
Improving Scratchpad Allocation
with Demand-Driven Data Tiling

Xuejun Yang
School of Computer

National University of Defense
Technology

Changsha, China
xjyang@nudt.edu.cn

Li Wang
School of Computer

National University of Defense
Technology

Changsha, China
dragonylffly@163.com

Jingling Xue
School of Computer Science

and Engineering
University of New South Wales

Sydney, Australia
jingling@cse.unsw.edu.au

Tao Tang
School of Computer

National University of Defense
Technology

Changsha, China
tt.tang84@gmail.com

Xiaoguang Ren
School of Computer

National University of Defense
Technology

Changsha, China
hbszrxg@gmail.com

Sen Ye
School of Computer Science

and Engineering
University of New South Wales

Sydney, Australia
longquan_135@126.com

ABSTRACT
Existing scratchpad memory (SPM) allocation algorithms for ar-
rays, whether they rely on heuristics or resort to integer linear pro-
gramming (ILP) techniques, typically assume that every array is
small enough to fit directly into the SPM. As a result, some arrays
have to be spilled entirely to the off-chip memory in order to make
room for other arrays to stay in the SPM, resulting in sometimes
poor SPM utilization.

In this paper, we introduce a new comparability graph coloring
allocator that integrates data tiling and SPM allocation for arrays
by tiling arrays on-demand to improve utilization of the SPM. The
basic idea is to repeatedly identify the heaviest path in an array
interference graph and then reduce its weight by tiling certain ar-
rays on the path appropriately with respect to the size of the SPM.
The effectiveness of our allocator, which is presently restricted to
tiling 1-D arrays, is validated by using a number of small bench-
mark kernels for which existing allocators are ineffective (if tiling
is not applied). More sophisticated tiling heuristics appropriate for
demand-driven data tiling, once devised, are expected to be useful
for improving utilization of SPM for whole-program applications.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compilers opti-
mization; B.3.2 [Memory Structures]: Design Styles—Primary
memory

General Terms
Algorithms, Experimentation, Languages, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

Keywords
Scratchpad memory, software-managed cache, comparability graph
coloring, data tiling, loop tiling

1. INTRODUCTION
Hardware-managed cache has traditionally been used to bridge

the ever-widening performance gap between processor and mem-
ory. Despite this great success, some deficiencies with cache are
well-known. First, their complex hardware logic incurs high over-
head in power consumption and area. Second, their simple
application-independent management strategy does not benefit from
some data access characteristics in many applications. Finally, their
uncertain access latencies make it difficult to guarantee real-time
performance in real-time applications.

In contrast, software-managed scratchpad memory (SPM) has
advantages in power, area, real-time guarantees and performance
[1]. Thus, SPM is widely adopted in embedded systems, stream ar-
chitectures (known as stream register file, local memory or stream-
ing memory), and GPUs (known as shared memory in NVIDIA
GPUs under its CUDA programming model). In the case of super-
computers, software-managed on-chip memory is also frequently
used, especially in their accelerators. Examples include Merri-
mac [5], Cyclops64 [4], Grape-DR [17] and Roadrunner [2].

Unlike cache-based machines, machines with SPMs require soft-
ware to explicitly and carefully manage data allocation in the SPM
and make fully use of the scarce on-chip memory. Manual SPM
management is impractical and error-prone, leading to non-portable
code.

Many compiler approaches, static or dynamic, for SPM alloca-
tion have been proposed. Dynamic approaches, which allow arrays
to be swapped into and out of SPM during run time, are known
to outperform their static counterparts. However, the proposed dy-
namic SPM allocators typically assume that every array candidate
is small enough to fit directly into the SPM. As a result, some arrays
have to be spilled entirely to the off-chip memory to make room for
other arrays to stay in the SPM, resulting in sub-optimal solutions.

