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ABSTRACT 

We show that through careful and model-specific optimizations of 

their GPU implementations, simulations of realistic, detailed 

cardiac-cell models now can be performed in 2D and 3D in times 

that are close to real time using a desktop computer. Previously, 

large-scale simulations of detailed mathematical models of cardiac 

cells were possible only using supercomputers. In our study, we 

consider five different models of cardiac electrophysiology that 

span a broad range of computational complexity: the two-variable 

Karma model, the four-variable Bueno-Orovio-Cherry-Fenton 

(BCF) model, the eight-variable Beeler-Reuter (BR) model, the 19-

variable Ten Tusscher-Panfilov (TP) model, and the 67-variable 

Iyer-Mazhari-Winslow(IMW) model. For each of these models, we 

treat both their single- and double-precision versions and 

demonstrate linear or even sub-linear growth in simulation times 

with an increase in the size of the grid used to model cardiac tissue. 

We also show that our GPU implementations of these models can 

increase simulation speeds to near real-time for simulations of 

complex spatial patterns indicative of cardiac arrhythmic disorders, 

including spiral waves and spiral wave breakup. The achievement 

of real-time applications without the need for supercomputers may 

facilitate the adoption of modeling-based clinical diagnostics and 

treatment planning, including patient-specific electrophysiological 

studies, in the near future. 
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I.6 [Simulation and Modeling]: Applications; 
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Keywords 

GPU computing, High-performance computational systems 

biology, cardiac models.  

1. INTRODUCTION 
Cardiac arrhythmia, such as atrial fibrillation (AF) and ventricular 

fibrillation (VF), is a disruption of the normal excitation process in 

cardiac tissue due to faulty processes at the cellular level, at the 

single ion-channel level, or at the level of cell-to-cell 

communication. The clinical manifestation is a rhythm with altered 

frequency (tachycardia or bradycardia, see Fig. 1(a)) or the 

appearance of multiple frequencies (polymorphic ventricular 

tachycardia), with subsequent deterioration to a chaotic signal (VF, 

see Fig. 1(b)) [3, 14, 15, 41]. 

 

Figure 1. Schematic of the transition from normal heart 

rhythm to ventricular tachycardia and ventricular fibrillation. 

Cardiac tissue is typically modeled mathematically as a reaction-

diffusion system involving partial differential equations (PDEs) for 

diffusing species (typically only the transmembrane potential) and 

a system of nonlinear differential equations describing all other 

state variables that describe the flux of ions across the cell 

membrane along with ion concentrations. Detailed models of 
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cardiac cells can include more than 80 state variables and hundreds 

of fitted parameters [8].  

Because of the computational demands such models place on 

normal CPU-based and multi-core-based workstations, most 

studies of the electrical activity of the heart traditionally have 

focused on using either complex cell models in single-cell 

formations or simplified cell models in more realistic 3D heart 

structures. A few efforts have used supercomputers to integrate 

models of intermediate complexity with 3D structures [18, 29, 38]. 

Real-time simulation refers to the ability to execute a computer 

model of a physical system at the same rate as the actual physical 

system. Recently, the advantages of GPU over CPU processing 

have been established for many areas of science, including systems 

biology, where the highly parallel and multi-core capabilities of 

GPUs allow the implementation of extremely fast simulations of 

complex models in 2D and 3D using CUDA (Compute Unified 

Device Architecture) from NVIDIA. If such large-scale realistic 

models can be simulated in near real-time, many more 

applications, including patient-specific treatment strategies for 

cardiac-rhythm disorders, become feasible without the need for 

supercomputers. To date, such efforts have come up short. 

Below, we show that it is possible to perform simulations of 

models of cardiac cells ranging in complexity from two to 67 

variables in near real time for realistic problem sizes through 

careful GPU implementations. To maximize the performance gain, 

model-specific optimization techniques, including partitioning of 

the model equations among multiple CUDA kernels as appropriate 

and judicious use of the different types of memory available to 

GPUs, are incorporated.  

