
Extracting Patterns from Location History
Andrew Kirmse

Google Inc
Mountain View, California

akirmse@google.com

Tushar Udeshi
Google Inc

Boulder, Colorado

tudeshi@google.com

Jim Shuma
Google Inc

Mountain View, California

jshuma@google.com

Pablo Bellver
Google Inc

Mountain View, California

pablob@google.com

ABSTRACT
In this paper, we describe how a user's location history (recorded
by tracking the user's mobile device location with his permission)
is used to extract the user's location patterns. We describe how we
compute the user's commonly visited places (including home and
work), and commute patterns. The analysis is displayed on the
Google Latitude history dashboard [7] which is only accessible to
the user.

Categories and Subject Descriptors
D.0 [General]: Location based services.

General Terms
Algorithms.

Keywords
Location history analysis, commute analysis.

1. INTRODUCTION
Location-based services have been gaining in popularity. Most
services[4,5] utilize a “check-in” model where a user takes some
action on the phone to announce that he has reached a particular
place. He can then advertise this to his friends and also to the
business owner who might give him some loyalty points. Google
Latitude [6] utilizes a more passive model. The mobile device
periodically sends his location to a server which shares it with his
registered friends. The user also has the option of opting into
latitude location history. This allows Google to store the user's
location history. This history is analyzed and displayed for the
user on a dashboard [7].

A user's location history can be used to provide several useful
services. We can cluster the points to determine where he
frequents and how much time he spends at each place. We can
determine the common routes the user drives on, for instance, his
daily commute to work. This analysis can be used to provide

useful services to the user. For instance, one can use real-time
traffic services to alert the user when there is traffic on the route
he is expected to take and suggest an alternate route.

We expect many more useful services to arise from location
history. It is important to note that a user's location history is
stored only if he explicitly opts into this feature. However, once
signed in, he can get several useful services without any
additional work on his part (like checking in).

2. PREVIOUS WORK

Much previous work assumes clean location data sampled at very
high frequency. Ashbrook and Starner [2] cluster a user's
significant locations from GPS traces by identifying locations
where the GPS signal reappears after an absence of 10 minutes or
longer. This approach is unable to identify important outdoor
places and is also susceptible to spurious GPS signal loss (e.g. in
urban canyons or when the recording device is off). In addition
they use a Markov model to predict where the user is likely to go
next from where he is. Liao, et al [11] attempt to segment a user's
day into everyday activities such as “working”, “sleeping” etc.
using a hierarchical activity model. Both these papers obtain one
GPS reading per second. This is impractical with today's mobile
devices due to battery usage. Kang et al [10] use time-based
clustering of locations obtained using a “Place Lab Client” to infer
the user's important locations. The “Place lab client” infers
locations by listening to RF-emissions from known wi-fi access
points. This requires less power than GPS. However, their
clustering algorithm assumes a continuous trace of one sample per
second. Real-world data is not so reliable and often has missing
and noisy data as illustrated in Section 3.2.

Ananthanarayanan et al [1] describe a technique to infer a user's
driving route. They also match users having similar routes to
suggest carpool partners. Liao et al [12] use a hierarchical Markov
Model to infer a user's transportation patterns including different
modes of transportation (e.g. bus, on foot, car etc.). Both these
papers use clean regularly-sampled GPS traces as input.

3. LOCATION ANALYSIS
3.1 Input Data

For every user, we have a list of timestamped points. Each point
has a geolocation (latitude and longitude), an accuracy radius and
an input source: 17% of our data points are from GPS and these
have an accuracy in the 10 meter range. Points derived from wifi
signatures have an accuracy in the 100 meter range and represent
57% of our data. The remaining 26% of our points are derived

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGSPATIAL GIS '11, November 1-4, 2011. Chicago, IL, USA
Copyright © 2011 ACM ISBN 978-1-4503-1031-4/11/11...$10.00

from cell tower triangulation and these have an accuracy in the
1000 meter range.

We have a test database of location history of around a thousand
users. We used this database to generate the data in this paper.

3.2 Location Filtering
The raw geolocations reported from mobile devices may contain
errors beyond the measurable uncertainties inherent in the
collection method. Hardware or software bugs in the mobile
device may induce spurious readings, or variations in signal
strength or terrain may cause a phone to connect to a cell tower
that is not the one physically closest to the device. Given a stream
of input locations, we apply the following filters to account for
these errors:

1. Reject any points that fall outside the boundaries of
international time zones over land. While this discards
some legitimate points over water (presumably collected
via GPS), in practice it removes many more false
readings.

