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Abstract

We study fragments of dependence logic defined either byiatisy the numbek of universal
quantifiers or the width of dependence atoms in formulas. Wtfie sublogics of existential second-
order logic corresponding to these fragments of dependegixe We also show that these both ways of
defining fragments of dependence logic give rise to a higaircexpressive power with respectko

1 Introduction

Dependence logic [19] extends first-order logic by depecdeatomic formulas

=(X1;---,%n) 1)

the intuitive meaning of which is that the valuexgfis completely determined by the valuesxgf. .., xn_1.
While it is known that dependence logi#’) is equivalent to existential second-order logic (ESO¥(dmus
to NP over finite structures [4]) in expressive power, not migknown about the expressive power of
its fragments. On the other hand, various fragments of ES@ haen studied and the expressive power
of the fragments of ESO is quite well understood (see, €1g,,[9], [18], [11], [3], and [8]). In this
article we take the first steps towards charting the expreggiwer of fragments of dependence logic. The
fragments studied in this article are defined by restrictimynumber of universal quantifiers or the width
of the dependence atoms (the integen (1)) in formulas. In both cases, we find exact subclassé&sS@
corresponding to these fragments of dependence logic.

Let us briefly recall the history of dependence logic. In {fosler logic the order of quantifiers deter-
mines the dependence relations between variables. Fompéxaimthe formula

VX03X1VX25|X3 Q,

the choice forx; depends on the value fag, and the choice foxz depends on the values of both univer-
sally quantified variableg, andx,. Dependence logic generalizes the syntax of first-ordec kmgexpress
dependencies between variables that are not first-ordeegsiple. The first step in this direction was taken
by Henkin [12] with his partially ordered quantifiers
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wherex; depends only orxg and x3 depends only orx,. Walkoe [20] showed that every ESO-definable
property can be defined by a sentence of the form (2) (the $iteeauantifier prefix may vary) wherg
is a quantifier-free first-order formula. Then Hintikka anah8u [13] introduced Independence-Friendly
(IF) logic extending first-order logic by so-called slastgdhntifiers. For example, the formula (2) can be
expressed in IF logic as

VX03X1 VX2 3X3/ VX0 @,

where the quantifiefixz/VXo has the meaning thag is “independent” okg in the sense that a choice for the
value ofxsz should not depend on the valuexgt Dependence logic generalizes the approach of IF logic by
detaching variable dependencies from the quantifiers astedd, declaring them in terms of new atomic
formulas. For example, the partially ordered quantifierc@) be expressed in dependence logic as follows

VXoIX1 VX2 3X3(=(X2,X3) A @).

It is known that dependence logic (also IF logic) is equimale ESO in expressive power. However, at the
moment we do not have a good understanding of how varioua&ymtestrictions imposed on formulas of
dependence logic reflect on their expressiveness and crityp@ome work has been done in this direction.
In a recent doctoral thesis of Jarmo Kontinen [14] the comifyl®f open formulas of dependence logic was
studied. The following result of [14] is in drastic contragth classical logics. Define the formulgs and

@ as follows:

1 @==Xy)V=(uv),
2. @ :==(xy)V=(u,v)V=(u,v).

Then the question of deciding whether a tedrmatisfiesp, is NL-complete and, fog,, NP-complete. This
result shows that already the quantifier-free part of depecel logic is as complex as the whole logic. Note
also that the difference in the formulgs and ¢ is that, in¢, the disjunct=(u,v) has two occurrences
instead of one.

In this article we consider the following fragmerigk — V) and Z(k — dep) of & defined by restrict-
ing the number of universal quantifiers or the width of depewe@ atoms in formulas, respectively. In
other words, the fragmer#(k — V) contains those formulas @# in which at mostk variables have been
universally quantified and no reusing (i.e., requantifaatiof variables is allowed. On the other hand, in
2(k— dep we require that only dependence atomy, ..., Xn) satisfyingn < k+ 1 may appear.

We show thatZ(k — dep) corresponds exactly to the fragment E$Kary) of ESO in which functions
of arity at mostk are allowed to be quantified. Regardisgfk — V), we observe that this fragment is
equivalent to the fragment E$(:kv,3*) (see Definition 2.16) of ESO satisfying

ESCGH(kY,3*) < ESOx (k-ary, k¥) < ESCx (k-ary),

where ESQ(k-ary, kv) consists of those ES(Qk-ary)-sentences that are in Skolem Normal Form and con-
tain at mosk universal first-order quantifiers.

In the last section of this article we consider the exprespiower of the logic®7(k — V) and 2(k —
dep) over finite structures and investigate in particular whetfe varyingk, these fragments form a strict
hierarchy of expressivity. We recall a result of Ajtai [1Josting that in ESQ(k-ary) even cardinality of a
k-+ 1-ary relation cannot be expressed. Our results imply tlasame holds for the logi@(k— dep and
that the hierarchy is strict wheas less than the maximal arity of a relation in the signatéria.the general
case, we give some evidence that proving the strictnes®dfiinarchy may be hard since our results imply
that this question is related to the Spectrum Arity HiergirClonjecture (see [6]).
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On the other hand, in [11] Grandjean and Olive showed thagrig signaturer,
ESO (KV) = ESOr (k-ary,kY) = NTIMEgam (n),

where NTIMEzam (n¥) denotes the family of classes ofstructures that can be recognizes by a non-
deterministic Random Access Machine in ti@n¥). The hierarchy theorem of Cook [2] implies that
these classes form a strict hierarchy with respektatod hence the same holds for the logics E&®). We
show that

ESGr (kV) < 2(2k—V) < ESOr(2kY),

implying a hierarchy theorem for the logi€g(k — V).

