[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A unified interpolatory subdivision scheme for quadrilateral meshes

Published: 04 July 2013 Publication History

Abstract

For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolatory subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order CL, except in the surface case at a limited number of extraordinary vertices where C1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.

Supplementary Material

MP4 File (tp131.mp4)

References

[1]
Augsdorfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical checking of C1 for arbitrary degree quadrilateral subdivision schemes. In Mathematics of Surfaces, E. Hancock, R. Martin, and M. Sabin, Eds., Lecture Notes in Computer Science, vol. 5654, Springer, 45--54.
[2]
Cai, Z. 1995. Convergence, error estimation and some properties of four-point interpolation subdivision scheme. Comput. Aid. Geom. Des. 12, 5, 459--468.
[3]
Cashman, T. J. 2012. Beyond catmull-clark? A survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 1, 42--61.
[4]
Cashman, T. J., Augsdorfer, U. H., Dodgson, N. A., and Sabin, M. A. 2009a. NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Trans. Graph. 28, 3, 46:1--46:9.
[5]
Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009b. A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines. Comput. Aid. Geom. Des. 26, 1, 94--104.
[6]
Catmull, E. and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topology meshes. Comput. Aid. Des. 10, 6, 350--355.
[7]
Daubechies, I. 1992. Ten Lectures on Wavelets. SIAM.
[8]
Deslauriers, G. and Dubuc, S. 1989. Symmetric iterative interpolation processes. Construct. Approx. 5, 1, 49--68.
[9]
Dong, B. and Shen, Z. 2007. Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22, 1, 78--104.
[10]
Doo, D. and Sabin, M. 1978. Analysis of the behaviour of recursive division surfaces near extraordinary points. Comput. Aid. Des. 10, 6, 356--360.
[11]
Dubuc, S. 1986. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 1, 185--204.
[12]
Dyn, N., Hormann, K., Sabin, M. A., and Shen, Z. 2008. Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155, 1, 28--42.
[13]
Dyn, N. and Levin, D. 2002. Subdivision schemes in geometric modelling. Acta Numerica 11, 73--114.
[14]
Dyn, N., Levin, D., and Gregory, J. A. 1987. A four-point interpolatory subdivision scheme for curve design. Comput. Aid. Geom. Des. 4, 4, 257--268.
[15]
Dyn, N., Levin, D., and Gregory, J. A. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2, 160--169.
[16]
Eirola, T. 1992. Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23, 4, 1015--1030.
[17]
Fang, M., Ma, W., and Wang, G. 2010. A generalized curve subdivision scheme of arbitrary order with a tension parameter. Comput. Aid. Geom. Des. 27, 9, 720--733.
[18]
Hassan, M. F., Ivrissimitzis, I. P., Dodgson, N. A., and Sabin, M. A. 2002. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aid. Geom. Des. 19, 1, 1--18.
[19]
Kobbelt, L. 1996. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum 15, 3, 409--420.
[20]
Lane, J. M. and Riesenfeld, R. F. 1980. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 1, 35--46.
[21]
Li, G. and Ma, W. 2005. Interpolatory ternary subdivision surfaces. Comput. Aid. Geom. Des. 23, 1, 45--77.
[22]
Li, G. and Ma, W. 2007. A method for constructing interpolatory subdivision schemes and blending subdivision. Comput. Graph. Forum 26, 2, 185--201.
[23]
Li, G., Ma, W., and Bao, H. 2005. A new interpolatory subdivision for quadrilateral meshes. Comput. Graph. Forum 24, 1, 3--16.
[24]
Lin, S., Luo, X., You, F., and Li, Z. 2008. Deducing interpolating subdivision schemes from approximating subdivision schemes. ACM Trans. Graph. 27, 5, 146:1--146:7.
[25]
Maillot, J. and Stam, J. 2001. A unified subdivision scheme for polygonal modeling. Comput. Graph. Forum 20, 3, 471--479.
[26]
Oswald, P. and Schroder, P. 2003. Composite primal/dual square-root-of-three subdivision schemes. Comput. Aid. Geom. Des. 20, 3, 135--164.
[27]
Peters, J. and Reif, U. 2008. Subdivision Surfaces. Springer.
[28]
Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9, 3--4, 377--389.
[29]
Prautzsch, H. and Chen, Q. 2011. Analyzing midpoint subdivision. Comput. Aid. Geom. Des. 28, 7, 407--419.
[30]
Reif, U. 1995. A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aid. Geom. Des. 12, 2, 153--174.
[31]
Schaefer, S. and Goldman, R. 2009. Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aid. Geom. Des. 26, 1, 75--81.
[32]
Schaefer, S. and Warren, J. 2002. A factored interpolatory subdivision scheme for quadrilateral surfaces. In Curve and Surface Fitting Saint-Malo, 373--382.
[33]
Silva, S., Madeira, J., and Santos, B. S. 2009. Polymeco: An integrated environment for polygonal mesh analysis and comparison. Comput. Graph. 33, 2, 181--191.
[34]
Stam, J. 2001. On subdivision schemes generalizing uniform b-spline surfaces of arbitrary degree. Comput. Aid. Geom. Des. 18, 5, 383--396.
[35]
Warren, J. and Weimer, H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann, San Fransisco, CA.
[36]
Weissman, A. 1989. A 6-point interpolatory subdivision scheme for curve design. M.S. thesis, Tel-Aviv University.
[37]
Zorin, D. and Schroder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aid. Geom. Des. 18, 5, 429--454.
[38]
Zorin, D., Schroder, P., Derose, T., Kobbelt, L., Levin, A., and Sweldens, W. 2000. Subdivision for modeling and animation. In ACM SIGGRAPH Course Notes, n. 23. ACM Press, New York.
[39]
Zorin, D., Schroder, P., and Sweldens, W. 1996. Interpolating subdivision for meshes with arbitrary topology. In Proceedings of the SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. J. Fujii, Ed., ACM Press, New York, 189--192.

