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Abstract

We study fragments of dependence logic defined either by restricting the numberk of universal
quantifiers or the width of dependence atoms in formulas. We find the sublogics of existential second-
order logic corresponding to these fragments of dependencelogic. We also show that these both ways of
defining fragments of dependence logic give rise to a hierarchy in expressive power with respect tok.

1 Introduction

Dependence logic [19] extends first-order logic by dependence atomic formulas

=(x1, . . . ,xn) (1)

the intuitive meaning of which is that the value ofxn is completely determined by the values ofx1, . . . ,xn−1.
While it is known that dependence logic (D) is equivalent to existential second-order logic (ESO) (and thus
to NP over finite structures [4]) in expressive power, not much is known about the expressive power of
its fragments. On the other hand, various fragments of ESO have been studied and the expressive power
of the fragments of ESO is quite well understood (see, e.g., [1], [9], [18], [11], [3], and [8]). In this
article we take the first steps towards charting the expressive power of fragments of dependence logic. The
fragments studied in this article are defined by restrictingthe number of universal quantifiers or the width
of the dependence atoms (the integern in (1)) in formulas. In both cases, we find exact subclasses ofESO
corresponding to these fragments of dependence logic.

Let us briefly recall the history of dependence logic. In first-order logic the order of quantifiers deter-
mines the dependence relations between variables. For example, in the formula

∀x0∃x1∀x2∃x3φ ,

the choice forx1 depends on the value forx0, and the choice forx3 depends on the values of both univer-
sally quantified variablesx0 andx2. Dependence logic generalizes the syntax of first-order logic to express
dependencies between variables that are not first-order expressible. The first step in this direction was taken
by Henkin [12] with his partially ordered quantifiers

(

∀x0 ∃x1

∀x2 ∃x3

)

φ , (2)
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wherex1 depends only onx0 andx3 depends only onx2. Walkoe [20] showed that every ESO-definable
property can be defined by a sentence of the form (2) (the size of the quantifier prefix may vary) whereφ
is a quantifier-free first-order formula. Then Hintikka and Sandu [13] introduced Independence-Friendly
(IF) logic extending first-order logic by so-called slashedquantifiers. For example, the formula (2) can be
expressed in IF logic as

∀x0∃x1∀x2∃x3/∀x0φ ,

where the quantifier∃x3/∀x0 has the meaning thatx3 is “independent” ofx0 in the sense that a choice for the
value ofx3 should not depend on the value ofx0. Dependence logic generalizes the approach of IF logic by
detaching variable dependencies from the quantifiers and, instead, declaring them in terms of new atomic
formulas. For example, the partially ordered quantifier (2)can be expressed in dependence logic as follows

∀x0∃x1∀x2∃x3(=(x2,x3)∧φ).

It is known that dependence logic (also IF logic) is equivalent to ESO in expressive power. However, at the
moment we do not have a good understanding of how various syntactic restrictions imposed on formulas of
dependence logic reflect on their expressiveness and complexity. Some work has been done in this direction.
In a recent doctoral thesis of Jarmo Kontinen [14] the complexity of open formulas of dependence logic was
studied. The following result of [14] is in drastic contrastwith classical logics. Define the formulasφ1 and
φ2 as follows:

1. φ1 := =(x,y)∨ =(u,v),

2. φ2 := =(x,y)∨ =(u,v)∨ =(u,v).

Then the question of deciding whether a teamX satisfiesφ1 is NL-complete and, forφ2, NP-complete. This
result shows that already the quantifier-free part of dependence logic is as complex as the whole logic. Note
also that the difference in the formulasφ1 andφ2 is that, inφ2, the disjunct=(u,v) has two occurrences
instead of one.

In this article we consider the following fragmentsD(k−∀) andD(k−dep) of D defined by restrict-
ing the number of universal quantifiers or the width of dependence atoms in formulas, respectively. In
other words, the fragmentD(k−∀) contains those formulas ofD in which at mostk variables have been
universally quantified and no reusing (i.e., requantification) of variables is allowed. On the other hand, in
D(k−dep) we require that only dependence atoms=(x1, . . . ,xn) satisfyingn≤ k+1 may appear.

We show thatD(k−dep) corresponds exactly to the fragment ESOf (k-ary) of ESO in which functions
of arity at mostk are allowed to be quantified. RegardingD(k−∀), we observe that this fragment is
equivalent to the fragment ESO1

f (k∀,∃
∗) (see Definition 2.16) of ESO satisfying

ESO1
f (k∀,∃

∗)≤ ESOf (k-ary,k∀)≤ ESOf (k-ary),

where ESOf (k-ary,k∀) consists of those ESOf (k-ary)-sentences that are in Skolem Normal Form and con-
tain at mostk universal first-order quantifiers.

In the last section of this article we consider the expressive power of the logicsD(k−∀) andD(k−
dep) over finite structures and investigate in particular whether, for varyingk, these fragments form a strict
hierarchy of expressivity. We recall a result of Ajtai [1] showing that in ESOf (k-ary) even cardinality of a
k+1-ary relation cannot be expressed. Our results imply that the same holds for the logicD(k−dep) and
that the hierarchy is strict whenk is less than the maximal arity of a relation in the signature.For the general
case, we give some evidence that proving the strictness of the hierarchy may be hard since our results imply
that this question is related to the Spectrum Arity Hierarchy Conjecture (see [6]).
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On the other hand, in [11] Grandjean and Olive showed that, for any signatureτ ,

ESOf (k∀) = ESOf (k-ary,k∀) = NTIMERAM(nk),

where NTIMERAM(nk) denotes the family of classes ofτ-structures that can be recognizes by a non-
deterministic Random Access Machine in timeO(nk). The hierarchy theorem of Cook [2] implies that
these classes form a strict hierarchy with respect tok and hence the same holds for the logics ESOf (k∀). We
show that

ESOf (k∀)≤ D(2k−∀)≤ ESOf (2k∀),

implying a hierarchy theorem for the logicsD(k−∀).
This article is organized as follows. In Section 2, we reviewsome basic properties and results regarding

dependence logic. We also recall some relevant results characterizing subclasses of NP in terms of fragments
of ESO. Section 3 contains our main results connecting fragments of dependence logic with that of ESO.
Finally, in Section 4, we use our results to identify expressibility hierarchies within dependence logic.

2 Preliminaries

In this section we first define dependence logic and recall some basic results on it. Then we review results
in computational complexity and descriptive complexity theory that will be needed.

2.1 Dependence Logic

We begin with the syntax of dependence logic.

