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ABSTRACT

Feature Models (FMs) are used extensively in software prod-
uct line engineering to help generate and validate individ-
ual product configurations and to provide support for do-
main analysis. As FM construction can be tedious and
time-consuming, researchers have previously developed tech-
niques for extracting FMs from sets of formally specified in-
dividual configurations, or from software requirements spec-
ifications for families of existing products. However, such
artifacts are often not available. In this paper we present a
novel, automated approach for constructing FMs from pub-
licly available product descriptions found in online product
repositories and marketing websites such as SoftPedia and
CNET. While each individual product description provides
only a partial view of features in the domain, a large set of
descriptions can provide fairly comprehensive coverage. Our
approach utilizes hundreds of partial product descriptions to
construct an FM and is described and evaluated against an-
tivirus product descriptions mined from SoftPedia.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/
Specifications—Methodologies

General Terms

Algorithms, Management

Keywords
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1. INTRODUCTION
The use of Software Product Line (SPL) engineering is

becoming increasingly prevalent as a means to deliver high
quality products with a shorter time-to-market at reduced

costs [38]. According to the Software Engineering Institute,
SPLs “epitomize strategic, planned reuse, and represent a
way of doing business that results in order-of-magnitude im-
provements in cost, time-to-market, and productivity‘’ [26,
32]. An SPL is a set of software-intensive systems that share
a common, managed set of features developed from a com-
mon set of core assets in a prescribed way [16, 29]. SPL
engineering aims to support the structured reuse of a wide
range of software artifacts including requirements, design,
code, and test cases [8, 12, 21, 29].

Feature Models (FMs) are one of the most popular for-
malisms for modeling and reasoning about commonality and
variability of an SPL [17]. Depending on the level of abstrac-
tion and artifacts described, features may refer to a promi-
nent or distinctive user-visible characteristic of a product or
to an increment in a software code base [8, 7, 15]. A re-
cent survey of variability modeling showed that FMs are by
far the most frequently reported notation in industry [10].
Several academic or industrial tools have been developed
to specify them graphically or textually and automate their
analysis, configuration or transformation [30, 11, 9, 3, 37,
14]. FMs hierarchically organize a potentially large number
of concepts (features) into multiple levels of increasing de-
tail, typically using a tree. Variability is expressed in terms
of mandatory, optional and exclusive features as well as log-
ical constraints over the features. The conjunction of con-
straints expressed in an FM defines the set of all legal config-
urations of an SPL [19]. This is illustrated in Table 1 which
lists all valid configurations for the FM shown in Figure 1.

SPL engineering includes two phases of domain engineer-
ing and application engineering [38]. Domain engineering
involves analyzing a specific domain, discovering common-
alities and variabilities, and then constructing core assets
which will be used across the entire SPL [34]. In contrast,
application engineering is concerned with building a specific
product based upon the core assets of the product line. In
this paper we focus on the process of constructing an FM as
part of the domain engineering process. This process can be
exceedingly time-consuming, yet can provide support dur-
ing the domain engineering phase to help configure prod-
ucts, design a new family of products, expand an existing
product line, or simply provide inputs into the requirements
elicitation phase of a single application process.

Given the arduous nature of manually constructing FMs,
the SPL research community has shown significant inter-
est in the ability to automatically generate FMs from exist-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2491455

290



Phone

Camera Connectivity

Bluetooth WI-FI

implies

Figure 1: FM example
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Table 1: Configurations for the FM above

ing data. There are several examples of prior work in the
area. Czarnecki et al. [18] introduced probabilistic FMs and
provided an extraction procedure that mined propositional
formulas and soft constraints from a set of multiple config-
urations. However, their approach assumed that products
were already formally described as sets of features. Sim-
ilarly Acher et al. [2] described a way of extracting FMs
from product descriptions but their approach assumed the
availability of formal and complete descriptions of products
as configurations of features. Chen et al. and Weston et
al. described techniques for extracting an FM from infor-
mal specifications ([13], [39]). This approach is particularly
useful in cases where an organization has an existing set
of individual products and wishes to move towards an SPL
approach. However, it also has certain limitations, because
the constructed FM is constrained to the set of features de-
scribed in the SRS for the existing set of products.

In this paper we focus on the scenario in which an orga-
nization has no existing product descriptions and must rely
upon publicly available data from websites such as SoftPe-
dia1, CNET2, and MajorGeeks3, which provide feature lists
for hundreds of thousands of products [22]. However, such
product descriptions are generally incomplete, and features
are described informally using natural language.

The task of extracting FMs from informal data sources
involves mining feature descriptions from sets of informal
product descriptions, naming the features in a way that is
understandable to human users, and then discovering rela-
tionships between features in order to organize them hier-
archically into a comprehensive model. In this paper, we
base the feature extraction technique on our previously de-
veloped approach [22], and then introduce a novel technique
for generating an FM from the set of extracted features. We
describe and validate our approach using product descrip-
tions for antivirus products mined from SoftPedia.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a general overview of our approach, while

1http://www.softpedia.com/
2http://download.cnet.com/windows/
3http://majorgeeks.com/

Section 3 describes feature modeling in general. Sections 4
and 5 describe the two main phases of our approach, namely
feature mining, and subsequent construction of the FM. Sec-
tion 6 describes results from the evaluation process, while
Section 7 discusses possible threats to validity. Finally Sec-
tion 8 describes related work, and Section 9 provides an
analysis of our results and proposes ideas for future work.

