
10

Concurrency-Aware Compiler Optimizations for Hardware
Description Languages

KALYAN SALADI, University of California, Santa Cruz
HARIKUMAR SOMAKUMAR, Google, Inc.
MAHADEVAN GANAPATHI, Independent Consultant

In this article, we discuss the application of compiler technology for eliminating redundant computation
in hardware simulation. We discuss how concurrency in hardware description languages (HDLs) presents
opportunities for expression reuse across different threads. While accounting for discrete event simulation
semantics, we extend the data flow analysis framework to concurrent threads. In this process, we introduce a
rewriting scheme named ∂VF and a graph representation to model sensitivity relationships among threads.
An algorithm for identifying common subexpressions as applied to HDLs is presented. Related issues, such
as scheduling correctness, are also considered.

Categories and Subject Descriptors: 1.6.8 [Simulation and Modeling]: Types of Simulation—Discrete event

General Terms: Design, Performance

Additional Key Words and Phrases: Common sub-expression elimination, VHDL Verilog Hardware Verifica-
tion.

ACM Reference Format:
Saladi, K., Somakumar, H., and Ganapathi, M. 2012. Concurrency-aware compiler optimizations for hard-
ware description languages. ACM Trans. Embedd. Comput. Syst. 18, 1, Article 10 (December 2012), 16 pages.
DOI = 10.1145/2390191.2390201 http://doi.acm.org/10.1145/2390191.2390201

1. INTRODUCTION

Verification is one of the most expensive tasks in the semiconductor development cycle.
Simulation continues to be the primary method for verification of large circuits spec-
ified using hardware description languages (HDLs) such as VHDL or Verilog [IEEE
1996]. These languages rely on a discrete event simulation framework to accurately
model circuit behavior. Any reduction in simulation time directly leads to productivity
improvement in the design verification cycle. To this end, we explore a new modeling
framework and an optimization to speed up simulation. The proposed framework pro-
vides a way to represent the concurrent execution semantics of HDL assignments such
that it enables data flow analysis across concurrent threads of execution.

HDLs allow for specification of time delay associated with an event to model delays
in a hardware circuit. HDL simulators are designed to implement the semantics of the
language statements and the progression of time, enabling the designer to model a
hardware circuit before it is physically created. A typical compiled code event-driven
simulator, [Hansen 1988; Krishnaswamy and Banerjee 1998] has the following core
components.

Authors’ addresses: K. Saladi, School of Engineering, University of California, Santa Cruz, CA; email:
skalyan@soe.ucsc.edu; H. Somakumar, Google Inc., Mountain View, CA; email: harks@acm.org; M. Ganap-
athi; email: gana@pacbell.net
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/12-ART10 $15.00

DOI 10.1145/2390191.2390201 http://doi.acm.org/10.1145/2390191.2390201

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:2 K. Saladi et al.

(i) Parser. This module parses the HDL description and does syntax checking as well
as semantic analysis. An abstract syntax tree (AST) corresponding to the HDL
input is generated as a result of parsing.

(ii) Elaborator. A full design typically comprises of many components picked up from
different libraries. An elaborator resolves the design hierarchy and the connections
between components by gathering all design components from various libraries
and creating the full design tree.

(iii) Code Generator. This module generates code (machine-specific or independent)
from the AST, following the steps taken by a traditional compiler, including trans-
formations to intermediate forms and optimizations. This machine code in as-
sociation with a runtime simulation kernel produces the simulation result. The
optimizations in the generated code determine, to alarge extent the speed of sim-
ulation.

(iv) Simulation Kernel Library. This library provides highly optimized implementation
for time wheel and event lists used by the generated code. The generated code is
typically linked with this library to produce the simulation executable.

In this article, we present an analysis and optimization framework performed in the
code generator component of a compiled event-driven simulator.