This article is organized as follows. In Section 2, we reveame basic properties and results regarding
dependence logic. We also recall some relevant resultactesizing subclasses of NP in terms of fragments
of ESO. Section 3 contains our main results connecting feagsnof dependence logic with that of ESO.
Finally, in Section 4, we use our results to identify expitat/ hierarchies within dependence logic.

2 Preliminaries

In this section we first define dependence logic and recalkesoasic results on it. Then we review results
in computational complexity and descriptive complexitgdhy that will be needed.

2.1 Dependence Logic

We begin with the syntax of dependence logic.

Definition 2.1 ([19]). The syntax ofZ extends the syntax of FO, defined in termsvofA, —, 3 andV, by
atomic dependence formulas of the form

:(t17"'7tl’l)7 (3)
wherety, ..., t, are terms. For a signature 2[1] denotes the set af-formulas of2.

The meaning of the dependence formula (3) is that the valtleofermt, is functionally determined
by the values of the ternts, ... ,t,_1. Hence the meaning of the formui&t) is that the value of the terin
depends on nothing, i.e., is constant. As a singular caseaweH(), which we take to be universally true.

Definition 2.2. The set Ffg) of free variables of a formule € 2 is defined as for first-order logic, except
that we have the new case
Fr(=(ts,...,ty)) = Var(t;) U---UVar(ty),

where Va(t;) is the set of variables occurring in tetmlIf Fr(¢) = 0, we callg a sentence.

The semantics of7 is formulated using the concept ofl@am Let 2 be a model with domair.
Assignment®f 2l are finite mappings from variables infa The value of a ternt in an assignmernt is
denoted byt*(s). If sis an assignmenk a variable, and € A, thens(a/x) denotes the assignment (with
domain donfs) U {x}) that agrees witls everywhere except that it magdo a. For an assignmers and a
tuple of variableX = (xg,...,X,), we sometimes denote the tugkéx; ), ...,s(X,)) by s(X).

Definition 2.3. Let Abe a set andxg, ..., x} a finite (possibly empty) set of variables.téam Xof A with
domain dontX) = {xy,...,X} is any set of assignments from the variablgs ...,xc} into the setA.



We denote byel(X) thek-ary relation ofA corresponding tX
rel(X) ={(s(x1),...,8(x)) : s€ X}.

If X is ateam ofA, andF: X — A, we useX(F /x,) to denote the tearfis(F (S) /) : s€ X} and X (A/xn)
the team{s(a/x,) : s€ X anda € A}.

We are now ready to define the semantics of dependence lomjnat8rest are assumed to be finite
and they may contain constants, relations and function sisnln this article we consider only formulas
in negation normal form (NNF), i.e., negation is allowed ppear only in front of atomic formulas. This is
not a restriction since any formula of dependence logic eatransformed into negation normal form [19].
Atomic formulas and their negations are called literals.

Definition 2.4 ([19]). Let2 be a model anX a team ofA. The satisfaction relatiofd =x ¢ is defined as
follows:

1. If @is afirst-order literal, thefl =x @iff for all se X: A =5 @.

2. A E=x=(ty,...,ty) iff for all s;s' € X such that
tHs) =t]{g),... .t (5 =t (), we havet?(s) = t3(s).

N
A Ex ~=(ty,...,ty) iff X=0.

A Ex WA @Iff A E=x Y andA Ex @.

A Ex YVeiff X=YUZsuchtha®l =y g and2A =z @.
- A Ex P iff A =y g )x,) Y for someF: X — A,

A x VW iff A xax,) Y-

Above, we assume that the domain>otontains the variables free ip Finally, a sentence is true in a
modelA (A |= @) if A =) @.

Next we define the concepts of logical consequence and dendeafor formulas of dependence logic.

N~ o o0 b~ W

Definition 2.5. Let ¢ andy be formulas of dependence logic. The formuylas alogical consequencef
(pl

o=,
if for all models2( and teamX, with Fr(¢@) UFr(g) C dom(X), and =x ¢ we have2( |=x . The formulas
@ andy arelogically equivalent

o=y,

if o= Y andy = o.

2.2 Basic properties of dependence logic

In this section we recall some basic properties of deperedkgic.

Let X be a team with domaifixs, ..., x} andV C {xi,...,x}. Denote byX [V the team{s [V :se X}
with domainV. The following lemma shows that the truth of a formula degeodly on the interpretations
of the variables occurring free in the formula.



Lemma 2.6([19]). Suppose \D Fr(¢). Then2 =x @ if and only if2 =x v @.
The following fact is also a very basic property of all forrasilof dependence logic:

Proposition 2.7([19]). Let g be a formula of dependence logit.a model, and YC X teams. TheRl =x @
implies2l =y @.

On the other hand, the expressive power of sentencésaaiincides with that of ESO:
Theorem 2.8([19]). ¥ =ESQ

Theorem 2.8 does not tell us anything about formulas of ddgmre logic with free variables. An
upperbound for the complexity of formulas &fis provided by the following result.

Theorem 2.9([19]). Let1 be a signature and a Z[1]-formula with free variables ..., xx. Then there is
a tU{R}-sentencay of ESQ in which R appears only negatively, such that for all moé@eknd teams X
with domain{xs,...,X}:

Alx @ = (A rel(X)) = .

In [15] it was shown that also the converse holds.

Theorem 2.10([15]). Let 1 be a signature and R a k-ary relation symbol such tha R Then for every
TU{R}-sentencep of ESQ in which R appears only negatively, there is-formula ¢ of dependence logic
with free variables x ..., % such that, for alll and X with domair{xy, ..., %}:

AEx @ — (A rel(X)) = YV Vy-R(y). 4)
Proof. The disjunctvy—R(y) is needed on the right because the empty t&am0 satisfies all formulas of
dependence logic but need not always be true in the casé(X) = 0 [16]. O

Theorem 2.10 shows that formulas of dependence logic gmrekin a precise way to the negative
fragment of ESO and are therefore very expressive. Furtbrenthe results of [14] discussed in the Intro-
duction show that already for certain quantifier-free folemw € 2, the corresponding sentengec ESO
(see Theorem 2.9) defines a NP-complete problem. On the lodémet, if we restrict attention to formulas
that do not contain dependence atomic formulas as subfasnwie lose much of the expressive power.