2. OVERVIEW
Our approach is summarized in Figure 2 and consists of

two primary phases. In the first phase, software features are
discovered from a set of informal product descriptions, while
in the second phase the FM is constructed.

2.1 Mining Features
In step ¶, product specifications are mined from online

software repositories. We used the Screen-scraper utility to
scrape raw product descriptions for 165 antivirus products
from Softpedia. In step ·, these product specifications are
processed in order to identify a set of features and to gener-
ate a product-by-feature matrix P ×F in which the rows of
the matrix correspond to products and the columns corre-
spond to features. The (i, j)th entry of this matrix can take
a value of 0 or 1, to represent whether the ith product is
known to include the jth feature or not. Given the informal
and incomplete nature of the product descriptions,we can-
not differentiate between the case in which a feature is not
included in the product, versus the case in which the feature
is present in the product but not listed in the description.
One of the challenges of our approach is therefore to con-
struct an FM from relatively large quantities of incomplete
information. In step ¸, meaningful names are selected for
the mined features.

2.2 Building Feature Model
In the second phase, the product-by-feature matrix is used

to infer feature associations and to create the FM. This pro-
cess requires creating some intermediate structures. In step
¹ a set of association rules are mined for the features. In
step º these association rules are used to generate an impli-
cation graph (IG) which captures binary configuration con-
straints between features. In this context, the IG is a di-
rected graph in which nodes represent features, and an edge
exists between two features f1 and f2 if the presence of f1
in a configuration implies the presence of f2. In step »,
the tree hierarchy and then the Feature Diagram (FD) are
generated given the IG and the content of the features. Fi-
nally, step ¼ identifies cross-tree constraints (CTCs) and
OR-groups of features. These two elements, in addition to
the FD generated in step », form the FM.

3. BACKGROUND
Before describing our approach in greater detail, we il-

lustrate different types of syntactical constructions used in
FMs and we present the underlying formalism. An FM is a
hierarchical organization of features that aims to represent
the constraints under which features occur together in prod-
ucts configurations. Returning to the example of Figure 1,
the FM is depicted using the standard visual notation and
aims to represent a family of mobile phones. Each combina-
tion of features (a.k.a. configuration) that does not violate
the constraints of the FM corresponds to a specific prod-
uct, for instance, a mobile phone that exhibits the features
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Figure 2: Fully automated, two-step process: min-
ing features and building FM

Connectivity, Bluetooth and Camera (see also Table 1) is
a valid product. Figure 1 shows some of the constructions:
every mobile phone has a Connectivity feature, the presence
of a Camera is optional, a mobile phone supports at least
Bluetooth or WI-FI (and possibly both of them). Finally,
the presence of a Camera implies the presence of Bluetooth.
Importantly, the hierarchy imposes some constraints: the
presence of a child feature in a configuration logically im-
plies the presence of its parent (e.g., the selection of Blue-
tooth implies the selection of Connectivity). The hierarchy
also helps to conceptually organize the features into different
levels of increasing detail. Specifically, relationships between
a parent and its child features can be as follows:

1. Mandatory The presence of the parent fea-
ture in a configuration implies the presence
of the child feature.

2. Optional The child feature may or may not
be present in a configuration which contains
its parent feature.

3. OR If the parent is selected, then at least
one of its child features must be selected.

4. XOR If the parent is selected, exactly one
of the child features should be selected.

Formally, an FM is composed of an FD and a set of Cross-
Tree Constraints (CTCs) (see definition hereafter). The FD
of an FM is a tree representing the hierarchical structure
among features as well as variability information exposed
above. CTCs are additional configuration constraints that
cut through the tree structure of the FD. In line with [1, 6],
we define these concepts as follows:

Definition 1. An FD is a tuple FD (F, E, Em, Go, Gx)
where (i) F is a finite set of features and E ⊆ F × F repre-
sents the set of edges from child features to their parents so
that (F,E) forms a tree (ii) Em ⊆ E is a set of mandatory
edges; (iii) Go and Gx represent the sets of OR-groups and
XOR-groups respectively. These are sets of non-overlapping
subsets of E so that all the edges from the same subset of
E share a common parent feature.

There exists two kinds of CTCs. (i) Implies constraints
are binary implications between two features (A⇒ B). Fig-
ure 1 gives an example of an implies CTC between the fea-
tures Camera and Bluetooth. (ii) Excludes constraints ex-

Table 2: Features from an Antivirus Product
Safepay Keeps hackers at bay by automatically open-

ing online banking pages in a separate, secure
browser.

Dashboard See all the status and licensing information about
your software and services in your own, MyBitde-
fender dashboard. Now accessible from anywhere,
anytime, from any Internet-connected device.

Security Widget Enables you to keep track of all of your secu-
rity related tasks, plus lets you quickly and easily
drag-and-drop files for quick scanning for viruses
right from your desktop!

Parental Blocks inappropriate content, restricts Web
Control access between certain hours, and helps you re-

motely monitor your children’s online activity
even on Facebook!

USB Immunizer Immunizes any Flash Drive from viruses, when
they are connected to your computer, so that you
never worry again about USBs infecting you.

Active Proactive, dynamic detection technology which
Virus Control monitors processes behavior in real-time, as they

are running, and tags suspicious activities.

press that the presence of a feature in a configuration implies
the absence of another feature (A⇒ ¬B).

