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ABSTRACT
In this paper, we describe how a user's location history (recorded 
by tracking the user's mobile device location with his permission) 
is used to extract the user's location patterns. We describe how we 
compute the user's commonly visited places (including home and 
work),  and commute patterns. The analysis is displayed on the 
Google Latitude history dashboard [7] which is only accessible to 
the user. 

Categories and Subject Descriptors
D.0 [General]: Location based services.

General Terms
Algorithms.

Keywords
Location history analysis, commute analysis.

1. INTRODUCTION
Location-based  services  have  been  gaining  in  popularity.  Most 
services[4,5] utilize a “check-in” model where a user takes some 
action on the phone to announce that he has reached a particular 
place. He can then advertise this  to his friends and also to the 
business owner who might give him some loyalty points. Google 
Latitude [6]  utilizes  a  more passive model.  The mobile  device 
periodically sends his location to a server which shares it with his 
registered  friends.  The  user  also  has  the  option  of  opting  into 
latitude location history. This  allows Google to store  the user's 
location history.  This  history is  analyzed and displayed for  the 
user on a dashboard [7].

A user's  location history can be used to  provide several  useful 
services.  We  can  cluster  the  points  to  determine  where  he 
frequents and how much time he spends at each place. We can 
determine the common routes the user drives on, for instance, his 
daily  commute  to  work.  This  analysis  can  be  used  to  provide 

useful  services to  the user.  For instance,  one can use real-time 
traffic services to alert the user when there is traffic on the route 
he is expected to take and suggest an alternate route.

We  expect  many  more  useful  services  to  arise  from  location 
history.  It  is  important  to  note  that  a  user's  location  history  is 
stored only if he explicitly opts into this feature. However, once 
signed  in,  he  can  get  several  useful  services  without  any 
additional work on his part (like checking in).

2. PREVIOUS WORK

Much previous work assumes clean location data sampled at very 
high  frequency.  Ashbrook  and  Starner  [2]  cluster  a  user's 
significant  locations  from  GPS  traces  by  identifying  locations 
where the GPS signal reappears after an absence of 10 minutes or 
longer.  This  approach  is  unable  to  identify  important  outdoor 
places and is also susceptible to spurious GPS signal loss (e.g. in 
urban canyons or when the recording device is off).  In addition 
they use a Markov model to predict where the user is likely to go 
next from where he is. Liao, et al [11] attempt to segment a user's 
day into everyday activities  such as  “working”,  “sleeping” etc. 
using a hierarchical activity model.  Both these papers obtain one 
GPS reading per second. This is impractical with today's mobile 
devices  due  to  battery  usage.  Kang  et  al  [10]  use  time-based 
clustering of locations obtained using a “Place Lab Client” to infer 
the  user's  important  locations.  The  “Place  lab  client”  infers 
locations by listening to RF-emissions from known wi-fi access 
points.  This  requires  less  power  than  GPS.  However,  their 
clustering algorithm assumes a continuous trace of one sample per 
second. Real-world data is not so reliable and often has missing 
and noisy data as illustrated in Section 3.2. 

Ananthanarayanan et al [1] describe a technique to infer a user's 
driving  route.  They  also  match  users  having  similar  routes  to 
suggest carpool partners. Liao et al [12] use a hierarchical Markov 
Model to infer a user's transportation patterns including different 
modes of transportation (e.g.  bus, on foot,  car etc.).  Both these 
papers use clean regularly-sampled GPS traces as input.

3. LOCATION ANALYSIS
3.1 Input Data

For every user, we have a list of timestamped points. Each point 
has a geolocation (latitude and longitude), an accuracy radius and 
an input source: 17% of our data points are from GPS and these 
have an accuracy in the 10 meter range. Points derived from wifi 
signatures have an accuracy in the 100 meter range and represent 
57% of our data. The remaining 26% of our points are derived 
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from cell tower triangulation and these have an accuracy in the 
1000 meter range.

We have a test database of location history of around a thousand 
users. We used this database to generate the data in this paper.

