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ABSTRACT
Cyber-Physical Systems require distributed architectures to
support safety critical real-time control. Hermann Kopetz’
Time-Triggered Architectures (TTA) have been proposed as
both an architecture and a comprehensive paradigm for sys-
tems architecture, for such systems. To relax the strict re-
quirements on synchronization imposed by TTA, Loosely
Time-Triggered Architectures (LTTA) have been recently
proposed. In LTTA, computation and communication units
at all triggered by autonomous, non synchronized, clocks.
Communication media act as shared memories between writ-
ers and readers and communication is non blocking. In this
paper we pursue our previous work by providing a unified
presentation of the two variants of LTTA (token- and time-
based), with simplified analyses. We compare these two vari-
ants regarding performance and robustness and we provide
ways to combine them.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture

General Terms
Theory

Keywords
Time-Triggered Architecture, Elastic Circuits, Loosely Time-
Triggered Architecture

1. INTRODUCTION
Embedded electronics for safety critical systems has ex-

perienced a drastic move in the last decade, particularly in
industrial sectors related to transportation (aeronautics and
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space, automobile, and trains, trams, or subways). In the
past, each different function required its own set of sensors
and actuators, its controller, and its dedicated set of wires.
This architecture, referred to as Federated Architecture, has
proved safe and robust by ensuring built-in partitioning be-
tween the different functions. Federated Architectures could
not be sustained in the late 90’s, however, due to the drastic
increase in number and complexity of functions and their
interdependence. This lead to shifting to Integrated Archi-
tectures [18] where several functions are hosted in a same
computing unit and some functions are distributed across
different computing units. Computing units as well as com-
munication media can be standardised, thus allowing for
drastic reduction in computing devices and wiring. While
this move from Federated to Integrated Architectures opens
new possibilities for further increase of embedded electronics
in future embedded systems, it raises a number of challeng-
ing issues: The folding of different functions over shared
computing units and the sharing of communication media
can cause undesired interferences; Since system integration
involves a mix of hardware, communication infrastructure,
middleware, and software in a complex way, mismatch and
failure to meet overall requirements emerges as a high risk
at that very late stage of system development; Since the
overall system design relies on a layered view of the system,
with several levels of abstraction corresponding to different
computing or communication paradigms, it is not clear at
all how detailed design can indeed match system level spec-
ifications.

To address these problems as a whole, studies regard-
ing System Architecture have been developed since the late
80’s. Most remarkable is the Time-Triggered Architecture
(TTA) developed by Hermann Kopetz and his school [15,
16]. TTA builts on a vision of the system in which phys-
ical time is seen as a first class citizen and as a help, not
an ennemy. The Model of Computation and Communica-
tion (MoCC) of TTA is that of strong synchrony : the sys-
tem is equipped with a discrete logical time, that is con-
sistently maintained throughout the overall system. Strong
synchrony is achieved by maintaining strictly synchronized
physical clocks throughout the distributed architecture, up
to a certain maximum accuracy — which in turn speci-
fies the finest granularity of the discrete time in a TT Ar-
chitecture. Having the precise MoCC of strong synchrony
makes the deployment of an application easy, provided that
the latter is also based on the same MoCC. Fortunately,
Simulink/Stateflow and Scade, which are standard tools in
use in these industrial sectors, are examples of formalisms



obeying the synchronous MoCC. In addition, TTA offers
more possibilities to address the above discussed difficulties.
Firstly, time can be used as a help in building fault tol-
erance services with its redundancy management and fault
detection and mitigation. Secondly, time is also a help for
partitioning, and for integrating components visible through
their interfaces: Time Division Multiplexing (TDM) is a well
established technique to grant a function access to commu-
nication or computing. TDM is also at the very core of task
scheduling.

However, the TTA approach carries cost and timing penal-
ties that may not be acceptable for some applications. In-
deed, jitter with smaller delays is preferred to fixed but
longer delays for distributed control applications [2]. Also,
TTA is not easily implementable for long wires (such as in
systems where control intelligence is widely distributed) or
for wireless communications. Finally and most importantly,
re-designs are costly, due to the need for a global re-design
of Time-Division multiplexing of the different functions or
tasks. Hence, even for the safety critical hard real-time lay-
ers where TTA seems appropriate, it may not always be
accepted.

Hence, there has been growing interest in less constrained
architectures, such as the Loosely Time-Triggered Architec-
ture (LTTA) [5]. LTTA is characterized by a communica-
tion mechanism, called Communication by Sampling (CbS),
which assumes that: 1/ writings and readings are performed
independently at all nodes connected to the medium, using
different local clocks; and 2/ the communication medium
behaves like a shared memory. See Figure 1 for an illustra-
tion. LTT architectures are widely used in embedded sys-
tems industries. The authors are personally aware of cases
in aeronautics [20], nuclear, automation, and rail industries
where the LTTA architecture with limited clock deviations
has been used with success. It is indeed the architecture of
choice for railway systems, in which tracks are used as the
communication medium and computing systems are carried
by the trains and work autonomously.

By not requiring any clock synchronization, LTTA is not
blocking both for writes and reads. Hence, risk of failure
propagation throughout the distributed computing system
is reduced and latency is also reduced albeit at the price
of increased jitter and drift [2]. However, data can be lost
due to overwrites or alternatively duplicated because reader
and writer are not synchronized [1, 21, 8]. Issues regarding
the use of LTTA for distributed continuous control are dis-
cussed in [4]. If, as in safety critical applications that involve
discrete control for operating modes or protection handling,
data loss is not permitted, then special techniques must be
developed to preserve the semantics of the specification.

The LTT bus based on CbS was first proposed in [5] and
studied for a single writer-reader pair; [19] proposes a varia-
tion of LTTA where some master-slave re-synchronization of
clocks is performed. LTT architecture of general topology
was studied in [1, 21], using techniques reminiscent from
back-pressure [7, 6] and elastic circuits [9]. In a different
direction, [17] developed an alternative approach where up-
sampling is used in combination with “thick” events as a
way to preserve semantics. This approach, which is more
time-based as compared to [1, 21], was further developed
and clarified in [8].