Definition 2.11. A formula ¢ of & is called a first-order formula if it does not contain deperwdeatomic
formulas as subformulas.

Theorem 2.12. Let ¢ be a first-order formula of dependence logic. Then foRadnd X:
1.2 ):{s} Qo — Ql#sqo.
2. A=x @ < forallse X:2A =5 .

The following proposition shows that both the existentiaiment of%, and the fragment allowing only
dependence atoms of width 1 (i.e., dependence atefi3), collapse also to first-order logic.

Proposition 2.13. Suppose that a sentenge= 2 satisfies either of the following
1. @isin NNF and does not contain universal quantifiers,

2. @ contains only dependence atoms of witlés subformulas.
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Theng is equivalent to a first-order sentence.

Proof. The result of Case 2 has been shown by Galliani in [7]. He stutlie fragment o allowing only
dependence atoms of width 1 and shows (independently ofthigde) that, from sentences, they can be
eliminated using existential quantification in a similasten to Lemma 3.2.

Case 1 is proved using induction gn It is straightforward to show that for &l and assignments

A @ = AEs @,
whereg* is obtained fromp by replacing dependence atoms in term§ of O
In the next lemma, we list certain properties of dependengie that will be used later.

Lemma 2.14. Formulas of dependence logic satisfy the following prapert

1. Ix(@V ) =3IxeV Ixy,
. XA Y) =Ix@A g, if xis not free iny,
. IX(QAP) = XQ A VXY,
)

2

3

4. VX(@V @) =VxeV Y, if x is not free iny,

5. Every formula of dependence logic can be transformedgrenex normal form.
6

. The meaning of a formul@is invariant under replacing a subformulg of ¢ by ¢/ such thaty = ¢/
and—y =y,

Proof. For 1 and 3 see Lemma 3.23, for 2 and 4 see Exercise 3.49, aidskee Exercise 3.51 in [19].
Finally, we note that 6 is based on the strong compositiphafidependence logic (see Lemma 3.25 in [19]
for the exact formulation). The assumptie = -/’ will not be relevant for our purposes. O

We end this section by defining the fragments of dependemnpe damd ESO that will be discussed in the
following sections.

Definition 2.15. Letk € N*.

e Denote byZ(k — V) the class of NNF sentencgsof 2 whose every variable is quantified exactly
once (no reusing of variables), apdcontains at mogt occurrences of the quantifigt

¢ Denote byZ(k—dep the class of NNF sentences @fin which dependence atoms of width at most
k+1 (i.e., atoms of the form=(ty,...,t), wherel < k+ 1) may appear.

e Denote by ES(k-ary) the class of ESO-sentences
IXq... IXall,
in which the relation symbolX; are at mosk-ary andy is a first-order formula.
e Denote by ES@k-ary) the class of ESO-sentences
3fy... 30y,

in which the function symbolg$; are at mosk-ary andy is a first-order formula.

6



e Denote by ES@k-ary,mV) the class of ESO-sentences in Skolem Normal Form
Elfl...EIanxl...erw,

in which the function symbol$; are at mosk-ary andr < m.

e Denote by ES@mV) the class of ESO-sentences in Skolem Normal Form
Ifq.. . 3. VX,

wherer < m.
By abuse of terminology, we identify these classes of sertewith the classes of properties they define.
Finally we define some further fragments of ESO that will [asentral réle in the results of Section 3.1.

Definition 2.16. Letk € N*.
1. Denote by ES&k-ary) the class of ESO-sentences
If;... 3y,

in which each function symbdi; is at mostk-ary and there exists, ...,in, pairwise distinct, such
that all terms and subterms ihwith f; as the outermost symbol are of the fofp(xi,,..., X, ).

2. Denote by ES&kv) the class of ESO-sentences in Skolem Normal Form

such thatp < k and in which, for each symbd, there exists;,...,im, pairwise distinct, such that all
terms and subterms i with f; as the outermost symbol are of the fofr{xi, ,...,x;,).

3. Denote by ES&(kV, 3*) the class of ESO-sentences of the form

Ify... 30QMe ... QPxp Y,

whereQ' € {3,V}, and the number df for 1 <i < p, such that)' =V is at mosk. Furthermore, for
each symbolff; there must exists;, , ..., X, pairwise distinct, such that all terms and subtermg/in
with f; as the outermost symbol are of the fofr(xi,,...,Xi,).

We identify these classes of sentences with the classespégies they define.

It is worth noting that the definition of the logic E$O(V) forces the functiond to be at mosk-ary,
whereas in ESka,H*), the functionsf; can have arity greater thadn



2.3 Background in complexity

In this section we review some concepts and results in codtplieory and descriptive complexity theory.
We assume that the reader is familiar with the basics of céatipnal complexity theory.

Descriptive complexity theory studies and applies logio&thods in the area of computational com-
plexity theory. The seminal result in the field was FaginsdHaracterization of NP in terms of problems
describable in ESO. Since then, most of the central contglelasses have been given such logical char-
acterization. Fagin’s characterization of NP implies, thedrem 2.8, that

2 =NP,

i.e., for every signature, and every clask C Str(7) of finite structuresK = Mod(¢) for someg € Z[1]
iff Lx € NP, whereLx C {0,1}* is a language encoding the cldés

In this paper we are interested in fragments of dependemgiednd NP. We denote by NTIMEX) the
class of languages that can be recognized by some nondeigtioniTuring Machine in timed(n®). Lynch
[17] observed that the exponehin NTIME (n¥) corresponds roughly to the arity of relations quantified in
formulas of ESO:

Theorem 2.17.1f L € NTIME(n¥) then there is a sentenggc ESQk-ary)(s, +) that defines the class of
string structures that corresponds to L, where s andre built-in relations for successor and addition.
Furthermore, if k> 2, then+ is not needed.

