
Toward Real-time Simulation of Cardiac Dynamics
Ezio Bartocci

Dept. of Appl. Math and Stat.

Stony Brook University

Stony Brook, NY, USA

eziobart@ams.sunysb.edu

Radu Grosu
Department of Computer Science

Stony Brook University

Stony Brook, NY, USA

grosu@cs.sunysb.edu

Elizabeth M. Cherry
School of Mathematical Sciences

Rochester Institute of Technology

Rochester, NY, USA

elizabeth.cherry@rit.edu

Scott A. Smolka
Department of Computer Science

Stony Brook University

Stony Brook, NY, USA

sas@cs.sunysb.edu

James Glimm
Dept. of Appl. Math and Stat.

Stony Brook University

Stony Brook, NY, USA

glimm@ams.sunysb.edu

Flavio H. Fenton
Department of Biomedical Sciences

Cornell University

Ithaca, NY, USA

flavio.h.fenton@cornell.edu

ABSTRACT

We show that through careful and model-specific optimizations of

their GPU implementations, simulations of realistic, detailed

cardiac-cell models now can be performed in 2D and 3D in times

that are close to real time using a desktop computer. Previously,

large-scale simulations of detailed mathematical models of cardiac

cells were possible only using supercomputers. In our study, we

consider five different models of cardiac electrophysiology that

span a broad range of computational complexity: the two-variable

Karma model, the four-variable Bueno-Orovio-Cherry-Fenton

(BCF) model, the eight-variable Beeler-Reuter (BR) model, the 19-

variable Ten Tusscher-Panfilov (TP) model, and the 67-variable

Iyer-Mazhari-Winslow(IMW) model. For each of these models, we

treat both their single- and double-precision versions and

demonstrate linear or even sub-linear growth in simulation times

with an increase in the size of the grid used to model cardiac tissue.

We also show that our GPU implementations of these models can

increase simulation speeds to near real-time for simulations of

complex spatial patterns indicative of cardiac arrhythmic disorders,

including spiral waves and spiral wave breakup. The achievement

of real-time applications without the need for supercomputers may

facilitate the adoption of modeling-based clinical diagnostics and

treatment planning, including patient-specific electrophysiological

studies, in the near future.

Categories and Subject Descriptors

I.6 [Simulation and Modeling]: Applications;

G.1.8 [Partial Differential Equations]: Finite Differences

General Terms

Performance; Theory

Keywords

GPU computing, High-performance computational systems

biology, cardiac models.

1. INTRODUCTION
Cardiac arrhythmia, such as atrial fibrillation (AF) and ventricular

fibrillation (VF), is a disruption of the normal excitation process in

cardiac tissue due to faulty processes at the cellular level, at the

single ion-channel level, or at the level of cell-to-cell

communication. The clinical manifestation is a rhythm with altered

frequency (tachycardia or bradycardia, see Fig. 1(a)) or the

appearance of multiple frequencies (polymorphic ventricular

tachycardia), with subsequent deterioration to a chaotic signal (VF,

see Fig. 1(b)) [3, 14, 15, 41].

Figure 1. Schematic of the transition from normal heart

rhythm to ventricular tachycardia and ventricular fibrillation.

Cardiac tissue is typically modeled mathematically as a reaction-

diffusion system involving partial differential equations (PDEs) for

diffusing species (typically only the transmembrane potential) and

a system of nonlinear differential equations describing all other

state variables that describe the flux of ions across the cell

membrane along with ion concentrations. Detailed models of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

cardiac cells can include more than 80 state variables and hundreds

of fitted parameters [8].

Because of the computational demands such models place on

normal CPU-based and multi-core-based workstations, most

studies of the electrical activity of the heart traditionally have

focused on using either complex cell models in single-cell

formations or simplified cell models in more realistic 3D heart

structures. A few efforts have used supercomputers to integrate

models of intermediate complexity with 3D structures [18, 29, 38].

Real-time simulation refers to the ability to execute a computer

model of a physical system at the same rate as the actual physical

system. Recently, the advantages of GPU over CPU processing

have been established for many areas of science, including systems

biology, where the highly parallel and multi-core capabilities of

GPUs allow the implementation of extremely fast simulations of

complex models in 2D and 3D using CUDA (Compute Unified

Device Architecture) from NVIDIA. If such large-scale realistic

models can be simulated in near real-time, many more

applications, including patient-specific treatment strategies for

cardiac-rhythm disorders, become feasible without the need for

supercomputers. To date, such efforts have come up short.

Below, we show that it is possible to perform simulations of

models of cardiac cells ranging in complexity from two to 67

variables in near real time for realistic problem sizes through

careful GPU implementations. To maximize the performance gain,

model-specific optimization techniques, including partitioning of

the model equations among multiple CUDA kernels as appropriate

and judicious use of the different types of memory available to

GPUs, are incorporated.