Definition 2.1 ([19]). The syntax ofD extends the syntax of FO, defined in terms of∨, ∧, ¬, ∃ and∀, by
atomic dependence formulas of the form

=(t1, . . . , tn), (3)

wheret1, . . . , tn are terms. For a signatureτ , D [τ ] denotes the set ofτ-formulas ofD .

The meaning of the dependence formula (3) is that the value ofthe termtn is functionally determined
by the values of the termst1, . . . , tn−1. Hence the meaning of the formula=(t) is that the value of the termt
depends on nothing, i.e., is constant. As a singular case we have=(), which we take to be universally true.

Definition 2.2. The set Fr(φ) of free variables of a formulaφ ∈ D is defined as for first-order logic, except
that we have the new case

Fr(=(t1, . . . , tn)) = Var(t1)∪ ·· ·∪Var(tn),

where Var(ti) is the set of variables occurring in termti. If Fr(φ) = /0, we callφ a sentence.

The semantics ofD is formulated using the concept of aTeam. Let A be a model with domainA.
Assignmentsof A are finite mappings from variables intoA. The value of a termt in an assignments is
denoted bytA〈s〉. If s is an assignment,x a variable, anda∈ A, thens(a/x) denotes the assignment (with
domain dom(s)∪{x}) that agrees withs everywhere except that it mapsx to a. For an assignments, and a
tuple of variablesx= (x1, . . . ,xn), we sometimes denote the tuple(s(x1), . . . ,s(xn)) by s(x).

Definition 2.3. Let A be a set and{x1, . . . ,xk} a finite (possibly empty) set of variables. Ateam Xof A with
domain dom(X) = {x1, . . . ,xk} is any set of assignments from the variables{x1, . . . ,xk} into the setA.
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We denote byrel(X) thek-ary relation ofA corresponding toX

rel(X) = {(s(x1), . . . ,s(xk)) : s∈ X}.

If X is a team ofA, andF : X → A, we useX(F/xn) to denote the team{s(F(s)/xn) : s∈ X} andX(A/xn)
the team{s(a/xn) : s∈ X anda∈ A}.

We are now ready to define the semantics of dependence logic. Signaturesτ are assumed to be finite
and they may contain constants, relations and function symbols. In this article we consider only formulas
in negation normal form (NNF), i.e., negation is allowed to appear only in front of atomic formulas. This is
not a restriction since any formula of dependence logic can be transformed into negation normal form [19].
Atomic formulas and their negations are called literals.

Definition 2.4 ([19]). Let A be a model andX a team ofA. The satisfaction relationA |=X φ is defined as
follows:

1. If φ is a first-order literal, thenA |=X φ iff for all s∈ X: A |=s φ .

2. A |=X=(t1, . . . , tn) iff for all s,s′ ∈ X such that
tA1 〈s〉= tA1 〈s

′〉, . . . , tAn−1〈s〉= tAn−1〈s
′〉, we havetAn 〈s〉= tAn 〈s

′〉.

3. A |=X ¬=(t1, . . . , tn) iff X = /0.

4. A |=X ψ ∧φ iff A |=X ψ andA |=X φ .

5. A |=X ψ ∨φ iff X =Y∪Z such thatA |=Y ψ andA |=Z φ .

6. A |=X ∃xnψ iff A |=X(F/xn) ψ for someF : X → A.

7. A |=X ∀xnψ iff A |=X(A/xn) ψ .

Above, we assume that the domain ofX contains the variables free inφ . Finally, a sentenceφ is true in a
modelA (A |= φ ) if A |={ /0} φ .

Next we define the concepts of logical consequence and equivalence for formulas of dependence logic.

Definition 2.5. Let φ andψ be formulas of dependence logic. The formulaψ is a logical consequenceof
φ ,

φ ⇒ ψ ,

if for all modelsA and teamsX, with Fr(φ)∪Fr(ψ)⊆ dom(X), andA |=X φ we haveA |=X ψ . The formulas
φ andψ arelogically equivalent,

φ ≡ ψ ,

if φ ⇒ ψ andψ ⇒ φ .

2.2 Basic properties of dependence logic

In this section we recall some basic properties of dependence logic.
Let X be a team with domain{x1, . . . ,xk} andV ⊆ {x1, . . . ,xk}. Denote byX ↾V the team{s↾V : s∈X}

with domainV. The following lemma shows that the truth of a formula depends only on the interpretations
of the variables occurring free in the formula.
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Lemma 2.6([19]). Suppose V⊇ Fr(φ). ThenA |=X φ if and only ifA |=X↾V φ .

The following fact is also a very basic property of all formulas of dependence logic:

Proposition 2.7([19]). Letφ be a formula of dependence logic,A a model, and Y⊆X teams. ThenA |=X φ
impliesA |=Y φ .

On the other hand, the expressive power of sentences ofD coincides with that of ESO:

Theorem 2.8([19]). D = ESO.

Theorem 2.8 does not tell us anything about formulas of dependence logic with free variables. An
upperbound for the complexity of formulas ofD is provided by the following result.

Theorem 2.9([19]). Let τ be a signature andφ a D [τ ]-formula with free variables x1, . . . ,xk. Then there is
a τ ∪{R}-sentenceψ of ESO, in which R appears only negatively, such that for all modelsA and teams X
with domain{x1, . . . ,xk}:

A |=X φ ⇐⇒ (A, rel(X)) |= ψ .

In [15] it was shown that also the converse holds.

Theorem 2.10([15]). Let τ be a signature and R a k-ary relation symbol such that R/∈ τ . Then for every
τ ∪{R}-sentenceψ of ESO, in which R appears only negatively, there is aτ-formulaφ of dependence logic
with free variables x1, . . . ,xk such that, for allA and X with domain{x1, . . . ,xk}:

A |=X φ ⇐⇒ (A, rel(X)) |= ψ ∨∀y¬R(y). (4)

Proof. The disjunct∀y¬R(y) is needed on the right because the empty teamX = /0 satisfies all formulas of
dependence logic butψ need not always be true in the caserel(X) = /0 [16].

Theorem 2.10 shows that formulas of dependence logic correspond in a precise way to the negative
fragment of ESO and are therefore very expressive. Furthermore, the results of [14] discussed in the Intro-
duction show that already for certain quantifier-free formulasφ ∈ D , the corresponding sentenceψ ∈ ESO
(see Theorem 2.9) defines a NP-complete problem. On the otherhand, if we restrict attention to formulas
that do not contain dependence atomic formulas as subformulas, we lose much of the expressive power.

Definition 2.11. A formula φ of D is called a first-order formula if it does not contain dependence atomic
formulas as subformulas.