In Theorem 2.17, the first-order part @fhas the quantifier prefix*3*. In [10, 18] and later in [11],
Grandjean and Olive showed that, when considering RandaragscMachine as the computation model, a
tighter correspondence can be proved and, actually, an elxaacterization of fragments of NP on RAM’s
can be obtained.

Grandjean and Olive considerNRAM’s, a nondeterministic RAM that takes an arbitranstructure
as input (see [11] for a complete description of this modél)problemL on t-structures is in the class
NTIMERAM(nk), k € N*, if there exists a-NRAM M that recognizes every structure lofand such that:
each computation d¥l on a structure with domainA of sizen uses only integers i®(n*) (for address
or register contents) and stops af@m*) steps. To count the cost of the computation, the uniform cost
measure is adopted.

Olive proved the following result for signatures consigtof unary functions [18]. It was later general-
ized for any kind of input structures in [11].

Theorem 2.18. Let ke N* and lett be any signature. Over-structures:

ESO (k-ary,kv) = ESO; (KY) = NTIMEgawm (n).

It is worth noting that, even fok = 1, no built-in relations need to assumed in the above thedgtieen
result of [18] used built-in relations in the cadse- 1). Note than is the domain size. Hence, if the maximal
arity in T is greater thark, then the number of steps inG(nk) computation is less than the input size. Let
us now recall the hierarchy theorem for nondeterministitetby Cook [2].

Theorem 2.19. for every ke N*: NTIMEgram (n) < NTIMEgam (nk+2).

The lemma below shows that the classical hierarchy resdtagbplies to the "sublinear” case.



Lemma 2.20. For all h,k € N* with k < h and for every signature of arity h, it holds:

ESO (kv)[1] < ESOr((k+ 1)V)[1].

Proof. We prove the result in the hardest case of a signatuestricted to one function symbol only (this
implies the separation for all richer signatures). Bétbe the set oh-ary structure®( on domainA (identi-
fied with {0,...,n— 1}) over one functior and one constant 0 defined by:

Vag €A.. Va1 € AF(ag,...,841,0,...,0)=0

and arbitrary otherwise. In some sense, the functieria structures of#? are constant o“*? values
which are chosen for convenience on the first1 coordinates. Clearly” € ESCOr ((k+1)V). Suppose
now thatZ is definable in ES@KkV) by a formula® below:

Hfl...ﬂfthl...VXk¢7

where thef; are functions (we do not even need to suppose thek-arg). Letn € N and letl € &2 on
domainA with |A| = n. By hypothesisl = ®. Then, there exist$, ..., fi on A such that:

(Q[, fl,..., ft) ):VX]_VXk(p

Let us consider the propositional constragnt

n-1 n-1
AN o@/%).
a=0

a=0

The formulag is of sizeO(nk). Let nowL be the set oh-ary tuples(a;, . .., &, ) such thaF (a,,...,a;, )
appears in formul@ (& /%) (after substitution of all nested terms by their values Wthigcpossible since the
interpretations of thd;s are also known). The sktis of size bounded byrk for some constart depending
on|¢|. Then, ifnis big enough, at least one tugley,...,bx1,0,...,0) € A" does not belong th. Now
form a new structur@’ over the same domaif with a new functionF’ equal toF on all elements of\"
except onby, ..., bk 1,0,...,0) where the following holds:

F'(by,...,bk1,0,...,0) #0.
Clearly, sincgby, ... b 1,0,...,0) € L then(2', fq,..., f;) satisfies the constraint
n—-1 n—1
A -\ d@/x).
a;=0 ax=0

Hence,

(Q[/, fl,..., ft) ):VX]_...\V/Xkd).

and therRl’ = ®. But, sinceF’(by,...,bk1,0,...,0) # 0, then’ ¢ 2. This contradicts our assumption
that & is definable byd. O

Hence, this last result, together with Theorem 2.19 imphesfollowing corollary.

Corollary 2.21. Lett be any signature and & N*. On t-structuresESCr (kV) < ESCr ((k+ 1)V).



3 Relations between fragments o7 and ESO

In this section we study the relations between fragmentsepéddence logic and ESO. We consider first
the logicsZ(k— dep). The cas& = 0 is solved by Proposition 2.13, hence we assumekthal.

The following proposition gives us a direct correspondelpe®veen certain sentences @fand ESO.
This correspondence is slightly more general comparedatioothTheorem 6.15 [19].

Proposition 3.1. Let @ € ¥ be a sentence of the form

Q1. Q™my1... 3yn( A\ =(2.yj)10),

1<j<n

where Q ¢ {3,V}, all the quantified variables are pairwise distinétjs a quantifier-free first-order formula,
and each variable ir2l is in {x1,...,xn} and they are also pairwise distinct. Thenis equivalent to the
ESOsentencey

Ify... 3 Q% ... Q™ 6,

wheref' is obtained fromd by replacing every occurrence oflyy the term ). Conversely, lek be an
ESOsentence
Ify... 3 Q% ... Q™ 6,

in which, for each symbol;,fthere existsii,...,ip, pairwise distinct, such that all terms and subterm#in
with f; as the outermost symbol are of the forrtxf, ..., ), thenx is equivalent to a sentenggc 7 as
above.