Data tiling [12, 10], which partitions a large array into smaller
subarray tiles, was originally proposed to improve the cache per-
formance of regular loop kernels, i.e., loop kernels whose data de-
pendences are mostly constant or uniform. This data transforma-

tion technique was later applied to improve utilization of SPM by
copying the subarray tiles of an array, one at a time, rather than
the entire array itself between SPM and off-chip memory [11, 16].
While being effective for certain programs, these earlier methods
exhibit some deficiencies as discussed in Section 2.

In this paper, we introduce a new comparability graph coloring
allocator that integrates for the first time data tiling and SPM allo-
cation for arrays by tiling arrays on-demand to improve utilization
of the SPM. Central to graph coloring is the notion of array inter-
ference graph. Given a program, its array interference graph G con-
sists of the nodes representing all the arrays in the program and the
edges between two nodes representing the fact that the two nodes
have overlapping live ranges (i.e., code regions) and thus cannot be
placed in overlapping spaces in the SPM.

We propose to solve the SPM allocation problem for G by first
completing it into a comparability graph G′ and then finding an
optimal acyclic orientation α for G′. As a result, the SPM space
required by G is bounded from below by the heaviest (directed)
path P in the directed graph of G′ induced by α. This observation
motivates us to perform data tiling on-demand during the iterative
scratchpad allocation process (common in a graph coloring alloca-
tor). The novelty of our approach lies in identifying the heaviest
directed path this way during each iteration step and reducing its
weight (if it is still larger than the SPM size) by tiling certain ar-
rays on the path appropriately with respect to the size of the SPM
under consideration. The optimal tile sizes required can be found
either analytically or numerically with a cost-benefit analysis. In
the case when data tiling is not possible, some arrays are spilled
entirely to reduce the weight of P .

This paper makes the following contributions:

• We present a new SPM allocator that combines data tiling
and scratchpad allocation to improve utilization of SPM.

• We propose to perform demand-driven data tiling during graph
coloring scratchpad allocation so that tile sizes can be found
with a cost-benefit analysis.

• We demonstrate the effectiveness of our SPM allocator by
using a number of benchmark kernels for which existing al-
locators are ineffective (if tiling is not applied).

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 introduces some basic results required to
understand our approach. Section 4 presents our algorithm. Sec-
tion 5 evaluates our approach. Section 6 concludes the paper.

2. RELATED WORK
Existing approaches for SPM allocation are either static or dy-

namic. The static approaches are known to be less efficient than
dynamic counterparts. The proposed dynamic approaches can be
roughly divided into two classes, those that resort to ILP [21] and
those that rely on some well-crafted heuristics [11, 19, 20, 14,
15, 13]. The ILP-based approaches are theoretically optimal but
too expensive to be practical for many applications. Among the
heuristics-based approaches, graph coloring [14] seems to achieve
the best performance for general-purpose applications [13] with in-
terval coloring delivering better performance for embedded appli-
cations [15]. However, these existing SPM allocators always spill
an array entirely whenever the SPM space is insufficient, resulting
in sub-optimal solutions.

Kandemir et al. [11], Zhang and Kurdahi [23] and Li et al. [16]
apply data tiling [12] to improve utilization of SPM. However, the

methods described in [11, 23] are restricted to the matrix multipli-
cation kernel only while [16] relies on ILP to find optimal tile sizes
to tile user-specified arrays in an ILP-based allocator.

Fabri [6] discovered the connection between interval coloring
and compile-time memory allocation. Li et al. [15] apply interval
coloring to assign arrays in embedded programs to SPM. Yang et
al. [22] apply comparability graph coloring to optimize utilization
of the stream register file in a stream architecture, with the assump-
tion that every stream candidate (i.e., array) is small enough so that
it can be placed entirely in a stream register file.

3. BACKGROUND
This section recalls some basic results about interval coloring

and comparability graph coloring from [7] as well as minimal com-
parability completion from [9], providing a basis for understanding
our proposed approach.