Theorem 2.12.Let φ be a first-order formula of dependence logic. Then for allA and X:

1. A |={s} φ ⇐⇒ A |=s φ .

2. A |=X φ ⇐⇒ for all s∈ X:A |=s φ .

The following proposition shows that both the existential fragment ofD , and the fragment allowing only
dependence atoms of width 1 (i.e., dependence atoms=(t1)), collapse also to first-order logic.

Proposition 2.13. Suppose that a sentenceφ ∈ D satisfies either of the following

1. φ is in NNF and does not contain universal quantifiers,

2. φ contains only dependence atoms of width1 as subformulas.
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Thenφ is equivalent to a first-order sentence.

Proof. The result of Case 2 has been shown by Galliani in [7]. He studies the fragment ofD allowing only
dependence atoms of width 1 and shows (independently of thisarticle) that, from sentences, they can be
eliminated using existential quantification in a similar fashion to Lemma 3.2.

Case 1 is proved using induction onφ . It is straightforward to show that for allA and assignmentss:

A |={s} φ ⇐⇒ A |=s φ∗,

whereφ∗ is obtained fromφ by replacing dependence atoms in terms of⊤.

In the next lemma, we list certain properties of dependence logic that will be used later.

Lemma 2.14. Formulas of dependence logic satisfy the following properties:

1. ∃x(φ ∨ψ)≡ ∃xφ ∨∃xψ ,

2. ∃x(φ ∧ψ)≡ ∃xφ ∧ψ , if x is not free inψ ,

3. ∀x(φ ∧ψ)≡ ∀xφ ∧∀xψ ,

4. ∀x(φ ∨ψ)≡ ∀xφ ∨ψ , if x is not free inψ ,

5. Every formula of dependence logic can be transformed intoprenex normal form.

6. The meaning of a formulaφ is invariant under replacing a subformulaψ of φ byψ ′ such thatψ ≡ ψ ′

and¬ψ ≡ ¬ψ ′.

Proof. For 1 and 3 see Lemma 3.23, for 2 and 4 see Exercise 3.49, and for5 see Exercise 3.51 in [19].
Finally, we note that 6 is based on the strong compositionality of dependence logic (see Lemma 3.25 in [19]
for the exact formulation). The assumption¬ψ ≡ ¬ψ ′ will not be relevant for our purposes.

We end this section by defining the fragments of dependence logic and ESO that will be discussed in the
following sections.

Definition 2.15. Let k∈ N
∗.

• Denote byD(k−∀) the class of NNF sentencesφ of D whose every variable is quantified exactly
once (no reusing of variables), andφ contains at mostk occurrences of the quantifier∀.

• Denote byD(k−dep) the class of NNF sentences ofD in which dependence atoms of width at most
k+1 (i.e., atoms of the form=(t1, . . . , tl ), wherel ≤ k+1) may appear.

• Denote by ESO(k-ary) the class of ESO-sentences

∃X1 . . .∃Xnψ ,

in which the relation symbolsXi are at mostk-ary andψ is a first-order formula.

• Denote by ESOf (k-ary) the class of ESO-sentences

∃ f1 . . .∃ fnψ ,

in which the function symbolsfi are at mostk-ary andψ is a first-order formula.
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• Denote by ESOf (k-ary,m∀) the class of ESO-sentences in Skolem Normal Form

∃ f1 . . .∃ fn∀x1 . . .∀xrψ ,

in which the function symbolsfi are at mostk-ary andr ≤ m.

• Denote by ESOf (m∀) the class of ESO-sentences in Skolem Normal Form

∃ f1 . . .∃ fn∀x1 . . .∀xrψ ,

wherer ≤ m.

By abuse of terminology, we identify these classes of sentences with the classes of properties they define.

Finally we define some further fragments of ESO that will playa central rôle in the results of Section 3.1.

Definition 2.16. Let k∈N
∗.

1. Denote by ESO1f (k-ary) the class of ESO-sentences

∃ f1 . . .∃ fnψ ,

in which each function symbolfi is at mostk-ary and there existsi1, . . . , im, pairwise distinct, such
that all terms and subterms inψ with fi as the outermost symbol are of the formfi(xi1, . . . ,xim).

2. Denote by ESO1f (k∀) the class of ESO-sentences in Skolem Normal Form

∃ f1 . . .∃ fn∀x1 . . .∀xpψ ,

such thatp≤ k and in which, for each symbolfi, there existsi1, . . . , im, pairwise distinct, such that all
terms and subterms inψ with fi as the outermost symbol are of the formfi(xi1, . . . ,xim).

3. Denote by ESO1f (k∀,∃
∗) the class of ESO-sentences of the form

∃ f1 . . .∃ fnQ1x1 . . .Q
pxpψ ,

whereQi ∈ {∃,∀}, and the number ofi, for 1≤ i ≤ p, such thatQi = ∀ is at mostk. Furthermore, for
each symbolfi there must existsxi1, . . . ,xim, pairwise distinct, such that all terms and subterms inψ
with fi as the outermost symbol are of the formfi(xi1, . . . ,xim).

We identify these classes of sentences with the classes of properties they define.

It is worth noting that the definition of the logic ESO1
f (k∀) forces the functionsfi to be at mostk-ary,

whereas in ESO1f (k∀,∃
∗), the functionsfi can have arity greater thank.
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2.3 Background in complexity

In this section we review some concepts and results in complexity theory and descriptive complexity theory.
We assume that the reader is familiar with the basics of computational complexity theory.

Descriptive complexity theory studies and applies logicalmethods in the area of computational com-
plexity theory. The seminal result in the field was Fagin’s [4] characterization of NP in terms of problems
describable in ESO. Since then, most of the central complexity classes have been given such logical char-
acterization. Fagin’s characterization of NP implies, by Theorem 2.8, that

D = NP,

i.e., for every signatureτ , and every classK ⊆ Str(τ) of finite structures:K = Mod(φ) for someφ ∈ D [τ ]
iff LK ∈ NP, whereLK ⊆ {0,1}∗ is a language encoding the classK.

In this paper we are interested in fragments of dependence logic and NP. We denote by NTIME(nk) the
class of languages that can be recognized by some nondeterministic Turing Machine in timeO(nk). Lynch
[17] observed that the exponentk in NTIME(nk) corresponds roughly to the arity of relations quantified in
formulas of ESO:

Theorem 2.17. If L ∈ NTIME(nk) then there is a sentenceφ ∈ ESO(k-ary)(s,+) that defines the class of
string structures that corresponds to L, where s and+ are built-in relations for successor and addition.
Furthermore, if k≥ 2, then+ is not needed.

In Theorem 2.17, the first-order part ofφ has the quantifier prefix∀∗∃∗. In [10, 18] and later in [11],
Grandjean and Olive showed that, when considering Random Access Machine as the computation model, a
tighter correspondence can be proved and, actually, an exact characterization of fragments of NP on RAM’s
can be obtained.