Cited By

View all
  • (2024)A class of new tuned primal subdivision schemes with high-quality limit surface in extraordinary regionsACM Transactions on Graphics10.1145/368798743:6(1-17)Online publication date: 19-Dec-2024
  • (2024)HSS-progressive interpolation for Loop and Catmull–Clark Subdivision SurfacesScientific African10.1016/j.sciaf.2024.e0207023(e02070)Online publication date: Mar-2024
  • (2023)An Unified λ-subdivision Scheme for Quadrilateral Meshes with Optimal Curvature Performance in Extraordinary RegionsACM Transactions on Graphics10.1145/361840042:6(1-15)Online publication date: 5-Dec-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 3
June 2013
129 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2487228
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 July 2013
Accepted: 01 January 2013
Revised: 01 December 2012
Received: 01 November 2011
Published in TOG Volume 32, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Interpolatory subdivision schemes
  2. local refinement rules
  3. subdivision surfaces
  4. surface interpolation

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)4
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A class of new tuned primal subdivision schemes with high-quality limit surface in extraordinary regionsACM Transactions on Graphics10.1145/368798743:6(1-17)Online publication date: 19-Dec-2024
  • (2024)HSS-progressive interpolation for Loop and Catmull–Clark Subdivision SurfacesScientific African10.1016/j.sciaf.2024.e0207023(e02070)Online publication date: Mar-2024
  • (2023)An Unified λ-subdivision Scheme for Quadrilateral Meshes with Optimal Curvature Performance in Extraordinary RegionsACM Transactions on Graphics10.1145/361840042:6(1-15)Online publication date: 5-Dec-2023
  • (2023)Point-normal subdivision curves and surfacesComputer Aided Geometric Design10.1016/j.cagd.2023.102207104(102207)Online publication date: Jul-2023
  • (2023)Gauss–Seidel progressive iterative approximation (GS-PIA) for subdivision surface interpolationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-021-02318-939:1(139-148)Online publication date: 1-Jan-2023
  • (2022)A Parallel Computing Schema Based on IGAComputer Modeling in Engineering & Sciences10.32604/cmes.2022.020631132:3(965-990)Online publication date: 2022
  • (2022)Improved non-uniform subdivision scheme with modified Eigen-polyhedronVisual Computing for Industry, Biomedicine, and Art10.1186/s42492-022-00115-25:1Online publication date: 11-Jul-2022
  • (2022)New types of smooth subdivision algorithmsACM SIGGRAPH 2022 Posters10.1145/3532719.3543261(1-2)Online publication date: 27-Jul-2022
  • (2021)Comparative Research and Application of Four Approximation Subdivision AlgorithmsAdvances in Applied Mathematics10.12677/AAM.2021.10100610:01(52-61)Online publication date: 2021
  • (2021)The refinement-schemes-based unified algorithms for certain nth order linear and nonlinear differential equations with a set of constraintsAdvances in Difference Equations10.1186/s13662-021-03283-22021:1Online publication date: 23-Feb-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media