2. CUDA PROGRAMMING MODEL 
CUDA is a general-purpose parallel-computing architecture and 

programming model that leverages the parallel compute engine in 

NVIDIA GPUs. Optimal programming of GPUs requires a 

thorough understanding of the CUDA architecture and the 

underlying GPU hardware, including the concepts of threads, 

processors, and kernels, as well as the different levels of memory 

available. As illustrated in Figure 2, the GPU architecture is built 

around a scalable array of multithreaded Streaming 

Multiprocessors (SMs), made up of 8 or 32 Scalar Processor (SP) 

cores. SP cores contain a fused add-multiply unit capable of both 

single- and double-precision arithmetic and share a common local 

memory. 

The CUDA parallel computing model uses tens of thousands of 

lightweight threads assembled into one- to three-dimensional 

thread blocks. A thread executes a function called the kernel that 

contains the computations to be run in parallel; each thread uses 

different parameters. Threads located in the same thread block can 

work together in several ways. They can insert a synchronization 

point into the kernel, which requires all threads in the block to 

reach that point before execution can continue. They also can share 

data during execution. In contrast, threads located in different 

thread blocks cannot communicate in such ways and essentially 

operate independently. Although a small number of threads or 

blocks can be used to execute a kernel, this arrangement would not 

fully exploit the computing potential of the GPU. To utilize the 

GPU most efficiently, the underlying problem should be separated 

into independent blocks that can be further divided into cooperative 

threads; see Figure 3. Problems that cannot be implemented in this 

manner will benefit significantly less from implementation using 

GPUs. 

 

Figure 2. GPU architecture. 

Different types of memory are available for use in CUDA, and their 

judicious use is key to performance. The most general is global 

memory, to which all threads have read/write access. The generality 

of global memory makes its performance less optimized overall, so 

it is important that access to it be coalesced into a single memory 

transaction of 32, 64, or 128bytes [28]. Constant memory is a 

cached, read-only memory intended for storing constant values that 

are not updated during execution. All instances of a kernel may 

access these values regardless of location. Texture memory is 

another cached, read-only memory that is designed to improve 

access to data with spatial locality in up to three dimensions. For 

example, texture memory is a natural choice for storing an array 

that also will require retrieval of neighboring values whenever a 

single entry is retrieved. Linear interpolation is provided with 

texture memory. Finally, local memory is invoked when a thread 

runs out of available registers. CUDA library functions in the host 

code running on the CPU administer such tasks as kernel execution 

and memory management.  

Additional, significantly faster levels of memory are available 

within an SM, including 16KB or 32KB of registers partioned 

among all threads. As such, using a large number of registers 

within a CUDA kernel will limit the number of threads that can run 

concurrently. In addition, each SM has a shared memory region 

(16KB). This level of memory, which can be accessed nearly as 

quickly as the registers, facilitates communication between threads 

and also can be used as a memory cache that can be controlled by 

the individual programmer [22]. Shared memory is divided into 16 

banks; for optimal performance, threads executed concurrently 

should access different banks to prevent bank conflicts [28]. 

The computing resources of CUDA-capable video cards are 

characterized by their compute capability. Devices with compute 

capability1.0 and 1.1 make up the first generation of CUDA 



devices, based on the G80 GPU, whereas those with compute 

capability 1.2 and 1.3 are based on the more advanced GT200 

GPU. Only cards with compute capability greater than or equal to 

1.3 allow double-precision floating-point operations. Recently 

NVIDIA introduced a new family of cards called the Fermi-based 

GF100 GPU with compute capability 2.0 that supports object-

oriented programming. 

 

Figure 3. The parallel execution of a kernel is divided into 

independent blocks of cooperative threads. 

Our GPU testbed is an NVIDIA Tesla C2070 processor containing 

448 scalar cores organized as 14 SMs, and having 6GB of DRAM. 