3.1 Interval Coloring vs. SPM allocation
The SPM allocation problem can be naturally solved by interval

coloring as formulated below. Allocating SPM spaces to array live
ranges in an array interference graph, IG, is represented by an as-
signment of intervals to the nodes in the IG. Minimizing the span
of intervals amounts to minimizing the required SPM size.

DEFINITION 1. Given an IG G = (V,E) with positively inte-
gral node weights w :V → IN (representing array sizes), an interval
coloring α of G maps each node x onto an interval αx of a real line
of width w(x) so that adjacent nodes are mapped to disjoint inter-
vals, i.e., (x, y) ∈ E implies αx ∩ αy = ∅.

Given an undirected graph G = (V ,E) with the function w map-
ping nodes to positively integral weights, the total width of an in-
terval coloring α, χα(G;w), is |

∪
x∈V αx |. The chromatic number

χ(G;w) is the smallest width used to color the nodes in G, which
corresponds to the optimal SPM allocation.

3.2 Interval Coloring vs. Acyclic Orientation
Let G= (V,E) be an undirected graph. The subgraph of G in-

duced by a subset V ′ ⊆ V of nodes in G is denoted by G[V ′]. An
orientation of G is a function α that assigns every edge a direction
such that α(x , y) ∈ {(x , y), (y , x)} for all (x, y) ∈ E. Let Gα be
the digraph obtained by replacing each edge (x, y) ∈ E with the
arc α(x, y). An orientation α is said to be acyclic if Gα contains
no directed cycles.

Every interval coloring α of G induces an acyclic orientation α′

such that (x, y) ∈ α′ if and only if αx is to the right of αy for all
(x, y) ∈ E (by Definition 1). Conversely, an acyclic orientation α
of G induces an interval coloring α′. This can be achieved as fol-
lows. For a sink node x (without successors), let α′

x = [0, w(x)).
Proceeding inductively, for a node y with all its successors already
colored, let α′

y = [t, t + w(y)), where t is the largest endpoint of
their intervals.

The problem of finding optimal colorings is NP-complete. In an
optimal coloring, the chromatic number χ(G;w) is related to the
notion of heaviest path in an acyclic orientation of G as follows:

χ(G;w) = min
α∈A(G)

(max
µ∈P(α)

w(µ)) (1)

where A(G) is the set of all acyclic orientations of G and P(α) the
set of directed paths in an orientation α ∈ A(G). In other words,
the orientation whose heaviest path is the smallest induces an opti-
mal coloring. This heaviest-path-based formulation is exploited in
the development of our SPM allocator.

a:3 b:4 c:2

x:3

y:1 z:4

a:3 b:4 c:2

x:3

y:1 z:4

0 1 2 3 4 5 6 7 8 9 10 11 12

 a

 z

 b c

 y

 x

13

a:3 b:4 c:2

x:3

y:1 z:4

0 1 2 3 4 5 6 7 8 9 10

 a

 z b c

 y

 x

(a) (G;w); (b) χα(G;w) = 13 (c) χβ(G;w) = 10

Figure 1: Two interval colorings α and β of a weighted undirected graph and their acyclic orientations.

Figure 1 illustrates the equivalence between finding an interval
coloring and finding an acyclic orientation for a weighted graph.
In Figure 1(b), the heaviest path is x → b → c → z with a (total)
weight of χα(G;w) = 13. In Figure 1(c), the heaviest path is
b → z → c with a weight of χβ(G;w) = 10. The gap between
the two is 3 but can be larger in general. So there is a need to look
for an optimal solution efficiently in practice.

3.3 Comparability Graph Coloring
For the purposes of optimizing utilization of SPM, we examine

below a class of graphs that allows interval colorings to be found
optimally in polynomial time.

DEFINITION 2. An orientation α of an undirected graph G is
transitive if (x , z) ∈ Gα whenever (x , y), (y , z) ∈ Gα.