Proof. We will show that the sentencgsandy are equivalent. Ll be arbitrary and suppose that

A= @.
This implies that there is a tea¥such that
Ay Fyr Il N\ =) A0), (5)
1<j<n

whereX is constructed by evaluating the quantifier pr&; . .. Q™. Furthermore, (5) implies that there
are functiond5: Xi_1 — A, for 1 <i <n, such that

Ax, ( N\ =(E.y)10), (6)

1<j<n

whereXo = X, andX; = Xi_1(F/yi). By the first conjunct in (6), the valués(s) of F are determined by the

valuess assigns to the variables ih We can now choose functioms: A%l — A satisfyingg;(a) = F(s) for

all asuch thag = s(Z) for somes € X;_1. We will next show that

(Q[,gl,...,gn) ':)( 9/. (7)

Recall thatf’ is a first-order formula of dependence logic and hence, byoreme 2.12, (7) holds iff
(2A,01,...,0n) s 6 for eachs e X. We can now show, using induction on the constructiorf pthat
for all s€ X, (recall that dons) = {xq,...,Xm,Y1,---,Yn}) it holds that

AEs 6 — (A,01,-.-,0n) ¢ 6, (8)

10



wheres =s | {xl,...,xm}._ The key to this result is the fact that, for<li < n, the interpretation of the
variabley; and the termf;(Z) agree:

S(yi) =Fi(ST {Xt, -, Xm Y1, -, ¥ic1}) = Gi(S(2)) = fi(Z)Hor--o)(d).

This implies, for any complex tertys, ..., Yn), that the interpretations of the terrys,...,yn) and

t(f1(Z) /Y1, - Tn(2) /)

agree forsandg, respectively. With these observations, the inductior8)rig straightforward.
Now, by (6) and Proposition 2.7, for ale X,, it holds that

A= 6.
Hence, by (8) and Theorem 2.12 again, we get that

(Q[7 gl7 cee 7gl’l) l:X 6/-
This implies
(Ql> O1,... »gn) ’: lel s memelv

and, finally, that
A= 3fy... 3FQ% ... Q™6

The implication 'y = ¢" follows by essentially reversing the steps above.

Remark that by construction, for each symliglthere exists,...,ip, pairwise distinct, such that all
terms and subterms with as the outermost symbol jpare of the formfi(x, , ..., X, ). Hence, the reciprocal
result follows analogously. O

Our goal is to find a subclass of ESO correspondingZté — dep. We will use Proposition 3.1 to
achieve this. The following lemma allows us to transform atesece in prenex normal form to the form
required in Proposition 3.1.

Lemma 3.2. Let i € Z be a quantifier-free formula whose dependence atomic subfas are of the form
=(z,...,2y) for some pairwise distinct variables,z. ., z,. Theny is equivalent to a formula of the form

- A\ = y)A6),

1<j<n
where
1. 6 is a quantifier-free formula without dependence atoms,
2. y does not appear iz for 1< j <n,
3. the number and the width of the dependence atoms in thedinginct corresponds to that gf.

Proof. The claim is proved using induction on the formua If ¢ is a first-order literal then the claim
holds trivially. If ¢ is of the form=(z, ..., z;,), then we can transforn into the following equivalent form
satisfying the claim:

Ii(=(z;---,Zm-1,Y1) AY1 = Zm).

11



Note that we do not have to consider the case-6f(z,...,zy) since this formula is equivalent ta.
Assume then thap := @ Vv @. By the induction hypothesis

@=3y.. 3 N\ =E.y)A6), ©)
1<j<n
and _
@ = 3Ynt1--- IYnem( /\ =(Z,yj) N 62). (10)
n+1<j<n+m

We may assume that the variabigs. .., yn andyn.1,...,¥n.m do not appear in the formulas (10) and (9),
respectively. Therefore, by Lemma 2.6 it follows that

®=3Y1... 3V,

and
/\ =(Z,¥j) A 61=3yni1--- Fnim( /\ =(2L,yj) A 61).

1<j<n 1<j<n

Using the above equivalences, we may now use successialgecll of Lemma 2.14 to show thatis
equivalent to the formulgr*

Y =3y1... 3YnIYns1- - Fynem(( /\ :(zjan)/\el)\/( /\ :(zj>yj)/\92))-

1<j<n n+1<j<n+m

Next we will show how to transform the quantifier-free parof * into the desired form

x =N\ =@yprb)v( A\ =@.y)r6e)).

1<j<n n+1<j<n+m

Let2( be a model anX a team whose domain consists of the free variableg‘ofSuppos&l =x ¢*. Then,
there are function§;, for 1 <i < n+m, such tha®l =x- x, whereX* = X(F1/y1) - (Fasim/Ynim)- By the
semantics of disjunction, there are tearn& such thatiX* =Y UZ and

Ay ( N\ =2,y A6) (11)

1<j<n

and

Az N\ =@y)nr6).

n+1<j<n+m

Since the variableg, 1, ...,Yn:m do not appear in the formula in (11), it is obvious that we cadifiy the
values of these variables ¥hto getY’ such tha®l =y 6;, and

Abvz N =Ey)).

n+1<j<n+m

More precisely, we do the following (note that we are modifythe values of the functiors, . 1,...,Fham
inY)forn+1<i<n+m:

e Forallsc Y such that for n@ € Z, s(Z) = §(Z), we sets(y;) = a, for some fixeda € A.

e ForallseY such thas(Z) =S (Z) for somes € Z, we sets(y;) =S (i).
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Analogously, by modifying the values of the variablgs.. .y, in Z, we findZ’ such tha®l =z 6,, and
A=z N =(2.yj).