Traditional compiler optimizations based on data flow analysis [Aho et al. 2007;
Rosen 1979], work on sequential blocks of code with extensions to perform interproce-
dural analysis using a call graph. They are not capable of dealing with the concurrent
execution semantics which include the event-based triggering mechanism across se-
quential blocks of code—a core feature in HDLs. Edwards et al. [2003], methods for
compiling Verilog on sequential processors. To our best knowledge, no method has so
far been proposed to model the deferred assignment (i.e., value change in the future)
semantics—in compiler intermediate representation—of variable, as defined by HDLs.
In this article, we provide a framework that enables dataflow analysis on HDL pro-
grams and enables optimization. In VHDL, the concurrent threads of execution (each of
them consisting of sequential blocks of code) are called processes. We will use the term
process to mean a concurrent thread of execution in HDL for the rest of this article.

To illustrate of the applicability of the framework just mentioned, above we define the
availability of an expression across different processes as well as multiple invocations
of the same process at different time steps or in the same time step separated by delta
(i.e., an infinitesimally small amount of time) delays. This concept helps in identifying
and eliminating redundant computation across processes.

The rest of the article is organized as follows. In section 2, we explain the event-
driven simulation model, VHDL semantics, to establish the background. Sections 3, 4,
and 5 introduce the concepts of levelized ordering of processes, the process sensitivity
graph, and novel representation form called Delta-Value Form, respectively. We intro-
duce two auxiliary concepts—Event Vector and Sensitivity Vector—in section 6, before
detailing the core optimization algorithm in section 7. Examples, results, and discus-
sion follow, in sections 8 and 9. Section 10 and 11 discuss future work and conclusions,
respectively.

2. BACKGROUND: EVENT-DRIVEN SIMULATION MODEL

In the event-driven simulation model, the execution starts with a set of processes ex-
ecuting at time zero. Execution of these processes may result in events, which are
scheduled after a nonzero time delay or a delta delay. We look at the simulation al-
gorithm used in VHDL [IEEE 1994] to illustrate the concept of delta delay. The delta
delay concept is applicable also to other HDLs, like Verilog and System C.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:3

Fig. 1. Simulation algorithm.

The processes are triggered by changes in value of special data elements called
signals. Signals hold a new value as well as a current value. A write to a signal in VHDL
updates the new value and posts the signal in a signal update queue for the current
time or future time, [Willis and Siewiorek 1992]. The simulation kernel (described in
the following) will copy the new value to the current value if they are different when
it handles the signal update queue for the corresponding time. This phase is called the
signal update, and the signal is said to produce an event if the new value is different
from the current value. In simple terms, a change in the value of a signal creates an
event at that time. It is useful to note that assignments to signal objects could be
delayed by arbitrary amounts of time. Events on signals trigger processes, which are
sensitive to them.

As assignment to a signal, even if it is a zero-delay assignment, does not immediately
change the current value of the signal, since the new value is copied to the current value
only when the kernel does a signal update. Any process execution preceding the next
signal update phase will effectively read the relevant signal’s current value. Thus, for
zero-delay writes, we say that there is a delta delay between the signal write and signal
update phases. The simulation algorithm is presented in Figure 1. Now, we introduce
relevant simulation terms that are used throughout the article.

Event. A Boolean valued attribute of a signal object which is true if and only if the
object’s value changed in the current simulation cycle.

s.event ← true, iff s.NewValue() ! = s.CurrValue().

Sensitivity. The set of signal objects which determines whether a process must be
evaluated in the current simulation cycle. For example, process P1 (s1, s2, s3), implies
that P1 must execute if at least one of s1, s2, and/or s3 have an event occurrence in
this cycle.

Driver. If a process P contains an assignment statement with a signal s on the
LHS,then P is called a driver of s.

One execution of the inner loop (steps 4 to 9 in Figure 1) constitutes of one ∂-cycle. A
process may be executed multiple times during a time step if the trigger signals become
active across multiple ∂-cycles.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:4 K. Saladi et al.