DEFINITION 3. An undirected graph G is a comparability graph
if there exists a transitive orientation of G.

A transitive orientation is acyclic but the converse is not neces-
sarily true. In Figure 1(b), α is not transitive since (y , b), (b, c) ∈
Gα but (y , c) /∈ Gα. However, β shown in Figure 1(c) is transitive.
As a result, the graph given in Figure 1(a) is a comparability graph.

THEOREM 1. For any transitive orientation α of G, the interval
coloring induced for G is optimal.

Furthermore, the problems of recognizing a comparability graph
G = (V,E) and finding a transitive orientation of G can both be
done in O(δ· | E |) time and O(| V | + | E |) space, where δ is
the maximum of the degrees of all nodes in G. Based on α, an
optimal coloring of G can be obtained in linear time [7].

3.4 Minimal Comparability Completion
Given a graph G, a comparability graph obtained by adding edges

to G is called a comparability completion of G. Computing a com-
parability completion of G with the minimum number of added
edges (called a minimum comparability completion) is an NP-hard
problem [8]. As an approximation to the minimum comparability
completion, a minimal comparability completion H of G is a com-
parability completion of G such that no proper subgraph of H is
a comparability completion of G. Obviously, a minimum compa-
rability completion is minimal but the converse is not necessarily
true. A polynomial algorithm is presented in [9] to compute a min-
imal comparability completion for a graph G.

In our SPM allocator described below, a given IG may be sub-
ject to the minimal comparability completion in order to obtain im-
proved SPM utilization.

4. SPM ALLOCATION WITH ON-DEMAND
DATA TILING

Our SPM allocator, given in Figure 2, performs data tiling on-
demand in order to improve utilization of the SPM. Presently, our
algorithm is restricted to tiling 1-D arrays. Higher-dimensional ar-
rays can be converted to 1-D arrays if it is desirable for them be
tiled. Our SPM allocator proceeds in five main steps, which are
described in five separate subsections.

• Live-Range Splitting (Section 4.1). As in [14, 13], the live
ranges of the arrays inside loop nests are split based on a cost-
benefit analysis. The new live ranges obtained inside loop
nests are called hot arrays as they are frequently accessed.
Copy operations are inserted at the splitting points to transfer
the hot arrays between SPM and off-chip memory.

• Finding the Critical Path (Section 4.2). Next, the IG Go

for the program is built. Its subgraph containing all hot ar-
rays is completed into a comparability graph Ht (if neces-
sary). Then a transitive orientation α of Ht is computed,
from which the critical path, i.e., heaviest path PHt is de-
duced.

• Live-Range Coalescing (Section 4.3). If the weight of the
critical path PHt is not larger than the SPM size, then all
array candidates in Ht can be placed in the SPM. The algo-
rithm tries to coalesce live ranges to eliminate unnecessary
copy operations introduced during live range splitting before
terminating.

• Spilling (Section 4.4). If the weight of PHt exceeds the SPM
size, then either spilling or data tiling is applied. But the
latter is preferred since it often tends to make a better use of
the scarce SPM space.

• Data Tiling (Section 4.5). The arrays on the critical path
PHt are tiled on-demand to reduce its weight so that bet-
ter SPM utilization may be obtained. Guided by PHt and a
cost benefit analysis, an optimal tile size is determined in a
symbolic manner.

The main contribution of this paper is a graph-coloring-based
scratchpad allocation method for data aggregates that performs both
scratchpad allocation and data tiling together. Due to the iterative
nature of graph coloring register/scratchpad allocation [3, 14], var-
ious heuristics such as those for live range splitting and spilling
are employed. We use mostly existing heuristics with some slight
variations, if necessary. Other more effective heuristics can be de-
veloped in future.