1<j<n

SinceY andY’ andZ andZ’ only differ on the values of the variablgg, 1,...,Yn:m andys,...,yn, respec-
tively, it follows that

Akyuz N\ =@ y)A(6v6,),

1<j<n+m

and finally _
AE=x 1. Iyt Fnem( N\ =2y A(BLV 62)). (12)

1<j<n+m

For the converse, it is immediate that the formula in (12)dally implies ¢y*. Therefore it is logically
equivalent to our original formuld.
The casap := @ A @ is proved analogously. By the induction hypothesis

@=3y... 3 N\ =y A6),

1<j<n

and _
@ = FYni1--- FYnem( /\ =(Z,yj) N 62).

nH1<j<n4m
Now, analogously to above, we get thiais equivalent to the formulgs*

=3y IYnIYni1- - IWnim(( /\ :(zjan)/\el)/\( /\ :(zj>yj)/\92))-

1<j<n n+1<j<n+m

Here we use successively clause 2 of Lemma 2.14. Now the ifieefree part ofy* can be directly
transformed to the desired form. O

It is important to note that the width of the dependence atiorgsdo not change in the transformation of
Lemma 3.2. We are now ready to characterize the fragment Of &8responding to the logi@(k— dep).

Theorem 3.3. 2(k—dep = ESC (k-ary) = ESC} (k-ary).

Proof. We show first thatZ(k— dep < ESC (k-ary). We prove this by successive transformationspon
2(k—dep. By case 5 of Lemma 2.14 we can transfogninto prenex normal form. In this transformation,
we might have to replace some bound variables by new onethdutidth of the dependence atoms do not
change in the transformation. $ds equivalent to a sentence of the form

Q'x1...QMxmb, (13)

whereQ' € {3,V} and@ is a quantifier-free formula. We may further assume thahalldependence atomic
subformulas of are of the form=(zy,...,z,) for some pairwise distinct variables, ..., z,; if 8 has a
subformula=(ty,...,tp), we may pass on to the sentence

Q%1...Q"%mIz1...3z5( N\ z2=tA0(z/ts,...,2p/tp)).

1<i<p

13



Hence we may assume that the sentence (13) satisfies thim@ssu Note that, to ensure this property,
only new existentially quantified variables need at worsbéointroduced. Next we use Lemma 3.2 to
transform@ into an equivalent form
el N =@y e,
1<j<n

where6* is a quantifier-free formula without dependence atoms. ¢J6inf Lemma 2.14, it follows thap
is equivalent to the sentengé

¢ =Q%...QMnIy1... Iy A\ =(2,y)) A 0), (14)

1<j<n
where each variable in the tugteis in {xi,...,Xn}. Proposition 3.1 now implies thg! is equivalent to the
ESGC (k-ary)-sentencey
X :=3f1... 3f,Q%1...Q™xn0, (15)

where6' is obtained fronB* by replacing every occurrence wafby the termf;(Z').
Let us then show that ESCk-ary) < ESC (k-ary) < 2(k—dep). We will show that every sentengec

ESO (k-ary) can be transformed into an equivalent sentence resemplingeSC} (k-ary) in Proposition
3.1. First of all, we may certainly assume that the first-opat of  is in prenex normal form, i.e.,

WYi=3f... 30 ... Q™Xmb, (16)
where@ is a quantifier-free formula. We still need to make sure that,

(x) for each symboffi, there exists,,...,ij, pairwise distinct, such that all terms and subterm8 waith
fi as the outermost symbol are of the fofrx;, ..., ).

This can be accomplished analogously to Theorem 6.15 in 20 by one, we replace each occurrence of
every termf(ty,...,t;) in 8 by a new termf(z,...,zj), wherez,...,z; is a fresh tuple of pairwise distinct
variables and use the equivalencedof (ty,. .. ,t;)) and

vz..VZj( )\ Zp=tp— 6(f(z,...,7))).
1<p<]j
In this way, 8 is transformed to an equivalent formula of the foviz8’ such thatd’ contains only simple
terms of the formf(z,...,z). If now @’ contains two occurrence(?),...,2) and fi(z,...,2}) of the
samef;, for 1 <i <n, but different variables, we replace the occurrefi¢g],...,z) by f/(z,...,7) and
use the fact thatz6'(fi(2,...,2), fi(7,...,2})) is equivalent to
Ifvz((( /\ z?,:z[l)) — fi(zg,...,z?) = fi’(z},...,z}))AG’(fi(zg,...,z?), fi’(z%,...,z}))).
1<p<|
After these transformations, we have transladdto the form3f/vz8* satisfying ). Therefore in (16)
is now equivalent to the formula

If1... 3fQ% ... QMxn I FV20*. (17)

Since the functiond/ are forced to be equal to one of the functidas . ., f,, we get that (17) is equivalent
to

Ify... 3 IF QX ... Q™ VZO". (18)
The sentence (18) is contained in Eﬁ@ary). Furthermore, since it satisfies){ we can directly translate
it to the logicZ(k— dep) by Proposition 3.1. O
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3.1 The logicsZ(k—V)

In this section we consider the logi¢g(k — V). The case& = 0 is solved by Proposition 2.13, hence we
assume that > 1.

We first note that allowing reusing of variables in this cabigould trivialize the situation. Denote by
7" (k—V) the analogue ofZ(k — V) in which reusing of variables is allowed. Formally, we &t(k — V)
denote the class of NNF sentences»in which the variablesy, ..., X can be universally quantified and
the variableg, i € N, existentially quantified.

Proposition 3.4. 7*(1-V) = 2.

Proof. Let us assume that the formulas®fare built from variableg;, wherei € N. We will show that every
formula@ € Z is equivalent to a formulg* € 2*(1—V), in which the variablexis quantified universally
and the variableg; are only quantified existentially. We defigg inductive as follows: ifg is atomic or
negated atomiap* := ¢. The connectiveg\,,V, andd are also translated in the obvious wayglfs of the
form Vy; @, we definep™ as

Q" =y (X=yi A YY),
Note that, by the construction,does not appear free ifi* so ¢ and¢g* have the same free variables. Itis
now easy to prove using induction on the complexitypdhat for all model( and teams(

AEx @ — AEx @
O

Our goal is now to characterize the fragments of ESO corretipg to the logicsZ(k — V). We first
discuss some results regarding the relevant fragments©f ES

Proposition 3.5. ESC(kV) < ESCH(KV, 3*) < ESOr (kV).