In this paper, we cast the two variants of LTTA in a uni-
fied framework. We simplify the analyses of [21] and we

compare the respective merits of these two variants. Finally
we advocate blending them for different layers of the archi-
tecture and show how this can be safely done.

The paper is organized as follows. LTTA and Commu-
nication by Sampling are presented in Section 2. This is
followed in Section 3 by the definition of a synchronous ap-
plication and the problem of the preservation of synchronous
semantics at LTTA deployment. The next two sections are
the core of this paper. The two variants of LTTA are de-
veloped: back-pressure based in Section 4 and time based in
Section 5. The two architectures are compared in Section 6
and we discuss why it would make sense blending them, and
how this can be performed. Finally the simplifying assump-
tion we consider is relaxed in Section 7.

2. LTTA AND ITS ARTIFACTS

Ai AI. . . . . .A1

x
y
z

κ1 κi κI

Figure 1: Communication by Sampling (CbS). For each vari-
able x, y, or z, there is one shaded bus behaving as a shared
memory, one writer and zero or more readers.

LTTA relies on Communication by Sampling, which is il-
lustrated on Figure 1 and formalized as the following set of
assumptions:

Assumption 1.

1. Each computing unit is triggered by its own local clock.

2. The communication medium behaves like a collection
of shared memories, one for each variable; memory
updates are assumed atomic;

3. Writings and readings are performed independently at
all nodes connected to the medium, using different, non
synchronized, local clocks.

For some of the designs we propose, we will need to comple-
ment Assumption 1 with the following:

Assumption 2. Updates of every variable are visible to
every node.

Due to the inherent robustness of physical systems against
slight variations in sampling, direct use of CbS is suitable to
continuous feedback control. Discrete systems such as finite
state machines are generally not robust against duplication
or loss of data. Combinational functions are generally not
robust, and, even worse, sequential functions (with dynam-
ically changing state) may react to such artifacts by diverg-
ing from their nominal behaviour. The issue is illustrated
on Figure 2 for the case of combinational functions. We
show here the case of A1 reading two boolean inputs at and
bt originating from A2 and A3, respectively, and computing
their conjunction at ∧ bt. Cases 1 and 2 correspond to two
different outcomes for the local clock of A1. Observe that
the result takes three successive values f, t, and f for case
1, whereas case 2 yields the constant value f. The origin of
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Figure 2: Sensing multiple signals, for distributed clocks sub-
ject to independent drifts and jitters. Referring to Figure 1, we
show the case of A1 reading two boolean inputs originating
from A2 and A3, respectively, and computing their conjunc-
tion. Cases 1 and 2 correspond to two different outcomes for
the local clock of A1.

the problem is that events attached to different signals can
be separated by arbitrary small time intervals — in Figure 2
the problem comes from the very close jumps for at and bt.
Increasing the clock rate cannot prevent this from occurring.

Due to the above artifacts, the semantics may not be pre-
served while deploying an application over an LTT architec-
ture and protocols are needed to cope with this issue. These
are presented and studied in Section 4 and subsequent ones.

3. DEPLOYMENT AND SEMANTICS PRE-
SERVING

In this section we formalize the problem of preserving the
semantics of a synchronous application when deploying it on
an LTT Architecture.

3.1 The Synchronous Application
We are given an underlying set Z of variables. Our speci-

fications for discrete controllers are modeled using dataflow
diagrams. That is, they consist of a network of computing
nodes of the following form:

N :


Xk = f(Xk−1, u

1
k, . . . , u

p
k)

yk = g(Xk−1, v
1
k, . . . , v

q
k)

(1)

In (1), k is the discrete time index, u1, . . . , up, v1, . . . , vq ∈ Z
are the input variables of the node, X ⊆ Z is the tuple of
state variables of the node, y ∈ Z is the output variable of
the node, and f, g are functions. This model can capture
multiple-clocked systems simply by extending the domains
of variables with a special value denoting absence. Absence
can be reasoned about using type systems such as Lustre or
Signal clock calculi. “Absence” values are not published.

Nodes N1, . . . ,Nn can be composed by output-to-input
connections to form systems, i.e., networks of nodes, denoted

by S = N1 ‖ . . . ‖Nn. Systems can be further composed in
the same way, denoted by

S1 ‖ . . . ‖SI . (2)

Node (1) is abstracted as the following labeled directed graph:

G(N) :

(
X

UD← X , X ← u1 , . . . , X ← up

y
UD← X , y ← v1 , . . . , y ← vq

(3)

A branch y
UD← X indicates that y depends on X through

a Unit Delay, whereas a branch y ← v indicates a direct
dependency. Systems S = N1 ‖ . . . ‖Nn are abstracted as
the union of the associated graphs G(S) = G(N1) ∪ · · · ∪
G(Nn), and the same holds, inductively, for G(S) when S =
S1 ‖ . . . ‖SI . Combinational loops are prohibited:

Assumption 3. We require that no loop exists in G(S)
involving branches not labeled by delay symbols UD.

Referring to decomposition S = S1 ‖ . . . ‖SI , consider G(S) =
G(S1) ∪ · · · ∪ G(SI). Using Assumption 3, erasing, in G(S),
branches labeled by delay symbols UD yields a partial order
denoted by �. For z a vertex of G(S), define its level `(z)
as being

the largest index ` ≥ 0 such that a chain
z0 ≺ z1 ≺ · · · ≺ z` = z exists in G(S).

(4)

The level is illustrated on Figure 3.

v : 0

y : 2

z : 3

w : 1

u : 0

UD

X : 4

UD

UD

Figure 3: Illustrating the level of a node.

To simplify our study, we consider the following additional
assumption (this assumption will be relaxed in section 7):

Assumption 4. Every communication between different
sites is subject to a unit delay or more.

