with
latitude and longitude. This property triggers the execution
of all services; tuples 7 and 9 take part in the composition of
the result requested by the application agent, whereas tuples
8, 10 and 11 are inserted as a “side effect”, that is they
contain information that will be no useful. When tuple 9 is
inserted, a notification bond is delivered to the application
agent, which can read the result without dealing with its
generation within the LSA space.
When the second approach is selected, the LSA space is
quite similar to that one reported in Table IV but tuples
contain more complex properties mentioned in section IV-B.
Moreover, in this second case, tuples 8, 10 and 11 are
not created because the application agent uses the activator
property to select the right path to produce the composition
that it is looking for. Compared to the second approach, the
first one usually invokes unnecessary services, wasting mem-
ory resources and computing capacities of platforms hosting
services. Nevertheless, it might turn to be the faster when
several data are requested; in this case, injecting directly
the LSA and waiting for results may be more convenient
than resolving several shortest-path problems if the number
of services that have to be invoked is approximatively the



Tuple Properties
Tuple 1 [<param name=“gps.data” type=“vector.double(2)” />,“*”]
Tuple 2 [<param name=“gps.data” type=“vector.double(2)” />,“*”]
Tuple 3 [<param name=“city” type=“string” />,“*”]
Tuple 4 [<param name=“nation” type=“string” />,“*”]
Tuple 5 [<param name=“nation” type=“string” />,“*”]

Tuple 6
[<param name=“gps.data” type=“vector.double(2)” />,

(46.17502, 6.14010)]
[<param name=“city” type=“string” />, “*”]

Tuple 7 [<param name=“city” type=“string” />, Sydney]
Tuple 8 [<param name=“nation” type=“string” /> Australia]

Tuple 9 [<param name=“weather” type=“string” />,
Cloudy, Max Temp=17 C, Min Temp= 11 C]

Tuple 10 [<param name=“season” type=“string” />, Spring]

Tuple 11 [<param name=“UTC” type=“time” />,
17:59 UTC + 9]

Table IV: LSA space at the end of the request for weather
forecast.

number of services in the tuple space.

VI. CONCLUSION AND FUTURE WORK

In this paper we defined three approaches to realise
self-composition of services by using a chemical tuple space
where generic compositions of services are automatically
produced as products of several interactions of services, in
a distributed way, without any coordinator entity. Moreover,
if an application is requesting a result that has been already
computed, it will directly access to it, reducing the time to
receive the answer. The system reacts automatically when
services are added or removed and services involved in
compositions are automatically executed in parallel as soon
as their input tuples appear in the space. Interactions among
tuples are performed using a chemical approach, where the
presence of particular elements (properties within tuples)
fires a reaction (bond) with other tuples in the space. This
means that there must exists a background knowledge about
property names in order to let application and services built
on top of the space interact reciprocally. In this context,
future works about logic specification of service interfaces
could pave the way to logic based chemical reactions,
where interactions are fired if specific logic statements are
satisfied. In our work we have implicitly supposed that
the tuple space of the model was distributed and services
could be located in several nodes; nowadays efficient
implementations of distributed tuple spaces are available
for several system architectures ranging from clusters
([11]) to mobile architectures ([12]). Additionally, future
works will also focus on specific implementations of the
proposed approaches for non-distributed implementations:
for example, in the SAPERE middleware each node of the
network has its own LSA space and tuples can move across
several tuple spaces by using gradient based mechanisms,
thus supporting remote queries and answers.

ACKNOWLEDGMENT

This work has been supported by the EU-FP7-FET Proac-
tive project SAPERE Self-aware Pervasive Service Ecosys-
tems, under contract no.256873.

REFERENCES

[1] J. Rao and X. Su, “A survey of automated web
service composition methods,” in Proceedings of the First
international conference on Semantic Web Services and
Web Process Composition, ser. SWSWPC’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 43–54. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-30581-15

[2] G. Grondin, N. Bouraqadi, and L. Vercouter, “Madcar: An abstract
model for dynamic and automatic (re-)assembling of component-
based applications,” in Component-Based Software Engineering,
ser. Lecture Notes in Computer Science, I. Gorton, G. Heineman,
I. Crnkovi, H. Schmidt, J. Stafford, C. Szyperski, and K. Wallnau,
Eds. Springer Berlin Heidelberg, 2006, vol. 4063, pp. 360–367.
[Online]. Available: http://dx.doi.org/10.1007/1178356528

[3] M. Hellenschmidt, “Distributed implementation of a self-
organizing appliance middleware,” in Proceedings of the 2005
joint conference on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies, ser.
sOc-EUSAI ’05. New York, NY, USA: ACM, 2005, pp. 201–206.
[Online]. Available: http://doi.acm.org/10.1145/1107548.1107600

[4] Y. Gabillon, G. Calvary, and H. Fiorino, “Composing interactive
systems by planning,” in Proceedings of the 4th French-speaking
conference on Mobility and ubiquity computing, ser. UbiMob ’08.
New York, NY, USA: ACM, 2007, pp. 37–40. [Online]. Available:
http://doi.acm.org/10.1145/1376971.1376979

[5] N. Bonjean, M.-P. Gleizes, C. Maurel, and F. Migeon, “SCoRe:
a Self-Organizing Multi-Agent System for Decision Making in
Dynamic Software Developement Processes (short paper),” in
International Conference on Agents and Artificial Intelligence
(ICAART), Barcelonne, 15/02/2013-18/02/2013, 2013.

[6] R. Frei, T. erbnu, and G. Marzo Serugendo, “Self-organising
assembly systems formally specified in maude,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–20, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s12652-012-0159-2

[7] C. Di Napoli, M. Giordano, Z. Németh, and N. Tonellotto,
“Using chemical reactions to model service composition,”
in Proceedings of the second international workshop on
Self-organizing architectures, ser. SOAR ’10. New York,
NY, USA: ACM, 2010, pp. 43–50. [Online]. Available:
http://doi.acm.org/10.1145/1809036.1809047

[8] M. Viroli and M. Casadei, “Chemical-inspired self-composition
of competing services,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10. New York,
NY, USA: ACM, 2010, pp. 2029–2036. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774514

[9] G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli, “Pervasive
middleware goes social: The sapere approach,” in Proceedings
of the 2011 Fifth IEEE Conference on Self-Adaptive and Self-
Organizing Systems Workshops, ser. SASOW ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 9–14. [Online].
Available: http://dx.doi.org/10.1109/SASOW.2011.6



[10] F. Zambonelli, “Self-aware pervasive service ecosystems,” Proce-
dia Computer Science, vol. 7, pp. 197 – 199, 2011.

[11] A. Atkinson, “Tupleware: a distributed tuple space for
the development and execution of array-based applications
in a cluster computing environment,” Ph.D. dissertation,
University of Tasmania, Australia, 2010. [Online]. Available:
http://eprints.utas.edu.au/9996/

[12] E. Sarigöl, O. Riva, and G. Alonso, “A tuple space for social
networking on mobile phones,” in ICDE, 2010, pp. 988–991.