2. Reject any points with timestamps before the known
public launch of the collection software.

3. Identify cases of “jitter”, where the reported location
jumps to a distant point and soon returns. As shown in
Figure 1, this is surprisingly common. We look for a
sequence of consecutive locations {P1, P2, …, Pn} where
the following conditions hold:
◦ P1 and Pn are within a small distance threshold D of

each other.
◦ P1 and Pn have timestamps within a few hours of

each other.
◦ P1 and Pn have high reported accuracy.
◦ P2, …, Pn-1 have low reported accuracy.
◦ P2, …, Pn-1 are farther than D from P1.
In such a case, we conclude that the points P2, …, Pn-1

are due to jitter, and discard them.
4. If a pair of consecutive points implies a non-physical

velocity, reject the later one.
Any points that are filtered are discarded, and are not used in the
remaining algorithms described in this paper.

3.3 Computing Frequently Visited Places
In this section, we describe the algorithms we use to compute
places frequented by a user from his location history. We first
filter out the points for which the user is stationary i.e. moving at
a very low velocity. These stationary points need to be clustered to
extract interesting locations.

3.3.1 Clustering Stationary Points
We use two different algorithms for clustering stationary points.

3.3.1.1 Leader-based Clustering
For every point, we determine if it belongs to any of the already
generated clusters by computing its distance to the cluster leader's
location. If this is below a threshold radius, the point is added to
the cluster. Psuedocode is in Figure 2. This algorithm is simple
and efficient. It runs in O(NC) where N is the number of points
and C is the number of clusters. However, the output clusters are
dependent on the order of the input points. For example, consider
3 points P1, P2 and P3 which lie on a straight line with a distance of
radius between them as shown in Figure 3. If the input points are
ordered {P1, P2, P3}, we would get 2 clusters: {P1} and {P2, P3}.
But if they are ordered {P2, P1

,P3} we would get only 1 cluster
containing all 3 points.

3.3.1.2 Mean Shift Clustering
Mean shift [3] is an iterative procedure that moves every point to
the average of the data points in its neighborhood. The iterations
are stopped when all points move less than a threshold. This
algorithm is guaranteed to converge. We use a weighted average
to compute the move position where the weights are inversely
proportional to the accuracy. This causes the points to gravitate
towards high accuracy points. Once the iterations converge, the
moved locations of the points are chosen as cluster centers. All
input points within a threshold radius to a cluster center are added
to its cluster. We revert back to leader-based clustering if the
iterations do not converge or some of the input points remain
unclustered. Psuedocode is shown in Figure 4.

This algorithm does not suffer from the input-order dependency of
leader-based clustering. For the input point set of Figure 3, it will
always return a cluster comprising all 3 points. The algorithm
generates a smaller number of better located clusters compared to
leader-based clustering. For example consider 4 points on the
vertices of a square with a diagonal of 2*radius as shown in
Figure 5. Leader-based clustering would generate 4 clusters, 1 per

Figure 3. Three equidistant points on a line.

 P
2

 P
3

 P
1

radius radius

Let points = input points.
Let clusters = []
foreach p in points:
 foreach c in clusters:
 if distance(c.leader(), p) < radius:
 Add p to c
 break
 else:
 Create a new cluster c with p as leader
 clusters.add(c)

Figure 2. Leader-based Clustering Algorithm.

Figure 1. A set of reported locations exhibiting “jitter”. One of
the authors was actually stationary during the time interval

represented by these points.

point. Mean-shift clustering would return only 1 cluster whose
centroid is at the center of the square.

The iterative nature of this algorithm makes it expensive. We
therefore limit the maximum number of iterations and revert to
leader-based clustering if the algorithm does not converge quickly
enough.

When we ran Mean-shift clustering on our test database, the
algorithm converged in 2.4 iterations on an average. 3% of the
input points could not be clustered (i.e. we had to revert to leader-
based for them). However, it did not cause a significant reduction
in the number of computed clusters (< 1%). We concluded that the
marginal improvement in quality did not justify the increased
computational cost.

