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ABSTRACT

In a virtualized infrastructure where physical resources are shared, a single
physical server failure will terminate several virtual servers and crippling the
virtual infrastructures which contained those virtual servers. In the worst case,
more failures may cascade from overloading the remaining servers. To guarantee
some level of reliability, each virtual infrastructure, at instantiation, should be
augmented with backup virtual nodes and links that have sufficient capacities.
This ensures that, when physical failures occur, sufficient computing resources
are available and the virtual network topology is preserved. However, in doing
so, the utilization of the physical infrastructure may be greatly reduced. This
can be circumvented if backup resources are pooled and shared across multiple
virtual infrastructures, and intelligently embedded in the physical infrastruc-
ture. These techniques can reduce the physical footprint of virtual backups
while guaranteeing reliability.
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1 Introduction

With infrastructure rapidly becoming virtualized, shared and dynamically changing, it is
essential to provide strong reliability to the physical infrastructure, since a single physical
server or link failure affects several shared virtualized entities. Providing reliability is often
linked with over-provisioning both computational and network capacities, and employing
load balancing for additional robustness. Such high availability systems are good for ap-
plications where large discontinuity may be tolerable, e.g. restart of network flows while
re-routing over link or node failures, or partial job restarts at node failures. A higher
level of fault tolerance is required at applications where some failures have a substantial
impact on the current state of the system. For instance, virtual networks with servers
which perform admission control, scheduling, load balancing, bandwidth broking, AAA or
other NOC operations that maintain snapshots of the network state, cannot tolerate total
failures. In master-slave/ worker architectures, e.g. MapReduce, failures at the master
nodes waste resources at the slaves/workers.
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Through synchronization [6,12] and migration techniques [11,27] on virtual machines and
routers, we postulate that fault tolerance can be introduced at the virtualization layer. This
has several benefits. Different levels of reliability can be customized and provisioned over
the same physical infrastructure. There is no need for specialized, fault tolerant servers.
Instead, redundant (backup) virtual servers can be created dynamically, and resources
are pulled together, increasing the primary capacity. Both will lead to a better overall
utilization of the physical infrastructure.

In this paper, we propose an Opportunistic Redundancy Pooling (ORP) mechanism to
leverage the properties of the virtualized infrastructure and achieve a n : k redundancy ar-
chitecture, where k redundant resources can be backups for any of the n primary resources,
and share the backups across multiple virtual infrastructures (VInfs).

For a quick motivating example, consider two VInfs with n1 and n2 computing nodes. They
would require k1 and k2 redundancy to be guaranteed reliability of r1 and r2, respectively.
Sharing the backups will achieve a redundancy of k′ = max(k1, k2) with the same level of
reliability, reducing the resources that are provisioned for fault tolerance by at most 50%.

In addition, there is joint node and link redundancy such that a redundant node can take
over a failed node with guaranteed connectivity and bandwidth. ORP ensures VInfs do not
connect to more redundant nodes than necessary in order to keep the number of redundant
links low.

The other contribution of this paper is a method to statically allocate physical resources
(compute capacity and bandwidth) to the primary and redundant VInfs simultaneously,
taking into account the output of the ORP mechanism. It attempts to reduce resources al-
located for redundancy by utilizing existing redundant nodes, and overlapping bandwidths
of the redundant virtual links as much as possible.

Our paper focuses on the problem of resource allocation for virtual infrastructure embed-
ding with reliability guarantee. Practical issues such as system health monitoring, protocol
design, recovery procedures, and timing issues are out of the scope of this paper.

The organization of this paper is as follows. In the next section, we briefly describe the
background, notations and define reliability in Section 2. Then, we describe a virtual archi-
tecture that can provide fault tolerance and estimate the benefits of sharing redundancies
in Section 4. We see how the link topology is preserved under failures in Section 5, and how
resources can be efficiently allocated in the physical infrastructure in Section 6. Finally,
we evaluate and validate the ideas through simulation in Section 7, present related work
in Section 8 , and Section 9 concludes this paper.

2 Problem Statement

We consider a resource allocation problem in a virtualized infrastructure, such as a data
center, where the virtualized resources can be leased with reliability guarantees. The
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physical infrastructure is modeled as an undirected graph G = (N , E), where N is the set
of physical nodes and E is the set of physical links. Each node µ ∈ N has an available
computational capacity of Γµ. Each undirected link (µ, ν) ∈ E , µ, ν ∈ N has an available
bandwidth capacity of Λµν .

Each resources lease request is modeled as an undirected graph G = (N,E). N is a set of
compute nodes and E is a set of edges. We call this a virtual infrastructure (VInf). γu is
the computation capacity requirement for each node u ∈ N , and bandwidth requirements
between nodes are λuv, (u, v) ∈ E and u, v ∈ N .

Reliability is guaranteed on the set of critical nodes C ⊆ N of a VInf G through redundant
virtual nodes in the physical infrastructure G. A backup (redundant) node b must be able
to assume full execution of a failed critical node c. Hence, the backup node must have
sufficient resources in terms of computation γb ≥ γc and bandwidth to neighbors of c:
λbu ≥ λcu,∀u ∈ N, (c, u) ∈ E.

The problem is, thus, to allocate as little resources as possible for a VInf G on a physical
infrastructure G, including redundancy such that a reliability guarantee of at least r is
achieved. We explain the definition of reliability in greater detail in the next section.

3 Reliability

We define reliability as the probability that critical nodes of a VInf remain in operation,
over all possible node failures. This is not to be confused with availability, which is defined
as a ratio of uptime to the sum of uptime and downtime [25]. As an example, the reliability
of a physical node under a renewal process is

1−
1

MTBF
, (1)

whereas the availability is
MTBF

MTBF + MTTR
, (2)

where MTBF is the mean time between failures as specified by the manufacturer, and
MTTR is the mean time to recover from a failure. Hence, by guaranteeing a reliability of
r, we are ensuring that there are sufficient redundant physical resources available in times
of failure, with probability r. For a VInf with n critical nodes and k backup nodes, we
want to ensure that

Pr(k out of n+ k virtual nodes fail) < 1− r. (3)

This covers cases where some critical and backup nodes fail simultaneously. Guaranteeing
availability, on the other hand, is ensuring that the system MTTR is low enough with
respect to the system MTBF.
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3.1 Failover configuration

While provisioning redundant resources is a fundamental approach to guaranteeing relia-
bility, there are two main classes of configurations in dealing with the redundant resources:

Active/Active All available nodes, including the k redundant ones, are online, with an
external load balancer distributing load across them. When physical failures happen,
the load balancer can redistribute the load to the remaining nodes. This inherently
assumes that (i) all nodes are homogeneous, and (ii) load can be distributed easily
among all nodes.

Active/Passive Redundant nodes are kept idle. When x virtual nodes fail, x redundant
nodes are activated to take over. In the simplest setup, n sets of 1 : m backups
are required. Nodes can be heterogeneous but the number of redundant nodes is
restricted to k = nm. However, if each redundant node is capable of assuming the
operation of more than one critical node, it is then possible to have k < n.

In the Active/Active configuration, the number of redundant nodes k is the minimum. In
comparison, k is actually the same as that of the Active/Passive configuration for the same
level of reliability if each redundant node has sufficient resource to assume the operations
of any n critical node. This is because the load in Active/Active configuration can always
be shifted to all n critical nodes, leaving all k redundant nodes idle.