4. FEATURE MINING
To mine features from a database of software specifica-

tions we adopted an approach used in our previous work
[22] in which we constructed a feature recommender sys-
tem based on features described using natural language and
mined from SoftPedia. However, our prior work made no
attempt to construct a more formal FM, which is the focus
of this current paper. Furthermore, we replace the previous
feature naming algorithm to generate names more suited to
appearing in an FM. In this section we summarize the pro-
cess used to mine features from product descriptions.

4.1 Mining Raw Feature Descriptors
Raw feature descriptors are retrieved from a repository of

software products. For purposes of this paper the Screen-
scraper utility was used to scrape the raw software descrip-
tions of 165 antivirus products from softpedia.com. Softpe-
dia products tend to include a general product description
followed by a list of bulleted items describing specific fea-
tures. The set of feature descriptors for each product was
extracted by parsing the software description into sentences
and adding the items in the bulleted list of features. There
were a total of 4,396 descriptors mined from the antivirus
category. Table 2 provides examples from one particular
product. It is important to note that similar features are
described using very different terms, and furthermore that
the list of descriptors for each product is incomplete.

4.2 Preprocessing
In preparation for feature extraction, all of the feature

descriptors were preprocessed by stemming each word to
its morphological root, removing stop words (i.e., extremely
common words such as this and provides). The remaining
descriptor was then modeled as a vector of terms, in which
each dimension of the vector corresponds to one of the terms
in the vocabulary. We use the tf-idf (term frequency - in-
verse document frequency) scheme to assign a weighting to
term t in descriptor d as follows:

wt,d = tft,d ∗ log(
N

dft
) (1)
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Table 3: Features Published on SoftPedia for a Selection of Typical Antivirus Products
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Active detection of downloaded files • • • • • • • • • • • • • • • • • • • • • • • • • • •

Active detection of instant messenging • • • • • • • • • • • • • • • • • • •

Active detection of removable media • • • • • • • • • • • • • • •

Active detection of search results • • • • • • • • • • • • • • • • • • • •

Anti-Root kit scan • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Automatic scan • • • • • • • • • • • • • • • • • • • •

Automatic scan of all files on startup • • • • • • • • • • • • • • • • • •

Automatic updates • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Behavioral Detection • • • • • • • • • •

Command line scan • • •

Contain viruses in specific quarantine • • • • • • • • • • • • • • • • • •

Customized firewall settings • • • •

Data encryption • • • • • • • • • • • • • • •

....

Note: This table was manually compiled by researchers at DePaul university through inspecting antivirus product listings at http://www.SoftPedia.com.
It therefore only includes features listed on SoftPedia (REF original source ICSE 2011)

where, tft,d represents the number of times that term t

occurs in d, dft is the number of descriptors that contain
term t, and N is the total number of descriptors.

4.3 Feature Formation
To identify coherent features, we first determined the sim-

ilarity of each pair of descriptors through computing the in-
ner product of their corresponding vectors. The resulting
similarity scores were then used to cluster descriptors into
similar groups in which each group represents a feature. We
adopted a two-stage Spherical k-Means (SPK-Means) clus-
tering algorithm [20] which has previously been shown to
perform well for clustering features [22]. The first stage is
similar to the K-Means clustering algorithm which starts
by randomly selecting k centroids, where k is the desired
number of clusters. In each iteration of K-Means cluster-
ing, each of the instances is assigned to the nearest cluster
and at the end of the iteration each centroid is recomputed
based upon its assigned set of descriptors. This iterative
process continues until the centroids stabilize. The second
stage of the SPK-Means clustering involves the incremental
optimization of the objective function through an iterative
process. At each iteration, one of the instances is randomly
selected and moved to another cluster to maximize the gain
of the objective function. The centroids are then updated
and this process continues until convergence.

4.4 Naming the Feature
For purposes of constructing an FM, the clusters represent

features which will be presented to human users and must
therefore be assigned meaningful names. Based on infor-
mal experimentation we developed a cluster-naming process
that involved selecting the most frequently occurring phrase
from among all of the feature descriptors in the cluster. This
approach is similar to the method presented in [25] for sum-
marizing customer reviews. To identify the most frequently
occurring phrase we use the Stanford Part-of-Speech (POS)
tagger4 to tag each term in the descriptors with its POS.
The descriptors are then pruned to retain only nouns, ad-
jectives, and verbs as the other terms were found not to add
useful information for describing a feature.

4http://nlp.stanford.edu/software/tagger.shtml

Frequent itemsets are then discovered for each of the clus-
ters. In this context, frequent itemsets are sets of terms that
frequently co-occur together in the descriptors assigned to
the same cluster. More formally, the support of an itemset
I is the number of descriptors in the cluster that contain
all the terms in I. Given a pre-determined itemset support
threshold, s, I is considered frequent if its support is equal
or larger than s. We set this threshold to be 25% of the
total number of descriptors in each cluster.

Various algorithms exist for mining frequent itemsets in-
cluding the Apriori [4] and FPGrowth [23] algorithms. We
chose to use FPGrowth as it is shown to be memory-efficient
and hence suitable for the size of our data set.

To select the name for a cluster, all of its frequent item-
sets of maximum size, FISmax are selected. Next, all feature
descriptors in the cluster are examined. In each feature de-
scriptor, the shortest sequence of terms which contains all
the words in FISmax is selected as a candidate name. For
example, let FISmax = {prevents, intrusion, hacker}. For
a given feature descriptor such as: prevents possible intru-
sions or attacks by hackers trying to enter your computer,
the selected candidate name is prevents possible intrusions
or attacks by hackers. Finally, the shortest candidate name
is selected, as this reduces the verbosity of the feature name.