Proof. The first inequality holds by definition. The second inedyatian be proved by noting that the
existential quantifier®' can be replaced by Skolem functions and the resulting seateill be in the logic
ESG (k). O

Contrasting with the result of Theorem 3.3, it is not knowrettter the classes E$(V) and ESQ(kY)
are equal. However, the next proposition shows that the gapden these two logics is not that big after
all.

Proposition 3.6. For every sentence in ESO (k) there is a sentence* in ESCG (2kV) such that, for all
2

A= <= AE=0¢".

Proof. Assume thatp is of the form

dfy.. . 3 Xe. . Y

wherey is quantifier free. Let us cafio( @) the set of existentially quantified function symbols thgbesr
in @. By Theorem 2.18 we can also suppose that the functioss(gf) are of arityk. By introducing new
function symbols, we will normalize the formutastep by step.

15



1. For every ternf (ty,...,tym) in @, which is not of the formf (xg,...,x) or f(g1(X),...,Om(X)), where
X = (X1,...,%), Gi € sa(@) for L<i<m, andf,qgi,...,0n are pairwise distinct, we introduce new
functionshy, ..., hym not in so(@) and replace all occurrences bfty, ..., tm) by f(hy(X),...,hn(X))
using the equivalence:

EVXY(f(ty,...,tm) < YXPY(F(h1(X),...,hm(X))) A /\ h;(X) =t;.

After these transformations, the composition depth ofeaittis is bounded by 2.

2. Transformg in such a way that no function symbol appears both as an imtkaa outer function
symbol even in different composed terms. This can be doneystgmatically renaming all inner
termsg; (X) by a new termh;(X) with h; ¢ so(@) and using the equivalence:

E VR Y(f(0LR),--,Om(X))) < VR P(F(Na(R),....hm(X))) A A\ Gi(%) = hi(X).
i=1

3. Finally, for convenience, one forces that for each fuarcfi € so( @), there is at least one occurrence
of the term f(X). For that, it suffices to add in conjunction with the formulal@mmy equality
f(X) = h(X) whereh ¢ so(@).

We are now ready to make the final transformationgorNote that thosd € so(@) that only appear as an
inner symbol in composed terms, have only occurrences dbthef (xy,...,X) in @. Therefore, it suffices
to considerf € so(@) having at least one occurrence of the fofif(X),...,0k(X)) in @. Letterm(f) be
the set of terms involving. The elements;(f),... ,Tm, (f) of term(f) are of the form

i(f) = f(gi1(X),...,6ik(X)

where all functiong; j are in(so(@) U{pri,...,prk})\{ f} where eaclpr; is the projection function on the
jth argument. Without loss of generality, we may supposeif{dt) = f(xi,...,X). Let us introduce new
functions symbol#y, ..., hy, not yet insa(@). Then, the following equivalence holds:

l: VXY < VXVX /\feso((p) /\:];fl(xll = gi,l()_() A AX{( = ng()_()) - f()_(/) =h ()_()
ANX=X — )
where ¢* is obtained fromy by replacing every occurrence of(f) by f(X') and every occurrence of
T;(f), fori > 1, by h;j(X). Note that in the originad, all simple terms involvingf (i.e., not as an outermost
symbol in a composition) are all already of the fofitx) (from the normalization process). They can then

be transformed intd (X) directly. This step is repeated for every functionsofg) appearing as an outer
symbol in a composed term. O

Now we turn to the characterization of the logiggk — V). The following lemma will be used.

Lemma 3.7. Every sentence € 2(k—V) is equivalent to a sentenag’ € (k — V) which is in prenex
normal form.

Proof. The equivalences 1-4 of Lemma 2.14 can be applied to transfointo prenex normal form since
each variable irnp is quantified exactly once. O
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We are now ready for the main result of this section.
Theorem 3.8. 2(k—V) = ESCk(kY, 3*).

Proof. Note first that ES&(kV, 3*) < 2(k— V) follows immediately by Proposition 3.1. We will now show

that also the converse holds. lggt 2(k— V) be a sentence. We will construct a sentexeeESCE (K, 3*)
equivalent top. We use the same idea as in the proof of Theorem 3.3. By Lemmav8.may assume that
@ is in prenex normal form, i.eq is of the form

whereQ' € {3,V} and @ is a quantifier-free formula. Analogously to the proof of Bham 3.3, we may
also assume that all the dependence atomic subformutaref of the form=(z, ..., z,) for some pairwise
distinct variables, . ..,z,. As remarked in the proof of Theorem 3.3, the cost of assuithirsgproperty is
the introduction of new existentially quantified variab{es., the number of universal quantifiers does not
change). Next we use Lemma 3.2 to transf@nmto an equivalent form

Fyr. 3 N\ =2y A6%),

1<j<n

wheref* is a quantifier-free formula without dependence atoms. Bil&eomama 2.14, we now get thatis
equivalent to the sentengg

Q¢...QM%nIy1... Iyn( A\ =(Z,yj) A 67), (19)

1<j<n

where each variable in the tugteis in {x,...,%n} and the variables i@ are pairwise distinct. Note also
that the quantifier prefiQ*x; ... Q™x, has at mosk universal quantifiers. Proposition 3.1 now implies that
¢ is equivalent to a sentengec ESC}(kV, 3%).