With Active/Passive configuration where critical nodes are heterogeneous, all redundant
nodes must have all n critical virtual machine (VM) images on disk (but not running in
memory) in order to minimize k. This means that when a backup takes over, the critical
VM’s state is essentially rebooted, i.e., redundant nodes are “cold spares”. On the other
hand, the Active/Active configuration will not be able to support heterogeneous VMs.

It is possible to have the redundant nodes as “hot spares” in the Active/Passive config-
uration. That will require active synchronization techniques such as Remus [12], ample
memory in the physical node and bandwidth within the network for all n states and their
updates, respectively. A technique called Difference Engine [17] is able to reduce the physi-
cal footprint of the n memory states, by keeping only one copy of the similar pages between
the n memory states and selectively compressing the remaining differences.

Redundant nodes can be further pooled and shared across several VInfs in the Active/Passive
configuration since heterogeneous VMs can be supported, and further reducing redundant
resources. This gives the Active/Passive configuration another advantage over the other.
More details will be explained in Section 4. For the rest of this paper, we assume the
Active/Passive configuration is used due to the reduction in redundancy.
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3.2 How many backups?

The number of redundant nodes depend on the physical mapping, and the failure models of
both the physical nodes and the virtual infrastructure. For example, assume all n critical
nodes and all k backups are placed on physical nodes A and B, respectively. Let Fx be
some set where x out of the n critical virtual nodes has failed. Then, the reliability of this
example system is

r = Pr(A works and B fails)Pr(F0) +

Pr(A fails and B works)Pr(n ≤ k) +

Pr(A and B works )

min(n,k)
∑

x=1

∑

Fx⊆{1,...,n}

Pr(Fx). (4)

There are several problems with this approach:

1. computing the reliability is complex due to tight correlation between physical and
virtual nodes.

2. the reliability is severely limited by the reliability of the two physical nodes, and

3. the reliability can never be increased beyond k = n,

As such, we impose two physical mapping constraints: (i) each virtual node is only mapped
to one physical node, and (ii) the mapped physical nodes are placed apart to avoid cor-
related failures among the physical machines, e.g. on different racks with different power
supplies. This way, the failure rate of a virtual node u is directly derived from the physical
node µ it is mapped on. Guaranteeing reliability can then be focused on the failure model
of the virtual infrastructure. In general, the reliability of the overall virtual infrastructure
(including k redundant nodes) can then be computed as

r(k) =
k

∑

y=0

Pr(y out of n+ k nodes fail)

=
k

∑

y=0

min(n,y)
∑

x=0

Pr(a set of y − x backup nodes fail)f(x),

(5)

for some failure probability distribution f(x) in which x is the number of critical nodes
that failed. (5) can be simplified to

r(k) =

k
∑

y=0

min(n,y)
∑

x=0

(

k

y − x

)

py−x(1− p)k−(y−x)f(x). (6)

The binomial term is due to independent failures of the redundant nodes, and the assump-
tion that physical nodes hosting them are homogeneous with a failure rate p.
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3.2.1 Cascading Failures

It is also possible to compute the reliability for cascading failure models of these critical
nodes. There is a wealth of studies on various cascading failure models in literature. In this
paper, we list three models and briefly describe how the innermost sum

∑

Fx⊆{1,...,n} Pr(Fx)
of (5) can be computed. For a more detailed discussion, please refer to the appendix.

Load-based [14] This model assumes a node will fail if its load exceed a predefined
value. Once some nodes fail, the load on other nodes are incremented with a value
proportional to the number of failures. The failure cascades if more nodes fail from
the overloads. The main result from this model is the distribution of the total number
of failures x, which can directly replace the term f(x).

Tree-based [19] This model uses a continuous-time Markov Chain (CTMC) to analyze
cascading failures. A node failure will stochastically cause nodes from other categories
to fail. There is a renewal repair process for each node, as well as redundant nodes for
each node category. A procedure is given to compute the generator matrix Q for the
CTMC, which is used as a basis for analyzing various reliability metrics of the system.
For our purpose, we can obtain Q of the system without any backups by setting the
renewal rate to follow the behavior of MTTR, and the number of redundant nodes
per category to 0. Subsequently, Pr(Fx) is a direct one-to-one mapping to the steady-
state probabilities, which can be obtained by solving the null-space of Q.

Degree-based [28] Each node has a predefined failure threshold between 0 and 1. The
VInf is initially perturbed with some random node failures. The failure will cascade to
a neighboring node if the neighbors of that node that have failed is beyond its failure
threshold. For a large n, a global cascading failure will occur with some probability
f(n) if the average degree of the VInf is lower than some value. Since f(x) is unknown
for x < n, (6) uses a worst-case distribution for f(x) where f(n− 1) = 1− f(n). We
refer the reader to the appendix for more details.

Once f(x) is obtained, a numerical method for searching k can then be used to ensure
guarantee a certain level of reliability r. With a binary search algorithm, the complexity
is in the order of O(n2 log n). A proof is given in the appendix.

3.2.2 Independent Failures

For ease of exposition, we focus in this document on independent node failures. If the
failure rates of n critical nodes are independent and uniform, then the reliability of the
whole system is

r(k) =
k

∑

x=0

(

n+ k

x

)

px(1− p)n+k−x

= I1−p(n, k + 1),

(7)
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Figure 1: Minimum number of redundant nodes needed as backups for n critical nodes,
given a reliability guarantee of 99.999%.

where I1−p(·, ·) is the regularized incomplete beta function with parameter 1 − p [1]. The
minimum number of redundant nodes k is then the integer ceiling of the inverse of this
function.

4 Redundancy pooling: quantization gains

In Active/Passive configuration, redundant nodes that are provisioned for one VInf can be
shared with another VInf, since they are idle. This is not possible in the Active/Active
configuration because all virtual nodes will have to be running. The ability to share re-
dundant nodes allows the Active/Passive configuration to reduce the amount of redundant
resources within the physical infrastructure.

4.1 Arbitrary Pooling

To simplify discussion, we first assume the case where failure rates of all critical and
physical nodes are independent and uniform, i.e, puµ = p for all virtual nodes u and
its physical host µ. Fig. 1 shows the number of backup nodes required as the number of
critical nodes increase for a reliability guarantee of 99.999% over various failure probabilities
p = 0.01, . . . , 0.05. The range of failure values were chosen due to a recent Intel study on
physical server failures in data centers of different locations and with different types of
cooling [4].

By observation from these curves, one intuitive way to reduce the number of backup nodes
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is to exploits the curves’ sub-linear property: if two or more VInfs pool their backup nodes,
the total number of backup nodes required is reduced. For example, for the case of p = 0.01,
two VInfs of 100 critical nodes each will require a total of 16 backup nodes (k = 8 each).
This number can be reduced to 11 when both VInfs (gives n = 200) pool their backup
nodes together, saving redundant resources by 31.25%. Unfortunately, this approach has
two potential limitations: (i) the pooling advantage disappears for VInfs with large n and
(ii) redundant bandwidth maybe increased while reducing redundant backup nodes. In the
former case, we have the following result:

Theorem 1. Given n is related to k, p and r as in (7). For large k, n
k is a constant and

is independent of r, i.e.,

lim
k→∞

n

k
=

1

p
− 1. (8)

Proof. The function I1−p(n, k+1) = r is the CDF of a Binomial variable χ, which charac-
terizes the number of node failures from a pool of n+k nodes, each with a failure probability
p, i.e.,

I1−p(n, k + 1) = P{χ ≤ k} = r.