3. PROPOSED SOLUTION

As can be seen from the simulation algorithm, the wakeup semantics of processes
combined with ∂-cycle-based evaluation may lead to multiple evaluations of an expres-
sion in different ∂-cycles for a given simulation time. Such a reevaluation, triggered
by ∂-synchronization, need not necessarily involve an entirely new set of values for
the constituent variables of a given expression. Our goal is to identify and eliminate
redundant computations where the values of constituent variables are the same.

We propose a representation for a system of concurrently executing HDL processes
such that analyses and optimizations can be built on top of it without being constrained
by the simulation semantics. The deferred updating semantics and event-based trigger-
ing of the execution of the processes are captured in this representation. We detail the
implementation of common subexpression elimination for a system of HDL processes
based on the preceding representation.

In order to analyze a system of processes and identify (and eliminate) redundant
computations, we highlight two requirements. The first is to predict a possible ordering
among the processes achieving identical execution results [Barzilai et al. 1987; Ferrante
et al. 1987; Willis and Siewiorek 1992] as that of the algorithm in Figure 1. In the
next section, we define a partial order called levelized order (describing Section 4)
for execution of processes in different ∂-cycles and an algorithm for computing the
ordering. The second requirement is an ability to represent deferred updates of signal
objects. Unlike variable assignments in languages like C and C++, an assignment does
not immediately update the value of a signal object and is, by extension, not visible for
subsequent expressions. We developed a representation called delta-value form (∂VF)
to model this property, and it is presented in Section 5.

4. LEVELIZED ORDER

Definition. In levelized order if a process P1 executes in an earlier ∂-cycle than the one
in which another process P2 executes, then level (P1) < level (P2).

To derive this partially ordered relation, [French et al. 1995; Wang and Maurer 1990]
among the set of processes, we define two sets for each signal Si as given next.

—Trigger (Si) = {Pi| for each Pi, Si ∂ sensitivity (Pi)}.
—Assign (Si) = Set of processes which have zero delay assignments to Si.

Assignments to each signal can cause a value change for the signal, which in turn will
trigger processes sensitive to that signal for execution in the next delta cycle. Thus,
processes in Trigger (Si) will execute (if they are scheduled) one delta cycle later than
processes in Assign (Si).

To derive the levelized order, we construct a directed graph G = (P, E), where each
vertex Pi ∂ P, and P is the set of all processes. For each signal Si, we add an edge ei to E,
from Pi to P j, where Pi is an element of Assign(Si) and P j is an element of Trigger(Si).

After executing the levelization algorithm, we have a level associated with each
vertex Vi. There is a process associated with each vertex Vi; in addition, a process
Pi may be associated with multiple vertices in V. Combinational feedback loops are
avoided by performing a cycle-check on G (see step 6(a)(i)(2)(b) in Figure 2) before
creating and adding a new vertex to V.

5. ∂-VALUE FORM

In this section, we introduce the concept of a ∂ operator to denote the value of an object
or expression at the end of a given ∂-cycle. ∂i(e) is the value of an expression ‘e’ at the
ith ∂-cycle in the current simulation time. Pi(T) will be used to denote the instance of a
process P in the ith delta cycle at time T. For convenience, we drop the time (T) and use

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:5

Fig. 2. Levelization algorithm.

P∂(i)to denote the execution of a process P in the ith ∂-cycle of the current simulation
time.

5.1. ∂VF

We define a naming scheme for signal/variable objects and related assignment state-
ments in each P∂(i), known as ∂VF. A simulation object can be visualized to attain a
sequence of values (not necessarily distinct) in each of the ∂-cycles in a timestep. The
sequence of values of an object S can be represented conceptually by an array S∂values,
such that S∂values[i] represents the value of S in delta cycle i. We define the ∂-qualified
value of S in delta cycle i, represented by ∂i(S), to be S∂values[i].1

In ∂VF, references to all simulation data objects are expressed in terms of their
∂-qualified values. ∂VF applies to expressions constructed from references to objects.
Table I illustrates the translation of a set of HDL processes to the equivalent ∂VF.