This corresponds to a level 0 for all input nodes of the dif-
ferent systems, see formula (4) and Figure 3.

3.2 LTTA Deployment and Semantics Preserv-
ing

Deploying the application S1 ‖ . . . ‖SI of formula (2) over
a strictly synchronous architecture is straightforward. In
such an architecture, computing units and communication
media are all triggered by a unique periodic global clock.
The different computing units compute in lock steps — we
call them reactions — according to the global clock. Each
node is assigned some computing unit for its execution. Then,
the computation of the different variables is scheduled within
each reaction, by respecting partial order �. In this case,
variables are updated at each reaction. We can instead clus-
ter a (possibly variable) number of successive clock ticks
together to form macro-reactions and update the variables
once in each macro-reaction. Now, inside each macro-reaction,



one need to schedule the computation of the different vari-
ables by respecting partial order �. This leaves room for
computing different variables at different clock ticks.

All the above designs implement correctly the application
function, which consists in mapping input streams to output
streams. We say that application semantics is preserved.

The question is: if, instead, deployment is performed over
the LTT Architecture of Figure 1, how can application se-
mantics be preserved? As extensively discussed in Section 2,
CbS communication by itself will not offer this. In the next
two sections we propose two different protocols on top of
the CbS infrastructure to ensure semantics preserving. We
now complete this section with further assumptions and no-
tations.

3.3 Further Assumptions and Notations
The following assumptions will also be considered, see Fig-

ure 1:

Assumption 5. Local clocks (κi)i∈I possess lower and up-
per bounds Tmin and Tmax for the time interval between any
two successive ticks κik−1 and κik: ∀k ∈ N,

Tmin < κik − κik−1 < Tmax , (5)

and communication delays are bounded from above:

τ < τmax. (6)

Assumption 6. For each computing unit, executions take
at most one clock cycle and a computing unit which starts
executing freezes its input data.

We stress that communicated variables are not updated at
each reaction of the application, but only when required by
the application. Consequently, a processor does not know a
priori which variable update it is supposed to see at a given
reaction.

Regarding notations, x, y, z,X, etc. denote variables. Nodes
are indexed by 1, . . . , n. We can always group the output
variables of a node into one tuple, which we regard again as
a single variable. Thus, without loss of generality, we can
assume that each node writes into a single variable labeled
with the index of the node.

In the following sections we present two protocols that
were proposed on top of CbS communication in order to
ensure that the deployment of synchronous applications over
resulting LTT Architectures preserves the semantics. The
first protocol is an adaptation of elastic circuits in hardware,
and the second one is a softening, time based, adaptation of
the original TTA. For each of them we indicate the needed
assumptions.

4. BACK-PRESSURE LTTA
Assumptions: Throughout this section, Assumptions 1

and 6 must hold regarding the architecture. The applica-
tion for deployment satisfies Assumptions 3 and 4.

Elastic circuits were proposed in [10, 13, 9] as a semantic
preserving architecture in which Kahn Process Network [14]
type of execution is performed using bounded buffers. This
is achieved by relying on a mechanism of back-pressure [6]
by which readings from a buffer by a node is acknowledged
to the writer using a reversed virtual buffer. Petri net Nji
of Figure 4 depicts how a link j → i with a 2-buffer is imple-
mented in an elastic circuit for running a synchronous appli-
cation with a 1-delay communication. Back-pressure places

and arcs of this net are dashed, to distinguish them from
the corresponding direct places and arcs, which are solid —
solid and dashed places and arcs both obey the usual net
semantics. Only direct places model data communication,
back-pressure ones are there to prevent from buffer overflow
at the link j → i.

In our study, however, we cannot make direct use of elastic
circuits since the activation of nodes in elastic circuits is trig-
gered by tokens, not by autonomous non-synchronized quasi
periodic clocks as in LTTA. To adapt to the constraints of
LTTA, the authors of [21] have proposed to enhance elastic
circuits with a skipping mechanism that we present now un-
der the name of back-pressure LTT Architecture. The model
of this architecture is developed using Petri nets, which we
assume 1-safe throughout this section. Some slight deviation
from Petri net semantics will be needed to capture priority
arising in certain conflicts.

Modeling the links. Figure 4 depicts net Nji associated
to each directed link j → i of the architecture. This net
assumes a 1-buffer on each link.

wj ri

Nji =

Figure 4: Back-pressure net Nji associated to each directed
link j → i of the architecture. For performance studies of
Section 4.2, the time spent in the place depicted in thick blue
models transmission delay.

Modeling the nodes. Reactions at node i are captured
by the net Ni shown on Figure 5, which is composed of a
two-step “read; write” together with a local skipping mech-
anism. The following holds regarding this skipping mecha-
nism, which was proposed in [21] in order to avoid computing
units getting blocked — blocking is replaced by skipping:

The skipping mechanism is triggered
by the local clock at node i.

(7)

Transitions with labels ri and wi have
priority over transition with label skipi.

(8)

Observe that, while net bNi in isolation evolves according to
a purely logical time, net Ni is triggered by the local clock
κi of the considered node.

The composition indicated on figure 5 by the symbol × is
by superimposing transitions having same label, thus forcing
the synchronisation of the corresponding transitions in the
composed nets. In particular, when clock κi of node i has a
tick, then action ri or wi is fired if enabled, and otherwise
skipi is fired, expressing that node i keeps silent at that tick.

The network. Referring to figures 4 and 5, consider the
following two product netsbN =

` Q
i
bNi ´× ` Qj→iNji

´
(9)

N =
` Q

iNi
´
×
` Q

j→iNji
´

(10)

where the product is obtained by superimposing transitions
having identical labels.