Grandjean and Olive considerτ-NRAM’s, a nondeterministic RAM that takes an arbitraryτ-structure
as input (see [11] for a complete description of this model).A problem L on τ-structures is in the class
NTIMERAM(nk), k ∈ N

∗, if there exists aτ-NRAM M that recognizes every structure ofL and such that:
each computation ofM on a structureA with domainA of sizen uses only integers inO(nk) (for address
or register contents) and stops afterO(nk) steps. To count the cost of the computation, the uniform cost
measure is adopted.

Olive proved the following result for signatures consisting of unary functions [18]. It was later general-
ized for any kind of input structures in [11].

Theorem 2.18.Let k∈ N
∗ and letτ be any signature. Overτ-structures:

ESOf (k-ary,k∀) = ESOf (k∀) = NTIMERAM(nk).

It is worth noting that, even fork = 1, no built-in relations need to assumed in the above theorem(the
result of [18] used built-in relations in the casek= 1). Note thatn is the domain size. Hence, if the maximal
arity in τ is greater thank, then the number of steps in aO(nk) computation is less than the input size. Let
us now recall the hierarchy theorem for nondeterministic time by Cook [2].

Theorem 2.19. for every k∈ N
∗: NTIMERAM(nk)< NTIMERAM(nk+1).

The lemma below shows that the classical hierarchy result also applies to the "sublinear" case.
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Lemma 2.20. For all h,k∈ N
∗ with k< h and for every signatureτ of arity h, it holds:

ESOf (k∀)[τ ]< ESOf ((k+1)∀)[τ ].

Proof. We prove the result in the hardest case of a signatureτ restricted to one function symbol only (this
implies the separation for all richer signatures). LetP be the set ofh-ary structuresA on domainA (identi-
fied with{0, . . . ,n−1}) over one functionF and one constant 0 defined by:

∀a1 ∈ A. . .∀ak+1 ∈ A F(a1, . . . ,ak+1,0, . . . ,0) = 0

and arbitrary otherwise. In some sense, the functionsF in structures ofP are constant onAk+1 values
which are chosen for convenience on the firstk+ 1 coordinates. Clearly,P ∈ ESOf ((k+1)∀). Suppose
now thatP is definable in ESOf (k∀) by a formulaΦ below:

∃ f1 . . .∃ ft∀x1 . . .∀xkϕ ,

where thefi are functions (we do not even need to suppose they arek-ary). Letn∈ N and letA ∈ P on
domainA with |A|= n. By hypothesis,A |= Φ. Then, there existsf1, . . . , ft on A such that:

(A, f1, . . . , ft) |= ∀x1 . . .∀xkϕ .

Let us consider the propositional constraintφ :

n−1
∧

a1=0

. . .
n−1
∧

ak=0

ϕ(ai/xi).

The formulaφ is of sizeO(nk). Let nowL be the set ofh-ary tuples(ai1, . . . ,aih) such thatF(ai1, . . . ,aih)
appears in formulaϕ(ai/xi) (after substitution of all nested terms by their values which is possible since the
interpretations of thefis are also known). The setL is of size bounded bycnk for some constantc depending
on |ϕ |. Then, ifn is big enough, at least one tuple(b1, . . . ,bk+1,0, . . . ,0) ∈ Ah does not belong toL. Now
form a new structureA′ over the same domainA with a new functionF ′ equal toF on all elements ofAh

except on(b1, . . . ,bk+1,0, . . . ,0) where the following holds:

F ′(b1, . . . ,bk+1,0, . . . ,0) 6= 0.

Clearly, since(b1, . . . ,bk+1,0, . . . ,0) 6∈ L then(A′, f1, . . . , ft) satisfies the constraint

n−1
∧

a1=0

. . .
n−1
∧

ak=0

ϕ(ai/xi).

Hence,

(A′, f1, . . . , ft) |= ∀x1 . . .∀xkϕ .

and thenA′ |= Φ. But, sinceF ′(b1, . . . ,bk+1,0, . . . ,0) 6= 0, thenA′ 6∈ P. This contradicts our assumption
thatP is definable byΦ.

Hence, this last result, together with Theorem 2.19 impliesthe following corollary.

Corollary 2.21. Let τ be any signature and k∈N
∗. Onτ-structures,ESOf (k∀)< ESOf ((k+1)∀).
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3 Relations between fragments ofD and ESO

In this section we study the relations between fragments of dependence logic and ESO. We consider first
the logicsD(k−dep). The casek= 0 is solved by Proposition 2.13, hence we assume thatk≥ 1.

The following proposition gives us a direct correspondencebetween certain sentences ofD and ESO.
This correspondence is slightly more general compared to that of Theorem 6.15 [19].

Proposition 3.1. Letφ ∈ D be a sentence of the form

Q1x1 . . .Q
mxm∃y1 . . .∃yn(

∧

1≤ j≤n

=(zj ,y j)∧θ),

where Qi ∈ {∃,∀}, all the quantified variables are pairwise distinct,θ is a quantifier-free first-order formula,
and each variable inzj is in {x1, . . . ,xm} and they are also pairwise distinct. Thenφ is equivalent to the
ESO-sentenceχ

∃ f1 . . .∃ fnQ1x1 . . .Q
mxmθ ′,

whereθ ′ is obtained fromθ by replacing every occurrence of yi by the term fi(zi). Conversely, letχ be an
ESO-sentence

∃ f1 . . .∃ fnQ1x1 . . .Q
mxmθ ′,

in which, for each symbol fi, there exists i1, . . . , ip, pairwise distinct, such that all terms and subterms inθ ′

with fi as the outermost symbol are of the form fi(xi1, . . . ,xip), thenχ is equivalent to a sentenceφ ∈ D as
above.

Proof. We will show that the sentencesφ andχ are equivalent. LetA be arbitrary and suppose that

A |= φ .