In this table, the left column has the process code annotated with the ∂-cycle in which
it executes. In the right column, the transformed assignments are shown. To model
persistence of signal values across delta cycles, we introduce trivial copies at each
delta boundary ∂k+1(S) = ∂k(S); if ∂k+1(S) is not already defined. In a practical scenario,
these trivial copies are not necessary, since a typical signal object implementation holds
its value in memory across ∂-cycles. These trivial copies help make the availability of
a variable be seen explicitly but don’t have any corresponding generated code.

6. CODE OPTIMIZATION FRAMEWORK

Once a set of HDL processes is levelized and the code in each of the processes rewritten
in ∂VF, we are closer to operating on sequential blocks of code without being limited by
simulation semantics. We need to model the dependence between a process that drives

1A brief note on VHDL syntax. A signal assignment is written as sig <= r.h.s;. The assignment operator
“<=” indicates a posting of the value of the r.h.s expression to the object sig in the next ∂-cycle.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:6 K. Saladi et al.

Table I. Processes in ∂VF

a signal s and the processes that are sensitive to the same signal s (processes which
will execute due to an event on s). The sensitivity and driver relationships between
processes encapsulate the wake-up/message-passing mechanism between the set of
processes. Ferrante et al. [1987], duscuss a similar concept called program dependence
graph and its applicability in optimization. To effectively capture these dependencies
for the purposes of code optimization, we propose a data structure called the process
sensitivity graph.

6.1. Process-Sensitivity Graph

A process sensitivity graph is defined as a directed graph G = <V, E>, with V being
the set of vertices, such that vertex v ∈ V is a process instantiation for a given delta
cycle,and E = ErU Ec(defined next).

Let us define SensDrivers (P) to be the set of processes SensDrivers (P) = {Pi | Pi ∈
Drivers (Si), for each Si ∈ Sensitivity (P)}.

Er (set of regular edges). The set of all direct sensitivity relationships between all pairs
P j(∂k) and Pm(∂k+1). A regular edge er is created from Pi to Pj,if Pi ∈ SensDrivers(Pj).

Ec(set of cross edges). The set of edges representing subset relationships between
sensitivity lists of all pairs of processes Pi(∂k) and P j(∂k). A cross edge ecis created from
Pito Pj, if Sensitivity (P j) is a subset of Sensitivity (Pi).

Since a process can be sensitive to multiple signals, each of which can be driven by
different processes, a node in the process sensitivity graph (PSG) can have more than
one predecessor. Since a process P will be scheduled for execution as a result of an event
on one or more signals belonging to Sensitivity (P), there can be multiple execution
paths leading to P in the process sensitivity graph. This multiple predecessor property
(multiple paths of execution can be concurrently active) is significantly different from
control flow predecessors in traditional programming languages, wherein only a single
path of execution in the control flow graph is active during execution. In the HDL
simulation domain, it is possible that a subset (not necessarily a proper subset) of the
paths leading to a node in the PSG may be taken before control reaches that node.
Table II has an example that illustrates the process sensitivity graph for a small group
of VHDL processes. The corresponding graph is presented in Fig 3.

In order to understand the construction of the graph, let us examine a couple of
scenarios. In Table II, process P2 writes to signal s2 and process P5 is sensitive to s2.
Accordingly, there is an edge from P2 to P5 in Figure 3. The sensitivity list of process

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:7

Table II. A Set of Processes to Illustrate the PSG

Fig. 3. Process sensitivity graph for the VHDL code in Table II.

P4 is {s1} and that of P8 is {s5}. Process P4 cannot generate any events on s5 and
hence there is no edge between P4 and P8.

The task of identifying and propagating available expressions across multiple pro-
cesses based on PSG is significantly different from traditional data-flow analysis-based
approach due to the fact that multiple control paths may be simultaneously active and
expressions from a disjoint control path (a different process) may be available for reuse.

So far, we have introduced all the basic concepts needed to create a framework for
performing optimizations on a group of concurrent threads based on static analysis.
The framework still has to be able to capture the actual execution-time trace of signal
activity so that we can expand the scope of optimizations to include redundancies that

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:8 K. Saladi et al.