The processor core clock is 1.15 GHz and the maximum memory-

access bandwidth is 144 GB/sec. The C2070 can perform 1030 

Gigaflops using single-precision arithmetic or 515 Gigaflops using 

double-precision arithmetic. To compare our results with other 

papers, we have also used a GPU Tesla C1060 with 240 SP cores 

divided equally among 30 SMs, and 4GB of DRAM. The SP core 

clock is 1.29 GHz and the maximum bandwidth of memory access 

is 102 GB/sec. The C1060 is able to perform 933 Gigaflops using 

single-precision arithmetic or 78 Gigaflops using double-precision 

arithmetic. 

3. CARDIAC MODELS 
Modeling cardiac tissue consists of implementing a reaction-

diffusion equation of the transmembrane potential coupled to one 

or more ordinary differential equations. The diffusion term 

represents intercellular coupling and may contain information 

about tissue architecture that affects wave propagation, including 

the local muscle fiber orientation, which indicates the fastest 

direction of wave propagation and describes tissue anisotropy. The 

reaction term is nonlinear and incorporates additional variables. 

The exact form of the reaction term varies depending on the level 

of detail and complexity of the electrophysiology model. Most 

models of cardiac cell electrophysiology have their origins in the 

Hodgkin-Huxley model [17] of a neuron and the Noble model [27], 

which was the first to apply the same modeling principles to 

cardiac cells. This type of model describes the reaction term as the 

sum of currents of different ion species (for cardiac cells, primarily 

Na+, K+, and Ca2+) crossing the cell membrane through ion 

channels. These currents operate in a specific fashion to make up a 

cellular action potential, an excursion from a negative resting 

membrane potential (around -85 mV) to a positive potential 

(around 20 mV in tissue) and back to the resting membrane 

potential. The initial increase in potential occurs quickly (on the 

order of a few ms) via a large inward current carried by Na+ ions. 

Over the rest of the action potential, which lasts hundreds of ms in 

large mammals, the membrane potential is determined primarily by 

a balance between inward Ca2+ currents and outward K+ currents. 

The range of voltages and times over which each ion current is 

active is determined by one or more factors, including the 

transmembrane potential, time-dependent gating variables that 

modulate the permeability of ion channels, and the concentrations 

of ions inside and outside the cells. Gating variables, ion 

concentrations, and other terms often are state variables of a model 

and evolve according to their own differential equations and can 

have different time scales. 

The precise details of the electrophysiology models can be 

represented at different levels. Biophysically detailed models take 

into account a large number of currents and may have anywhere 

from a few to dozens of state variables and differential equations in 

addition to the transmembrane potential. One of the earliest models 

of cardiac cells is the Beeler-Reuter (BR) model [1], which 

represents the electrophysiology of ventricular cells (located in the 

lower chambers of the heart). This model includes eight state 

variables and has been widely used for several decades; we include 

it as one of the models we implement in CUDA. More recent 

models make use of subsequent biophysical discoveries to 

represent cardiac cell electrophysiology in more detail. We 

implement two such models, both of human ventricular 

electrophysiology: the 19-variable Ten Tusscher-Panfilov model 

(TP) [39] and the 67-variable Iyer-Mazhari-Winslow (IMW) model 

[19]. 

The wealth of biophysical detail in complex electrophysiology 

models can obscure the physical phenomena underlying their 

behavior. For this reason, less complicated models also have been 

developed that can represent the behavior of cardiac cells and tissue 

in a way that facilitates analysis of their dynamics and of the role of 

different parameters in determining their behavior. One such model 

is the Karma model, which is a simplification of the Noble model. 

Another model is the Bueno-Orovio-Cherry-Fenton (BCF) model 

[2] (also called the minimal model [4, 7]). This model uses four 

variables and three ion currents that represent summary Na+, K+, 

and Ca2+ currents and incorporates the minimal level of complexity 

necessary to reproduce accurate action potential shapes and rate-

dependent properties. We also implement both of these models in 

CUDA. 

Therefore, we implement a total of five different models containing 

from two to 67 variables. By considering models that vary over a 

broad range of biophysical detail and computational complexity, 

we are able to identify specific issues that arise in CUDA 

programming depending on the model size. This information 

should be important in determining how best to implement 

particular types of models to maximize performance in CUDA. 