Net bN (without the skipping mechanisms) yields the elas-
tic circuit implementing the original synchronous applica-



×

ri

wi

wi

skipi

ri

Ni =

N̂i

skipping mechanism at node i
triggered by the clock of node i

Figure 5: Net Ni showing the mechanism of skipping at
node i. For performance studies of Section 4.2, inter-tick time
is captured by a non-zero duration attached to blue transitions.

tion according to the Kahn Process Network semantics —
which is known to preserve synchronous semantics. Observe

that net bN exhibits no conflict and is thus an event graph
(also sometimes called marked graph). With our assumption

of single-delay communications, net bN is indeed 1-safe.
On the other hand, net N is the back-pressure net mod-

eling our back-pressure LTTA, which involves the skipping
mechanism. In the remainder of this section, we first analyse
the preservation of synchronous semantics byN and then we
study its performance.

4.1 Preservation of synchronous semantics
This result was first proved in [21], for more general ar-

chitectures. We give here a very simple and direct proof, by

explicitly using the associated elastic circuit bN .

Theorem 1. Net N preserves synchronous semantics.

Proof. Net bN is indeed an elastic circuit which is known
to implement a synchronous program with Kahn Network
Process semantics; 2-bounded buffers can be used on the
links since direct links all have a logical 1-delay by Assump-
tion 4.1 Observe that this first property only relies on as-
sumptions 3–6; it does not use Assumption 1 nor conditions
(5,6) regarding clocks and communication delays.

Let LN be the language of net N , i.e., the set of all its
firing sequences, and similarly for LcN . The following fairness
condition is assumed:

it is not possible that transition skipi of the
skipping mechanism fires repeatedly for ever.

(11)

Using (11), the projection of the language LN over alphabet
{ri, wi | i = 1, . . . , n} coincides with the language LcN , which
proves the preservation of synchronous semantics. �

Observe that fairness condition (11) is indeed much weaker
than the conjunction of (7) and Assumption 5.

4.2 Performance bounds
Assumptions: Assumption 5 is in force for the derivation

of performance bounds.

1 This is a well known result. For the sake of completeness,
we provide in appendix A a detailed proof of this.

Let us first focus on elastic circuit bN defined in (9). As-
sume the following conditions for this elastic circuit — they
are similar to (5) and (6):

(5’) there exist lower and upper bounds Tmin and Tmax

for the interval between any two successive firings of
a black transition related to node i (it can be a read
ri or a write wi); this is captured by assigning these
bounds for the duration of the two transitions wj and
ri in Figure 4.

(6’) the time spent in direct or back-pressure places of bNji
is bounded by τmax, for any link j → i (direct places
are the solid ones in figure 4, whereas back-pressure
places are dashed). Corresponding bound is assigned
to the time spent in the place depicted in thick blue in
Figure 4.

Following classical results on event graphs [12] (Chapter 6.7,
p247), [3] (Chapter 2.5) or (max,plus) algebras [11] (Chap-

ters 21-26), worst case throughput λcN of net bN is given by
the minimal ratio number of tokens/time over all cycles of
the event graph, that is:

1/λcN = 2
`
Tmax + τmax

´
(12)

Next, net N consists in adding, at each node i of net bN , the
skipping mechanism shown on figure 4. Now, assume that
conditions (5) and (6) hold for net N , namely:

(5) there exist lower and upper bounds Tmin and Tmax for
the interval between two successive firings of the skip-
ping mechanism at any node;

(6) the time spent in any place of Nji is bounded by τmax

for any link j → i.

We claim that, when synchronizing with all the local skip-

ping mechanisms, net bN inherits the following values for its
bounds Tmax and τmax mentioned in (5’) and (6’):

Tmax = Tmax (13)

τmax = Tmax + τmax (14)

Indeed, bound (13) is reached by node i having slowest clock,
since this node does not need to skip. Bound (14) is reached
when the latest token reaches an input place of node i but
net Ni fired just before.

Combining (5’,6’), (12), and (13,14) yields:

Theorem 2. The worst case throughput λN of net N is

1/λN = 4Tmax + 2τmax

Recall that Theorem 1 only requires fairness condition (11)
and Theorem 2 only requires the upper bounds in (5,6),
but not the lower bounds. Performance results are pro-
vided in [21] for more general architectures (with arbitrary
buffer sizes). However, the proof we give here is much more
straightforward. General architectures are analysed in Sec-
tion 7.1.

4.3 Issues of blocking communication.
The skipping mechanism ensures that computing nodes

themselves never get blocked due to the failure of other

nodes or communication. However, net bN exhibits block-
ing read communication between the different computing



nodes of the architecture. This means that, when focusing
on the effective communication of fresh data at a given node,
blocking does still occur in net N . This observation actually
motivated considering the alternative, time-based, LTT Ar-
chitecture that we propose and analyse in the next section.

5. TIME-BASED LTTA
Assumptions: Assumptions 1–6 all hold throughout this

section, for both the preservation of semantics and perfor-
mance bounds.

Time-based LTTA relies on an original idea of P. Caspi [17,
8]. Aim of this protocol is to ensure a clean alternation of
writing and reading phases throughout the architecture, see
Figure 6. The synchronization principle used in time-based
LTTA is illustrated on Figure 7.

rk−1

wk−1

rk

wk

rk+1

wk+1

tuning p

tuning q

Figure 6: Alternating phases of reads and writes. The right
arrow figures the time line and k is the reaction index.

(1)

(2)

Figure 7: Synchronization principle used in time-based LTTA.

Figure 7 shows two time lines, for two communicating
nodes (1) and (2). Ticks of the local clocks are figured by the
short thick vertical bars (note the jitter). Magenta rectan-
gles depict reading-and-computing periods; they correspond
to rk−1, rk, rk+1 in Figure 6. At the beginning, node (1) is
the fastest. Thus, it waits for a certain amount of ticks and
then it publishes its computed value; this is indicated by the
red dashed arrow pointing to (2). Upon noticing this publi-
cation, node (2) responds with its own publication, indicated
by the blue dashed arrow pointing to (1). Meanwhile, node
(1) keeps frozen to make sure that node (2) had enough
time to publish its own fresh value, if any (fresh values need
not be produced at every reaction of the synchronous ap-
plication). Then it can repeat reading-and-computing. In
the second round, node (2) is the fastest and publishes first.
And so on.