5. BUILDING THE FEATURE MODEL
This section describes the algorithm used to automatically

construct the FM (see Algorithm 1). It takes as input the
product-by-feature matrix created during the feature min-
ing phase and the set of feature descriptors assigned to each
feature cluster. The complete process was derived incremen-
tally through a series of informal design and evaluation iter-
ations. We present only our final algorithm here, although
two variants are compared in Section 6 of this paper.

The logical constraints have largely influenced our adopted
process. We first utilize binary implication rules between
features to construct a so-called implication graph (more de-
tails are given hereafter), then add disjunctive rules to com-
plete the implication graph, and finally perform additional
processing to transform it into a complete FM (including
the synthesis of OR-groups and CTCs). The main steps of
the algorithm are now briefly explained.

Mining feature associations The first step of the pro-
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cess involves mining association rules between features (lines
2-5 in Algorithm 1). Two types of association rules are
mined: binary implications and disjunctive rules.

Implication graph The binary implications are used to
build an implication graph (line 7), defined as a directed
graph in which nodes are features and edges represent log-
ical implications between features. Because the implication
graph is a directed graph, it does not present the look-and-
feel of an FM in which features are grouped and arranged
in a hierarchical fashion. In fact every possible hierarchy
represents a spanning tree of the implication graph.

Extraction of feature hierarchy The next step is to
find subgroups of features. To accomplish this task we uti-
lized the SPK-Means clustering algorithm to group features
into N clusters such that features in the same cluster are
similar in textual content (line 9). The implication graph is
then split into N subgraphs, representing the N identified
clusters (line 12). This is accomplished through removing
the edges that connect features across different clusters and
adding them to a set of CTCs. We then utilized the Agape5

library of graph algorithms to look for the strongly con-
nected components (SCCs) in each of the subgraphs using
Tarjan’s algorithm [35] (line 13). Next, FDs are built for
each of the subgraphs (line 14). The final FD is then built
by merging these individual FDs. Associations between the
different FDs are identified through mining an additional
set of association rules at the cluster level (line 16). We
substitute each feature by the cluster it belongs to in the
product-by-feature-matrix before re-executing the associa-
tion rule mining algorithm. These associations are then used
to aggregate the FMs (lines 17-20).

Recovery of CTCs and OR-groups. In the final step,
OR-groups and CTCs are recovered (line 22).

These steps are explained in greater detail below.

5.1 Mining Feature Associations
There are various kinds of associations between software

features in a domain. Having a dataset of valid configura-
tions, association rule mining methods can be exploited to
identify these associations. These algorithms were originally
proposed for market basket analysis in order to identify the
relations between shopping items. For example, a rule in
the form of flour ⇒ egg indicates that customers who buy
flour are likely to buy eggs as well. The rules are discovered
based on a database of customers’ shopping transactions.

To discover the association rules for features, the product-
by-feature matrix, P × F , is used as the training data to
discover the relationships between the features. Each row
of this matrix corresponds to a product, and therefore rep-
resents a potentially incomplete, yet otherwise valid config-
uration of features. Mining association rules is a two-step
process. The first step is to discover the frequent itemsets
(as explained in section 4.4), while in the second step, asso-
ciation rules are generated for the set of frequent itemsets.

Given an association rule in the form of A⇒ B, A and B

are both frequent itemsets and A ∩ B = ∅. The support of
this rule indicates the proportion of transactions that con-
tain both itemsets A and B:

support(A⇒ B) =
|S(A ∪B)|

|S|
(2)

5https://traclifo.univ-orleans.fr/Agape/

Algorithm 1 Feature Model Extraction

1: ◮ Association rules mining
2: function AssocRules(P,MIS)
3: F ← CFP −Growth(P,MIS) ⊲ Frequent Itemsets
4: A← Agrawal(F,MinSup)
5: return A

6: ◮ Implication graph
7: G(V,E)← IG(AssocRules(Configurations,MIS))

8: ◮ Clustering the features
9: C ← SPK −Means(Features)

10: ◮ Building FDs for the clusters
11: for i← 1 to n do ⊲ Number of clusters
12: Gi ← SubGraph(G,Ci) ⊲ Cluster i
13: SCCi ← StronglyConnectedComponents(Gi)
14: FDi ← FeatureDiagram(Gi, SCCi)

15: ◮ Aggregating the FDs
16: A← AssocRules(ConfigsClusters,MISClusters)
17: G← merge({FD1, . . . , FDn}, A)
18: SCC ← StronglyConnectedComponents(G)
19: FD ← FeatureDiagram(G,SCC)
20: FD ← PrimeImplicates(FD)

21: ◮ Recovery of CTCs and OR-groups
22: CTC ← G−MG ⊲ Cross-Tree Constraints

where S is the multiset of all transactions and S(A ∪ B)
is the multiset of transactions that contain both A and B.

Given a predefined threshold value, σ, rules which have
support ≥ σ are accepted.

The confidence of this rule indicates the proportion of
transactions that contain itemset B among the transactions
that contain the itemset A.

confidence(A⇒ B) =
support(A ∪B)

support(A)
(3)

The FM is constructed based on binary implications and
disjunctive rules.