4. REACTION TERM 
The reaction term in cardiac models consists of anywhere from one 

to dozens of additional differential equations that provide simple or 



detailed descriptions of the electrophysiology of cardiac cells. 

Appropriate implementation of the reaction term is vital to 

optimizing the performance of cardiac electrophysiology 

simulations on GPUs. 

Performance is increased significantly by tabulating nonlinear 

functions of one variable in lookup tables that are accessed through 

the texture memory. This provides two main advantages: it reduces 

the latency of global memory access, and the hardware provides a 

built-in linear interpolation capability. To remove singularities that 

occur in some functions for values that make the denominator of a 

fraction zero, we calculate the limit of the functions at the relevant 

value using l'Hopital's rule.  

We also improve performance in several other ways. All divisions 

that do not involve variables are replaced with equivalent 

multiplications. Also, some equations are implemented using semi-

implicit methods that allow the use of larger integration time steps.  

In a number of cases, the reaction term in cardiac models uses 

biological switching functions in the form of Heaviside functions. 

The Heaviside function is a discontinuous function whose value is 

zero for negative arguments and one for positive arguments. 

Heaviside functions are usually represented by an if statement that 

is penalized by the GPU, because it leads to thread divergence 

during parallel execution. In our simulations, we have used an 

alternative implementation in which the if statement is replaced by 

multiplication with a predicate, as Fig. 4 shows. 

 
Figure 4. Heaviside function implementations by if statement (left) or 

multiplication with a predicate (right). 

A central concern in the implementation of the reaction term is the 

number of registers used per thread. The total number of threads 

per block and the number of registers per thread should be chosen 

to best utilize the available computing resources. The relation 

among these quantities, as given by the CUDA Programming 

Guide [28], is 

)32,(TceilB

R


, 

where R is the total number of registers per multiprocessor (a 

device-specific quantity), B is the number of active blocks per 

multiprocessor, T is the number of threads per block, and ceil(T,32) 

is T rounded up to the closest multiple of 32. Having multiple 

active blocks for each multiprocessor ensures that the 

multiprocessor will not be idle during thread synchronization or 

device memory access. By overlapping execution of blocks that 

wait and blocks that can run, the multiprocessor is able to hide 

better the latency of communication.  

In simple cardiac models with only a small number of variables 

(two or four), it is possible and in fact is advisable to implement 

the solution of the reaction term as a single kernel. In this case, the 

number of registers used per thread is usually less than 32, so that 

two or more active thread blocks of 256 threads can be executed by 

the same multiprocessor (with a device equipped with 16KB of 

registers for each multiprocessor). In more complex cardiac models 

having more than four variables, use of a single kernel to solve the 

reaction term is not recommended and often is not possible because 

the number of registers available per thread is insufficient. In this 

case, the solution of the reaction term is implemented as a sequence 

of multiple kernel invocations, with each kernel devoted to solving 

a group of related variables. Because a kernel invocation may 

modify the input of the following kernel, it is necessary to resolve 

these dependencies by buffering the variables that are common 

input among the kernels. Every kernel invocation introduces an 

overhead. To optimize the performance of our implementation with 

multiple kernels, we used the visual profiler provided by the recent 

CUDA SDK to find the best trade-off between kernel splitting, 

resource utilization, and the kernel invocation overhead. 

5. DIFFUSION TERM 
Cardiac models also include a diffusion term that couples the main 

variable (transmembrane potential) spatially. Solving the diffusion 

term essentially consists of calculating the Laplacian operator on 

all of the grid points. This operation requires frequent access to 

values of neighboring cells. The use of the global memory is not 

desiderable for this operation, because the specific memory access 

pattern that the threads should follow in order to read from the 

neighbor cells is not coalesced [28], which reduces performance 

considerably. To solve this problem more efficiently, we consider 

two solutions, one using shared memory and the other using texture 

memory, proposed in the literature [25, 32]. 