Fig. 4. Sensitivity vector for an expression in process P0.

Fig. 5. Event vector for an expression in process P1.

can only be identified at runtime. We introduce the concepts of the sensitivity vector
and event vector to aid in the process of identifying expressions available for reuse
across ∂-cycles.

6.2. Sensitivity Vector

The sensitivity vector (SensVec) is a bit-vector with one bit for each signal in the set
of sensitivity signals for the group of processes under consideration. For each subex-
pression E j , available at the end of a particular process Pi, we define SensVec(E j) to
be SVEj , such that SVEj[k] = 1, for all Sk ∈ Sensitivity(Pi). The sensitivity vector can
be statically computed from sensitivity information.

In Figure 4, the process is only sensitive to signal S2, and hence the SensVec has
only one bit on (for s2). The number of sensitivity signals for each expression can be
pruned further by identifying the trigger condition controlling the basic block where
this expression is generated.

6.3. Event Vector

Along with static sensitiving information, execution time event occurrence for each
signal is necessary for determining actual process invocations. We introduce the event
vector (EventVec) to denote signals which have had an event until the current delta
cycle in a given time step. Like the sensitivity vector, event vector is a bit-vector
having a bit for each signal in the set of sensitivity signals for the group of processes
under consideration. The sensitivity vector is associated with each expression under
consideration, while the event vector will be only one for the entire group of processes.

During simulation, at the beginning of each time step, the event vector is cleared. If
a signal si has an assignment in the delta cycle which changes its value, then we set
EventVec(i) = 1 in the delta cycle i+1.

In Figure 5, at the end of the execution of process P1, we can see that signals S1 and
S3 have their values changed from what they started with (initial value of 5); thus,
the event vector has the corresponding bits ON for signals s1 and s2, in the next delta
cycle.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:9

Thus armed with the sensitivity vector and event vector, we show how we can identify
and reuse the set of available expressions correctly and conservatively.

7. ALGORITHM TO COMPUTE REUSABLE EXPRESSIONS

We can identify a set of expressions that are unconditionally available for reuse at each
node in PSG. Also, with the help of execution time checks we can enable expression
reuse in cases where reuse cannot be guaranteed by static analysis. We present both
compile time and execution time expression reuse scenarios for a node in PSG.

7.1. Static Reuse

For a node in PSG having, the following.

—Single Incident Edge. All available expressions are forward propagated from the
predecessor node.

—Multiple Incident Edges. The intersection of sets of available expressions correspond-
ing to incoming edges is computed to form an available set of expressions for the node.

—Incident Cross Edges. All available expressions of the source node of the cross-edge
are included in the available expression set of the destination node for static reuse
in the next delta cycle.

7.2. Dynamic Reuse

—For a node in PSG having multiple incident edges (single incident edge and cross
edges are handled by the static reuse case), a union of sets of available expressions
corresponding to incoming edges is computed, and the expressions identified for
static reuse are subtracted from the result to form the set of available expressions.
To determine dynamic reusability of an expression EXP, we generate code to check
if (SensVecEXP ∩ EventVec)�= ø at each point of reuse.

7.3. Algorithm to Compute Reusable Expressions

Using the PSG and the set of available expressions at each node in the PSG, we perform
a one-pass forward propagation of available expressions, treating writes to signals in
the processes as definitions of the corresponding signal objects. Any definition of object
s kills all available expressions involving s, thereby making the expression invisible to
successor nodes in the PSG.

If an expression becomes available at a node through all predecessors of that node
in the PSG, then it is a candidate for static reuse. If it is available from a proper subset
of the predecessors of that node, then it is a candidate for dynamic reuse. For dynamic
reuse, we will need to check the EventVec and the SensVec of the expression to make
sure that the expression was indeed computed at runtime, and we can then reuse it.

Using the process sensitivity graph, we present an algorithm to compute the set of
reusable expressions. Computation of Kill set of a node used in the algorithm follows
the standard technique used in the common subexpression elimination algorithm, [Aho
et al. 2007], for a sequential control flow graph.