This implies that there is a teamX such that

A |=X ∃y1 . . .∃yn(
∧

1≤ j≤n

=(zj ,y j)∧θ), (5)

whereX is constructed by evaluating the quantifier prefixQ1x1 . . .Qmxm. Furthermore, (5) implies that there
are functionsFi : Xi−1 → A, for 1≤ i ≤ n, such that

A |=Xn (
∧

1≤ j≤n

=(zj ,y j)∧θ), (6)

whereX0 = X, andXi = Xi−1(Fi/yi). By the first conjunct in (6), the valuesFi(s) of Fi are determined by the
valuessassigns to the variables inzi . We can now choose functionsgi : A|zi | → A satisfyinggi(a) = Fi(s) for
all a such thata= s(zi) for somes∈ Xi−1. We will next show that

(A,g1, . . . ,gn) |=X θ ′. (7)

Recall thatθ ′ is a first-order formula of dependence logic and hence, by Theorem 2.12, (7) holds iff
(A,g1, . . . ,gn) |=s θ ′ for eachs∈ X. We can now show, using induction on the construction ofθ , that
for all s∈ Xn (recall that dom(s) = {x1, . . . ,xm,y1, . . . ,yn}) it holds that

A |=s θ ⇐⇒ (A,g1, . . . ,gn) |=s′ θ ′, (8)

10



wheres′ = s ↾ {x1, . . . ,xm}. The key to this result is the fact that, for 1≤ i ≤ n, the interpretation of the
variableyi and the termfi(zi) agree:

s(yi) = Fi(s↾ {x1, . . . ,xm,y1, . . . ,yi−1}) = gi(s
′(zi)) = fi(z

i)(A,g1,...,gn)〈s′〉.

This implies, for any complex termt(y1, . . . ,yn), that the interpretations of the termst(y1, . . . ,yn) and

t( f1(z
1)/y1, . . . , fn(z

n)/yn)

agree forsands′, respectively. With these observations, the induction in (8) is straightforward.
Now, by (6) and Proposition 2.7, for alls∈ Xn, it holds that

A |=s θ .

Hence, by (8) and Theorem 2.12 again, we get that

(A,g1, . . . ,gn) |=X θ ′.

This implies
(A,g1, . . . ,gn) |= Q1x1 . . .Q

mxmθ ′,

and, finally, that
A |= ∃ f1 . . .∃ fnQ1x1 . . .Q

mxmθ ′.

The implication "χ ⇒ φ" follows by essentially reversing the steps above.
Remark that by construction, for each symbolfi, there existsi1, . . . , ip, pairwise distinct, such that all

terms and subterms withfi as the outermost symbol inχ are of the formfi(xi1, . . . ,xip). Hence, the reciprocal
result follows analogously.

Our goal is to find a subclass of ESO corresponding toD(k− dep). We will use Proposition 3.1 to
achieve this. The following lemma allows us to transform a sentence in prenex normal form to the form
required in Proposition 3.1.

Lemma 3.2. Letψ ∈ D be a quantifier-free formula whose dependence atomic subformulas are of the form
=(z1, . . . ,zm) for some pairwise distinct variables z1, . . . ,zm. Thenψ is equivalent to a formula of the form

∃y1 . . .∃yn(
∧

1≤ j≤n

=(zj ,y j)∧θ),

where

1. θ is a quantifier-free formula without dependence atoms,

2. yi does not appear inzj for 1≤ j ≤ n,

3. the number and the width of the dependence atoms in the firstconjunct corresponds to that ofψ .

Proof. The claim is proved using induction on the formulaψ . If ψ is a first-order literal then the claim
holds trivially. If ψ is of the form=(z1, . . . ,zm), then we can transformψ into the following equivalent form
satisfying the claim:

∃y1(=(z1, . . . ,zm−1,y1)∧y1 = zm).

11



Note that we do not have to consider the case of¬ =(z1, . . . ,zm) since this formula is equivalent to⊥.
Assume then thatψ := φ1∨φ2. By the induction hypothesis

φ1 ≡ ∃y1 . . .∃yn(
∧

1≤ j≤n

=(zj ,y j)∧θ1), (9)

and
φ2 ≡ ∃yn+1 . . .∃yn+m(

∧

n+1≤ j≤n+m

=(zj ,y j)∧θ2). (10)

We may assume that the variablesy1, . . . ,yn andyn+1, . . . ,yn+m do not appear in the formulas (10) and (9),
respectively. Therefore, by Lemma 2.6 it follows that

φ2 ≡ ∃y1 . . .∃ynφ2,

and
∧

1≤ j≤n

=(zj ,y j)∧θ1 ≡ ∃yn+1 . . .∃yn+m(
∧

1≤ j≤n

=(zj ,y j)∧θ1).

Using the above equivalences, we may now use successively clause 1 of Lemma 2.14 to show thatψ is
equivalent to the formulaψ∗

ψ∗ := ∃y1 . . .∃yn∃yn+1 . . .∃yn+m((
∧

1≤ j≤n

=(zj ,y j)∧θ1)∨ (
∧

n+1≤ j≤n+m

=(zj ,y j)∧θ2)).

Next we will show how to transform the quantifier-free partχ of ψ∗ into the desired form

χ := ((
∧

1≤ j≤n

=(zj ,y j)∧θ1)∨ (
∧

n+1≤ j≤n+m

=(zj ,y j)∧θ2)).

LetA be a model andX a team whose domain consists of the free variables ofψ∗. SupposeA |=X ψ∗. Then,
there are functionsFi, for 1≤ i ≤ n+m, such thatA |=X∗ χ , whereX∗ = X(F1/y1) · · · (Fn+m/yn+m). By the
semantics of disjunction, there are teamsY,Z such thatX∗ =Y∪Z and

A |=Y (
∧

1≤ j≤n

=(zj ,y j)∧θ1) (11)

and
A |=Z (

∧

n+1≤ j≤n+m

=(zj ,y j)∧θ2).

Since the variablesyn+1, . . . ,yn+m do not appear in the formula in (11), it is obvious that we can modify the
values of these variables inY to getY′ such thatA |=Y′ θ1, and

A |=Y′∪Z

∧

n+1≤ j≤n+m

=(zj ,y j).

More precisely, we do the following (note that we are modifying the values of the functionsFn+1, . . . ,Fn+m

in Y) for n+1≤ i ≤ n+m:

• For all s∈Y such that for nos′ ∈ Z, s(zi) = s′(zi), we sets(yi) = a, for some fixeda∈ A.

• For all s∈Y such thats(zi) = s′(zi) for somes′ ∈ Z, we sets(yi) = s′(yi).
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Analogously, by modifying the values of the variablesy1, . . . ,yn in Z, we findZ′ such thatA |=Z′ θ2, and

A |=Y∪Z′

∧

1≤ j≤n

=(zj ,y j).

SinceY andY′ andZ andZ′ only differ on the values of the variablesyn+1, . . . ,yn+m andy1, . . . ,yn, respec-
tively, it follows that

A |=Y′∪Z′

∧

1≤ j≤n+m

=(zj ,y j)∧ (θ1∨θ2),

and finally
A |=X ∃y1 . . .∃yn∃yn+1 . . .∃yn+m(

∧

1≤ j≤n+m

=(zj ,y j)∧ (θ1∨θ2)). (12)

For the converse, it is immediate that the formula in (12) logically implies ψ∗. Therefore it is logically
equivalent to our original formulaψ .