In the shared memory approach, the grid points can easily be 

subdivided into smaller overlapping parts (see Fig. 5), which then 

can be assigned to the threads' blocks. The values at neighboring 

elements are then read using shared memory within a block. This 

operation is performed by all the threads of the block, which 

control both the yellow and the red elements shown in Fig. 5. After 

synchronizing among the threads belonging to the same block, the 

threads controlling the red cells read the neighborhood collected in 

the shared memory and write in their cell the updated value of the 

Laplacian. This solution can be used with both single- and double-

precision implementations, but the drawback is that it needs to use 

more threads than the number of elements of the matrix. 

An alternative approach that we have considered is to use the 

texture memory, which provides a cache that is optimized for 1D, 

2D or 3D spatial locality, so that threads that read texture 

addresses that are close together will achieve the best performance. 

Currently, it is not possible to bind the texture to double precision 

data, so the use of the texture memory for implementing the 

diffusion term is restricted only to single-precision 

implementations. 

 



Figure 5. Calculating the diffusion term using shared memory. 

6. MODELS 
In this section we perform 2D simulations of the five models of 

interest and analyze their performance. Four square grid sizes are 

used to assess how the performance scales with the number of 

nodes. Although the larger grid sizes are physiologically unrealistic 

for 2D human cardiac surfaces, the numbers of nodes they contain 

are similar to what would be required for some 3D 

implementations. Note that because of the necessity of representing 

information from neighboring thread blocks in shared memory 

implementations, our 16 x 16 thread blocks are effectively 14 x 14 

for the shared memory implementations. Therefore, the grid sizes 

in the shared memory implementations (512, 1024, 1536, and 

2048) are slightly different than those in the texture memory 

implementations (520, 1038, 1556, and 2074) in all cases. 

6.1 Karma Model (2 Variables) 
The Karma model is a simplified model of cardiac 

electrophysiology that reproduces some basic features of cardiac 

dynamics, including wavelength oscillations, which can be seen in 

Fig. 6. To quantify GPU performance, we initiated a spiral wave 

[12] using the Karma model in square grids with each side 

consisting of 512, 1024, 1536, or 2048 elements (corresponding to 

218, 220, 1.125x221, and 222 grid points, respectively), as shown in 

Fig. 6. Note that the wavelength of a spiral wave in this model is 

smaller than that of the human ventricular models (compare Figs. 9 

and 12). We used three different implementations: double 

precision, single precision using shared memory to calculate the 

diffusion term, and single precision with the texture memory used 

for the diffusion term. The double precision simulation required 

just over twice as much time as the corresponding single precision 

simulation. For the single precision simulations, use of the texture 

memory for the diffusion term improved performance. For the 

smallest grid size, which was similar in size to the surface area 

(epicardium) of a human ventricle, the simulation times were 

almost real time for the shared memory implementations, and the 

simulation was faster than real-time for single precision using the 

texture memory. 

 

Figure 6. Left: Spiral wave using the Karma model in a 

512 x 512 tissue (12.8 cm x 12.8 cm; resolution 0.0262 cm). 

Right: Simulation time normalized to real time for computing 

1 s using different grid sizes.  

6.2 BCF Model (4 Variables) 
The BCF model is a minimal model of cardiac electrophysiology 

that reproduces many properties of cardiac tissue and can be 

parameterized [2, 4] in many cases to reproduce the dynamics of 

more complex models as well as experimental data. As with the 

Karma model, we initiated a spiral wave using the BCF model for 

square grids with each side consisting of 512, 1024, 1536, or 2048 

elements and used the same three implementations: double 

precision, single precision with shared memory, and single 

precision with texture memory, as shown in Fig. 7. For the BCF 

model, the double precision simulation required almost three times 

as much time as the corresponding single precision simulation. For 

the single precision simulations, use of the texture memory for the 

diffusion term improved performance, but not by as large a factor 

as for the Karma model. For the smallest grid size, the simulation 

times were between a factor of 2 and 5 times longer than real time 

for all three implementations. 