2. CUDA PROGRAMMING MODEL
CUDA is a general-purpose parallel-computing architecture and

programming model that leverages the parallel compute engine in

NVIDIA GPUs. Optimal programming of GPUs requires a

thorough understanding of the CUDA architecture and the

underlying GPU hardware, including the concepts of threads,

processors, and kernels, as well as the different levels of memory

available. As illustrated in Figure 2, the GPU architecture is built

around a scalable array of multithreaded Streaming

Multiprocessors (SMs), made up of 8 or 32 Scalar Processor (SP)

cores. SP cores contain a fused add-multiply unit capable of both

single- and double-precision arithmetic and share a common local

memory.

The CUDA parallel computing model uses tens of thousands of

lightweight threads assembled into one- to three-dimensional

thread blocks. A thread executes a function called the kernel that

contains the computations to be run in parallel; each thread uses

different parameters. Threads located in the same thread block can

work together in several ways. They can insert a synchronization

point into the kernel, which requires all threads in the block to

reach that point before execution can continue. They also can share

data during execution. In contrast, threads located in different

thread blocks cannot communicate in such ways and essentially

operate independently. Although a small number of threads or

blocks can be used to execute a kernel, this arrangement would not

fully exploit the computing potential of the GPU. To utilize the

GPU most efficiently, the underlying problem should be separated

into independent blocks that can be further divided into cooperative

threads; see Figure 3. Problems that cannot be implemented in this

manner will benefit significantly less from implementation using

GPUs.

Figure 2. GPU architecture.

Different types of memory are available for use in CUDA, and their

judicious use is key to performance. The most general is global

memory, to which all threads have read/write access. The generality

of global memory makes its performance less optimized overall, so

it is important that access to it be coalesced into a single memory

transaction of 32, 64, or 128bytes [28]. Constant memory is a

cached, read-only memory intended for storing constant values that

are not updated during execution. All instances of a kernel may

access these values regardless of location. Texture memory is

another cached, read-only memory that is designed to improve

access to data with spatial locality in up to three dimensions. For

example, texture memory is a natural choice for storing an array

that also will require retrieval of neighboring values whenever a

single entry is retrieved. Linear interpolation is provided with

texture memory. Finally, local memory is invoked when a thread

runs out of available registers. CUDA library functions in the host

code running on the CPU administer such tasks as kernel execution

and memory management.

Additional, significantly faster levels of memory are available

within an SM, including 16KB or 32KB of registers partioned

among all threads. As such, using a large number of registers

within a CUDA kernel will limit the number of threads that can run

concurrently. In addition, each SM has a shared memory region

(16KB). This level of memory, which can be accessed nearly as

quickly as the registers, facilitates communication between threads

and also can be used as a memory cache that can be controlled by

the individual programmer [22]. Shared memory is divided into 16

banks; for optimal performance, threads executed concurrently

should access different banks to prevent bank conflicts [28].

The computing resources of CUDA-capable video cards are

characterized by their compute capability. Devices with compute

capability1.0 and 1.1 make up the first generation of CUDA

devices, based on the G80 GPU, whereas those with compute

capability 1.2 and 1.3 are based on the more advanced GT200

GPU. Only cards with compute capability greater than or equal to

1.3 allow double-precision floating-point operations. Recently

NVIDIA introduced a new family of cards called the Fermi-based

GF100 GPU with compute capability 2.0 that supports object-

oriented programming.

Figure 3. The parallel execution of a kernel is divided into

independent blocks of cooperative threads.

Our GPU testbed is an NVIDIA Tesla C2070 processor containing

448 scalar cores organized as 14 SMs, and having 6GB of DRAM.

The processor core clock is 1.15 GHz and the maximum memory-

access bandwidth is 144 GB/sec. The C2070 can perform 1030

Gigaflops using single-precision arithmetic or 515 Gigaflops using

double-precision arithmetic. To compare our results with other

papers, we have also used a GPU Tesla C1060 with 240 SP cores

divided equally among 30 SMs, and 4GB of DRAM. The SP core

clock is 1.29 GHz and the maximum bandwidth of memory access

is 102 GB/sec. The C1060 is able to perform 933 Gigaflops using

single-precision arithmetic or 78 Gigaflops using double-precision

arithmetic.

3. CARDIAC MODELS
Modeling cardiac tissue consists of implementing a reaction-

diffusion equation of the transmembrane potential coupled to one

or more ordinary differential equations. The diffusion term

represents intercellular coupling and may contain information

about tissue architecture that affects wave propagation, including

the local muscle fiber orientation, which indicates the fastest

direction of wave propagation and describes tissue anisotropy. The

reaction term is nonlinear and incorporates additional variables.

The exact form of the reaction term varies depending on the level

of detail and complexity of the electrophysiology model. Most

models of cardiac cell electrophysiology have their origins in the

Hodgkin-Huxley model [17] of a neuron and the Noble model [27],

which was the first to apply the same modeling principles to

cardiac cells. This type of model describes the reaction term as the

sum of currents of different ion species (for cardiac cells, primarily

Na+, K+, and Ca2+) crossing the cell membrane through ion

channels. These currents operate in a specific fashion to make up a

cellular action potential, an excursion from a negative resting

membrane potential (around -85 mV) to a positive potential

(around 20 mV in tissue) and back to the resting membrane

potential. The initial increase in potential occurs quickly (on the

order of a few ms) via a large inward current carried by Na+ ions.