3.2 Location Filtering
The raw geolocations reported from mobile devices may contain 
errors  beyond  the  measurable  uncertainties  inherent  in  the 
collection  method.  Hardware  or  software  bugs  in  the  mobile 
device  may  induce  spurious  readings,  or  variations  in  signal 
strength or terrain may cause a phone to connect to a cell tower 
that is not the one physically closest to the device. Given a stream 
of input locations, we apply the following filters to account for 
these errors:

1. Reject  any  points  that  fall  outside  the  boundaries  of 
international time zones over land. While this discards 
some legitimate points over water (presumably collected 
via  GPS),  in  practice  it  removes  many  more  false 
readings.

2. Reject  any  points  with  timestamps  before  the  known 
public launch of the collection software.

3. Identify  cases  of  “jitter”,  where  the  reported  location 
jumps to a distant point and soon returns. As shown in 
Figure 1,  this  is  surprisingly common.  We look for a 
sequence of consecutive locations {P1, P2, …, Pn} where 
the following conditions hold:
◦ P1 and Pn are within a small distance threshold D of 

each other.
◦ P1 and Pn have timestamps within a few hours of 

each other.
◦ P1 and Pn have high reported accuracy.
◦ P2, …, Pn-1 have low reported accuracy.
◦ P2, …, Pn-1 are farther than D from P1.
In such a case, we conclude that the points P2, …, Pn-1 

are due to jitter, and discard them.
4. If a pair of consecutive points implies a non-physical 

velocity, reject the later one.
Any points that are filtered are discarded, and are not used in the 
remaining algorithms described in this paper.

3.3 Computing Frequently Visited Places
In  this  section,  we  describe  the  algorithms we  use  to  compute 
places  frequented  by  a  user  from his  location  history.  We first 
filter out the points for which the user is stationary i.e. moving at 
a very low velocity. These stationary points need to be clustered to 
extract interesting locations.

3.3.1 Clustering Stationary Points
We use two different algorithms for clustering stationary points. 

3.3.1.1 Leader-based Clustering
For every point, we determine if it belongs to any of the already 
generated clusters by computing its distance to the cluster leader's 
location. If this is below a threshold radius, the point is added to 
the cluster. Psuedocode is in Figure 2. This algorithm is simple 
and efficient. It runs in O(NC) where N is the number of points 
and C is the number of clusters. However, the output clusters are 
dependent on the order of the input points. For example, consider 
3 points P1, P2 and P3 which lie on a straight line with a distance of 
radius between them as shown in Figure 3. If the input points are 
ordered {P1, P2, P3}, we would get 2 clusters: {P1} and {P2, P3}. 
But if they are ordered {P2, P1 

,P3} we would get only 1 cluster 
containing all 3 points.

3.3.1.2 Mean Shift Clustering
Mean shift [3] is an iterative procedure that moves every point to 
the average of the data points in its neighborhood. The iterations 
are  stopped  when  all  points  move  less  than  a  threshold.  This 
algorithm is guaranteed to converge. We use a weighted average 
to  compute the move position where the weights  are inversely 
proportional to the accuracy. This causes the points to gravitate 
towards high accuracy points. Once the iterations converge, the 
moved locations of the points are chosen as cluster centers. All 
input points within a threshold radius to a cluster center are added 
to  its  cluster.  We  revert  back  to  leader-based  clustering  if  the 
iterations  do  not  converge  or  some of  the input  points  remain 
unclustered. Psuedocode is shown in Figure 4.

This algorithm does not suffer from the input-order dependency of 
leader-based clustering. For the input point set of Figure 3, it will 
always return a cluster comprising all  3 points.   The algorithm 
generates a smaller number of better located clusters compared to 
leader-based  clustering.  For  example  consider  4  points  on  the 
vertices  of  a  square  with  a  diagonal  of  2*radius  as  shown  in 
Figure 5. Leader-based clustering would generate 4 clusters, 1 per 

      

Figure 3. Three equidistant points on a line.
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Let points = input points.
Let clusters = []
foreach p in points:
  foreach c in clusters:
    if distance(c.leader(), p) < radius:
        Add p to c
        break
    else:
        Create a new cluster c with p as leader
        clusters.add(c)

Figure 2. Leader-based Clustering Algorithm.

Figure 1. A set of reported locations exhibiting “jitter”. One of 
the authors was actually stationary during the time interval 

represented by these points.



point.  Mean-shift  clustering would return only 1 cluster  whose 
centroid is at the center of the square.