 

Figure 7. Left: Spiral wave using the BCF model in a 512 x 512 

tissue (12.8 cm x 12.8 cm; resolution 0.025 cm). Right: 

Simulation time normalized to real time for computing 1 s 

using different grid sizes. 

6.3 BR Model (8 Variables) 
The BR model is an 8-variable model of cardiac electrophysiology 

that was the first detailed model of mammalian ventricular cell 

electrophysiology. As with the Karma and BCF models, a spiral 

wave was initiated using the BR model for square grids with each 

side consisting of 512, 1024, 1536, or 2048 elements and the 

performance of the same three implementations (double precision, 

single precision with shared memory, and single precision with 

texture memory) was quantified, as shown in Fig. 8. For the BR 

model, the double precision simulation was about two times slower 

than the corresponding single precision simulation. As with the 

Karma model, use of the texture memory for calculation of the 

diffusion term improved performance significantly for the single 

precision case. For the smallest grid size, the simulation times for 

the three implementations were between a factor of 10 and 25 times 

longer than real time. 

 

Figure 8. Left: Spiral wave using the BR model in a 512 x 512 

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right: 

Simulation time normalized to real time for computing 1 s 

using different grid sizes.  



6.4 TP Model (19 Variables) 
The TP model is a 19-variable model that describes the 

electrophysiology of human ventricular cells. As with the previous 

models, a spiral wave was initiated using the TP model for square 

grids with each side consisting of 512, 1024, 1536, or 2048 

elements and the performance of the same three implementations 

was quantified, as shown in Fig. 9. For the TP model, the double 

precision simulation was about two to three times slower than the 

corresponding single precision simulation. Use of the texture 

memory for calculation of the diffusion term resulted in a 

substantial performance improvement: for the largest grid size, the 

texture memory simulation required only half as much time as the 

corresponding shared memory simulation. At the smallest grid size, 

the simulation times for the three implementations were between a 

factor of 35 and 70 times longer than real time. 

 

Figure 9. Left: Spiral wave using the TP model in a 512 x 512 

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right: 

Simulation time normalized to real time for computing 1 s 

using different grid sizes.  

For the other models discussed so far, no significant differences 

were observed between the single and double precision simulations. 

However, we knew that for some more biophysically detailed 

models, including the TP model, single precision is not sufficient to 

represent small but important changes in the intracellular K+ and 

intracellular Na+ concentrations over the course of each action 

potential. Thus, in the single precision simulations of the TP 

model, very small changes in concentration were represented as 

zeros, which produced non-smooth time traces of these 

concentrations within a single action potential. Although the 

concentration differences between single and double precision over 

one action potential were slight, the difference accumulated over 

time and changed not only the value of the concentration but also 

the trend of the concentration over time, especially for the K+ 

concentration, as shown in Fig. 10. The differences in 

concentrations affect the time progression of spiral waves 

generated using single and double precision. Fig. 11 shows 

snapshots of spiral waves obtained after 600 s (10 min) of 

simulation time and indicates that the waves are at different points 

in their rotation paths. 

 

Figure 10. Time evolution of the intracellular K+ (left) and Na+ 

(right) concentrations observed at a representative grid point 

for the TP model with single and double precision.  

 

Figure 11. Spiral waves generated for the TP model with single 

precision (left) and double precision (right) after 10 min. 

6.5 IMW Model (67 Variables) 
The IMW model is a 67-variable model that describes the 

electrophysiology of human ventricular cells in more detail than the 

TP model. As with the previous models, a spiral wave was initiated 

for square grids with each side consisting of 512, 1024, 1536, or 

2048 elements and the performance of the same three 

implementations was quantified, as shown in Fig. 12. For the IMW 

model, the double precision simulation was about twice as slow as 

the corresponding single precision simulation. As with the Karma, 

BR, and TP models, use of the texture memory for calculation of 

the diffusion term improved performance significantly. At the 

smallest grid size, the simulation times for the three 

implementations ranged from 680 to 1300 times longer than real 

time. As with the TP model, double precision is necessary for 

adequate representation of ion concentrations for the IMW model. 