Over the rest of the action potential, which lasts hundreds of ms in

large mammals, the membrane potential is determined primarily by

a balance between inward Ca2+ currents and outward K+ currents.

The range of voltages and times over which each ion current is

active is determined by one or more factors, including the

transmembrane potential, time-dependent gating variables that

modulate the permeability of ion channels, and the concentrations

of ions inside and outside the cells. Gating variables, ion

concentrations, and other terms often are state variables of a model

and evolve according to their own differential equations and can

have different time scales.

The precise details of the electrophysiology models can be

represented at different levels. Biophysically detailed models take

into account a large number of currents and may have anywhere

from a few to dozens of state variables and differential equations in

addition to the transmembrane potential. One of the earliest models

of cardiac cells is the Beeler-Reuter (BR) model [1], which

represents the electrophysiology of ventricular cells (located in the

lower chambers of the heart). This model includes eight state

variables and has been widely used for several decades; we include

it as one of the models we implement in CUDA. More recent

models make use of subsequent biophysical discoveries to

represent cardiac cell electrophysiology in more detail. We

implement two such models, both of human ventricular

electrophysiology: the 19-variable Ten Tusscher-Panfilov model

(TP) [39] and the 67-variable Iyer-Mazhari-Winslow (IMW) model

[19].

The wealth of biophysical detail in complex electrophysiology

models can obscure the physical phenomena underlying their

behavior. For this reason, less complicated models also have been

developed that can represent the behavior of cardiac cells and tissue

in a way that facilitates analysis of their dynamics and of the role of

different parameters in determining their behavior. One such model

is the Karma model, which is a simplification of the Noble model.

Another model is the Bueno-Orovio-Cherry-Fenton (BCF) model

[2] (also called the minimal model [4, 7]). This model uses four

variables and three ion currents that represent summary Na+, K+,

and Ca2+ currents and incorporates the minimal level of complexity

necessary to reproduce accurate action potential shapes and rate-

dependent properties. We also implement both of these models in

CUDA.

Therefore, we implement a total of five different models containing

from two to 67 variables. By considering models that vary over a

broad range of biophysical detail and computational complexity,

we are able to identify specific issues that arise in CUDA

programming depending on the model size. This information

should be important in determining how best to implement

particular types of models to maximize performance in CUDA.

4. REACTION TERM
The reaction term in cardiac models consists of anywhere from one

to dozens of additional differential equations that provide simple or

detailed descriptions of the electrophysiology of cardiac cells.

Appropriate implementation of the reaction term is vital to

optimizing the performance of cardiac electrophysiology

simulations on GPUs.

Performance is increased significantly by tabulating nonlinear

functions of one variable in lookup tables that are accessed through

the texture memory. This provides two main advantages: it reduces

the latency of global memory access, and the hardware provides a

built-in linear interpolation capability. To remove singularities that

occur in some functions for values that make the denominator of a

fraction zero, we calculate the limit of the functions at the relevant

value using l'Hopital's rule.

We also improve performance in several other ways. All divisions

that do not involve variables are replaced with equivalent

multiplications. Also, some equations are implemented using semi-

implicit methods that allow the use of larger integration time steps.

In a number of cases, the reaction term in cardiac models uses

biological switching functions in the form of Heaviside functions.

The Heaviside function is a discontinuous function whose value is

zero for negative arguments and one for positive arguments.

Heaviside functions are usually represented by an if statement that

is penalized by the GPU, because it leads to thread divergence

during parallel execution. In our simulations, we have used an

alternative implementation in which the if statement is replaced by

multiplication with a predicate, as Fig. 4 shows.

Figure 4. Heaviside function implementations by if statement (left) or

multiplication with a predicate (right).

A central concern in the implementation of the reaction term is the

number of registers used per thread. The total number of threads

per block and the number of registers per thread should be chosen

to best utilize the available computing resources. The relation

among these quantities, as given by the CUDA Programming

Guide [28], is

)32,(TceilB

R


,

where R is the total number of registers per multiprocessor (a

device-specific quantity), B is the number of active blocks per

multiprocessor, T is the number of threads per block, and ceil(T,32)

is T rounded up to the closest multiple of 32. Having multiple

active blocks for each multiprocessor ensures that the

multiprocessor will not be idle during thread synchronization or

device memory access. By overlapping execution of blocks that

wait and blocks that can run, the multiprocessor is able to hide

better the latency of communication.

In simple cardiac models with only a small number of variables

(two or four), it is possible and in fact is advisable to implement

the solution of the reaction term as a single kernel. In this case, the

number of registers used per thread is usually less than 32, so that

two or more active thread blocks of 256 threads can be executed by

the same multiprocessor (with a device equipped with 16KB of

registers for each multiprocessor). In more complex cardiac models

having more than four variables, use of a single kernel to solve the

reaction term is not recommended and often is not possible because

the number of registers available per thread is insufficient. In this

case, the solution of the reaction term is implemented as a sequence

of multiple kernel invocations, with each kernel devoted to solving

a group of related variables. Because a kernel invocation may

modify the input of the following kernel, it is necessary to resolve

these dependencies by buffering the variables that are common

input among the kernels. Every kernel invocation introduces an

overhead. To optimize the performance of our implementation with

multiple kernels, we used the visual profiler provided by the recent

CUDA SDK to find the best trade-off between kernel splitting,

resource utilization, and the kernel invocation overhead.