Since n > 0 and is non-decreasing as k →∞, by Strong Law of Large Numbers

χ = p(n+ k) +
√

p(1− p)(n+ k)N0,1,

Then, for some constant ξr,

k = p(n+ k) + ξr
√

p(1− p)(n+ k)

k

n+ k
= p+ ξr

√

p(1− p)

n+ k

k →∞,
k

n+ k
= p

n

k
=

1

p
− 1.

Since k tends to be linear with n for VInfs with a large number of critical nodes, the benefit
of sharing backup nodes diminishes in these cases as the number of backup nodes will not
be reduced further.

The second limitation is that more redundant links maybe required when pooling backup
nodes. We use the same example where two VInfs with 100 critical nodes each can share
the pool of 11 backup nodes to illustrate this. If the two VInfs were not sharing backup
nodes, each VInf would have 8 backup nodes instead of 11. Since each backup node must
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be able to resume full execution of the critical nodes, each backup node will need additional
redundant links to neighbors of all critical nodes1, as described in Section 2. Thus, each
VInf will need an additional three sets of redundant links with redundancy pooling. Savings
in computational resource in this case may not justify the increase in bandwidth reserved
for redundancy. Furthermore, this increases overhead in a hot standby configuration as
each VInf has more backup nodes to synchronize to.

Fig. 2 illustrates this tradeoff when two VInfs (VInf-1 and VInf-2) arbitrarily pool the
backup nodes with p = 0.02. Denote by n1 and k1 the number of critical nodes of VInf-1
and the minimum number of backup nodes required for reliability of 99.999%, respectively.
The same notation applies to VInf-2: n2 and k2. Further, denote by k′ the minimum
number of backup nodes required for a VInf with n1 + n2 critical nodes. With the super-
linear property, it is guaranteed that k′ < k1 + k2 for finite values. But depending on the
relation of k′ with k1 and k2 individually, three regions of tradeoff can be expected:

More links in both VInfs: k′ > k1 and k′ > k2. Both VInfs need more backup nodes
each with redundancy pooling, as illustrated in the previous example. This translates
to additional costs of more redundant bandwidth used, and synchronization overhead
if backup nodes are hot standbys, while reducing redundant computational resource.

No tradeoff: k′ = k1 = k2. Both VInfs do not need more backup nodes each with re-
dundancy pooling. This is the ideal case as the total number of backup nodes is
halved through pooling, and there is no increase in redundant links nor synchroniza-
tion overhead. However, this region is small and only exists for small n, indicating
that there is not much opportunity to pool backup nodes in this way.

More links in one VInf: k′ = k1 or k′ = k2, not both. This is an intermediate re-
gion between the prior two cases. One VInf will need more backup nodes in order to
pool backup nodes with the other VInf, whereas the other VInf is not affected.

4.2 Pooling to fill in the discrete gap

For this reason, we introduce Opportunistic Redundancy Pooling (ORP). This is a method
to pool backup nodes such that there is no additional overhead on bandwidth (and synchro-
nization, in the case of hot standbys). Another advantage with this method is that VInfs
with different reliability guarantees can be pooled together. It makes use of the discrete
steps of the curves as shown in Fig. 1. For example, in the case where p = 0.03, a VInf
with 29 critical nodes needs 7 backup nodes and the reliability evaluates to 99.999065093%.
Another VInf with one more critical node needs 8 backup nodes in order for the reliability

1The number of additional links is O(nk + k2) for n critical nodes and k backup nodes. The nk term
is due to links between neighbors of all n critical nodes to the k backups, and the k2 term is due to links
between backup nodes. We describe this in detail in Section 5
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Figure 2: The regions of tradeoff between computational and bandwidth resource when
pooling backup nodes of two arbitrary VInfs. The values are obtained from Fig. 1 for the
case of 99.999% reliability and p = 0.02.

to be maintained above the guarantee. In particular, the reliability for the latter case is
99.9998544522%, which is much higher than the guarantee. It is also the reason why the
number of backups is the same for n ∈ [30, 39]. In the case of 30 critical nodes, the excess
0.0008544522% reliability can be “sacrificed” to “squeeze in” other VInfs that require no
more than 8 backup nodes2. Conversely, it can also be viewed that the residual excess from
a few VInfs are pooled to reduce the number of backups one VInf needs.

We use Fig. 2 to explain ORP. Suppose there are m+1 VInfs which require k0, k1, . . . , km
backup nodes for reliability guarantee of r0, r1, . . . , rm, respectively, and k0 ≥

∑m
i=1 ki.

VInf-0 pools its backup nodes with VInf-i, i > 0, and each backup node backs up VInf-0 and
at most one other VInf. Having this restriction allows us to keep the reliability guarantees
of any VInf-i satisfiable (i.e., the reliabilities of VInf-i are no less than ri before and after
pooling) and shifts the reliability computation to VInf-0. The decision criterion to pool
the VInfs is then determining whether the new reliability of VInf-0 after pooling r′0 is still
greater than the required guarantee r0. As described later, imposing this criterion supports
an incremental evaluation of r′0 when VInfs are newly admitted into the redundancy pool,
or leave the redundancy pool. This also requires the assumption that the recovery protocol

2This means either the VInf needs lower reliability guarantee, has smaller number of critical nodes, has
a skewed f(x) that gives smaller k, or all of the above.
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Vinf-0

Vinf-1Vinf-2

Figure 3: A way to pool backup nodes. This can be viewed in two ways: (i) a virtual
infrastructure VInf-0 “lends” some of its backup nodes to other VInfs, and (ii) VInfs 1 and
2 collectively “lend” their backup nodes for VInf-0. The total number of backup nodes will
be reduced by at most 50%.

when activating backup nodes prioritize VInf-i over VInf-0, and VInf-i uses no more than
ki backup nodes after recovery.

Define zVInf(k, y) as the probability that a total of y nodes fail in a VInf with k backup
nodes, i.e.,

zVInf(k, y) =

min(n,y)
∑

x=0

(

k

y − x

)

py−x(1− p)k−(y−x)fVInf(x), (9)

where n is the number of nodes of that VInf. The reliability of VInf-0 after pooling is then

r′0 = 1−
k′
∑

x=0

Pr(x of k′ backups are down or used by VInf-1, . . . , VInf-m)×

Pr(more than k0 − x nodes fail from VInf-0 with k0 − k′ backups).

(10)

The first term is the probability mass function (pmf) of the sum of m independent VInfs
with ki backup nodes each. The pmf of each independent event qVInf-i(x) is

qVInf-i(x) =























zVInf-i(ki, x) , 0 ≤ x < ki

1−
ki−1
∑

y=0

zVInf-i(ki, y) , x = ki

0 , otherwise.