Observe that the two publications in blue are not based
upon time. They rather react to noticing a publication by
another node. The key observation is that fast nodes slow
down by waiting a number p of ticks of their local clocks,
whereas slow nodes accelerate by actively synchronizing over
fast nodes’ publications. To summarize, in order to achieve
sufficient synchronization to preserve synchronous seman-
tics, tokens are used for speeding-up only whereas time is
used for slowing-down. The key issue is to tune p to the
smallest value that is sufficient to ensure Figure 6 (actually
we will use different waiting times for the writing and read-
ing periods). The architecture implementing this protocol is
detailed next, by successively describing its links and nodes,
using again the same Petri net framework.

Modeling the links. Figure 8 shows netMji, which models
CbS communication for directed link from node j to node i
— note the read arc2 ingoing to transition ri. In this net,
reads and writes can occur concurrently and asynchronously.

...

wq
j

w1
j

ri
j

Figure 8: Net Mji modeling directed CbS link from node j
to node i. Note the non-directed read arc adjacent to transition
ri. Compare with net Nji of figure 4. For colors and thickness
of circles, see figures 4 and 5.

Modeling the nodes. In time-based LTTA the synchro-
nization is local to each node and is a mix of time- and
token-based synchronization. It involves the nets shown in
figures 9 and 10, which are commented next.

p− 1 transitions

w1
i wq

iwq−1
i

. . .

. . .ri

Mw
i

Mr
i

ri wq
i

w1
i wq

i

∀j : Πj

wq−1
iw2

i

w1
i wq−1

iw2
i

. . .

. . .

q − 1 transitions

Figure 9: Half token ring for reads (Mr
i , top) and writes

(Mw
i , bottom) by node i. For colors and thickness of circles,

see figures 4 and 5.

1 ≤ k < q: Πi
1
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i

0, 1

ri

Πi

Figure 10: Nets Pwik, k ∈ {1, . . . , q−1} (left) and Pri (right).
For colors and thickness of circles, see figures 4 and 5.

Focus on the half token-ring Mw
i of Figure 9, which con-

trols writes by node i. Label “∀j : Πj” indicates that a token
is put in special place labeled Πj for every j. Observe that
the places labeled wj

i , j = 1 . . . q− 1, possess two conflicting

2This means that transition ri can fire if and only if there
is a token in place j, but this token is not consumed by
transition ri.



transitions in their postset, namely a private one (without
label) and wji , for j = 1 . . . q−1, respectively. The following
convention applies regarding these conflicts:

enabled transition w1
i , w

2
i , . . . , or wq−1

i , has
priority over the conflicting private transition.

(15)

The special square-round shaped place Πj exists for all j.
We take the special convention that tokens are overwritten
(not added) in the special place Πj , so this place holds 0 or
1 token. Place Πj stores the information that some node
has published after having spent enough ticks.

Focus next on figure 10. Publications are controlled by
the nets Pwik, k ∈ {1, . . . , q − 1} (left) and Pri (right). The
labels on the arcs indicate the amount of tokens needed in
the preset of this arc for the postset transition to fire —
label 0, 1 means “0 or 1”. Each firing consumes the token, if
any. Thus the special place Πi has its token consumed by
node i when writing strictly before last stage q. In contrast,
when writing at last, the special place Πi is reset whatever
its content is — this is to avoid a node self-reacting to its
own publication.

The protocol sitting at node i is then modeled by the net

Mi = Mr
i ×Mw

i × Pri ×

 
q−1Y
k=1

Pwik

!
(16)

where the product is by superimposing nodes (both transi-
tions and places) with identical label.3 Nodes with no label
are considered private. Regarding triggering policy in net
Mi, the following holds:

When enabled, transitions are triggered
by the local clock of node i.

(17)

We show in Figure 11 the result of performing product (16)
for the case of two nodes i = 1, 2, and p = q = 2.

1 0, 1

w1
i

ri

Π1 Π2

w1
i

w2
i

w2
i

w2
i

publications
by the other node

w1
i

w1
i

w2
iri

Π2Π1

ri
w1

i

w2
i

Figure 11: Result of performing (16) for the case of two
nodes i = 1, 2, and p = q = 2. Left: counterpart of Figure 9.
Right: the product (16). For colors and thickness of circles,
see figures 4 and 5.

The role of the different components of Mi is as follows:
considering the right hand side of (16), product Mr

i ×Mw
i

is responsible for slow-down based on local clocks (through

3Said differently, the product net is obtained by taking the
union of the different nets, seen as directed labeled bi-partite
graphs.

the combination of (17) and the additional internal transi-
tions), and product Pri × (

Qq−1
k=1 P

w
ik) implements speed-up

by synchronizing over publications by other nodes.

The network. The overall net modeling time-based LTTA
is given by

M =
` Q

iMi

´
×
` Q

j→iMji

´
(18)

Note that the time-based LTT Architecture involves no skip-
ping mechanism.

5.1 Preservation of synchronous semantics
Let LcN be the language of net bN defined in (9) and sim-

ilarly for LM. Project LM over subalphabet

{ri, w1
i , . . . , w

q
i | i = 1, . . . , n}

by erasing transitions not belonging to this set. Then, iden-
tify, in this projected language, the conflicting transitions
wki for k = 1, . . . , q by renaming them all wi and we finally

call the resulting language bLM.
We then need to translate to net M assumptions 1– 6

regarding the architecture and conditions (5) and (6) re-
garding clocks and communication delays. Assumption 1 is
already taken into account by having the read arc in the
net Mji of Figure 8. Assumptions 3 and 4 are taken into
account by having the tokens as in figures 8 and 9. Assump-
tion 6 is a side information that needs not be reflected in
the net. Finally, conditions (5) and (6) are reformulated in
terms of the net M:

(5’) having a firing duration satisfying inequalities (5) for
all transitions of netsMr

i andMw
i for every i = 1 . . . n,

and

(6’) having a sojourn time satisfying inequalities (6) for all
places capturing node-to-node communication, namely:

– the place of net Mji for each link j → i;

– publication places Πi, for i = 1 . . . n.