5.1.1 Binary Implications

A binary implication f1 → f2, expresses an implication
between two single literals, and is discovered through mining
frequent itemsets. Standard approaches for mining frequent
itemsets utilize a single minimum support threshold; how-
ever this can be problematic. Setting the threshold too low
produces false positives, i.e. frequent itemsets that are not
representative of actual co-occurrence patterns of features.
On the other hand, setting the threshold too high, results in
false negatives, i.e. patterns of feature co-occurrence which
are not captured as frequent itemsets.

This situation is particularly common when the distribu-
tion of features over the dataset is not normal and some
of the features occur frequently while others appear rarely
in transactions. To deal with this problem, we use the
CFP-growth algorithm ([27]) which allows multiple mini-
mum support values to be used to mine frequent items sets.
We tweaked the different minimum support values of the
features until they all appeared in the association rules.
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Figure 4: Implication Graph divided in subgraphs after clustering

Agrawal’s Apriori algorithm [4] was then applied to discover
the association rules in order to discover binary implications.

5.1.2 Disjunctive Rules

A disjunctive rule f1 → f2∨f3∨...∨fn, represents an im-
plication from a single literal to a clause (i.e., a disjunction
of literals). The disjunctive rules are found by identifying
prime implicates among features. A clause C is an implicate

of the logical expression e, iff C is not a tautology and e ⇒ C

is a tautology. An implicate C of expression e is said to be
prime iff there is no clause C′ obtained by removing any
literal from C such that C′ is an implicate of e. By observ-
ing whether disjunctions of features are prime implicates,
we identify OR-groups of minimal size among features. Dis-
junctive rules for which the features in the prime implicate
share a common parent in the hierarchy are represented as
OR-groups. In case of an incomplete dataset, a threshold
can be tuned so that the disjunctive rules involved in the
computation of the prime implicates are the rules with a
support higher than this given threshold.

5.1.3 Exclusion Clauses

While FMs generally include exclusion clauses in the form
f1 → ¬f2, the nature of the informal product descriptions
used in our approach makes this infeasible. This is be-
cause, as previously explained, the absence of a feature in
the product-by-feature matrix does not differentiate between
the case that the feature is not present versus the case in
which the feature is not described in the product descrip-
tion. Therefore, our procedure does not include the mining
of exclusion clauses.

5.2 Mining the Implication Graph
The set of binary implications can be represented as an

Implication Graph in which nodes represent features and a
directed edge connects f1 to f2 for each implication f1 → f2.
Figure 3 shows an example of an implication graph which
was automatically generated for a subset of features for the

antivirus category of products in our dataset. However, in
this example, feature names were assigned manually. Later,
we provide examples of automated feature naming.

Association rules are a form of partial implication be-
tween features. Deterministic association rules are impli-
cations with 100% confidence; while non-deterministic rules
have confidence of less than 100%. This is reflected in the
weights assigned to the directed edges connecting any two
given features f1 and f2 in the implication graph. Each
weight represents the confidence of the rule f1 → f2.

Given the incomplete product data mined from Softpedia,
and the sparsity of the resulting product-by-feature matrix,
it is necessary to consider association rules with confidence
lower than 100%. Our product-by-feature matrix contains
165 products for 80 features with an average of 6.5 features
per product. Certain features appear in as few as five prod-
ucts, and no pair of features occur together with a confidence
of 100%. Therefore in order to build a dependency struc-
ture, it was necessary to reduce the confidence threshold to
a value below 100%.

AND-groups. In the implication graph, there exists sets
of features that are mutually implied and have a common
parent. They form a so-called AND-group. All these groups
can be determined by identifying Strongly Connected Com-
ponents (SCC) in the implication graph. A SCC in a graph
G is a subgraph ofG in which a path exists in both directions
between each pair of nodes in the subgraph. AND-groups
can be synthesized as mandatory features in an FD when-
ever the parent-child relationships between them have been
determined (see next section).

We reduce the implication graph by merging all the nodes
in the same SCC. These merged nodes represent conjunc-
tions of features and form AND-groups. For example in
Figure 3, anti-spyware, removes keylogger and removes tro-
jan form a SCC and can be merged together. The AND-
groups are then included in the new resulting implication
graph (see Figure 4).
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5.3 Extraction of Feature Hierarchy
Given an implication graph, there are many potential fea-

ture hierarchies (and thus FDs) which could be extracted.
The challenge is to identify the diagram that will ultimately
produce the “best” hierarchy. It is well known that differ-
ent groups of people will organize features in different ways
and therefore produce a variety of hierarchies from the same
set of features. The problem is not only identifying a sin-
gle correct hierarchy (i.e., a spanning tree), but also finding
a good one which organizes features in a meaningful way.
One viable approach is to treat the extraction process as a
spanning tree optimization problem.

Our approach selects the final feature hierarchy using a
combination of text-mining and co-occurrences between fea-
tures. First, the SPK-Means clustering algorithm clusters
features into N clusters according to terms used in their as-
sociated feature descriptors. We used the same approach
as in our prior work [22] to set the number of clusters (N).
This clustering step is conducted because in many cases,
human-created FMs include subtrees of related features. For
each cluster, we then extract the subgraph of the implica-
tion graph that contains all the features belonging to this
cluster, and only those. Therefore we can reduce the scope
of possible FDs to a selection of N FDs from N subgraphs of
the implication graph. For example, the implication graph
shown in Figure 4 shows the division of the implication graph
in Figure 3 into three subgraphs. Each one of the three
FDs selections is realized by applying Edmonds’ optimum
branching algorithm ([36]) to the subgraph, which can be
seen as a Minimum Spanning Tree algorithm for a directed
graph. In our case the weights of the edges are conditional
probabilities between feature occurrences and the algorithm
is used to compute maximal trees.