(11)

Convolving all m pmfs give the first term of (10) to be

Q(x) = F−1

( m
∏

i=1

F
(

qVInf-i(x)
)

)

, (12)
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where F(·) and F−1(·) is the Discrete Fourier Transform (DFT) and its inverse, respec-
tively, of minimum length k′. It is, however, more convenient to keep the length to be at
least k0 so that more VInfs can be pooled in future without having to recompute m DFTs
again3. Then, (10) simplifies to

r′0 = 1−
k′
∑

x=0

Q(x)

(

1−
k0−x
∑

y=0

zVInf-0(k0 − k′, y)

)

. (13)

The time complexity to decide whether VInfs 1, . . . ,m can be pooled with VInf-0 is bounded
by the m DFTs, which evaluates to O(mk log k).

Refer to Fig. 4 for a graphical explanation. In this figure, we show the case where VInf-0
shares some of its backup nodes with one other VInf under the current pooling scheme.
We show two cases of VInf-1, one with reliability requirement of 99.9% and another with
99.9999%. VInf-0’s reliability requirement is kept at 99.999%, in between those two cases.
For simplicity, failure rates of all critical nodes are set to be independent and uniform at
p = 0.01.

In the top plot, the number of backup nodes k0 for VInf-0 increases in a step-wise fashion
similar to Fig. 1 as the number of critical nodes increase. The step-wise increase in k0
creates opportunities for VInf-1 to reuse some of the backup nodes VInf-0 have since there
is much excess in VInf-0’s relibability prior to pooling, as shown in the shaded area in
the middle plot. The lower plot shows the maximum number of critical nodes VInf-1 can
have in order to pool backup nodes with VInf-0, and the respective number of backup
nodes reused are shown in the top plot. Since VInf-1 is essentially utilizing VInf-0’s excess
reliability, the peaks and valleys of the curve in the lower plot follows that of the middle
plot. It can be observed, too, that the size of VInf-1 is significant as compared to that of
VInf-0, and the number of backup nodes conserved is up to 50%.

The advantage of this pooling scheme can be summarized as follows.

No tradeoff. The shared VInfs use only the minimum number of backups as though there
is no pooling. Hence, there are no additional links than required.

Does not diminish for large n. The pooling scheme makes use of the excess reliability
arise from discrete steps in k. Hence, there will always be gaps that can be filled
with VInfs that need smaller k.

Pooling over different r. This scheme allows for VInfs of arbitrary reliability require-
ments to be pool together.

3For performance reasons, the length could be kept at 2⌈log2 k0⌉ to take advantage of Fast Fourier
Transform algorithms.
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Figure 4: VInf-0 shares its k0 backup nodes with VInf-1, where p = 0.01. The lower
plot shows the maximum number of critical nodes VInf-1 can have while reusing VInf-0’s
backup nodes for two cases of reliability guarantee, while maintaining VInf-0’s reliability
above a requirement of 99.999%. The upper plot shows the corresponding number of VInf-
0’s backup nodes used by VInf-1, and the middle plot shows the excess reliability from
VInf-0 that has been tapped upon for VInf-1. Hence, the shape of the curves are similar.
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Flexibility in adding VInfs. A new VInf-m+1 can always be added into VInf-0’s pool
of backup nodes so long as VInf-0’s new reliability computed from (13) is still above
the required guarantee. As mentioned previously, all previous m DFTs can be stored
to speed up this admission control procedure by a factor of O(m) to O(k log k).

Flexibility in removing VInfs. VInf-i can always be removed from the pool since VInfs
other than VInf-0 are unaffected, and VInf-0 will have its effective reliability in-
creased. Conversely, if VInf-0 is to be removed, the other VInfs simply reclaim the
respective backup nodes as their own, which can be pooled with new incoming VInfs.

There can be other ways of extending this pooling scheme. For example, VInf-i shares its
backup nodes to another lower layer of VInfs, and recursively add new layers. Another
example is to have a new VInf-i share across two VInf-0s. We do not study these cases due
to three major reasons: (i) there is a compromise of flexibility in dynamically adding and
removing VInfs, (ii) the gains may be marginal as compared to the initial sharing, and (iii)
the time complexity to re-evaluate of the reliabilities of all pooled VInfs may be high.

Pooling VInfs this way is opportunistic, since we do not predict the statistics of future
incoming VInfs. In general, however, VInf-0 should be the one with the largest number of
backup nodes as this allows for more degrees of freedom in choosing other VInf-i to pool
backup nodes with.

5 Preserving Virtual Infrastructure

The virtual infrastructure G = (V,E) has to be preserved when backup nodes resume
execution of failed critical nodes. This translates to ensuring that every backup node has
guaranteed bandwidth to all neighbors of all critical nodes.

5.1 Minimum Redundant Links

It is possible to minimize the total number of links while providing redundancy for a VInf.
Harary and Hayes [18] studied the problem of constructing a new graph G′ = (N ∪B,E′)
with minimum links (i.e., |E′|) such that upon the removal of any k = |B| nodes (i.e., k
node failures), the resultant graph always contain the original VInf G.

However, this poses a limitation since the result only guarantees graph isomorphism and
not equality. In other words, there may be a need to physically swap remaining VMs while
recovering from some failure in order return to the original infrastructure G. Recovery may
then be delayed or require more resources are available for such swapping operations.

We illustrate this using the example in Fig. 5. The new graph G′ in Fig. 5b is obtained
using Theorem 2 in [18]4. If nodes b1 and c3 fail, the only way to recover is to have c3 to be

4Theorem 2 works only on unweighted graphs. In the subsequent step, we obtained the minimum link
weights through exhaustive iteration.
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Figure 5: (b) and (c) show two different ways of preserving VInf (a) to account for two
redundant nodes. While the former utilizes 1 less link and 1 less bandwidth unit, it requires
some nodes to be rearranged in the recovery phase.

in the position of the current c2 and backup node b2 assuming the role of c2. The problem
here is that node c2 is not a backup for node c3 in the first place! Hence, the recovery
procedure is lengthened to two steps: (i) recover node c3 at backup node b2, and then (ii)
swap nodes c2 and c3. This problem will always arise no matter where the backup nodes
are placed in G′.

Furthermore, deriving optimal graphs G′ with minimal links any general graph G has
exponential complexity. To the best of the authors’ knowledge, optimal solutions are
found only on regular graphs such as lines, square-grids, circles, and trees [2, 15,18].

5.2 Redundant Links without Swapping

To overcome the aforementioned limitations, we choose to use the following set of redundant
links, at the expense of incurring more redundant resources. Formally, the set of redundant
links L that are added to G is

L = L1 ∪ L2 (14)

L1 = {(b, u) | ∃(c, u) ∈ E,∀b ∈ B,u ∈ N, c ∈ C} (15)

L2 = {(a, b) | ∀a, b ∈ B}, (16)

where B and C are the sets of backup and critical nodes, respectively. L is a union of
two sets of links. The first set L1 connects all backup nodes to all neighbors of all critical
nodes, and the second set L2 interconnects all backup nodes since two critical nodes may
be neighbors of each other and may fail simultaneously. The latter set can be omitted if
there are no links between any critical nodes, i.e.,

L2 = ∅ ⇔ (c, d) /∈ E,∀c, d ∈ C. (17)

Fig. 5a and Fig. 5c illustrates an example in the expansion of the edges of a VInf for the
added redundancy. The former figure shows the original VInf of four nodes, in which three
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Figure 6: On the left is a VInf with redundant links to two backup nodes. Suppose that the
virtual nodes (circles) are deployed at the physical nodes (squares) on the right. Unutilized
links are dotted lines and redundant links are in bold. Only 1 unit of bandwidth needs to
be reserved on link (µ2, µ4).

of them are critical. In providing two additional backup nodes for reliability, more links
are added to the primary VInf so that each backup node has the full bandwidth resource
as any critical node, as seen in the latter figure.