For the expressions marked as statically reusable, there is no need to generate ad-
ditional code. On the other hand for dynamic cases of reuse, the candidate expressions
are checked for availability at runtime, making use of the SensVec and EventVec for
each occurrence. The test involving SensVec and EventVec provides the guarantee to
avoid the re-computation.

LEMMA 7.1. The algorithm in Figure 6 identifies a subexpression efor static reuse in
a process P if and only if e is guaranteed to be computed by a process Q in an earlier
∂-cycle and e reaches P alive (i.e., not killed by the DeltaKill set in step7(c)(viii) of the
algorithm) through all possible paths to P.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:10 K. Saladi et al.

Fig. 6. Algorithm to compute reusable expressions.

PROOF. Part (a). For ∂1, StaticAvEx(Pi(∂1)) = C.

Assumption 1.We assume that the lemma holds true for all cycles ∂1 to ∂k.

Considering the case for cycle ∂k+1, for any node Pi(∂k+1), according to the algorithm’s
step 7(c)(v)(2), StaticAvEx(Pi(∂k+1)) = ∩predi Out(predi).

Hence, an expression e ∈ StaticAvEx, if and only if e ∈ Out(predi), for all predi ∈
Predecessors(P). According to construction of the PSG, it is clear that any predecessor
node predi has to execute one delta cycle earlier than P (in ∂k), if it executes at all.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:11

(a) If e /∈ Gen(predi), for any predi ∈ Predecessors(P), e must have been computed in a
delta earlier than ∂k. e could have reached predi through a regular edge or a cross
edge.
(i) If e reached predi through a regular edge, e would have been computed in a

node at least one delta earlier than predi, according to construction of PSG.
(ii) Otherwise e would have reached predi through a cross edge, which means that

e was computed one delta cycle earlier than predi (in ∂k−1). This is ensured
by the fact that cross edges are considered in step 7(c)(ix) of the algorithm in
Figure 4 after StaticAvailEx(predi) has been computed in step 7(c)(v) of the
same algorithm.

Considering assumption (1), in both cases, e is a legitimate statically reusable
expression.

(ii) If e ∈ Gen(predi), and predi ∈ Predecessors(P), computation of the expression e has
to happen in ∂k according to construction of the PSG. e ∈ DeltaKill(∂k)according
to step 7(c)(viii) of the algorithm, since e is a reusable expression. Since e was
computed in ∂k and did not get killed (by DeltaKill), it is safe to reuse e.

Thus, in both cases we prove that it is safe to statically reuse e, and Lemma 1 holds
for ∂k+1, if it holds for ∂k. Since the lemma trivially holds for ∂1,by induction, it should
be true for all ∂k.

If any or all of the predi nodes are actually executed at runtime, the algorithm in
Figure 6 guarantees the availability of an already identified set of expressions. If none
of the predi nodes actually execute, we will not have P executing, and expression e will
not be used.

Expression reuse within the same ∂-cycle. The algorithm in Figure 6 addresses expres-
sion reuse in processes executing in different ∂-cycles. This can be extended to expres-
sions being computed more than once in the same ∂-cycle, but by different processes.
∂VF helps simplify the expressions and object values by making a clear distinction
between the current values and the scheduled value for each object. Once the processes
are transformed into ∂VF, it is possible to apply data flow analysis seamlessly to elim-
inate redundant computations. Possible instances of intra-∂-cycle reuse are limited to
the set of process nodes with cross edges.

Example. For the set of processes from Figure 3 and Table II, we enumerate the
reusable expressions identified by our algorithm.

Static Reuse. Subexpression (c+d) computed by processes P1 and P2 in ∂1 is reusable
by process P8 in ∂3. (c+d) is available to P5—since both of P5’s predecessors compute
it—propagates through to P8, and is available for reuse.

The subexpression (h+i) computed by process P5 in ∂2 is available for reuse by process
P7 in ∂3, though there is no direct edge between P5 and P7. However, the expression
propagates through the cross edge from P5 to P4 in ∂2and then it propagates to P7 via
a regular edge.