5. DIFFUSION TERM
Cardiac models also include a diffusion term that couples the main

variable (transmembrane potential) spatially. Solving the diffusion

term essentially consists of calculating the Laplacian operator on

all of the grid points. This operation requires frequent access to

values of neighboring cells. The use of the global memory is not

desiderable for this operation, because the specific memory access

pattern that the threads should follow in order to read from the

neighbor cells is not coalesced [28], which reduces performance

considerably. To solve this problem more efficiently, we consider

two solutions, one using shared memory and the other using texture

memory, proposed in the literature [25, 32].

In the shared memory approach, the grid points can easily be

subdivided into smaller overlapping parts (see Fig. 5), which then

can be assigned to the threads' blocks. The values at neighboring

elements are then read using shared memory within a block. This

operation is performed by all the threads of the block, which

control both the yellow and the red elements shown in Fig. 5. After

synchronizing among the threads belonging to the same block, the

threads controlling the red cells read the neighborhood collected in

the shared memory and write in their cell the updated value of the

Laplacian. This solution can be used with both single- and double-

precision implementations, but the drawback is that it needs to use

more threads than the number of elements of the matrix.

An alternative approach that we have considered is to use the

texture memory, which provides a cache that is optimized for 1D,

2D or 3D spatial locality, so that threads that read texture

addresses that are close together will achieve the best performance.

Currently, it is not possible to bind the texture to double precision

data, so the use of the texture memory for implementing the

diffusion term is restricted only to single-precision

implementations.

Figure 5. Calculating the diffusion term using shared memory.

6. MODELS
In this section we perform 2D simulations of the five models of

interest and analyze their performance. Four square grid sizes are

used to assess how the performance scales with the number of

nodes. Although the larger grid sizes are physiologically unrealistic

for 2D human cardiac surfaces, the numbers of nodes they contain

are similar to what would be required for some 3D

implementations. Note that because of the necessity of representing

information from neighboring thread blocks in shared memory

implementations, our 16 x 16 thread blocks are effectively 14 x 14

for the shared memory implementations. Therefore, the grid sizes

in the shared memory implementations (512, 1024, 1536, and

2048) are slightly different than those in the texture memory

implementations (520, 1038, 1556, and 2074) in all cases.

6.1 Karma Model (2 Variables)
The Karma model is a simplified model of cardiac

electrophysiology that reproduces some basic features of cardiac

dynamics, including wavelength oscillations, which can be seen in

Fig. 6. To quantify GPU performance, we initiated a spiral wave

[12] using the Karma model in square grids with each side

consisting of 512, 1024, 1536, or 2048 elements (corresponding to

218, 220, 1.125x221, and 222 grid points, respectively), as shown in

Fig. 6. Note that the wavelength of a spiral wave in this model is

smaller than that of the human ventricular models (compare Figs. 9

and 12). We used three different implementations: double

precision, single precision using shared memory to calculate the

diffusion term, and single precision with the texture memory used

for the diffusion term. The double precision simulation required

just over twice as much time as the corresponding single precision

simulation. For the single precision simulations, use of the texture

memory for the diffusion term improved performance. For the

smallest grid size, which was similar in size to the surface area

(epicardium) of a human ventricle, the simulation times were

almost real time for the shared memory implementations, and the

simulation was faster than real-time for single precision using the

texture memory.

Figure 6. Left: Spiral wave using the Karma model in a

512 x 512 tissue (12.8 cm x 12.8 cm; resolution 0.0262 cm).

Right: Simulation time normalized to real time for computing

1 s using different grid sizes.

6.2 BCF Model (4 Variables)
The BCF model is a minimal model of cardiac electrophysiology

that reproduces many properties of cardiac tissue and can be

parameterized [2, 4] in many cases to reproduce the dynamics of

more complex models as well as experimental data. As with the

Karma model, we initiated a spiral wave using the BCF model for

square grids with each side consisting of 512, 1024, 1536, or 2048

elements and used the same three implementations: double

precision, single precision with shared memory, and single

precision with texture memory, as shown in Fig. 7. For the BCF

model, the double precision simulation required almost three times

as much time as the corresponding single precision simulation. For

the single precision simulations, use of the texture memory for the

diffusion term improved performance, but not by as large a factor

as for the Karma model. For the smallest grid size, the simulation

times were between a factor of 2 and 5 times longer than real time

for all three implementations.

Figure 7. Left: Spiral wave using the BCF model in a 512 x 512

tissue (12.8 cm x 12.8 cm; resolution 0.025 cm). Right:

Simulation time normalized to real time for computing 1 s

using different grid sizes.