3.3.1.3 Adaptive Radius Clustering
The two clustering algorithms described above return clusters of
the input points. One possibility would be to deem clusters larger
than a threshold as interesting locaitons. However, this is not ideal
since the input points have varying accuracy. For instance, if there
are three stationary GPS points within close proximity of each
other, we have high confidence that the user visited that place as
opposed to three stationary cell tower points. We run the
clustering algorithms multiple times, increasing the radius as well
as the minimum cluster size after every iteration. When a cluster
is generated, we check to see if it overlaps an already computed
cluster (generated from a smaller radius). If that is the case, we
merge it into the larger cluster. Note that adaptive radius
clustering can be used in conjunction with any clustering
algorithm.

From our test database, we found that adaptively increasing the
clustering radius from 20 meters to 500 meters and the minimum
cluster size from 2 to 4, increased the number of computed visited
places by 81% as compared to clustering with a fixed radius of

500 meters and a minimum cluster size of 4. We also surveyed
users and found that the majority of the new visited places
generated were correct and useful enough to display on the
Latitude history dashboard [7].

3.3.2 Computing Home and Work Locations
We use a simple heuristic to determine the user's home and work
locations. A user is likely to be at home at night. We filter out the
user's points which occur at night and cluster them. The largest
cluster is deemed the user's home location.

Similarly, work location is derived by clustering points which
occur on weekdays in the middle of the day and clustering them.

Note that this heuristic will not work for users with non-standard
schedules (e.g. work at night or work in multiple locations). Such
users have the option of correcting their home and work location
on the Latitude history dashboard [7]. These updated locations
will be used for other analyses (e.g. commute analysis described
in Section 3.4).

3.3.3 Computing Visited Places
We do some additional filtering of the input points before
clustering for visited places:

1. We remove points which are within a threshold
distance of home and work locations.

2. We remove points which are on the user's commute
between home and work. These points are determined
using the algorithm described in Section 3.4.1.

3. We remove points near airports since these are reported
as flights as described in Section 3.5.

Without these filters, we get spurious visited places. Even when a
user is stationary at home or work, the location reported can jump
around, as described in Section 3.2. Without the first filter, we
would get multiple visited places near home and work. If a user
regularly stops at a long traffic signal on his commute to work, it
has a good chance of being clustered to a visited place. This is
why we need the second filter.

3.4 Commute Analysis
We can deduce a user's driving commute patterns from his
location history. The main challenge here is that points are
reported infrequently and we have to derive the path the user has
taken in between these points. Also, the accuracy of the points can
be very low and so one needs to snap the points to the road he is
likely to be on. The commutes are analyzed in three steps: (1)
Extract sets of commute points from the input. (2) Fit the
commute points to a road path. (3) Cluster paths together spatially
and (optionally) temporally to generate the most common
commutes taken by the user.

3.4.1 Extracting Commute Points
Given a source and destination location (e.g. home and work), we
extract the points from the user's location history which likely
occurred on the user's driving commute from source to
destination. We first filter out all points with low accuracy from
the input set. We then find pairs of source-destination points. All
points between a pair are candidate points for a single commute.
The input points are noisy and therefore we do some sanity checks
on the commute candidate points: (1) The commute distance
should be reasonable. (2) The commute duration should be
reasonable. (3) The commute should be at reasonable driving
velocity.

Figure 5. Four points on a square.

Let points = input points
Let clusters = []
foreach p in points:
 Compute Weight(p)
Let cluster_centers = points
while all cluster_centers move < shift_threshold:
 foreach p in cluster_centers:
 Find all points np which are within a threshold distance of p

 p =
∑ Weight (np

i
)×np

i

∑ Weight (npi)
while not cluster_centers.empty():
 Choose p with highest accuracy from cluster_centers
 Find all points, say rp, in points which are within radius of p
 Create a new cluster c with rp
 clusters.add(c)
 points = points – rp
 cluster_centers = cluster_centers – Moved(rp)
Cluster remaining points with Leader-based clustering.

Figure 4. Mean-Shift Clustering Algorithm

2*radius

3.4.2 Fitting a Road Path to Commute Points
We use the routing engine used to compute driving directions in
Google Maps [8] to fit a path to the commute point. For the rest of
this paper, we will refer to this routing engine as “Pathfinder”.
This is an iterative algorithm. We first query Pathfinder for the
route between source and destination. If all the commute points
are within the accuracy threshold distance (used in Section 3.4.1),
we terminate and return this path. If not, we add the point which is
furthest away from the path as a waypoint and query Pathfinder
again. If Pathfinder fails, we assume that the waypoint is not valid
(for example it might be in water) and drop it. We continue
iterating until all commute points are within the accuracy distance
threshold. Psuedocode is shown in Figure 6. Two iterations of this
algorithm are shown in Figure 7. The small blue markers are the
points from the user's history. The large green markers are the
Pathfinder waypoints used to generate the path. After the second
iteration all the user points are within the accuracy threshold.