Adding L to G is much more straightforward and does not suffer from the aforementioned
swapping / rearrangement problem. More importantly, when pooling backups across VInfs,
redundant links L can be added without affecting other existing VInfs which use the same
backup nodes.

The number of redundant links in L may seem large (O(nk+k2), where the first and second
terms are the number of links in L1 and L2, respectively). But, the amount of physical
bandwidth reserved can be reduced while embedding them. This is because not all links
will be in use at the same time. A simple example in Fig. 6 can illustrate this. The small
VInf in Fig. 6a consists of two nodes and a link between them with 1 bandwidth unit. One
of the nodes is critical and is backed up by two redundant nodes. Suppose that due to
limited available compute capacities, the physical deployment of the virtual nodes is that
of Fig. 6b. If the redundant links are embedded verbatim into the physical infrastructure,
the link (µ2, µ4) would require 2 units. However, it is only necessary to reserve 1 unit on
this link, since at most 1 backup node will be in use at any time.

The solution is more complex in a scenario with a slightly larger VInf. Fig. 7 is an example
of embedding the VInf from Fig. 5c with three different placements of the backup nodes.
Similarly, at most four out of the nine redundant links will be utilized at any time, i.e.,
two critical node failures, so the physical bandwidth reservation should only need to cater
for all cases where the backup nodes recover two critical nodes. As can be seen in the
figure, placement of the backup nodes and determining the minimal physical bandwidth
on the set of redundant links is a complex problem. The amount of physical bandwidth
required depends on the ways in which a redundant link can be “overlapped” with other
redundant links, which in turn, depend on the physical location of the backup nodes.
Due to this highly coupled relation between backup nodes and redundant links, evaluating
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Figure 7: Some ways of embedding a VInf of Fig. 5a with two backup nodes in a physical
infrastructure. Circular and square nodes represent virtual and physical nodes, respectively,
and dashed lines represent unutilized physical links. The mass of redundant links which
connect the backups to the VInf (see Fig. 5c), can be minimally embedded since not all
bold links are in use at any instance.

placement of virtual nodes is much more complex than that of embedding a VInf without
any redundancy.

6 Resource Allocation: a mixed integer programming problem

To address the tight coupling between the virtual nodes and links of a VInf, we use a
joint node and link allocation approach for the resource allocation problem. In [10], a
multi-commodity flow (MCF) problem is formulated to jointly allocate nodes and links of
a VInf to physical infrastructure. We adapt the MCF problem with additional constraints
to solve for the minimum bandwidth used on redundant links.

The MCF problem is a network flow problem where the objective is to assign flows between
sources and destinations in a network. The virtual links of a VInf can be seen as flows
between virtual nodes. To determine the actual locations of the virtual nodes, the physical
network is appended with virtual nodes and “mapping” links connecting every virtual node
to their possible physical locations, i.e., links (u, µ) for all virtual nodes u and physical nodes
µ are appended to the set of physical links E . The first physical node in which a flow passes
through will be the location of the virtual node of that flow (link). Additional constraints
are added to the MCF to ensure that a virtual node has only one physical location.

6.1 Mapping Constraints

Denote by ρuµ a binary variable that represents the mapping between a physical node and
a virtual node, i.e., ρuµ = 1 if a virtual node u is mapped onto physical node µ, 0 otherwise.
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The mapping constraints can then be expressed by the following equations:

∑

µ∈N

ρuµ = 1, ∀u ∈ N ∪B, (18)

∑

u∈N∪B

ρuµ ≤ 1, ∀µ ∈ N . (19)

The two equations ensure that there is exactly one hosted virtual node among all physical
nodes, and that a physical node can host at most one virtual node, respectively. More
conditions can be added. For example, if the VInf is to reuse backup nodes from an
existing pool of backups in physical nodes, then the mapping variables ρuµ = 1 for every
existing virtual backup and physical node pair (u, µ). The mapping restrictions can be
extended further to three other scenarios.

Location exclusion. Some physical nodes may not be used with a VInf. For example, in
the case where backup nodes are pooled, locations of the new virtual nodes should
not be the same as any of the existing VInfs with the same backup nodes. This is
necessary for the reliability in (13) to be valid. Then, for the set of physical nodes
N ′ that should be excluded,

ρuµ = 0, ∀u ∈ N,∀µ ∈ N ′. (20)

Location preference. Some physical locations may be preferred for some virtual nodes.
For example, load balancers, firewalls, ingress and egress routers, or could be as
simple as physical proximity. Then, for a set of preferred physical locations Φ(u) for
a virtual node u,

ρuµ = 0, ∀µ /∈ Φ(u). (21)

Location separation. In order to avoid correlated failures, critical nodes can be placed,
for example, in different racks. For a set of physical nodes on the same rack N ′, the
following constraint can be appended:

∑

µ∈N ′

∑

u∈N

ρuµ ≤ 1. (22)

6.2 Resource Constraints

Compute capacity constraints on the physical nodes can be easily captured through the
mapping variables, i.e.,

ρuµγu ≤ Γµ, ∀u ∈ N ∪B,∀µ ∈ N ′. (23)
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The set of backup nodes B may be omitted from the above if backup nodes are reused from
a redundancy pool, and the compute capacity reserved is already more than the maximum
of that of the new critical nodes, i.e, maxc∈C γc. Otherwise, the above constraints may be
included with the RHS equals to the deficit compute capacity.

Bandwidth constraints and link mappings are derived from the MCF problem. As men-
tioned earlier, a virtual link (u, v) between two virtual nodes u and v can be seen as a
flow between source and destination under the MCF problem. Due to the inclusion of
redundant links, we define four types of flows:

• Virtual links E: flows between two virtual nodes u, v ∈ N . The amount of bandwidth
used on a link (i, j) is denoted by ℓuvE [ij].

• L1 flows, i.e., flows between a backup node a ∈ B and a neighbor v ∈ N of some
critical node. The amount of bandwidth on L1 flows depends on which critical node
c the backup node a recovers, and how much bandwidth can be “overlapped” across
different failure scenarios. As such, we denote by ℓacvL1 [ij] the amount of bandwidth
used on a link (i, j) when such a recovery occurs. This allows us to model the overlaps
between redundant flows.

• Aggregate flows on a link between redundant nodes B and the neighbor v ∈ N of some
critical node. This reflects the actual amount of bandwidth reserved after overlaps
on link (i, j). We denote this by ℓvo[ij].

• L2: flows between two backup nodes a, b ∈ B. The amount of bandwidth used on
a link (i, j) is denoted by ℓabL2 [ij]. Unlike L1 flows, we do not model any possible
overlapping of these redundant links with L1. This is to ensure the L2 flows can be
easily reused when sharing with other VInfs.