6.3 BR Model (8 Variables)
The BR model is an 8-variable model of cardiac electrophysiology

that was the first detailed model of mammalian ventricular cell

electrophysiology. As with the Karma and BCF models, a spiral

wave was initiated using the BR model for square grids with each

side consisting of 512, 1024, 1536, or 2048 elements and the

performance of the same three implementations (double precision,

single precision with shared memory, and single precision with

texture memory) was quantified, as shown in Fig. 8. For the BR

model, the double precision simulation was about two times slower

than the corresponding single precision simulation. As with the

Karma model, use of the texture memory for calculation of the

diffusion term improved performance significantly for the single

precision case. For the smallest grid size, the simulation times for

the three implementations were between a factor of 10 and 25 times

longer than real time.

Figure 8. Left: Spiral wave using the BR model in a 512 x 512

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right:

Simulation time normalized to real time for computing 1 s

using different grid sizes.

6.4 TP Model (19 Variables)
The TP model is a 19-variable model that describes the

electrophysiology of human ventricular cells. As with the previous

models, a spiral wave was initiated using the TP model for square

grids with each side consisting of 512, 1024, 1536, or 2048

elements and the performance of the same three implementations

was quantified, as shown in Fig. 9. For the TP model, the double

precision simulation was about two to three times slower than the

corresponding single precision simulation. Use of the texture

memory for calculation of the diffusion term resulted in a

substantial performance improvement: for the largest grid size, the

texture memory simulation required only half as much time as the

corresponding shared memory simulation. At the smallest grid size,

the simulation times for the three implementations were between a

factor of 35 and 70 times longer than real time.

Figure 9. Left: Spiral wave using the TP model in a 512 x 512

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right:

Simulation time normalized to real time for computing 1 s

using different grid sizes.

For the other models discussed so far, no significant differences

were observed between the single and double precision simulations.

However, we knew that for some more biophysically detailed

models, including the TP model, single precision is not sufficient to

represent small but important changes in the intracellular K+ and

intracellular Na+ concentrations over the course of each action

potential. Thus, in the single precision simulations of the TP

model, very small changes in concentration were represented as

zeros, which produced non-smooth time traces of these

concentrations within a single action potential. Although the

concentration differences between single and double precision over

one action potential were slight, the difference accumulated over

time and changed not only the value of the concentration but also

the trend of the concentration over time, especially for the K+

concentration, as shown in Fig. 10. The differences in

concentrations affect the time progression of spiral waves

generated using single and double precision. Fig. 11 shows

snapshots of spiral waves obtained after 600 s (10 min) of

simulation time and indicates that the waves are at different points

in their rotation paths.

Figure 10. Time evolution of the intracellular K+ (left) and Na+

(right) concentrations observed at a representative grid point

for the TP model with single and double precision.

Figure 11. Spiral waves generated for the TP model with single

precision (left) and double precision (right) after 10 min.

6.5 IMW Model (67 Variables)
The IMW model is a 67-variable model that describes the

electrophysiology of human ventricular cells in more detail than the

TP model. As with the previous models, a spiral wave was initiated

for square grids with each side consisting of 512, 1024, 1536, or

2048 elements and the performance of the same three

implementations was quantified, as shown in Fig. 12. For the IMW

model, the double precision simulation was about twice as slow as

the corresponding single precision simulation. As with the Karma,

BR, and TP models, use of the texture memory for calculation of

the diffusion term improved performance significantly. At the

smallest grid size, the simulation times for the three

implementations ranged from 680 to 1300 times longer than real

time. As with the TP model, double precision is necessary for

adequate representation of ion concentrations for the IMW model.

Figure 12. Left: Spiral wave using the IMW model in a

512 x 512 tissue (10.24 cm x 10.24 cm; resolution 0.02 cm).

Right: Simulation time normalized to real time for computing

1 s using different grid sizes.

7. PERFORMANCE
Figure 13 shows the performance for the different grid sizes as a

function of the number of model variables. For the models with

four, eight, and 19 variables, the simulation time scales linearly

with the number of variables. For the IMW model (67 variables),

the departure from linear scaling can be explained by several

factors. For one, it is necessary to split the solutions of the ordinary

different equations into 21 kernels calls. As a result, for any

variable needed by more than one kernel, it is necessary to

duplicate calculation of that variable within each such kernel to

avoid communication between kernels. This duplication results in

increased overhead for every integration step computed. In

addition, the IMW code was not optimized as fully as the codes for

the other models were (in terms of lookup tables, division

eliminations, etc.).

In the future, we expect to obtain better performance for all the

models by using other integration methods for the diffusion term,

such as the alternating direction implicit scheme, that can allow the

use of larger integration time steps [9].

Figure 13. Simulation time normalized to real time as a

function of the number of model variables.