If the above assumptions regarding netM are in force, then
the following theorem holds, which expresses the preserva-
tion of synchronous semantics:

Theorem 3. The following conditions on integers p and

q ensure that bLM = LcN :

p ≥ τmax

Tmin
+
Tmax

Tmin
(19)

q ≥ τmax

Tmin
+
Tmax

Tmin
+ p

„
Tmax

Tmin
− 1

«
(20)

Proof. The conclusion of Theorem 3 (namely, that bLM = LcN
holds) is an immediate consequence of the following two
properties, which hold for i = 1 . . . n, see Figure 6:

Property 1 (reads). The kth firing of transition ri
occurs only after after all places j ∈ {1. . .n} as in Figure 9
have been written k − 1 times.

Property 2 (writes). The kth firing of one of the
(conflicting) transitions w1

i . . . w
q
i occurs only after transi-

tions rj , j = 1 . . . n have all been fired k times.



We prove the above two properties by induction over k > 0.
Assume they are true up to k − 1.

Suppose the first (k − 1)st writing by some node occurs
at real-time t. Then we claim that the last (k− 1)st writing
by some node occurs at latest at time

min (t+ qTmax , t+ τmax + Tmax) (21)

The first term in the min corresponds to an “autistic” node i
that sees no publication and thus writes by firing transition
wqi after having performed its (k − 1)st reading ri, which
must have occured before t by induction hypothesis. To de-
rive the second term in the min, pick a node that is “latest to
awake”: this node just missed the publication by the earliest
node, which was made available at latest at t+ τmax. It can
notice this publication at latest within one period Tmax and
then it fires.

Then, the earliest kth reading cannot occur before t +
pTmin. Hence condition (19), which expands as pTmin ≥
τmax + Tmax, ensures that property 1 keeps valid at the kth
round. On the other hand, the latest kth reading cannot
occur later than

t+ min (qTmax , τmax + Tmax) + pTmax

≤ t+ τmax + (p+ 1)Tmax (22)

Finally the earliest kth writing cannot occur earlier than
qTmin after the earliest kth reading. Hence it cannot occur
before t + pTmin + qTmin. Hence condition (20), which ex-
pands as qTmin ≥ τmax + p(Tmax − Tmin), ensures that prop-
erty 2 keeps valid at the kth round. �

5.2 Performance bounds
Performance bounds are easily derived from the conditions

of Theorem 3, which are assumed to be in force:

Theorem 4. Worst case throughput λM of netM is given
by 1/λM = (p? + q?)Tmax, where p? and q? are the optimal
values for p and q according to inequalities (19) and (20).

5.3 Issues of blocking communication
Since netMji has a read arc, it exhibits no blocking read.

On the other hand, netMi defined in (16) possesses a circuit
shown in red in Figure 11. This circuit, however, involves
no synchronization outside node i. It can therefore never be
blocked. Hence, netM is free from blocking communication
between different nodes. If a node or communication link
fails by getting silent, then the nodes reading from that node
or that link will just proceed to their local computations
using old data provided as backups by CbS communication,
in combination with fresh data from live links and nodes.
Time-based LTTA is thus fully non-blocking, although the
application enters a degraded mode in case of silent failure of
a node or link, by using outdated data from its failed input
links.4

6. HYBRID LTT ARCHITECTURES
In this section we compare the above two types of LTT

Architectures and study their blending.

6.1 Discussion and comparison
4Strict semantics preserving fails to hold in the degraded
mode.

Throughput
Let us first start with some comparison regarding through-
put. Firstly, lower bound for throughput in the back-pressure
architecture is always given by Theorem 2, that is 1/λN =
4Tmax + 2τmax. On the other hand, from Theorem 4, perfor-
mance of the time based architecture depends on the type
of situation:

For low-level safety-critical real-time control, delay and
jitter are non-zero but small relative to nominal period. This
then yields 1/λM = 4Tmax. Observe that this outperforms
back-pressure architecture and that transmission delays do
not matter as long as they remain small.

Another situation of interest is when communications are
distant, reflected by Tmax

Tmin
close to 1 but τmax

Tmin
significantly

larger than 1, so that the latter dominates the former. Then
we have 1/λM ≈ 2(Tmax

Tmin
)2τmax, which is close to 1/λN .

Robustness
Recall that net bN is the right abstraction for communication
in back-pressure architecture. This net is subject to blocking
communication. This means that, if one node gets stuck,
then all nodes will keep skipping for ever, thus computing
with outdated constant values and outputting nothing. The
overall application is then stuck, despite computing nodes
are not blocked. This implies that time-based monitoring
must be added on top of the architecture, e.g., by means of
watchdogs that can be used by neighbor nodes to detect the
fail-stop of one node. This, however, causes slow-down and
loss of performance.

In contrast, time based architecture can still survive in
degraded mode without any slow-down in case a node has
experienced fail-stop. Outdated values will be used by its
neighboring nodes but the rest of the system is still at work.

Flexibility
Back-pressure architectures are very flexible since semantics
preserving does not depend on their timing characteristics.
In particular, hardware characteristics can be changed with-
out retuning the back-pressure protocol. The same holds
regarding the adding or removal of nodes and links in the
application or architecture.

Summary
Since the two architectures are similar in performance re-
garding timing, the preferred architecture depends on the
relative importance of robustness versus flexibility for the
application at hand. Since complex applications typically
combine both cases for different parts of the system, it makes
sense to consider blending the two architectures. How can
this be performed?