For each subgraph, an artificial root node is added and el-
ements under the root form an OR-group. Each node in the
subgraphs represent features, except for these artificial roots
which are abstract nodes that are similar to those created by
experts when they write FMs manually. Graphically, we rep-
resent these artificial roots as boxes containing the themes of
the clusters (i.e., the words that were attributed the greater
TF-IDF weights in the vector space representation of the
clusters). Figure 5 shows three examples of these auto-
matically generated abstract nodes : scan, detection, files,
spyware, protection and mail, spam. Finally, all the result-
ing FDs need to be connected together into a single system-
wide FD. This is accomplished by mining association rules
between clusters from the product-by-feature matrix. This
additional association rule mining phase requires the fea-
tures in the dataset to be replaced by the clusters they be-
long to. The mined association rules indicate how to connect
the artificial roots of the FD together with directed edges.
Edmonds’ algorithm is applied again to the overall graph
in order to reduce it to a tree. In other words, connecting
different FDs can be seen as the construction of a tree struc-
ture between the abstraction nodes: first the tree structure
is formed between the abstract nodes by mining association
rules and by applying Edmonds’ algorithm. Next, for each
abstract node, the FD containing its successors’ is added to
the tree.

Finally, nodes that were previously merged as conjunc-
tions of features (thus forming AND-groups) can now be
unfolded. To accomplish this, one of the conjunctions must
be chosen as the parent of the group. Given an AND-group,

we define the parent feature as the feature that maximizes
the minimal co-occurrence with other features of the group
in the dataset. Formally, the parent feature f maximizes the
number of configurations involving f and any other feature
of the AND-groups. For example as shown in Figures 4 and
5, anti-spyware is selected as parent of the group.

Our clustering approach aims to ensure that features cov-
ering similar aspects of the domain are close to each other
in the FD. Furthermore, our initial informal observations of
several variants of these algorithms suggested that the au-
tomatic creation of abstraction nodes reduces the cognitive
complexity of the final model.

5.4 Recovery of CTCs and OR-groups
At this point, a tree structure showing the relationships

between features and abstraction nodes has been constructed.
In addition, mandatory relationships have been synthesized
and an FD without feature groups has been created. Some
of the disjunctive rules that have previously been mined can
be represented as OR-groups in the FD. These are the dis-
junctive rules for which the antecedent feature is the parent
of all its consequent features in the FD : f1 → f2∨f3∨...∨fn
where f1 is the parent of f2 , f3 , ... , fn. Unfortunately,
for a large dataset, computing prime implicates can become
infeasible in practice. However, if we are primarily inter-
ested in finding OR-groups in the FD instead of looking for
all disjunctive rules from the dataset, then performance can
be increased by reducing the task to consider only features
sharing a common parent in the hierarchy [6]. Algorithm 1
shows the computation of prime implicates after elicitation
of the feature hierarchy, at line 20. When the scope of OR-
groups mining is reduced, it becomes feasible to compute
prime implicates in a brute-force manner - i.e., by counting
co-occurrences between the parent feature and disjunctions
of its children in the dataset in order to find OR-groups of
minimal size. Furthermore, once the implication graphs and
the FD are known, the cross-tree constraints can be easily
deduced. The FD coupled to the conjunction of cross-tree
constraints form a FM, as defined in Section 3.

6. EVALUATION
To evaluate the quality of the generated FMs we first ex-

plored the possibility of creating a “golden answer set” and
then comparing our FM against this standard. For this ap-
proach to be viable it would be necessary for multiple users
to manually construct similar FMs given an initial group of
features. As an initial feasibility study we asked two dis-
tinct pairs of users to construct an FM for the antivirus
domain. Each pair was given a brief introduction to feature
modeling, so that they had a solid understanding of the ex-
pected hierarchy, optional and mandatory relationships, as
well as OR-groups. In separate sessions, each pair was given
the same list of features (taken from our product-by-feature
matrix) and was asked to organize these features into an
FM using a whiteboard. The participants were not required
to create cross-tree constraints. Each pair of users took ap-
proximately four hours to complete their task.

While we did not ask the users to to follow any specific
process, both pairs approached the problem by creating clus-
ters of features related to similar topics, and then creating
a hierarchy that connected these clusters. While there were
several similarities in the way the two pairs created clusters,
the final hierarchical organization of the two FMs was quite
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Figure 6: Group of features shown in the evaluation

different. As a result of these observations we decided that it
would not be appropriate to compare our approach against
a single golden-standard.

We therefore adopted a more direct evaluation technique
in which we asked several graduate students familiar with
feature modeling to critically evaluate parts of four different
FMs. These FMs included one FM automatically gener-
ated using only association rules and the computation of a
maximal tree based on the conditional probabilities between
features occurrences (which we refer to as the probabilis-
tic approach), the two manually constructed ones, and the
one generated by our algorithm (which we refer to as the
clustered approach. We created four surveys and two par-
ticipants were assigned to each one. Each survey included
questions taken from each of the FMs; however the partici-
pants were not informed of the source of each question. Each
question was asked in the context of a specific parent-child
relation or the grouping of features, such as the automati-
cally generated features depicted in Figure 6). The study
included 25 questions and was completed by 8 users at an
average completion time of approximately one hour.