The  iterative  nature  of  this  algorithm makes  it  expensive.  We 
therefore limit the maximum number of iterations and revert to 
leader-based clustering if the algorithm does not converge quickly 
enough.

When  we  ran  Mean-shift  clustering  on  our  test  database,  the 
algorithm converged in 2.4 iterations on an average. 3% of the 
input points could not be clustered (i.e. we had to revert to leader-
based for them). However, it did not cause a significant reduction 
in the number of computed clusters (< 1%). We concluded that the 
marginal  improvement  in  quality  did  not  justify  the  increased 
computational cost.

3.3.1.3 Adaptive Radius Clustering
The two clustering algorithms described above return clusters of 
the input points. One possibility would be to deem clusters larger 
than a threshold as interesting locaitons. However, this is not ideal 
since the input points have varying accuracy. For instance, if there 
are three stationary GPS points within close proximity of each 
other, we have high confidence that the user visited that place as  
opposed  to  three  stationary  cell  tower  points.  We  run  the 
clustering algorithms multiple times, increasing the radius as well 
as the minimum cluster size after every iteration. When a cluster 
is generated, we check to see if it overlaps an already computed 
cluster (generated from a smaller radius). If that is the case, we 
merge  it  into  the  larger  cluster.  Note  that  adaptive  radius 
clustering  can  be  used  in  conjunction  with  any  clustering 
algorithm. 

From our test database, we found that adaptively increasing the 
clustering radius from 20 meters to 500 meters and the minimum 
cluster size from 2 to 4, increased the number of computed visited 
places by 81% as compared to clustering with a fixed radius of 

500 meters and a minimum cluster size of 4. We also surveyed 
users  and  found  that  the  majority  of  the  new  visited  places 
generated  were  correct  and  useful  enough  to  display  on  the 
Latitude history dashboard [7].

3.3.2 Computing Home and Work Locations
We use a simple heuristic to determine the user's home and work 
locations. A user is likely to be at home at night. We filter out the 
user's points which occur at night and cluster them. The largest 
cluster is deemed the user's home location.

Similarly,  work  location  is  derived  by  clustering  points  which 
occur on weekdays in the middle of the day and clustering them. 

Note that this heuristic will not work for users with non-standard 
schedules (e.g. work at night or work in multiple locations). Such 
users have the option of correcting their home and work location 
on  the Latitude  history  dashboard  [7].  These  updated  locations 
will be used for other analyses (e.g. commute analysis described 
in Section 3.4).

3.3.3 Computing Visited Places
We  do  some  additional  filtering  of  the  input  points  before 
clustering for visited places:

1. We  remove  points  which  are  within  a  threshold 
distance of home and work locations. 

2. We remove points  which are  on the  user's  commute 
between home and work. These points are determined 
using the algorithm described in Section 3.4.1.

3. We remove points near airports since these are reported 
as flights as described in Section 3.5.

Without these filters, we get spurious visited places. Even when a 
user is stationary at home or work, the location reported can jump 
around, as described in Section 3.2. Without the first  filter,  we 
would get multiple visited places near home and work. If a user 
regularly stops at a long traffic signal on his commute to work, it 
has a good chance of being clustered to a visited place. This is 
why we need the second filter.

3.4 Commute Analysis
We  can  deduce  a  user's  driving  commute  patterns  from  his 
location  history.  The  main  challenge  here  is  that  points  are 
reported infrequently and we have to derive the path the user has 
taken in between these points. Also, the accuracy of the points can 
be very low and so one needs to snap the points to the road he is 
likely to be on.  The commutes are analyzed in three steps: (1) 
Extract  sets  of  commute  points  from  the  input.  (2)  Fit  the 
commute points to a road path. (3) Cluster paths together spatially 
and  (optionally)  temporally  to  generate  the  most  common 
commutes taken by the user.

3.4.1 Extracting Commute Points
Given a source and destination location (e.g. home and work), we 
extract  the  points  from the  user's  location  history  which  likely 
occurred  on  the  user's  driving  commute  from  source  to 
destination. We first filter out all points with low accuracy from 
the input set. We then find pairs of source-destination points. All 
points between a pair are candidate points for a single commute. 
The input points are noisy and therefore we do some sanity checks 
on  the  commute  candidate  points:  (1)  The  commute  distance 
should  be  reasonable.  (2)  The  commute  duration  should  be 
reasonable.  (3)  The  commute  should  be  at  reasonable  driving 
velocity.