6.2 Blending the two architectures
In the architecture, partition the links into time-based

ones and back-pressure based ones. Nodes that are adjacent
to at least one time-based link are marked time-based as
well and are implemented according to net Mi defined in
(16). Other nodes are marked back-pressure based and are
implemented according to net Ni of Figure 5.

For the links, several cases occur. Homogeneous links, for
which all adjacent nodes are of the same kind as that of
this link, are implemented according to net Nji of Figure 4
or net Mji of Figure 8, depending on the case. Now, het-



erogeneous links, which are adjacent to nodes of different
kinds, must be slightly adapted. For a heterogeneous link
j → i ending at a node i marked time-based, its associated
net is obtained by equipping net Nji with a skipping mecha-
nism at its sink transition labeled ri; this mechanism ensures
that node i can perform its reads at its own pace, according
to time-based protocol. Symmetrically, for a heterogeneous
link j → i originating from a node j marked time-based,
its associated net is obtained by equipping net Nji with a
skipping mechanism at its source transition labeled wj ; this
mechanism ensures that node j can perform its reads at its
own pace, according to time-based protocol.

In the resulting hybrid architecture, clocks of time-based
nodes and delays of time-based links are subject to the con-
ditions of Theorem 3. In contrast, no condition is required
for the clocks and delays of the back-pressure part — of
course, the performance depends on them.

7. EXTENSION TO GENERAL ARCHITEC-
TURES

In this section we indicate how to modify the results of
the previous sections when Assumption 4 is relaxed.

7.1 Back-Pressure LTTA
Corresponding study was already performed in [21]. We,

however, like to extend our simpler analysis to this case as
well. To this end, we simply replace net Nji of Figure 4
by the net with same name in Figure 12. Observe that the
link of Figure 12 captures pipelining. Buffer size must be

wj ri

Figure 12: Back-pressure net Nji associated to a directed
link j → i of the architecture, for the case of a buffer size 5
and 2 delays. For colors and thickness of circles, see figures 4
and 5.
not smaller than the number of delays. Having done this we
can again carry on the study of section 4. Theorem 1 is still
valid. On the other hand, Theorem 2 regarding performance
must be reformulated as follows.

Consider net bN defined as in (9) but with links Nji rede-
fined according to the principles of Figure 12. In this figure,
the two places (depicted in thick blue lines) are assigned a
delay τmax — this is to capture worst transmission delay, for

both data and back-pressure information. Construct net bN
according to formula (9). For each circuit σ of net bN , define

κ(σ) =def
T(σ)× Tmax + P(σ)× τmax

number of tokens in σ
, (23)

where

T(σ) =def number of (read or write) transitions in σ
P(σ) =def number of thick places in σ

and Tmax and τmax are defined in (13,14). Then, let κ( bN )
be the maximum of all κ(σ) for σ ranging over all circuits

of bN . Using the same references as for deriving (12), the
following theorem holds, regarding performance:

Theorem 5. The worst case throughput λN of net N is

1/λN = κ( bN ). The throughput can be computed in O((n+m)3)
where n is the number of nodes in the network and m is the
total number of tokens of the event graph.

7.2 Time-Based LTTA
In this section we relax Assumption 4. However, our study

does not encompass pipeling (in contrast to the previous
section, which was fully general). The study of pipeling in
time-based LTTA requires further investigation.

w0 w0

tuning p

tuning q

r0 r1 r2 r3 r0

w1 w2 w3

Figure 13: Showing the schedule r0w0r1w1. . .rLwL for a re-
action, when L = 3. The long horizontal directed arrow figures
the growth of time. The thick vertical bars indicate barriers
separating successive reactions. Compare with Figure 10.

Relaxing Assumption 4 requires retuning parameters p
and q of the protocol of section 5, using the notion of level
introduced in (4). Let L be the maximal level in the con-
sidered synchronous application. Then the synchronous se-
mantics is preserved if every reaction follows the schedule
r0w0r1w1. . .rLwL, where r` and w` denote the readings and
writings by nodes of level `, respectively, see Figure 13. This
figure also illustrates the principle for tuning the parame-
ters p and q. Parameter p must ensure that, for a node
of level `, reading will keep frozen while w`, r`+1, w`+1, . . . ,
rL, wL, r

′
0, w

′
0, . . . , w

′
`−1 is being performed, where “prime”

refers to the next reaction. It is indeed enough to enforce
the following properties:

Property 3 (reads). The kth firing of transition ri
for a node of level ` occurs only after all places j ∈ {1. . .n}
as in Figure 9 have been written k− 1 times and places j of
level < ` have all been written k times.

Property 4 (writes). The kth firing of one of the
(conflicting) transitions w1

i . . . w
q
i for a node of level ` oc-

curs only after all transitions rj , j ∈ {1 . . . n} have all been
fired k times for any node j of level ≤ `.

Properties 3 and 4 are again proved by induction over k > 0.
Assume they are true up to k − 1 and suppose the first
(k− 1)st writing by some node of level ` occurs at real-time
t. Then the last (k − 1)st writing by some node occurs at
latest at time

min (t+ qTmax , t+ (L+ 1)(τmax + Tmax)) (24)

Then, the earliest kth reading by a node of level ` cannot
occur before t+ pTmin. Hence the following condition

p ≥ (L+ 1)(τmax + Tmax)

Tmin
(25)

which expands as pTmin ≥ (L+ 1)(τmax + Tmax), ensures that
property 3 keeps valid at the kth round. On the other hand,
the latest kth reading cannot occur later than

t+ min (qTmax , τmax + Tmax) + pTmax

≤ t+ τmax + (p+ 1)Tmax (26)



Finally the earliest kth writing by a node of level ` can-
not occur earlier than qTmin after the earliest kth reading.
Hence it cannot occur before t+pTmin+qTmin. Hence condi-
tion (20), which expands as qTmin ≥ τmax + p(Tmax − Tmin),
ensures that property 4 keeps valid at the kth round. �

Theorem 6. Conditions (25) and (20) ensure bLM = LcN ,
which expresses the preservation of synchronous semantics.