The flows E, L1 and L2 follow the conservation of flow equations. At the source, the
respective flow constraints are:

∑

µ∈N

ℓuvE [uµ]− ℓuvE [µu] = λuv, ∀(u, v) ∈ E, (24)

∑

µ∈N

ℓacvL1 [aµ]− ℓacvL1 [µa] = λcv, ∀(a, v) ∈ L1,∀c ∈ C, (25)

∑

µ∈N

ℓabL2 [aµ]− ℓabL2 [µa] = max
c,d∈C,
(c,d)∈E

λcd, ∀(a, b) ∈ L2. (26)

The above equations state that the total flow out of the source nodes u, a must be equal to
the flow demand. For links in E and L1, the flow demand is the bandwidth requirement
of that virtual link. For links in L2, it is the maximum bandwidth requirement between
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any two critical nodes. In the case where backup nodes are pooled, we can omit reserving
bandwidth for L2 flows (and hence the L2 flow conservation constraints) unless the existing
reservation is insufficient. In that case, only the excess need to be reserved.

The flow conservation constraints at the destination is similar to that of the source:

∑

µ∈N

ℓuvE [vµ]− ℓuvE [µv] = −λuv, ∀(u, v) ∈ E, (27)

∑

µ∈N

ℓacvL1 [vµ]− ℓacvL1 [µv] = −λcv, ∀(a, v) ∈ L1,∀c ∈ C, (28)

∑

µ∈N

ℓabL2 [bµ]− ℓabL2 [µb] = − max
c,d∈C,
(c,d)∈E

λcd, ∀(a, b) ∈ L2, (29)

except that the flow demand is negative as the flow direction is into that node.

At the physical intermediate nodes µ, the flow conservation constraints for flows E, L1 and
L2, respectively, are

∑

i∈N∪N

ℓuvE [iµ]− ℓuvE [µi] = 0, ∀µ ∈ N ,∀(u, v) ∈ E, (30)

∑

i∈N∪N

ℓacvL1 [iµ]− ℓacvL1 [µi] = 0, ∀µ ∈ N ,∀(a, v) ∈ L1,∀c ∈ C, (31)

∑

i∈N∪N

ℓabL2 [iµ]− ℓabL2 [µi] = 0, ∀µ ∈ N ,∀(a, b) ∈ L2, (32)

which states that sum of all flows into and out of the physical intermediate node µ must
be zero.

The actual amount of bandwidth reserved on a physical link (µ, ν) after considering overlaps
of L1 flows can be captured by the following constraint:

∑

a∈B,c∈C′

(c,v)∈E

ℓacvL1 [µν] ≤ ℓvo[µν], ∀(µ, ν) ∈ E ,∀(a, v) ∈ L1,∀C ′ ∈ C, |C ′| ≤ k. (33)

The subset of critical nodes C ′ represent a possible failure scenario where at most k critical
nodes fail. The RHS captures the maximum bandwidth used in those cases. Unfortunately,
the caveat here is that this leads to an exponential expansion of constraints when k goes
large. The impact of overlapping redundant links, however, is significant as can be observed
in the simulations in the next section.

The last set of constraints defines the link capacity on physical links (µ, ν) and mapping
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links (u, µ).
∑

(u,v)∈E

[

ℓuvE [µν] + ℓuvE [νµ]
]

+
∑

v∈N

[

ℓvo[µν] + ℓvo[νµ]
]

+
∑

a,b∈B

[

ℓabL2 [µν] + ℓabL2 [νµ]
]

≤ Λµν , ∀(µ, ν) ∈ E ,
(34)

∑

(u,v)∈E

[

ℓuvE [uµ] + ℓuvE [µu]
]

+
∑

v∈N

[

ℓvo[uµ] + ℓvo[µu]
]

+
∑

a,b∈B

[

ℓabL2 [uµ] + ℓabL2 [µu]
]

≤ Λρuµ, ∀(u, µ) ∈ N ×N .
(35)

The first constraint accounts for all flows on a physical link (µ, ν) in both directions, and the
total should be less than the physical remaining bandwidth Λµν . For the second constraint,
the LHS is similar in that it accounts for all flows on the mapping link (u, µ), and Λ is an
arbitrary large constant. This way, the mapping variable ρuµ will be set to 1 if there are
non-zero flows on that link in either direction.

6.3 Objective Function and Approximation

We seek to minimize the amount of resources used for a VInf. The objective function of
the adapted MCF is then

min
∑

µ∈N

αµ

∑

u∈N∪B

ρuµγµ +
∑

(µ,ν)∈E

βµν ×

[

∑

v∈N

[

ℓvo[µν] + ℓvo[νµ]
]

+
∑

a,b∈B

[

ℓabL2 [µν] + ℓabL2 [µν]
]

+
∑

(u,v)∈E

[

ℓuvE [µν] + ℓuvE [νµ]
]

]

(36)

where αµ and βµν are node and link weights, respectively. To achieve load balancing across
time, the weights can be set as 1

Γµ+ǫ and 1
Λµν+ǫ , respectively.

The variables of this linear program are the non-zero real-valued flows ℓ and the boolean
mapping variables ρ. The presence of the boolean variables turns the linear program
into a NP-Hard problem. An alternative is to relax the boolean variables to real-valued
variables, obtain an approximate virtual node embedding by picking a map with the largest
ρuµ, and re-run the same linear program with the virtual nodes assigned to obtain the link
assignments [10].

7 Evaluation

In this section, we evaluate the performance of the system when allocating resources with
and without redundancy pooling and redundant bandwidth reduction, labeled share and
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noshare respectively. In particular, we focus on the resource utilization of the physical
infrastructure and the admission rates of VInf requests. We further compare that to a
system where VInfs do not have reliability requirement, i.e. zero redundancy (labeled
nonr), as a baseline to gauge the additional amount of resources consumed for reliability.

Our simulation setup is as follows. The physical infrastructure consists of 40 compute
nodes with capacity uniformly distributed between 50 and 100 units. These nodes are
randomly connected with a probability of 0.4 occurring between any two nodes, and the
bandwidth on each physical link is uniformly distributed between 50 and 100 units. VInf
requests arrive randomly over a timespan of 800 time slots and the inter-arrival time is
assumed to follow the Geometric distribution at a rate of 0.75 per time slot. The resource
lease times of each VInf follows the Geometric distribution as well at a rate of 0.01 per time
slot. A high request rate and long lease times ensures that the physical infrastructure is
operating at high utilization. Each VInf consists of nodes between 2 to 10, with a compute
capacity demand of 5 to 20 per node. Up to 90% of these nodes are critical and all failures
are independent with probability 0.01. Connectivity between any two nodes in the VInf is
random with probability 0.4, and the minimum bandwidth on any virtual link is 10 units.
There are two main sets of results: (i) scaling the maximum bandwidth of a virtual link
from 20 to 40 units while reliability guarantee of every VInf is 99.99%, and (ii) scaling the
reliability guarantee of each VInf from 99.5% to 99.995% while the maximum bandwidth
of a virtual link is 30 units. A custom discrete event simulator written in Python is used to
run this setup on the Amazon EC2 platform [3], and the relaxed mixed integer programs
are solved using the open-source CBC solver [7].