 

Figure 12. Left: Spiral wave using the IMW model in a 

512 x 512 tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). 

Right: Simulation time normalized to real time for computing 

1 s using different grid sizes. 

7. PERFORMANCE 
Figure 13 shows the performance for the different grid sizes as a 

function of the number of model variables. For the models with 

four, eight, and 19 variables, the simulation time scales linearly 

with the number of variables. For the IMW model (67 variables), 

the departure from linear scaling can be explained by several 

factors. For one, it is necessary to split the solutions of the ordinary 

different equations into 21 kernels calls. As a result, for any 

variable needed by more than one kernel, it is necessary to 

duplicate calculation of that variable within each such kernel to 



avoid communication between kernels. This duplication results in 

increased overhead for every integration step computed. In 

addition, the IMW code was not optimized as fully as the codes for 

the other models were (in terms of lookup tables, division 

eliminations, etc.).  

In the future, we expect to obtain better performance for all the 

models by using other integration methods for the diffusion term, 

such as the alternating direction implicit scheme, that can allow the 

use of larger integration time steps [9]. 

 

Figure 13. Simulation time normalized to real time as a 

function of the number of model variables. 

8. RELATED WORK 
Over the last five years, GPU performance has exceeded that of the 

CPU. As this trend in outperformance continues [28] many areas of 

research that require large-scale simulation, such as systems 

biology [6], have turned to GPU implementations to gain that 

acceleration in computing, and cardiac electrical dynamics is no 

exception [5]. Simulations of human heart dynamics at currently 

feasible spatial resolutions require the solution of between 224 and 

227 nodal points or “cells” [18, 29]. Each cell, turn, involves a 

separate implementation of mathematical equations describing its 

electrophysiology, the description of which can be as simple as two 

[20] or as complicated as 67 [19] or 87 [11] ordinary differential 

equations. Even with a simple cell model, 0.6 seconds of simulation 

requires about 2 days using 32 CPU processors [29]; for a more 

complex model, the same simulation time uses about 10 hours with 

6144 CPUs [18]. However, accelerations to near real time soon will 

become possible on single desktops by taking advantage of GPU 

processing capabilities. The electrophysiological equations of 

cardiac cells are of the reaction-diffusion type, for which GPUs 

have been shown to be superior to CPUs in both 2 and 3 

dimensions with typical acceleration values between 5 and 40 

depending on the algorithms used [25, 33]. The first simulation of 

cardiac arrhythmias using GPUs actually was performed on an 

Xbox 360 [35] using the BCF model [2] (Fig. 7). The eight-

variable Luo-Rudy I (LRI) model was the first simulated using a 

realistic rabbit ventricular structure on a GPU [34], with 1 s of 

simulation taking 45 minutes using a cluster with 32 CPUs and 72 

minutes on a single GPU. Since then other studies have emerged 

comparing the speeds between CPUs and GPUs for different 

cardiac cell models. The 27-variable Mahajan et al. model [24] was 

reported to run 9 to 17 times faster (depending on tissue size) on 

GPUs [40]. More recently, Rocha et al. [31] reported a gain of up 

to 20 times for a single GPU implementation compared to a 

parallel CPU implementation running with 4 threads on a quad–

core machine, with parts of the code accelerated by a factor of 180 

for the 8-variable LRI model [23] and the 19-variable TP model 

[39]. Lionetti et al. [21, 22] showed how different implementations 

are needed for different cell models (two-variable FitzHugh-

Nagumo [10], eight-variable BR [1], 18-variable Puglisi-Bers (PB) 

[30], 42-variable Grandi et al. [13], and 87-variable Flaim et al. 

[11]) in order to optimize each one and obtained a speedup of 6.7 

for the 87-variable model. GPUs also have been used for 

intracellular calcium dynamics within a single cell using Monte 

Carlo simulations, where a factor of 15,000 reduction in time 

compared to previous studies was found [16]. In addition to 

electrophysiological dynamics, GPUs have been used to accelerate 

heart manipulations to enhance intervention simulations such as 

catheter positioning [43], surgical deformation [26], simple 

contractions [42, 44], and ECG generation [36, 37]. 