8. RELATED WORK
Over the last five years, GPU performance has exceeded that of the

CPU. As this trend in outperformance continues [28] many areas of

research that require large-scale simulation, such as systems

biology [6], have turned to GPU implementations to gain that

acceleration in computing, and cardiac electrical dynamics is no

exception [5]. Simulations of human heart dynamics at currently

feasible spatial resolutions require the solution of between 224 and

227 nodal points or “cells” [18, 29]. Each cell, turn, involves a

separate implementation of mathematical equations describing its

electrophysiology, the description of which can be as simple as two

[20] or as complicated as 67 [19] or 87 [11] ordinary differential

equations. Even with a simple cell model, 0.6 seconds of simulation

requires about 2 days using 32 CPU processors [29]; for a more

complex model, the same simulation time uses about 10 hours with

6144 CPUs [18]. However, accelerations to near real time soon will

become possible on single desktops by taking advantage of GPU

processing capabilities. The electrophysiological equations of

cardiac cells are of the reaction-diffusion type, for which GPUs

have been shown to be superior to CPUs in both 2 and 3

dimensions with typical acceleration values between 5 and 40

depending on the algorithms used [25, 33]. The first simulation of

cardiac arrhythmias using GPUs actually was performed on an

Xbox 360 [35] using the BCF model [2] (Fig. 7). The eight-

variable Luo-Rudy I (LRI) model was the first simulated using a

realistic rabbit ventricular structure on a GPU [34], with 1 s of

simulation taking 45 minutes using a cluster with 32 CPUs and 72

minutes on a single GPU. Since then other studies have emerged

comparing the speeds between CPUs and GPUs for different

cardiac cell models. The 27-variable Mahajan et al. model [24] was

reported to run 9 to 17 times faster (depending on tissue size) on

GPUs [40]. More recently, Rocha et al. [31] reported a gain of up

to 20 times for a single GPU implementation compared to a

parallel CPU implementation running with 4 threads on a quad–

core machine, with parts of the code accelerated by a factor of 180

for the 8-variable LRI model [23] and the 19-variable TP model

[39]. Lionetti et al. [21, 22] showed how different implementations

are needed for different cell models (two-variable FitzHugh-

Nagumo [10], eight-variable BR [1], 18-variable Puglisi-Bers (PB)

[30], 42-variable Grandi et al. [13], and 87-variable Flaim et al.

[11]) in order to optimize each one and obtained a speedup of 6.7

for the 87-variable model. GPUs also have been used for

intracellular calcium dynamics within a single cell using Monte

Carlo simulations, where a factor of 15,000 reduction in time

compared to previous studies was found [16]. In addition to

electrophysiological dynamics, GPUs have been used to accelerate

heart manipulations to enhance intervention simulations such as

catheter positioning [43], surgical deformation [26], simple

contractions [42, 44], and ECG generation [36, 37].

In this manuscript, we do not focus on comparing CPU vs GPU

performance, as this has been amply demonstrated already using

many different cell models. Instead, we focus on developing

optimal implementations to obtain the maximum accelerations and

get as close as possible to real time simulations. Sato et al. report

1 s of simulation in the 8-variable LR1 model in an 800x800

domain taking 283 s; in contrast, our simulations in the 8-variable-

BR model (the two models are mathematically almost equivalent

and share more than 90% of the same equations) take 11.34 s on a

512 x 512 domain and 39.2 s on a 1024 x 1024 domain (rescaling

our times to the 800 x 800 domain results in a comparable speedup

of a factor of 11). Vigmond et al. [40] report that 1 s of simulation

time on 5 million nodes using the 27-variable Mahajan et al. model

takes about 16 ksec (~4.5 h), whereas our 19-variable TP

implementation in a 2048 x 2048 domain (close to 5 million nodes)

takes about 8.2 min. However, a direct comparison is difficult to

make as there is not only a difference of eight ODEs, but their

simulations utilize a computationally more expensive bidomain

approximation (used during simulations of defibrillation, where a

Poisson equation needs to be solved at each time step). Lionetti et

al [21, 22] performed 300 ms of a heart beat simulation on a

domain that consisted of 42,240 “cell” points to represent a

ventricular section. Their main interest was to optimize the ODE

part of the reaction diffusion system, so no spatial integration was

performed and all the cells were decoupled; therefore, their

integration times did not included the spatial integrations.

However, they used different optimizations for the different cell

models tested and showed how different models benefit from

different types of optimizations. For the two-variable FHN model,

300 ms of simulation in their 42,240 required 5.91 s; for the eight-

variable BR model, 22.64 s; for the 18-variable PB model, 49.87 s;

and for the 87-variable Flaim et al. model, 119.29 s. To compare

with our simulations, in which the smallest domain consisted of

512 x 512 grid points (a domain about 6.2 times larger), and for

1 s of simulation time, we need to multiply their timing results by

20.5. Therefore, 1 s of simulation of the two-variable Karma model

(with the same complexity as the FHN model) took 0.97 s vs.

121 s, the eight-variable BR model took 11.34 s vs. 464 s, the 19-

variable TP model took 35.4 s vs. the 18-variable PB model

1022 s, and the 67-variable IMW 681 s vs. the 87-variable Flaim

et al. model 2445 s. It is important to recall that the simulations by

Lionetti et al. do not include the spatial integration component,

making our timing results even more impressive in comparison.

Rocha et al. report simulations of the eight-variable LR1 and the

19-variable TP models for 500 ms for different 2D grid sizes (the

largest of which was 640 x 640) using a higher spatial resolution of

0.01 cm. To compare with their results, we performed 500 ms

simulations using the same domain size and spatial resolution.