The caseψ := φ1∧φ2 is proved analogously. By the induction hypothesis

φ1 ≡ ∃y1 . . .∃yn(
∧

1≤ j≤n

=(zj ,y j)∧θ1),

and
φ2 ≡ ∃yn+1 . . .∃yn+m(

∧

n+1≤ j≤n+m

=(zj ,y j)∧θ2).

Now, analogously to above, we get thatψ is equivalent to the formulaψ∗

ψ∗ := ∃y1 . . .∃yn∃yn+1 . . .∃yn+m((
∧

1≤ j≤n

=(zj ,y j)∧θ1)∧ (
∧

n+1≤ j≤n+m

=(zj ,y j)∧θ2)).

Here we use successively clause 2 of Lemma 2.14. Now the quantifier-free part ofψ∗ can be directly
transformed to the desired form.

It is important to note that the width of the dependence atomsin ψ do not change in the transformation of
Lemma 3.2. We are now ready to characterize the fragment of ESO corresponding to the logicD(k−dep).

Theorem 3.3. D(k−dep) = ESOf (k-ary) = ESO1
f (k-ary).

Proof. We show first thatD(k−dep) ≤ ESOf (k-ary). We prove this by successive transformations onφ ∈
D(k−dep). By case 5 of Lemma 2.14 we can transformφ into prenex normal form. In this transformation,
we might have to replace some bound variables by new ones, butthe width of the dependence atoms do not
change in the transformation. Soφ is equivalent to a sentence of the form

Q1x1 . . .Q
mxmθ , (13)

whereQi ∈ {∃,∀} andθ is a quantifier-free formula. We may further assume that all the dependence atomic
subformulas ofθ are of the form=(z1, . . . ,zp) for some pairwise distinct variablesz1, . . . ,zp; if θ has a
subformula=(t1, . . . , tp), we may pass on to the sentence

Q1x1 . . .Q
mxm∃z1 . . .∃zp(

∧

1≤i≤p

zi = ti ∧θ(z1/t1, . . . ,zp/tp)).
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Hence we may assume that the sentence (13) satisfies this assumption. Note that, to ensure this property,
only new existentially quantified variables need at worst tobe introduced. Next we use Lemma 3.2 to
transformθ into an equivalent form

∃y1 . . .∃yn(
∧

1≤ j≤n

=(zj ,y j)∧θ∗),

whereθ∗ is a quantifier-free formula without dependence atoms. Using 6 of Lemma 2.14, it follows thatφ
is equivalent to the sentenceφ ′

φ ′ := Q1x1 . . .Q
mxm∃y1 . . .∃yn(

∧

1≤ j≤n

=(zj ,y j)∧θ∗), (14)

where each variable in the tuplezj is in {x1, . . . ,xm}. Proposition 3.1 now implies thatφ ′ is equivalent to the
ESOf (k-ary)-sentenceχ

χ := ∃ f1 . . .∃ fnQ1x1 . . .Q
mxmθ ′, (15)

whereθ ′ is obtained fromθ∗ by replacing every occurrence ofyi by the termfi(zi).
Let us then show that ESOf (k-ary)≤ESO1

f (k-ary)≤D(k−dep). We will show that every sentenceψ ∈

ESOf (k-ary) can be transformed into an equivalent sentence resemblingχ ∈ ESO1
f (k-ary) in Proposition

3.1. First of all, we may certainly assume that the first-order part ofψ is in prenex normal form, i.e.,

ψ := ∃ f1 . . .∃ fnQ1x1 . . .Q
mxmθ , (16)

whereθ is a quantifier-free formula. We still need to make sure that,

(⋆) for each symbolfi , there existsi1, . . . , i j , pairwise distinct, such that all terms and subterms inθ with
fi as the outermost symbol are of the formfi(xi1, . . . ,xi j ).

This can be accomplished analogously to Theorem 6.15 in [19]. One by one, we replace each occurrence of
every termf (t1, . . . , t j) in θ by a new termf (z1, . . . ,zj), wherez1, . . . ,zj is a fresh tuple of pairwise distinct
variables and use the equivalence ofθ( f (t1, . . . , t j)) and

∀z1 . . .∀zj(
∧

1≤p≤ j

zp = tp → θ( f (z1, . . . ,zj))).

In this way,θ is transformed to an equivalent formula of the form∀zθ ′ such thatθ ′ contains only simple
terms of the formf (z1, . . . ,zj). If now θ ′ contains two occurrencesfi(z0

1, . . . ,z
0
j ) and fi(z1

1, . . . ,z
1
j ) of the

samefi , for 1≤ i ≤ n, but different variables, we replace the occurrencefi(z1
1, . . . ,z

1
j ) by f ′i (z

1
1, . . . ,z

1
j ) and

use the fact that∀zθ ′( fi(z0
1, . . . ,z

0
j ), fi(z1

1, . . . ,z
1
j )) is equivalent to

∃ f ′i ∀z(((
∧

1≤p≤ j

z0
p = z1

p)→ fi(z
0
1, . . . ,z

0
j ) = f ′i (z

1
1, . . . ,z

1
j ))∧θ ′( fi(z

0
1, . . . ,z

0
j ), f ′i (z

1
1, . . . ,z

1
j ))).

After these transformations, we have translatedθ into the form∃ f ′∀zθ∗ satisfying (⋆). Therefore,ψ in (16)
is now equivalent to the formula

∃ f1 . . .∃ fnQ1x1 . . .Q
mxm∃ f ′∀zθ∗. (17)

Since the functionsf ′i are forced to be equal to one of the functionsf1, . . . , fn, we get that (17) is equivalent
to

∃ f1 . . .∃ fn∃ f ′Q1x1 . . .Q
mxm∀zθ∗. (18)

The sentence (18) is contained in ESO1
f (k-ary). Furthermore, since it satisfies (⋆), we can directly translate

it to the logicD(k−dep) by Proposition 3.1.
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3.1 The logicsD(k−∀)

In this section we consider the logicsD(k−∀). The casek = 0 is solved by Proposition 2.13, hence we
assume thatk≥ 1.

We first note that allowing reusing of variables in this context would trivialize the situation. Denote by
D∗(k−∀) the analogue ofD(k−∀) in which reusing of variables is allowed. Formally, we letD∗(k−∀)
denote the class of NNF sentences ofD in which the variablesx1, . . . ,xk can be universally quantified and
the variablesyi , i ∈ N, existentially quantified.

Proposition 3.4. D∗(1−∀) = D .