In this manuscript, we do not focus on comparing CPU vs GPU 

performance, as this has been amply demonstrated already using 

many different cell models. Instead, we focus on developing 

optimal implementations to obtain the maximum accelerations and 

get as close as possible to real time simulations. Sato et al. report 

1 s of simulation in the 8-variable LR1 model in an 800x800 

domain taking 283 s; in contrast, our simulations in the 8-variable-

BR model (the two models are mathematically almost equivalent 

and share more than 90% of the same equations) take 11.34 s on a 

512 x 512 domain and 39.2 s on a 1024 x 1024 domain (rescaling 

our times to the 800 x 800 domain results in a comparable speedup 

of a factor of 11). Vigmond et al. [40] report that 1 s of simulation 

time on 5 million nodes using the 27-variable Mahajan et al. model 

takes about 16 ksec (~4.5 h), whereas our 19-variable TP 

implementation in a 2048 x 2048 domain (close to 5 million nodes) 

takes about 8.2 min. However, a direct comparison is difficult to 

make as there is not only a difference of eight ODEs, but their 

simulations utilize a computationally more expensive bidomain 

approximation (used during simulations of defibrillation, where a 

Poisson equation needs to be solved at each time step). Lionetti et 

al [21, 22] performed 300 ms of a heart beat simulation on a 

domain that consisted of 42,240 “cell” points to represent a 

ventricular section. Their main interest was to optimize the ODE 

part of the reaction diffusion system, so no spatial integration was 

performed and all the cells were decoupled; therefore, their 

integration times did not included the spatial integrations. 

However, they used different optimizations for the different cell 

models tested and showed how different models benefit from 

different types of optimizations. For the two-variable FHN model, 

300 ms of simulation in their 42,240 required 5.91 s; for the eight-

variable BR model, 22.64 s; for the 18-variable PB model, 49.87 s; 

and for the 87-variable Flaim et al. model, 119.29 s. To compare 

with our simulations, in which the smallest domain consisted of 

512 x 512 grid points (a domain about 6.2 times larger), and for 

1 s of simulation time, we need to multiply their timing results by 

20.5. Therefore, 1 s of simulation of the two-variable Karma model 

(with the same complexity as the FHN model) took 0.97 s vs. 

121 s, the eight-variable BR model took 11.34 s vs. 464 s, the 19-

variable TP model took 35.4 s vs. the 18-variable PB model 

1022 s, and the 67-variable IMW 681 s vs. the 87-variable Flaim 

et al. model 2445 s. It is important to recall that the simulations by 

Lionetti et al. do not include the spatial integration component, 

making our timing results even more impressive in comparison. 



Rocha et al. report simulations of the eight-variable LR1 and the 

19-variable TP models for 500 ms for different 2D grid sizes (the 

largest of which was 640 x 640) using a higher spatial resolution of 

0.01 cm. To compare with their results, we performed 500 ms 

simulations using the same domain size and spatial resolution. 

They report a simulation time of 11.4 minutes and 2.8 hours for the 

LR1 and the TP models, whereas we obtain for the BR and TP 

models 23.05 s and 285.56 sec on a C1060 card similar to theirs 

and 13.9 s and 105.4 s on a C2070 (Fermi-based) card. It is 

important to note that the times reported by Rocha et al. includes 

outputting data at unspecified intervals; for comparison, our times 

include outputting a byte representation of the voltage at all nodes 

every 1 ms. 

9. CONCLUSION 
In summary, we have shown that we can achieve near real-time 

performance of simulated cardiac dynamics in tissues of realistic 

sizes by using GPU architectures. To achieve the maximum gains 

in computational efficiency, it is necessary to consider model-

specific aspects of the implementation, including appropriate 

division of the model among multiple kernels and careful use of the 

available levels of memory. The significant performance gains 

should facilitate implementation of novel applications of 

simulation, including possible use in diagnosing cardiac disease or 

developing patient-specific treatment strategies. 
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