They report a simulation time of 11.4 minutes and 2.8 hours for the

LR1 and the TP models, whereas we obtain for the BR and TP

models 23.05 s and 285.56 sec on a C1060 card similar to theirs

and 13.9 s and 105.4 s on a C2070 (Fermi-based) card. It is

important to note that the times reported by Rocha et al. includes

outputting data at unspecified intervals; for comparison, our times

include outputting a byte representation of the voltage at all nodes

every 1 ms.

9. CONCLUSION
In summary, we have shown that we can achieve near real-time

performance of simulated cardiac dynamics in tissues of realistic

sizes by using GPU architectures. To achieve the maximum gains

in computational efficiency, it is necessary to consider model-

specific aspects of the implementation, including appropriate

division of the model among multiple kernels and careful use of the

available levels of memory. The significant performance gains

should facilitate implementation of novel applications of

simulation, including possible use in diagnosing cardiac disease or

developing patient-specific treatment strategies.

10. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation through grants. No. 0926190 and 1028261 (EMC and

FHF).

11. REFERENCES
[1] Beeler, G.W. and Reuter, H. 1977. Reconstruction of the

action potential of ventricular myocardial fibres. The

Journal of Physiology. 268, 1 (Jun. 1977), 177-210.

[2] Bueno-Orovio, A. et al. 2008. Minimal model for human

ventricular action potentials in tissue. Journal of

Theoretical Biology. 253, 3 (Aug. 2008), 544-60.

[3] Cherry, E.M. and Fenton, F.H. 2008. Visualization of spiral

and scroll waves in simulated and experimental cardiac

tissue. New Journal of Physics. 10, 12 (2008), 125016.

[4] Cherry, E.M. et al. 2007. Pulmonary vein reentry--

properties and size matter: insights from a computational

analysis. Heart Rhythm: The Official Journal of the Heart

Rhythm Society. 4, 12 (Dec. 2007), 1553-62.

[5] Clayton, R.H. et al. 2011. Models of cardiac tissue

electrophysiology: progress, challenges and open questions.

Progress in Biophysics and Molecular Biology. 104, 1-3

(2011), 22-48.

[6] Dematté, L. and Prandi, D. 2010. GPU computing for

systems biology. Briefings in Bioinformatics. 11, 3 (May.

2010), 323-333.

[7] Fenton, F.H. 1999. Theoretical investigation of spiral and

scroll wave instabilities underlying cardiac fibrillation.

Doctoral Thesis. Northeastern University.

[8] Fenton, F.H. and Cherry, E.M. 2008. Models of cardiac cell.

Scholarpedia. 3, 8 (2008), 1868.

[9] Fenton, F. and Karma, A. 1998. Vortex dynamics in three-

dimensional continuous myocardium with fiber rotation:

Filament instability and fibrillation. Chaos. 8, (1998), 20-

47.

[10] Fitzhugh, R. 1961. Impulses and physiological states in

theoretical models of nerve membrane. Biophysical

Journal. 1, 6 (Jul. 1961), 445-466.

[11] Flaim, S.N. et al. 2006. Contributions of sustained INa and

IKv43 to transmural heterogeneity of early repolarization

and arrhythmogenesis in canine left ventricular myocytes.

American Journal of Physiology. Heart and Circulatory

Physiology. 291, 6 (Dec. 2006), H2617-2629.

[12] Frazier, D.W. et al. 1989. Stimulus-induced critical point.

Mechanism for electrical initiation of reentry in normal

canine myocardium. The Journal of Clinical Investigation.

83, 3 (Mar. 1989), 1039-52.

[13] Grandi, E. et al. 2010. A novel computational model of the

human ventricular action potential and Ca transient. Journal

of Molecular and Cellular Cardiology. 48, 1 (2010), 112-

121.

[14] Gray, R.A. et al. 1995. Mechanisms of cardiac fibrillation.

Science (New York, N.Y.). 270, 5239 (Nov. 1995), 1222-3;

author reply 1224-5.

[15] Gray, R.A. et al. 1998. Spatial and temporal organization

during cardiac fibrillation. Nature. 392, 6671 (Mar. 1998),

75-8.

[16] Hoang-Trong, T.M. et al. 2011. GPU-enabled stochastic

spatiotemporal model of rat ventricular myocyte calcium

dynamics. Biophysical Journal. 100, (Feb. 2011), 557.

[17] Hodgkin, L. and Huxley, A.F. 1952. A quantitative

description of membrane currents and its application to

conduction and excitation in nerve. Journal of Physiology.

117, (1952), 500-544.

[18] Hosoi, A. et al. 2010. A multi-scale heart simulation on

massively parallel computers. Proceedings of the 2010

ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and

Analysis (Washington, DC, USA, 2010), 1–11.

[19] Iyer, V. et al. 2004. A computational model of the human

left-ventricular epicardial myocyte. Biophysical Journal.

87, 3 (Sep. 2004), 1507-1525.

[20] Karma, A. 1994. Electrical alternans and spiral wave

breakup in cardiac tissue. Chaos. 4, 3 (Sep. 1994), 461-

472.

[21] Lionetti, F.V. 2010. GPU Accelerated Cardiac

Electrophysiology. Masters Thesis. University of

California, San Diego.