Proof. Let us assume that the formulas ofD are built from variablesyi , wherei ∈N. We will show that every
formulaφ ∈ D is equivalent to a formulaφ∗ ∈ D∗(1−∀), in which the variablex is quantified universally
and the variablesyi are only quantified existentially. We defineφ∗ inductive as follows: ifφ is atomic or
negated atomic,φ∗ := φ . The connectives∧,∨, and∃ are also translated in the obvious way. Ifφ is of the
form ∀yiψ , we defineφ∗ as

φ∗ := ∀x∃yi(x= yi ∧ψ∗).

Note that, by the construction,x does not appear free inψ∗ soφ andφ∗ have the same free variables. It is
now easy to prove using induction on the complexity ofφ that for all modelsA and teamsX

A |=X φ ⇐⇒ A |=X φ∗.

Our goal is now to characterize the fragments of ESO corresponding to the logicsD(k−∀). We first
discuss some results regarding the relevant fragments of ESO.

Proposition 3.5. ESO1
f (k∀)≤ ESO1

f (k∀,∃
∗)≤ ESOf (k∀).

Proof. The first inequality holds by definition. The second inequality can be proved by noting that the
existential quantifiersQi can be replaced by Skolem functions and the resulting sentence will be in the logic
ESOf (k∀).

Contrasting with the result of Theorem 3.3, it is not known whether the classes ESO1
f (k∀) and ESOf (k∀)

are equal. However, the next proposition shows that the gap between these two logics is not that big after
all.

Proposition 3.6. For every sentenceφ in ESOf (k∀) there is a sentenceφ∗ in ESO1
f (2k∀) such that, for all

A:

A |= φ ⇐⇒ A |= φ∗.

Proof. Assume thatφ is of the form

∃ f1 . . .∃ fn∀x1 . . .∀xkψ

whereψ is quantifier free. Let us callso(φ) the set of existentially quantified function symbols that appear
in φ . By Theorem 2.18 we can also suppose that the functions ofso(φ) are of arityk. By introducing new
function symbols, we will normalize the formulaφ step by step.
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1. For every termf (t1, . . . , tm) in φ , which is not of the formf (x1, . . . ,xk) or f (g1(x), . . . ,gm(x)), where
x = (x1, . . . ,xk), gi ∈ so(φ) for 1 ≤ i ≤ m, and f ,g1, . . . ,gm are pairwise distinct, we introduce new
functionsh1, . . . ,hm not in so(φ) and replace all occurrences off (t1, . . . , tm) by f (h1(x), . . . ,hm(x))
using the equivalence:

|= ∀x ψ( f (t1, . . . , tm))↔∀x ψ( f (h1(x), . . . ,hm(x)))∧
m
∧

j=1

h j(x) = t j .

After these transformations, the composition depth of all terms is bounded by 2.

2. Transformφ in such a way that no function symbol appears both as an inner and an outer function
symbol even in different composed terms. This can be done by systematically renaming all inner
termsgi(x) by a new termhi(x) with hi 6∈ so(φ) and using the equivalence:

|= ∀x ψ( f (g1(x), . . . ,gm(x)))↔∀x ψ( f (h1(x), . . . ,hm(x)))∧
m
∧

i=1

gi(x) = hi(x).

3. Finally, for convenience, one forces that for each function f ∈ so(φ), there is at least one occurrence
of the term f (x). For that, it suffices to add in conjunction with the formula adummy equality
f (x) = h(x) whereh 6∈ so(φ).

We are now ready to make the final transformation onφ . Note that thosef ∈ so(φ) that only appear as an
inner symbol in composed terms, have only occurrences of theform f (x1, . . . ,xk) in φ . Therefore, it suffices
to considerf ∈ so(φ) having at least one occurrence of the formf (g1(x), . . . ,gk(x)) in φ . Let term( f ) be
the set of terms involvingf . The elementsτ1( f ),. . . ,τmf ( f ) of term( f ) are of the form

τi( f ) = f (gi,1(x), . . . ,gi,k(x))

where all functionsgi, j are in(so(φ)∪{pr1, . . . , prk})\{ f} where eachpr j is the projection function on the
jth argument. Without loss of generality, we may suppose thatτ1( f ) = f (x1, . . . ,xk). Let us introduce new
functions symbolsh1, . . . ,hmf not yet inso(φ). Then, the following equivalence holds:

|= ∀xψ ↔ ∀x∀x′
∧

f∈so(φ)
∧mf

i>1(x
′
1 = gi,1(x)∧ ·· ·∧x′k = gi,k(x))→ f (x′) = hi(x)

∧(x= x′ → ψ∗)

whereψ∗ is obtained fromψ by replacing every occurrence ofτ1( f ) by f (x′) and every occurrence of
τi( f ), for i > 1, byhi(x). Note that in the originalφ , all simple terms involvingf (i.e., not as an outermost
symbol in a composition) are all already of the formf (x) (from the normalization process). They can then
be transformed intof (x′) directly. This step is repeated for every function ofso(φ) appearing as an outer
symbol in a composed term.

Now we turn to the characterization of the logicsD(k−∀). The following lemma will be used.

Lemma 3.7. Every sentenceφ ∈ D(k−∀) is equivalent to a sentenceφ∗ ∈ D(k−∀) which is in prenex
normal form.

Proof. The equivalences 1-4 of Lemma 2.14 can be applied to transform φ into prenex normal form since
each variable inφ is quantified exactly once.
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We are now ready for the main result of this section.

Theorem 3.8. D(k−∀) = ESO1
f (k∀,∃

∗).

Proof. Note first that ESO1f (k∀,∃
∗)≤D(k−∀) follows immediately by Proposition 3.1. We will now show

that also the converse holds. Letφ ∈D(k−∀) be a sentence. We will construct a sentenceχ ∈ESO1
f (k∀,∃

∗)
equivalent toφ . We use the same idea as in the proof of Theorem 3.3. By Lemma 3.7, we may assume that
φ is in prenex normal form, i.e.,φ is of the form

Q1x1 . . .Q
mxmθ ,

whereQi ∈ {∃,∀} andθ is a quantifier-free formula. Analogously to the proof of Theorem 3.3, we may
also assume that all the dependence atomic subformulas ofθ are of the form=(z1, . . . ,zp) for some pairwise
distinct variablesz1, . . . ,zp. As remarked in the proof of Theorem 3.3, the cost of assumingthis property is
the introduction of new existentially quantified variables(i.e., the number of universal quantifiers does not
change). Next we use Lemma 3.2 to transformθ into an equivalent form

∃y1 . . .∃yn(
∧

1≤ j≤n

=(zj ,y j)∧θ∗),

whereθ∗ is a quantifier-free formula without dependence atoms. By 6 of Lemma 2.14, we now get thatφ is
equivalent to the sentenceφ ′

Q1x1 . . .Q
mxm∃y1 . . .∃yn(

∧

1≤ j≤n

=(zj ,y j)∧θ∗), (19)

where each variable in the tuplezj is in {x1, . . . ,xm} and the variables inzj are pairwise distinct. Note also
that the quantifier prefixQ1x1 . . .Qmxm has at mostk universal quantifiers. Proposition 3.1 now implies that
φ ′ is equivalent to a sentenceχ ∈ ESO1

f (k∀,∃
∗).