Fig. 8 shows the acceptance rate, number of VInfs admitted, total bandwidth and CPU
utilization (including redundancies) over time in a single simulation instance where reli-
ability guarantee is 99.99% and maximum bandwidth per virtual link is 35 units. The
physical infrastructure is saturated by time later than 300s. As expected, the acceptance
rate and the VInfs occupancy of the three cases nonr, share and noshare are decreasing
in that order, indicating that share is more efficient in utilizing physical resources than
noshare. It can be seen that the increase in admitted VInfs is much slower in noshare
than the other two, and operates with lower resource utilization (especially for CPU).
This indicates that noshare is highly inefficient — expansion of redundant backups and
links without pooling have led to larger granularity in VInf resource requests. In terms of
CPU utilization, redundant nodes in share consume less resource (suffix red) than that
in noshare despite admitting more VInfs, due to redundancy pooling. As for bandwidth
utilization, share do not use more bandwidth than noshare even though more VInfs are
admitted in the former case. We can observe later in Fig. 10 that the bandwidth utilization
is actually smaller for share. This is so even though much higher bandwidth is dedicated
for redundancy (suffix red) in share than noshare. In the latter case, the redundant links
use less bandwidth due to lower acceptance rates for VInfs with critical nodes. This effect
can be seen in Fig. 9 for the same parameters over 10 instances.

c©2018, DoCoMo USA Labs. Confidential and Proprietary. All Rights Reserved.
23



0 100 200 300 400 500 600 700 800

time slots

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
e
p

ta
n

c
e
 R

a
te

share

noshare

nonr

(a)

0 100 200 300 400 500 600 700 800

time slots

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

V
In

fs

share

noshare

nonr

(b)

0 100 200 300 400 500 600 700 800

time slots

0.0

0.2

0.4

0.6

0.8

1.0

B
W

 U
ti

li
z
a
ti

o
n

share

share_red

noshare

noshare_red

nonr

(c)

0 100 200 300 400 500 600 700 800

time slots

0.0

0.2

0.4

0.6

0.8

1.0

C
P
U

 U
ti

li
z
a
ti

o
n

share

share_red

noshare

noshare_red
nonr

(d)

Figure 8: State of the physical infrastructure over time in a single simulation instance
where r = 99.99% and max bandwidth per virtual link is 35.
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Figure 9: Rejection rates of VInfs according to the sizes. Suffix c refers to VInfs with
critical nodes (r = 99.99%) and maximum bandwidth 35. nc refers to those without.
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Fig. 10 shows the mean performance of the three cases share, noshare and nonr across
10 simulation runs. noshare has the least acceptance rate and VInf occupancy, and more
backup nodes than share, which is able to pool redundancies and efficiently reuse backups.
The impact of overlapping redundant links can be seen in Fig. 10h. As bandwidth demands
of VInf increases, noshare rejects VInfs that have larger number of critical nodes, resulting
in a sharper drop in backup nodes than share. The latter conserves more bandwidth and
is able to admit larger sized VInfs. In terms of resource utilization, similar trends as
that of Fig. 8 can be observed across all reliability guarantees and maximum virtual link
bandwidths.

In summary, increasing redundant nodes and expanding a VInf with backup links leads
to VInfs with larger granularity. If the physical infrastructure admits these expanded
VInfs verbatim as in the case of noshare, much inefficiencies can occur. VInfs that have
more nodes, bandwidth, or higher reliability requirement (or all of them) get expanded
much larger than share, leading to more rejections and losses in revenue. Smaller VInfs,
especially those with no critical nodes, are more readily admitted and it is almost impossible
for larger VInfs to be admitted. Although more CPU and bandwidth are utilized in the
noshare case, there is substantially less VInfs than share (as much as 24%) present in the
physical infrastructure. This is so even where more bandwidth is dedicated for redundant
links in share as more VInfs with more critical nodes get admitted. In comparison to the
case where no reliability is guaranteed (nonr), the number of VInfs that can be admitted
dropped by at most 20% and the largest drop in acceptance rate goes from 65% to 51%
when compared to share. When compared to noshare, the figures are 38%, and from
65% to 41% respectively. Hence, the resources required for provisioning reliability is quite
significant.
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Figure 10: Figures above compare the performance of the system when backup nodes and links are shared
against unshared. This is studied under varying reliability guarantees (left) and bandwidth requirements
(right) of the VInf requests. nonr is the baseline case where VInfs are admitted without any redundancy.
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8 Related Work

Network virtualization is a promising technology to reduce the operating costs and man-
agement complexity of networks, and it is receiving an increasing amount of research inter-
est [9]. Reliability is bound to become a more and more prominent issue as the infrastruc-
ture providers move toward virtualizing their networks over simpler, cheaper commodity
hardware [5].

Analysis on the reliability of overlay networks in terms of connectivity in the overlays has
been developed [21]. It achieves a good estimation of connectivity in the embedded overlay
networks through a Monte Carlo simulation-based algorithm. Unfortunately, it is not
applicable to our problem as we are concerned with critical virtual nodes and embedding
them, as well as the whole infrastructure with reliability guarantees.

Fault tolerance is provided in data centers [16, 24] through special design of the network:
having large excess of nodes and links in an organized manner as redundancies. These
works provide reliability to the data center as a whole, but do not customize reliability
guarantees to embedded virtual infrastructures.

While we are not aware of works studying the allocation of reliable virtual networks, [29]
considered the use of “shadow VNet”, namely a parallel virtualized slice, to study the
reliability of a network. However, such slice is not used as a back-up, but as a monitoring
tool, and as a way to debug the network in the case of failure. [27] considered the use
of virtualized router as a management primitive that can be used to migrate routers for
maximal reliability.

Meanwhile there are some works targeted at node fault tolerance at the server virtualization
level. Bressoud [6] was the first few to introduce fault tolerance at the hypervisor. Two
virtual slices residing on the same physical node can be made to operate in sync through
the hypervisor. However, this provides reliability against software failures at most, since
the slices reside on the same node.

Others [11, 12] have made progress for the virtual slices to be duplicated and migrated
over a network. Various duplication techniques and migration protocols were proposed
for different types of applications (web servers, game servers, and benchmarking appli-
cations) [11]. Remus [12] and Kemari [26] are two other systems that allows for state
synchronization between two virtual nodes for full, dedicated redundancy. However, these
works focus on the practical issues, and do not address the resource allocation issue (in
both compute capacity and bandwidth) while having redundant nodes residing somewhere
in the network.

VNsnap [20] is another method developed to take static snapshots of an entire virtual
infrastructure to some reliable storage, in order to recover from failures. This can be
stored reliably and distributedly as replicas [8], or as erasure codes [13, 23]. There is no
synchronization, and whether the physical infrastructure has sufficient resources to recover
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automatically using the saved snapshots is another question altogether.

At a fundamental level, there are methods to construct topologies for redundant nodes
that address both nodes and links reliability [2,15]. Based on some input graph, additional
links (or, bandwidth reservations) are introduced optimally such that the least number
is needed. However, this is based on designing fault tolerance for multiprocessor systems
which are mostly stateless. A node failure, in this case, involve migrations or rotations
among the remaining nodes to preserve the original topology. This may not be suitable in
a virtualized network scenario where migrations may cause much disruptions to parts of
the network that are unaffected by the failure.

Our problem formulation involves virtual network embedding [10,22,30] with added node
and link redundancy for reliability. In particular, our model employs the use of path-
splitting [30]. Path-splitting is implicitly incorporated in our multi-commodity flow prob-
lem formulation. Path-splitting allows a flow between two nodes to be split over multiple
routes such that the aggregate flow across those routes equal to the demand between the
two nodes. This gives more resilience to link failures and allows for graceful degradation.