The first group of questions in the survey were designed
to evaluate the quality of groups of features, and read: “On
a scale of 1-5 with 5 being the HIGHEST, please provide an
overall rating for the group as a whole. A score of 5 means
that the group is cohesive i.e. all features belong together in
this group, while a score of 1 means that the group is not very
meaningful at all”. Results from this question for the three
types of FM are reported in Figure 7(a) and show that the
evaluators assigned an average rating of 4.05 to groupings
in the manually constructed FMs, 3.54 to the clustered FMs
(our approach), and only 2.94 to the probabilistic FMs.

The second group of questions were designed to evaluate
the quality of the parents for each feature group. The ques-
tion read: “On a scale of 1-5 with 5 being the HIGHEST,
please provide an overall rating for the parent of the group.

A score of 5 means that the parent captures the essence of
the features in the group and a score of 1 means that there
is no obvious relationship between the parent and its child
nodes”. Results are reported in Figure 7(b) and show that
the evaluators assigned an average rating of 4.10 to the man-
ually constructed FMs, 3.46 to the clustered FMs, and only
3.02 to the probabilistic FMs.

The third group of questions were designed to individu-
ally evaluate parent-child relationships. For each presented
feature group, all parent-child associations were listed and
evaluators were asked to mark the correct associations. Re-
sults are reported in Figure 7(c) and show that the average
percentage of correct associations is 85.14% in the manually
constructed FMs, 69.885% in the clustered FMs, and only
58.25% in the probabilistic FMs.

These results show that while the feature groupings in the
clustered FM generated by our approach do not reach the
same level of quality achieved in manually constructed FMs,
they outperform the groupings of the probabilistic FMs.

A careful comparison of the FM generated by the two au-
tomated techniques showed that in several cases, the clus-
tered approach identified key abstractions which were not
identified by the probabilistic approach. For example, Fig-
ure 6 shows a group of features that the clustered FM grouped
together under an abstraction node (“Cluster6”) whereas in
the FM obtained by the probabilistic approach, these six
features were scattered across five unrelated groupings.

7. THREATS TO VALIDITY
There are several threats to validity for our study. The

primary threat is our assumption that extracting feature in-
formation from large numbers of partially complete product
descriptions yields a representative set of features from the
entire domain. We do not fully explore this assumption in
this paper, apart from ensuring that (1) the domain we chose
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Figure 7: A comparison of our approach: clus-
tered versus manually created versus probabilistic
approach for FM construction

for experimental purposes contained a large and varied rep-
resentation of products, and (2) clarifying that it is clearly a
constraint of our method (and that of most machine learning
techniques), that we can only learn from available data. Ap-
plying our approach to a domain with a more constrained set
of product descriptions, is highly unlikely to produce good
coverage of features in the domain.

A second threat to validity lies in the scope of our study,
which focused on only the single domain of antivirus soft-
ware. The primary reason for this is that evaluating the
quality of the generated FM is time-consuming and involves
manually creating one or more FMs for the domain, and then
asking human users to evaluate the quality of the product
lines in a blind study. We leave the evaluation of our ap-
proach across a broader set of domains with a larger group
of evaluators to a future study.

A third threat is the computation of SCCs to identify
AND-groups for a set of partially complete product descrip-
tions. As explained in section 5.2, Andersen et al. [6], com-
pute strongly connected components in implication graphs
to detect AND-groups. The mapping from SCCs to AND-
groups is motivated by the fact that the implications be-
tween the features in the implication graph are transitive.

Because there is a path between any two features in a SCC,
each presence of a feature of a SCC in a configuration im-
plies the presence of every other feature of the SCC in this
configuration. However, the implication graph described in
section 5.2 is not made of implications but probabilistic as-
sociation rules which are not transitive. It follows that fea-
tures that do not occur often together in configurations may
be considered as parts of the same AND-group. So, in case
of an implication graph using probabilistic association rules,
AND-groups can be computed from SCCs to offer the user
an approximation of potential AND-groups but these groups
must be manually reviewed.

The final threats we discuss here relate to the evaluation
process. It was impossible to entirely separate out the task
of evaluating the quality of each feature’s name, with the
quality of the associations established in the FM. For exam-
ple, if we asked a user to evaluate whether P was a correct
parent of child C, then the study participant might be influ-
enced by both the essence of the feature (i.e., what it truly
represented) as well as the name of the feature. Nevertheless
feature naming was essential for human cognition purposes.
To mitigate this problem, our study presented both the gen-
erated feature name and the bag of words representing the
primary theme(s) of the underlying feature descriptors to the
user. While our evaluation was conducted by only 8 gradu-
ate students, we deliberately chose the domain of antivirus
products as our evaluators were knowledgeable about this
domain and therefore served as valid stakeholders. Finally,
while we did perform an initial analysis of the generated
FM to determine that it modeled valid (and sensible) prod-
uct configurations, we did not evaluate this in a formal way.
We leave this for future work.

8. RELATED WORK
Synthesizing FMs. Several techniques for synthesising

an FM from a set of configurations or constraints (e.g., en-
coded as a propositional formula) have been proposed [19,
33, 6, 1, 24]. These techniques cannot be applied in our
context, since we cannot assume the availability of formal
and complete descriptions of configurations or constraints.
Therefore we develop new extraction and synthesis tech-
niques to deal with the informal and textual nature of prod-
uct descriptions.