Figure 5. Four points on a square.

Let points = input points
Let clusters = []
foreach p in points:
  Compute Weight(p)
Let cluster_centers = points
while all cluster_centers move < shift_threshold:
  foreach p in cluster_centers:
    Find all points np which are within a threshold distance of p

    p =
∑ Weight (np

i
)×np

i

∑ Weight ( npi )
while not cluster_centers.empty():
  Choose p with highest accuracy from cluster_centers
  Find all points, say rp, in points which are within radius of p
  Create a new cluster c with rp
  clusters.add(c)
  points = points – rp
  cluster_centers = cluster_centers – Moved(rp)
Cluster remaining points with Leader-based clustering.

Figure 4. Mean-Shift Clustering Algorithm

2*radius



3.4.2 Fitting a Road Path to Commute Points
We use the routing engine used to compute driving directions in 
Google Maps [8] to fit a path to the commute point. For the rest of 
this paper,  we will  refer to this routing engine as “Pathfinder”. 
This is an iterative algorithm. We first query Pathfinder for the 
route between source and destination. If all the commute points 
are within the accuracy threshold distance (used in Section 3.4.1), 
we terminate and return this path. If not, we add the point which is 
furthest away from the path as a waypoint and query Pathfinder 
again. If Pathfinder fails, we assume that the waypoint is not valid 
(for  example  it  might  be  in  water)  and  drop  it.  We  continue 
iterating until all commute points are within the accuracy distance 
threshold. Psuedocode is shown in Figure 6. Two iterations of this 
algorithm are shown in Figure 7. The small blue markers are the 
points from the user's  history.  The large green markers are  the 
Pathfinder waypoints used to generate the path. After the second 
iteration all the user points are within the accuracy threshold.

3.4.3 Clustering Commutes
Given  a  bag  of  commute  paths  and  the  time  intervals  the 
commutes  occurred,  we  cluster  them  to  determine  the  most 
frequent commutes. Two commutes are deemed temporally close 
if they start and end within some threshold of each other on the 
same day of the week. Two commutes are deemed spatially close 
if  their  Hausdorff  distance [9]  is  within a threshold.  We use a  
variant of leader-based clustering (described in Section 3.3.1.1) to 
generate commute clusters.
The largest commute cluster on a particular day of week is the 
most common route taken by the user. This can be used for traffic 
alerts as described in Section 4.1.
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Figure 7. Two iterations of path fitting algorithm. The small 
markers are the user's points. The large marker are 

Pathfinder waypoints used to generate the path.

Iteration 1

Iteration 2

Let points = input points
Let waypoints = [source, destination]
Let current_path = Pathfinder route for waypoints
while points.size() > 2:
   Let p be the point in points farthest away from current_path
   if distance(p, current_path) < threshold:
      Record current_path as a commute.
      break
   Add p to waypoints in the correct position
   current_path = Pathfinder route for waypoints
   if Pathfinder fails:
     Erase p from waypoints
   Erase p from points

Figure 6. Algorithm to fit a path to commute

http://www.facebook.com/places
http://maps.google.com/
http://www.google.com/latitude/history/dashboard
http://www.google.com/latitude
http://www.foursquare.com/

	1. INTRODUCTION
	2. PREVIOUS WORK
	3. LOCATION ANALYSIS
	3.1 Input Data
	3.2 Location Filtering
	3.3 Computing Frequently Visited Places
	3.3.1 Clustering Stationary Points
	3.3.1.1 Leader-based Clustering
	3.3.1.2 Mean Shift Clustering
	3.3.1.3 Adaptive Radius Clustering

	3.3.2 Computing Home and Work Locations
	3.3.3 Computing Visited Places

	3.4 Commute Analysis
	3.4.1 Extracting Commute Points
	3.4.2 Fitting a Road Path to Commute Points
	3.4.3 Clustering Commutes


	4. ACKNOWLEDGMENTS
	5. REFERENCES