9 Conclusion

We considered the problem of efficiently allocating resources in a virtualized physical infra-
structure for Virtual Infrastructure (VInfs) with reliability guarantees, which is guaranteed
through redundant nodes and links. Since a physical infrastructure hosts multiple VInfs,
it is more resource efficient to share redundant nodes between VInfs. We introduced a
pooling mechanism to share these redundancies for both independent and cascading types
of failures. The physical footprint of redundant links can be reduced as well, by considering
the maximum over all failure scenarios while allocating resources with a linear program
adapted from the Multi-Commodity Flow problem. Both mechanisms have significant
impact in conserving resources and improving VInf acceptance rates.
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Appendix A Backups for cascading failure models

The number of backups inherently depends on the failure model of the virtual infrastruc-
ture, as expressed in the reliability equation derived in Section 3.2

r(k) =

k
∑

y=0

min(n,y)
∑

x=0

(

k

y − x

)

py−x(1− p)k−(y−x)f(x). (6)

The core idea is to compute the distribution of the number of failed nodes based on the
failure model f(x) and iteratively search for a minimum k that satisfies the reliability target
r. The distribution f(x) of three cascading models are computed as below.

A.1 Load-based Model

The model [14] consists of n identical nodes with an initial load uniformly distributed
between Lmin and Lmax, and a failure threshold of Lfail on each node. In the first round
i = 0, every node is loaded with some disturbance D. The number of node failures Mi are
noted and every surviving node is incremented with a load equals MiP . The cycle then
continues until there are no node failures.

We use the following result from [14] in computing the number of backups required to
guarantee reliability r. The distribution of the number of failed nodes is

fLOAD(x) =



















(

n

x

)

φ(d)(d + xp)x−1(φ(1 − d− xp))n−x, 0 ≤ x < n

1−
n−1
∑

x=0

fLOAD(x), x = n,
(37)

where the normalized load increase p = P
Lmax−Lmin , the normalized initial disturbance

d = D+Lmax−Lfail

Lmax−Lmin , and the saturation function

φ(z) =











0, z < 0

z, 0 ≤ z ≤ 1

1, z > 1.

(38)

The above assumes 00 , 1 and 0
0 , 1.

A.2 Tree-based Model

This model [19] is a continuous-time Markov Chain (CTMC) with the cascading effect
described by rate φij, where a node of category i causes a node of category j to fail
instantaneously. The state of the system is a n+ 1-dimensional vector χ = (e, χ1, . . . , χn)
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that counts the number of failed nodes in each category χi, and the operating environment
e the system is in. Operating environments are used to describe various possible loading to
the system, and the rate of transiting from one environment e to the next is νe. All states
are recurrent with node failure and repair rates λi,e and µi,e, respectively.

Although the model considers some redundancy per category, we cannot directly import the
result as the redundant nodes are not shared across the n categories. To adopt this model
for our system in Section 3.2, we first assume that there are no redundancies, and then
evaluate the failure distribution fTREE(x) =

∑

Fx⊆{1,...,n} Pr(Fx), which can be used in (6)
for k shared redundant nodes. Specifically, the maximum number of each node category i
is restricted to 1, and the repair rate is set to a value that best describes MTTR.

Essentially, each state of the CTMC directly corresponds to a possible failure scenario Fx,
and the failure distribution fTREE(x). In other words, the probability of x failed nodes
is the sum of steady-state probabilities π(χ) of all CTMC state-vectors χ whose numeric
elements sum to x, i.e.,

fTREE(x) =
∑

χ:x=
∑n

i=1 χi

π(χ) (39)

Finding the said probabilities reduces to computing the infinitesimal generator matrix Q of
the CTMC, which is given in Algorithm 4 of the reference [19]. The algorithm generates all
cascading failure trees, computes the rate of transition from one state to another, and fills
in entries of Q matrix. The steady-state probabilities π is then obtained through solving
the linear equations πTQ = 0 and πT (1, . . . , 1) = 1 using Singular Value Decomposition.

A.3 Degree-based Model

In this cascading failure model [28], every node has a failure threshold φ that is picked from
some random distribution r(φ), where

∫ 1
0 r(φ) dφ = 1. The network is initially perturbed

with a small number of node failures. The cascading effect is defined as follows: a node
will fail if the fraction of its neighbors that have failed is more than its threshold φ. The
failures then propagate until the failure condition cannot be met on any surviving node.

The failures will, with finite probability, cascade into a network-wide failure if the average
degree z =

∑

d dpd for some node degree distribution pd satisfies the following

z <
∑

d

d(d− 1)ρdpd, (40)

where ρd =

{

1, d = 0,
∫ 1/d
0 r(φ) dφ, d > 0.

(41)

This happens with probability

Pd = 1− (1−G0(1) +G0(H1(1)))
d, (42)
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when the initial failed node is of degree d, where G0(s) =
∑

d ρdpds
d and H1(s) is the

solution to

H1(s) = 1−G1(1) + sG1(H1(s)), (43)

and G1(s) =
1

z

∂

∂s
G0(s). (44)

Hence, if the condition (40) is satisfied, the probability that all n nodes will fail in a cascade
is fDEGREE(n) =

∑

d Pdpd. Since the distribution of fDEGREE(x) is unknown for x < n, we
use the worst case distribution f ′

DEGREE(x) into (6), i.e,

f ′
DEGREE(x) =











1− fDEGREE(n), x = n− 1

fDEGREE(n), x = n

0, otherwise.

(45)

Unfortunately, the minimum k evaluated through the above will never be less than n− 1,
which gives higher reliability than the required r. The margin closes when the probability
of a cascading failure is high. To get a tighter value of k, a Monte-Calo simulation could
be performed to estimate the distribution f(x).

A.4 Numerical method for k

Evaluating for k equates to solving the inverse of (6). We briefly describe a numerical
method, which makes use of two properties of r, to accomplish the task.

1. r increases monotonically as the number of redundant nodes k increases for a given
failure distribution f(x), and

2. the maximum value of kmax for any failure distribution f(x) is the smallest integer
that satisfy

r(kmax) ≤
kmax−n
∑

y=0

(

kmax

y

)

py(1− p)kmax−y (46)

The latter is the worst case scenario where all n virtual nodes fail with probability 1.
Then, k should be large enough such that, with probability r, there are n surviving nodes.
A straightforward numerical method is to use a classical binary search for k as shown in
Algorithm 1. Another option would be to do a gradient descent of (6) on k.

The time complexity to compute k is O(n2 log n) with the procedure listed in Algorithm 1.

Proof. From Theorem 1 and (46), kmax = O(n). Hence, the number of calls to the Bin-
SearchK procedure in Algorithm 1 is O(log n). The time complexity in evaluating the
reliability of every intermediate point k′ using (6) in the worst case is O(k2). Invoking
Theorem 1 again gives us the combined time complexity to be O(n2 log n).
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Algorithm 1 Search for k

1: k ← BinSearchK(r, 0, kmax)
2:

3: procedure BinSearchK(r, k, k)
4: if k + 1 ≥ k then
5: if r(k) < r then
6: return k
7: else
8: return k
9: end if

10: else
11: k′ ← ⌈12 (k + k)⌉
12: r′ ← r(k′)
13: if r′ < r then
14: return BinSearchK(r, k′ + 1, k)
15: else
16: return BinSearchK(r, k, k′)
17: end if
18: end if
19: end procedure
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