Corollary 3.9. For k∈ N
∗, D(k−∀)≤ D(k−dep).

Proof. The claim follows by the following chain of inequalities:

D(k−∀)≤ ESO1
f (k∀,∃

∗)≤ ESOf (k∀)≤ ESOf (k-ary,k∀)≤ ESOf (k-ary)≤ D(k−dep),

where the first three inequalities hold by Theorem 3.8, Proposition 3.5, Theorem 2.18, and the last by
Theorem 3.3.

4 Hierarchy theorems for D

In this section we use the results of the previous sections toshow expressibility hierarchies for fragments of
dependence logic. From the results of the preceding sections, one obtains the following result.

Corollary 4.1. For every k∈N
∗, on every signature:D(k−∀)< D(k+1−dep).
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Proof. By Theorem 3.8 and Proposition 3.5, it holds thatD(k−∀) ≤ ESOf (k∀). The following chain of
inclusions now hold using Corollary 2.21 and 2.18:

ESOf (k∀) = NTIMERAM(nk)< NTIMERAM(nk+1)≤ ESOf (k+1-ary) = D(k+1−dep).

A hierarchy result forD(k−∀) can also be stated.

Corollary 4.2. For every k∈ N
∗, on every signature:D(k−∀)< D(2k+2−∀).

Proof. Again, using Theorem 3.8 and Proposition 3.5, it holds that

ESO1
f (k∀)≤ D(k−∀)≤ ESOf (k∀).

By the "hierarchy" Corollary 2.21, ESOf (k∀)< ESOf (k+1∀) and from Proposition 3.6, it holds:

ESOf (k+1∀)≤ ESO1
f (2k+2∀).

Then, the result follows by applying Theorem 3.8 again.

The above hierarchy onD(k−∀) is not tight. However, the following is easily seen to be true(in the
results that follow, that do not hold for all signatures or every value ofk, we make explicit the parameterτ
in the notation).

Corollary 4.3. For every signatureτ , there exists an infinity of k∈ N such thatD(k−∀)[τ ]< D(k+1−
∀)[τ ].

Proof. By Corollary 4.2, it holds thatD(k−∀) < D(2k+ 2−∀) for all k ≥ 1 and all signaturesτ . Fix
k ∈ N

∗, the result above implies that there existsh∈ (k,2k+1) such thatD(h−∀)[τ ] < D(h+1−∀)[τ ].
Since the number of pairwise disjoint intervals of the form(k,2k+1) is infinite, the result follows.

We now turn back to logicsD(k−dep). The time hierarchy theorem can be used in the context of the
logics ESOf (k∀) but not directly with the logics ESOf (k-ary) or ESO(k-ary). Ajtai [1] showed that also the
logics ESO(k-ary) form a strict hierarchy with respect tok if the signature is allowed to vary. By an easy
reduction, one can improve the result to show that it is also the case for the logics ESOf (k-ary) (see [3] for
the separation of the two first levels). To summarize:

Theorem 4.4([1]). Let R be a k+1-ary relation symbol. Then the property "|R| even" cannot be defined in
the logicESOf (k-ary).

Since "|R| even" is expressible in ESO(k+1-ary), we get that, for allk

ESOf (k-ary)[τk+1]< ESO(k+1-ary)[τk+1],

whereτk+1 = {R} andR is k+1-ary. By Theorem 3.3, the logicsD(k−dep) also form a hierarchy with
respect to expressive power using Theorem 4.4.

Theorem 4.5. Let k≥ 1 and τk+1 = {R} where R is k+ 1-ary. ThenD(k− dep)[τk+1] < D(k+ 1−
dep)[τk+1]. In particular, the property "|R| even" is definable inD(k+ 1− dep)[τk+1] but not inD(k−
dep)[τk+1].
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Proof. The claim directly follows from Theorems 3.3 and 4.4.

The above result provides a kind of "subdiagonal" hierarchywhen the maximal arity of a relation in
the signature is greater than the authorized arity of a dependence atomic formula. Could a better result be
proved? In particular, is it true that for every signatureτ and allk, D(k−dep)[τ ] < D(k+1−dep)[τ ]? By
Theorem 3.3, such a result would imply that ESOf (k-ary)< ESOf (k+1-ary) for every signature. Although
it is reasonably conjectured to be true, such a result is not yet known. In the particular case ofτ = /0, it would
imply that there exist sets of integers definable by first-order sentences (i.e., which are spectra of first-order
sentences) with predicates of maximal arityk+ 1 which are not definable by sentences with predicates
of arity k. This latter question is left open in [5] (it concerns the so-called Spectrum Arity Hierarchy, see
also [6]) and has not received a satisfiable answer since thendespite numerous efforts. Proving an equivalent
hierarchy forD(k−dep) is a challenging and difficult task with consequences to fields beyond dependence
logic.

Conclusion

D(2k+2−∀)

D(k+1−dep)

ESOf (k∀) D(k−dep) ≡ ESOf (k-ary)≡ ESO1
f (k-ary)

D(k−∀)≡ ESO1
f (k∀,∃

∗)

6=

6=? Arity Hierarchy Conj.

6=

Figure 1: Summary of inclusions (for all signatures and allk≥ 1)

We have pinned down the fragments of ESO corresponding to thefragmentsD(k−∀) andD(k−dep)
of D (Figure 1 summarizes the main relationships between logicsconsidered in this paper). Our results
explain how important syntactic parameters, the maximal width of dependence atoms, and the number of
universal quantifiers in a sentence, reflect on its data complexity. We also showed that fixing either of the
parameters will lead to a loss in expressive power. The following questions remain open.

1. Is it the case thatD(k−∀)< D(k+1−∀) for all k andall signatures?

2. DoesD(k−∀)[τ ]< D(k−dep)[τ ] hold for all signaturesτ?

3. Is there a signatureτ for whichD(k−dep)[τ ] < D(k+1−dep)[τ ] holds for allk?

Remark that Corollary 4.3 does not answer Question 1 since itshows that for every signature the inclu-
sion is strict for inifinitely manyk but not for allk yet. It is worth noting that, by Lemma 2.20, 2 holds ifτ
has arity greater thank. Also, 3 is open already in the caseτ = /0.
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