[22] Lionetti, F.V. et al. 2010. Source-to-Source Optimization of

CUDA C for GPU Accelerated Cardiac Cell Modeling.

Euro-Par 2010 - Parallel Processing. P. D’Ambra et al.,

eds. Springer Berlin Heidelberg. 38-49.

[23] Luo, C.H. and Rudy, Y. 1991. A model of the ventricular

cardiac action potential. Depolarization, repolarization, and

their interaction. Circulation Research. 68, 6 (Jun. 1991),

1501-1526.

[24] Mahajan, A. et al. 2008. A rabbit ventricular action

potential model replicating cardiac dynamics at rapid heart

rates. Biophysical Journal. 94, 2 (Jan. 2008), 392-410.

[25] Molnár Jr., F. et al. Simulation of reaction-diffusion

processes in three dimensions using CUDA. Chemometrics

and Intelligent Laboratory Systems. In Press, Corrected

Proof.

[26] Mosegaard, J. et al. 2005. A GPU accelerated spring mass

system for surgical simulation. Medicine Meets Virtual

Reality 13: The Magical Next Becomes the Medical Now.

IOS Press. 342-348.

[27] Noble, D. 1962. A modification of the Hodgkin--Huxley

equations applicable to Purkinje fibre action and pace-

maker potentials. The Journal of Physiology. 160, (Feb.

1962), 317-352.

[28] NVIDIA CUDA Programming Guide v. 3.0:

http://developer.download.nvidia.com/compute/cuda/3_0/t

oolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf.

[29] Potse, M. et al. 2006. A comparison of monodomain and

bidomain reaction-diffusion models for action potential

propagation in the human heart. IEEE Transactions on Bio-

Medical Engineering. 53, 12 Pt 1 (Dec. 2006), 2425-2435.

[30] Puglisi, J.L. and Bers, D.M. 2001. LabHEART: an

interactive computer model of rabbit ventricular myocyte

ion channels and Ca transport. American Journal of

Physiology. Cell Physiology. 281, 6 (Dec. 2001), C2049-

2060.

[31] Rocha, B.M. et al. 2011. Accelerating cardiac excitation

spread simulations using graphics processing units.

Concurrency and Computation: Practice and Experience.

23, 7 (May. 2011), 708-720.

[32] Sanders, J. and Kandrot, E. 2010. CUDA by Example: An

Introduction to General-Purpose GPU Programming.

Addison-Wesley.

[33] Sanderson, A.R. et al. 2008. A framework for exploring

numerical solutions of advection–reaction–diffusion

equations using a GPU-based approach. Computing and

Visualization in Science. 12, 4 (Mar. 2008), 155-170.

[34] Sato, D. et al. 2009. Acceleration of cardiac tissue

simulation with graphic processing units. Medical &

Biological Engineering & Computing. 47, 9 (Sep. 2009),

1011-1015.

[35] Scarle, S. 2009. Implications of the Turing completeness of

reaction-diffusion models, informed by GPGPU simulations

on an XBox 360: cardiac arrhythmias, re-entry and the

Halting problem. Computational Biology and Chemistry.

33, 4 (Aug. 2009), 253-260.

[36] Shen, W. et al. 2009. GPU-based parallelization for

computer simulation of electrocardiogram. Computer and

Information Technology, International Conference on

(Los Alamitos, CA, USA, 2009), 280-284.

[37] Shen, W. et al. 2010. Parallelized computation for computer

simulation of electrocardiograms using personal computers

with multi-core CPU and general-purpose GPU. Computer

Methods and Programs in Biomedicine. 100, 1 (Oct.

2010), 87-96.

[38] Trayanova, N.A. 2011. Whole-heart modeling: applications

to cardiac electrophysiology and electromechanics.

Circulation Research. 108, 1 (Jan. 2011), 113-128.

[39] ten Tusscher, K.H.W.J. and Panfilov, A.V. 2006. Alternans

and spiral breakup in a human ventricular tissue model.

American Journal of Physiology. Heart and Circulatory

Physiology. 291, 3 (Sep. 2006), H1088-1100.

[40] Vigmond, E.J. et al. 2009. Near-real-time simulations of

biolelectric activity in small mammalian hearts using

graphical processing units. Conference Proceedings:

Annual International Conference of the IEEE Engineering

in Medicine and Biology Society. IEEE Engineering in

Medicine and Biology Society. Conference. 2009, (2009),

3290-3293.

[41] Witkowski, F.X. et al. 1998. Spatiotemporal evolution of

ventricular fibrillation. Nature. 392, 6671 (Mar. 1998), 78-

82.

[42] Yu, R. et al. 2009. A framework for GPU-accelerated

virtual cardiac intervention. The International Journal of

Virtual Reality. 8, 1 (2009), 37-41.

[43] Yu, R. et al. 2010. Real-time and realistic simulation for

cardiac intervention with GPU. 3, (Jan. 2010), 68-72.

[44] Yu, R. et al. 2010. GPU accelerated simulation of cardiac

activities. Journal of Computers. 5, 11 (Nov. 2010).