An important limitation of prior work is the identification
of the feature hierarchy. In [19, 6], the authors calculate a
diagrammatic representation of all possible FMs. However
they did not address the problem of selecting a unique FM
with a meaningful hierarchy. Similarly, the algorithm pro-
posed in [24] does not control the way the feature hierarchy
is synthesized in the resulting FM. In [33], She et al. pro-
posed heuristics for identifying the likely parent candidates
for a given feature in order to assist users in selecting a hi-
erarchy. However the heuristics are specific to the targeted
systems (Linux, FreeBSD, eCos both from the domain of
operating system) and therefore hardly apply to our case.
Furthermore She et al. reported that their attempts to use
clustering techniques did not produce a single and desirable
hierarchy. They gave a possible reason, arguing that “there
is simply not enough information in the input descriptions
and dependencie” for the kinds of artefacts they considered.
Acher et al. [1] proposed a procedure that processes user-
specified knowledge for organizing the hierarchy of features.
Compared to [33, 1], our approach does not require user
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intervention. Another key difference is that we integrate
feature mining and clustering techniques for building and
exploiting the implication graph.

Extraction of FMs. Acher et al. [2] proposed a semi-
automated procedure to support the transition from product
descriptions (expressed in a tabular format) to FMs. Ryssel
et al. developed methods based on Formal Concept Anal-
ysis and analyzed incidence matrices containing matching
relations [31]. A common assumption is the availability of
formal and complete descriptions of products, which is not
the case in our context. The two works also assume a cer-
tain structure in the product description or other knowledge
that is exploited to hierarchically organize the features.

Probabilistic FMs (PFMs). In [18], Czarnecki et al.
introduced PFMs. Soft constraints are formally described
and indicate the conditional probabilities between the pres-
ence of features in configurations which enable reasoning
about preferences between configuration choices. While hard
constraints express configuration rules that must be obeyed
by all the configurations, soft constraints should be respected
by most configurations but can be violated by some of them.
The authors extended their prior work [19] by proposing
an extraction procedure that relies on association rule min-
ing. The prior work used association rules with a confidence
of 100% to build the hierarchy and association rules with
confidence less than 100% but above a predefined threshold
to add extra information to the FM. In our approach, the
product-by-feature matrices are built from natural language
text and can be very disparate. Therefore, all the mined soft
constraints above a defined confidence threshold are used to
build the hierarchy. Our approach also integrates clustering
techniques to derive a desirable hierarchy.

Clustering techniques. Alves et.al. [5] conducted
an exploratory study based on the use of the Vector Space
Model (VSM) and Latent Semantic Analysis (LSA) to de-
termine the similarity between requirements. The variabil-
ity information is out of the scope of their study though.
Weston et al. [39] proposed an extension to the framework
proposed by Alves et al. and developed a tool which cre-
ates FMs from natural language requirements specifications.
First, they divided the specifications in fragments and then
used clustering techniques to identify features. The size of
the segments can be parameterized by the user. They parsed
the specifications to identify variabilities by detecting gram-
matical pattern-based structures and words from a vocabu-
lary lexicon. In our approach, we build FMs by both using
the information about co-occurrence of the features in the
products and the content of features without assuming the
presence of specific grammatical patterns or the presence of
words from a lexicon. Chen et al. [13] proposed an approach
to build FMs from applications specifications. The authors
introduce a classification of relationships between require-
ments. For each application, the procedure first elicited a
set of functional requirements and modeled the relationships
between them in an undirected graph. Features were then
identified by clustering the functional requirements. Finally,
the resulting FMs were merged as one. Instead of merg-
ing as many models as there are configurations, we directly
mine an FM from the set of all the configurations. The de-
termination of the feature hierarchy is fully-automated and
based on features co-occurrences in the dataset, without pre-
defining any type of relationship. Niu and Easterbrook [28]
provided semi-automatic support for analyzing functional

requirements, denoted FRPs, in a product line. The FRPs
and their attributes were extracted manually, thus increas-
ing the user effort.

It should be noted that several other techniques [28, 13, 5,
39] assume existing requirements specifications that provide
a deep and rather complete description of the products. In
our context, we have to infer FMs through analyzing hun-
dreds of informal product specifications.

9. CONCLUSION AND FUTURE WORK
In this paper we have presented a novel algorithm for au-

tomating the generation of an FM from a set of informal
and incomplete product descriptions. The results from the
reported evaluation show, that in the case of the antivirus
software, utilizing clustering techniques to augment associ-
ation rule mining led to marked improvements in the qual-
ity of the generated FM. As such, the findings reported in
this paper make a significant contribution to the ongoing
research goal to automate the generation of FMs.

Furthermore, one of the major advantages of our approach
is that product descriptions are publicly available for many
different kinds of products, which means that our approach
can be used in practice even if an organization has not pre-
viously developed software for the targeted domain. A quick
perusal of SoftPedia shows products such as authoring tools,
desktop enhancements, file managers, ipod tools, network-
ing tools, and office tools, to name a few. Future work will
involve applying and then evaluating our approach on a far
broader set of products, and also exploring other sources of
informal product descriptions.

Given the probabilistic nature of our approach, the gener-
ated FM must either be further refined by a human analyst
into a more formal FM or else used informally during do-
main analysis to provide ideas for features to implement in
a product. In future work, we plan to explore the utility
of the generated FM for supporting specific tasks related to
domain analysis and the design of a software product line.
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