Dynamic Reuse. Subexpression (a+b) is computed in process P1 in ∂1, but this cannot
be guaranteed to be available for reuse in process P8 in ∂3. Though there is a path from
P1 to P8, (a+b) has not been identified for static reuse, since all of the predecessors
of the intermediate node P5 don’t compute the expression. It may still be possible to
dynamically reuse (a+b) if the condition mentioned in Section 7.2 is met at execution
time.

8. EXPERIMENTAL SYSTEM

As explained in Section 1, our optimization framework focuses on the codegenerator
and the kernel of a compiled simulator. The process sensitivity graph was built from
the elaborated design, after optimizations like module inlining were applied to expand

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:12 K. Saladi et al.

Table III. Execution Times before Applying Optimizations

the scope of the process sensitivity graph. Our analysis was limited to a module, (ar-
chitecture in the case of VHDL) at a time. This is not a limitation of the algorithm, but
has to do with the ease of implementation.

Delta value form is constructed for all variables defined/used in a module. For each
variable, we allocate an array of slots based on the number of deltacycles needed for the
system of processes under consideration. Each subexpression computed in this system
of processes is given an ID for ease of reference (we account for commutativity by means
of a lexical ordering of the expression variables). With PSG and ∂VF ready, we run the
algorithm described in Figure 6, to identify reusable expressions.

In order to eliminate redundant computations, we modified the code generator ac-
cording to the conditions laid out in Sections 7.1 and 7.2 for static and dynamic reuse.
We did not attempt to reuse the expression values within the same delta cycle across
multiple processes, as it would require more runtime checking due to the unpredictable
order of execution within a ∂-cycle. The case of reuse across multiple invocations of the
same process in different ∂-cycles is a straightforward extension of the preceding algo-
rithm, provided we clone the generated code for the process and use ∂VF.

We instrumented our compiler (code generator) to gather statistics on the total num-
ber of candidate expressions and those that were identified as statically reusable and as
dynamically reusable. The instrumented compiler was run on a set of medium-to-large
sized designs, and the results are presented next (Tables III and IV).

9. RESULTS

Static reuse and dynamic reuse algorithms share most of the compiletime analysis
steps. Dynamic reuse results in more generated code to guard the reuse of available
expressions, and as a result, has a slightly higher compile time impact than static
reuse. The runtime benefit is also typically less for dynamic reuse. When we combine
the two approaches, we didn’t observe significant overhead at compile time compared
to the static reuse alone. The runtime benefits are cumulative.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:13

Table IV. Experimental Results on HDL Designs

Fig. 7. Compile-time overhead caused by the optimizations.

Dynamic reuse of expressions necessitates changes to the runtime system to update
the EventVec of each process and clear it at the end of a simulation time step. Due to
the additional costs involved with dynamic reuse, the compiler engineer has to make a
judicious decision, weighing the cost and potential benefit. The compile-time overheads
caused by static, dynamic, and the combination of the two analyses are presented in
Figure 7.

The runtime speedups are presented in Figure 8. As can be seen in Table IV, one
particular design (Graphics1) stands out in terms of a higher percentage of reuse and
corresponding runtime benefit. Upon further inspection we found that large portions
of the design were machine generated and had a significant amount of redundant com-
putation of subexpressions. In particular, modules with heavier emphasis on mathe-

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:14 K. Saladi et al.

Fig. 8. Reduction in run-time due to the optimizations.

Fig. 9. Percentage in compile memory due to the optimizations.

matical computation, such as CRC, benefited more when compared to sequential/timed
systems. On the flip side, two designs resulted in negligible benefits from our optimiza-
tion due to lack of scope for reuse based on the coding style.

Dynamic reuse can get expensive in terms of runtime memory consumption (see
Figure 10) if the implementation does not do optimizations, like keeping event bits
only for the signals participating in reusable expressions and applying thresholds if
the EventVec grows too big.