O

Corollary 3.9. Forke N*, 2(k—V) < 2(k—dep.
Proof. The claim follows by the following chain of inequalities:
2(k—V) < ESCH(KY,F*) < ESOr(kY) < ESO (k-ary,kY) < ESOr (k-ary) < Z(k—dep),
where the first three inequalities hold by Theorem 3.8, Psttipm 3.5, Theorem 2.18, and the last by
Theorem 3.3. O
4 Hierarchy theorems for

In this section we use the results of the previous sectioshdw expressibility hierarchies for fragments of
dependence logic. From the results of the preceding sectirre obtains the following result.

Corollary 4.1. For every ke N*, on every signatureZ(k—V) < 2(k+1—dep.
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Proof. By Theorem 3.8 and Proposition 3.5, it holds tiatk — V) < ESCr (kV). The following chain of
inclusions now hold using Corollary 2.21 and 2.18:

ESO (kV) = NTIMEgam (n¥) < NTIMEgam (') < ESO (k+ 1-ary) = 2(k+1—dep.

A hierarchy result foz(k— V) can also be stated.
Corollary 4.2. For every ke N*, on every signatureZ(k—V) < 2(2k+2—V).

Proof. Again, using Theorem 3.8 and Proposition 3.5, it holds that
ESCGH(KY) < 2(k—V) < ESOr (KY).
By the "hierarchy" Corollary 2.21, ESQKY) < ESO (k+ 1V) and from Proposition 3.6, it holds:
ESOr (k+1V) < ESC(2k+2V).
Then, the result follows by applying Theorem 3.8 again. O

The above hierarchy o (k — V) is not tight. However, the following is easily seen to be t(unethe
results that follow, that do not hold for all signatures oemwvalue ofk, we make explicit the parameter
in the notation).

Corollary 4.3. For every signaturer, there exists an infinity of & N such thatZ(k—V)[r] < Z(k+1—
v)[T].

Proof. By Corollary 4.2, it holds thatZ(k —V) < 2(2k+2—V) for all k > 1 and all signatures. Fix
k € N*, the result above implies that there exiBts (k,2k+ 1) such thatZ(h—V)[1] < Z2(h+1-V)][1].
Since the number of pairwise disjoint intervals of the fqkak + 1) is infinite, the result follows. O

We now turn back to logice/(k—dep. The time hierarchy theorem can be used in the context of the
logics ESQ (kv) but not directly with the logics ES@k-ary) or ESQk-ary). Ajtai [1] showed that also the
logics ESQk-ary) form a strict hierarchy with respect toif the signature is allowed to vary. By an easy
reduction, one can improve the result to show that it is dleachse for the logics ES(k-ary) (see [3] for
the separation of the two first levels). To summarize:

Theorem 4.4([1]). Let R be a k- 1-ary relation symbol. Then the propertjR] even" cannot be defined in
the logicESCx (k-ary).

Since '|R| even" is expressible in ES®+ 1-ary), we get that, for alk
ESGO (k-ary)[1k+1] < ESQK+ 1-ary)[Ti+1],

wherety,1 = {R} andRis k+ 1-ary. By Theorem 3.3, the logicg(k — dep also form a hierarchy with
respect to expressive power using Theorem 4.4.

Theorem 4.5. Let k> 1 and 1x.; = {R} where R is k- 1-ary. Then2(k —dep|[tk;1] < Z2(k+1—
dep|tk+1]. In particular, the property |R| even" is definable i7(k+ 1 — dep|tk.1] but not in 2(k —
dep[Ti;a].
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Proof. The claim directly follows from Theorems 3.3 and 4.4. O

The above result provides a kind of "subdiagonal” hierarnstmen the maximal arity of a relation in
the signature is greater than the authorized arity of a digrae atomic formula. Could a better result be
proved? In particular, is it true that for every signatarand allk, 2(k—dep)[1] < 2(k+ 1—dep][1]? By
Theorem 3.3, such a result would imply that ESKary) < ESCO (k+ 1-ary) for every signature. Although
it is reasonably conjectured to be true, such a result iseidiryown. In the particular case ot 0, it would
imply that there exist sets of integers definable by firseoskntences (i.e., which are spectra of first-order
sentences) with predicates of maximal atity- 1 which are not definable by sentences with predicates
of arity k. This latter question is left open in [5] (it concerns thecatled Spectrum Arity Hierarchy, see
also [6]) and has not received a satisfiable answer sincedmpite numerous efforts. Proving an equivalent
hierarchy forZ(k—dep is a challenging and difficult task with consequences tosielelyond dependence
logic.

Conclusion
P(2k+2-V)
# 2 (k+1—dep
#
T =7 Arity Hierarchy Conj.
ESOr (kV) 2(k—dep = ESO (k-ary) = ESC (k-ary)

!

P(k—Y) = ESC kv, 3*)

Figure 1: Summary of inclusions (for all signatures andat 1)

We have pinned down the fragments of ESO corresponding tidgments? (k— V) and Z(k — dep
of 2 (Figure 1 summarizes the main relationships between logiosidered in this paper). Our results
explain how important syntactic parameters, the maximadthwof dependence atoms, and the number of
universal quantifiers in a sentence, reflect on its data aexitpl We also showed that fixing either of the
parameters will lead to a loss in expressive power. Thewviatlg questions remain open.

1. Isitthe case tha¥(k—V) < Z(k+1—V) for all k andall signatures?
2. DoesZ(k—V)[t] < Z2(k—dep)|1] hold for all signatures?
3. Is there a signaturefor which Z(k—dep 1] < 2(k+ 1—dep]t] holds for allk?

Remark that Corollary 4.3 does not answer Question 1 sirstwis that for every signature the inclu-
sion is strict for inifinitely manyk but not for allk yet. It is worth noting that, by Lemma 2.20, 2 holdsif
has arity greater thak Also, 3 is open already in the case= 0.
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