Finally, Theorem 4 regarding performance still holds, but
with the values for p? and q? being given by Theorem 6.

8. CONCLUSION
H. Kopetz’ TTA was the first proposal for a MoCC-based

architecture suited to distributed hard real-time systems in-
volving feedback control. Of course, as explained in, e.g., [16],
TTA cannot be used as the single architectural paradigm in
a complex, multi-layered, embedded system.

LTTA was proposed as a softening of TTA for the very
same layers. In fact, the objective of LTTA is to offer an
abstraction that emulates TTA. This paper has unified the
work done on LTTA [21, 8], by proposing a single frame-
work where the two existing variants of LTTA can be cast.
This study reveals that the back-pressure based LTTA is
more flexible but less robust against failures than time-based
LTTA. It makes therefore sense to use different versions of
LTTA for different parts of the system. We thus have pro-
posed a way of blending the two architectures while main-
taining the essential properties of preservation of seman-
tics. Further work is needed, regarding time based LTTA,
to address heterogeneous infrastructures where ensuring the
global bounds arising in Assumption 5 may be a problem.
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APPENDIX
A. FROM SYNCHRONOUS MODELS TO

KAHN PROCESS NETWORKS
A synchronous model consists of a set of communicating

Mealy machines (possibly infinite-state). Structurally, this
can be represented as a directed graph the nodes of which
correspond to machines and the edges correspond to com-
munication link between two machines: if there is a link
M → M ′ then an output of M is an input to M ′. Since
the composition of Mealy machines may not always be well-
defined, because of dependency cycles, we assume that every
loop in the graph is “broken” by a unit delay element (UD).
A UD has an initial value which is also the value of its out-
put at the initial instant. At every subsequent instant, the
value of its output is equal to the value of its input in the
previous instant.

We assume that the model has no self-loops, that is, there
is no link Mi → Mi (not even a unit-delay link). This is
not a restrictive assumption: such links would need to be
unit-delay links (by our initial assumption), therefore, they
essentially correspond to part of the internal state of Mi.
This internal state does not have to be exposed at the syn-
chronous model level (it can be “hidden” inside Mi).

We define a partial order ≺ on the set of machines in a
synchronous model, as follows. Given two machines Mi and
Mj , if there is a link without unit delay from Mi to Mj

then Mi ≺ Mj . We then complete ≺ with its reflexive and
transitive closure. From the assumption that every loop in
the synchronous model is broken by a unit delay, ≺ is indeed
a partial order. Mi is a minimal element with respect to ≺
if there is no Mj 6= Mi such that Mj ≺Mi.

For simplicity, we will assume that all streams in the
model take values in the same domain of values V . Un-
der this assumption we give two semantics to this model
and then we show that they are equivalent.

Strictly synchronous semantics
For the first semantics, we regard each machine Mi as a
transition function

Fi : V ni × Si → V mi × Si, (27)

where ni and mi are the numbers of inputs and outputs of
Mi, respectively, and Si is the set of states of this machine.
Thus, the machine maps the tuple (input, state) to the tuple
(output, next state). Si may be infinite. Si may also be a
singleton, modeling a “memoryless” or “combinational” ma-
chine. The unit-delay element is just a particular case of the
above general form (27), namely:

s′UD = x , y = sUD

where x, y, and sUD are the input, output, and internal state
of the delay. An initial value s0,i for local state si is provided.
Note that the output y depends only on the current state
sUD, not on the current input x.

Performing a nonterminating while loop of steps of the
form (27), fed by the successive values of the inputs, yields
the following model for machine Mi:

Mi : (V ni)N × Si → (V mi)N (28)

Transition functions (Fi)i∈I compose by matching outputs
of some transition functions to inputs of others according

to the network specified by the synchronous model of ma-
chines. States remain local. Note that, since self-loops were
forbidden, the directed graph showing the output-to-input
connections is broken by UD delay operators. Hence, the
so obtained composition ‖i∈IFi of the transition functions
Fi, i ∈ I yields another transition function F of the form
(27), which in turn induces a machine

M = ‖i∈IMi (29)

in the same way stream equation Mi derives from transi-
tion function Fi via (28). Initial states of M are the tuples
(s0,i)i∈I and inputs of M are those inputs of the components
Mi that are not connected to an output of another machine.

Assuming the functions Mi of each machine are com-
putable, this solution can be computed up to any k, by re-
peatedly “firing” the machines in a statically specified order.
This order is any total order that respects the partial order
≺.

Kahn Process Network semantics
For the second semantics, we regard directly each machine
as a function mapping tuples of input streams and initial
state, to tuples of output streams:

MK
i :

“
V N
”ni

× Si →
“
V N
”mi

(30)

Thus our synchronous models are just systems of stream
equations of the form (30) that we interpret according to
the Kahn Process Network semantics [14]. The latter yields
a parallel composition that we denote by:

MK = ‖Ki∈IMK
i (31)

The following result proves equivalence of the two semantics:

Theorem 7. The two semantics are equivalent in that M
defined in (29) identifies with MK defined in (31). Further-
more, synchronous models possess a Kahn Process Network
semantics that can be implemented with FIFOs of size ≤ 2.

Proof. By construction, Mi = MK
i holds for each i.

Since F = ‖i∈IFi is the parallel composition of the tran-
sition functions, then M associated with F via (28) is a
solution of the system of stream equations defined by the
Mi = MK

i , i.e., a Kahn Process Network semantics for the
family (MK

i )i∈I of processes. Since the Kahn Process Net-
work semantics is unique, the first statement of the theorem
follows.

For the second statement, observe that 1/ the semantics
of M is obtained by executing F = ‖i∈IFi repeadtedly in
loop, and 2/ executing F requires at most two buffers for
storing previous and current state. �

Corollary 1. Every synchronous model can be imple-
mented in a semantics-preserving way on a Kahn Process
Network equipped with queues of size ≤ 2.
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