The test-bench stimulus may determine the runtime activity of various modules in
the system. Even if a lot of expressions were identified for reuse but the part of the
design that was optimized is not active at runtime, we may not see any benefits at
all. Finally, we also present the memory overhead introduced by the optimizations at
compile time and runtime in Figure 9 and Figure 10, respectively. With the potential
for runtime reduction of longrunning simulations, the memory overheads observed do
not seem large enough to prohibit deployment of this optimization in a production
environment.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

Concurrency-Aware Compiler Optimizations for HDLs 10:15

Fig. 10. Percent increase in runtime memory due to the optimizations.

10. FUTURE WORK

In this article, we presented a framework that enables us to analyze a given system of
HDL processes without worrying about the special semantics associated to variables.
In particular, we focused on identifying reusable expressions and reducing redundant
computation across ∂-cycles in a single time step. It is possible to extend this framework
to analyze repetitive execution of a set of processes at different simulation times and
identify redundancies.

A future direction could be to explore more compiler optimizations that take advan-
tage of the framework presented here. Some related ideas include the elimination of
unnecessary resolution function execution in the case of multiply driven wires and
elimination of expensive simulation-kernel calls based on the PSG.

11. CONCLUSION

In this article, we discussed the inadequacy of traditional data flow analysis [Rosen
1979], in the presence of HDL semantics and concurrency. To apply compiler optimiza-
tions across concurrent threads, we have introduced a transformation from HDL as-
signments/expressions to a form named ∂VF. Thereafter, we presented the PSG (process
sensitivity graph)—a way to model process sensitivity and the resulting relationships
among processes. Along with these novel concepts, we have introduced two auxiliary
data structures for extending the reuse of expressions to dynamic cases. Utilizing all
of these concepts, we presented an algorithm to compute the sets of statically and dy-
namically reusable available expressions for each process. The results shown indicate
the potential of this optimization in discrete event simulation of real HDL designs.

REFERENCES

AHO, A. V., LAM, M. S., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques and Tools. Pearson
Addison-Wesley, Reading, MA.

BARZILAI, Z., CARTIER, J. L., ROSEN, B. K., AND RUTLEDGE, J. D. 1987. HSS—a high-speed simulator. IEEE Trans
Comput. Aided Des. Interg. Circuits syst., 6, 4, 601–616.

EDWARDS, S. A. 2003. Tutorial: Compiling concurrent languages for sequential processors. ACM Trans Des
Autom. Electro. Syst., 8, 2, 141–187.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9, 3, 319–349.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

10:16 K. Saladi et al.

FRENCH, R. S., LAM, M. S., LEVITT, J. R., AND OLUKOTUN, K. 1995. A general method for compiling event-driven
simulations. In Proceedings of the 32nd Annual ACM/IEEE Design Automation Conference, 151–156.

HANSEN, C. 1988. Hardware logic simulation by compilation. In Proceedings of the 25th Annul ACM/IEEE
Design Automation Conference. 712–716.

IEEE. 1996. IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language. IEEE Computer Society, New York, NY. 1364–1995.

IEEE. 1994. IEEE Standard VHDL Language Reference Manual: IEEE Std 1076-1993. Institute of Electrical
and Electronic Engineers, New York, N Y.

KRISHNASWAMY, V. AND BANERJEE, P. 1998. Parallel compiled event driven VHDL simulation. In Proceedings of
the 12th International Conference on Supercomputing. 297–304,.

ROSEN, B. K. 1979. Data flow analysis for procedural languages. J. ACM 26, 2, 322–344.
WANG, Z. AND MAURER, P. M. 1990. LECSIM: A levelized event driven compiled logic simulation. In Proceedings

of the 27th ACM/IEEE Design Automation Conference, 491–496.
WILLIS, J. C. AND SIEWIOREK, D. P. 1992. Optimizing VHDL compilation for parallel simulation. IEEE Des. Test

Comput. 9, 3, 42–53.

Received August 2010; revised July 2011, January, March 2012; accepted October 2012

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 10, Publication date: December 2012.