3.4.3 Clustering Commutes
Given a bag of commute paths and the time intervals the
commutes occurred, we cluster them to determine the most
frequent commutes. Two commutes are deemed temporally close
if they start and end within some threshold of each other on the
same day of the week. Two commutes are deemed spatially close
if their Hausdorff distance [9] is within a threshold. We use a
variant of leader-based clustering (described in Section 3.3.1.1) to
generate commute clusters.
The largest commute cluster on a particular day of week is the
most common route taken by the user. This can be used for traffic
alerts as described in Section 4.1.

4. ACKNOWLEDGMENTS
Our thanks to Matthieu Devin, Max Braun, Jesse Rosenstock, Will
Robinson, Dale Hawkins, Jim Guggemos, and Baris Gultekin for
contributing to this project.

5. REFERENCES
[1] Ananthanarayanan, G., Haridasan , M., Mohomed , I., Terry,

D., Thekkath , C. A. 2009. StarTrack: A Framework for
Enabling Track-Based Applications. Proceedings of the 7th
international conference on Mobile systems, applications,
and services.

[2] Ashbrook, D., Starner, T. 2003. Using GPS to Learn
Significant Locations and Predict Movement across Multiple
Users. Personal and Ubiquitous Computing, Vol. 7, Issue 5.

[3] Cheng, Y. C. 1995. Mean Shift, Mode Seeking, and
Clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 17, No. 8.

[4] Facebook places http://www.facebook.com/places.

[5] Foursquare http://www.foursquare.com.

[6] Google Latitude http://www.google.com/latitude.

[7] Google Latitude History Dashboard.
http://www.google.com/latitude/history/dashboard

[8] Google Maps http://maps.google.com.

[9] Huttenlocher D. P., Klanderman, G. A., and Rucklidge W. J.
1993. Comparing Images using the Hausdorff Distance.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 15, No 9.

[10] Kang, J.H., Welbourne, W., Stewart, B. and Borriello, G.
2005. Extracting Places from Traces of Locations.
SIGMOBILE Mob. Comput. Commun. Rev. 9, 3.

[11] Liao, L., Fox, D., and Kautz, H. 2007. Extracting Places and
Activities from GPS traces using Hierarchical Conditional
Random Fields. International Journal of Robotics Research.

[12] Liao, L., Patterson D. J., Fox, D., and Kautz, H. 2007,
Learning and Inferring Transportation Routines. Artificial
Intelligence. Vol. 171, Issues 5-6.

Figure 7. Two iterations of path fitting algorithm. The small
markers are the user's points. The large marker are

Pathfinder waypoints used to generate the path.

Iteration 1

Iteration 2

Let points = input points
Let waypoints = [source, destination]
Let current_path = Pathfinder route for waypoints
while points.size() > 2:
 Let p be the point in points farthest away from current_path
 if distance(p, current_path) < threshold:
 Record current_path as a commute.
 break
 Add p to waypoints in the correct position
 current_path = Pathfinder route for waypoints
 if Pathfinder fails:
 Erase p from waypoints
 Erase p from points

Figure 6. Algorithm to fit a path to commute

http://www.facebook.com/places
http://maps.google.com/
http://www.google.com/latitude/history/dashboard
http://www.google.com/latitude
http://www.foursquare.com/

	1. INTRODUCTION
	2. PREVIOUS WORK
	3. LOCATION ANALYSIS
	3.1 Input Data
	3.2 Location Filtering
	3.3 Computing Frequently Visited Places
	3.3.1 Clustering Stationary Points
	3.3.1.1 Leader-based Clustering
	3.3.1.2 Mean Shift Clustering
	3.3.1.3 Adaptive Radius Clustering

	3.3.2 Computing Home and Work Locations
	3.3.3 Computing Visited Places

	3.4 Commute Analysis
	3.4.1 Extracting Commute Points
	3.4.2 Fitting a Road Path to Commute Points
	3.4.3 Clustering Commutes

	4. ACKNOWLEDGMENTS
	5. REFERENCES