1: procedure spm_alloc
2: Live_Range_Splitting()
3: Go = (Vo, Eo) = Build_Interference_Graph();
4: Let Vt be the set of introduced arrays, i.e., hot arrays during live range splitting
5: Let Gt = Go[Vt] // subgraph induced by Vt

6: if Gt is a comparability graph then
7: Let Ht = Gt

8: else
9: Let Ht be a minimal comparability completion of Gt

10: end if
11: Let α be a transitive orientation of Ht

12: Let PHt be the heaviest directed path in α
13: Let w(PHt) be the sum of weights of nodes in PHt

14: if w(PHt) ≤ SPM_Size then
15: Goto 29
16: end if
17: Let TASPHt

be the set of tileable arrays in PHt

18: if TASPHt
== ∅ then

19: while w(PHt) > SPM_Size do
20: Choose a node v from PHt to spill
21: Ht = Ht[Vt − {v}]
22: end while
23: Goto 12
24: end if
25: Choose a loop L which accesses some or all nodes in TASPHt

26: Undo the live range splitting for L and eliminate all hot arrays introduced earlier for L
27: Perform a loop/data tiling to L with the tile size set as x = Determine_Optimal_Tile_Size(L,PHt)
28: Goto 2
29: Gt = Coalesce_Live_Ranges(Go,Gt)
30: Let α be a transitive orientation of Gt

31: Output: α
32: end procedure

Figure 2: SPM Allocation with On-Demand Tiling.

4.1 Live Range Splitting
An array may be frequently accessed at some parts of its live

range, i.e., at some computation-intensive loops. Following [13],
we split its live range around loops and insert the required array
copy operations at the splitting points, which become potentially
the data transfer statements between the SPM and off-chip memory.
For a loop nest where an array is accessed, the array is copied to a
new, i.e., hot array at the earlier splitting point (at the beginning of
the loop nest) and restored back at the later splitting point (at the
end of the loop nest). During our graph coloring stage, all these hot
arrays are the candidates to be colored so that they will likely be
placed in the SPM.

The live ranges of arrays in a program are required in order to
perform live range splitting and construct an IG for the program
later. The live ranges of arrays are computed by extending the
def/use definitions for scalars to arrays in the normal manner. At
any program point, USE(A) returns true iff some elements of A
are read. DEF(A) returns true iff A is defined entirely, i.e., if ev-
ery element of A is defined. In general, it is difficult to identify
whether an array is defined or not at compile time. So we assume
conservatively that an array that appears originally in a program is
defined only at its definition point, i.e., where it is declared. In ad-
dition, for every array copy introduced in live range splitting, the
array that appears at its left-hand side is defined. The live range
of an array starts from its definition and ends at its last use. Two
arrays are move-related if one is obtained as a result of splitting the

live range of the other. Such move-related arrays can be coalesced
if the corresponding splits are unnecessary.

Consider our algorithm in Figure 2. In line 2, live range split-
ting is applied to the program under consideration. We adopt the
algorithm described in [13] to perform live range splitting. This
algorithm processes all the loop nests in every function one by one
and examines all the loops of a particular loop nest, starting from
its outermost to innermost loop. For every array A accessed in a
loop L, the algorithm checks to see if it is beneficial to split the live
range of A. The cost model takes into account the access frequen-
cies of arrays (obtained by compiler analysis as well as runtime
profiling) and the data transfer cost between the SPM and off-chip
memory. The cost of communicating n bytes between the SPM and
off-chip memory is approximated by Cs + Ct × n (cycles), where
Cs is the startup cost and Ct the transfer cost per byte. In addition,
Sspm and Smem are used to represent the number of cycles required
per array element access to the SPM and off-chip memory, respec-
tively. If the splitting is beneficial, then a new array is introduced
and appropriate copy in/out operations are inserted.

Consider an example program in Figure 3, which will be used to
illustrate our SPM allocation algorithm. Let Cs = 90, Ct = 10,
Sspm = 1 and Smem = 100. Consider d, which is frequently
accessed in two loops, L1 in lines 4 – 6 and L2 in lines 9 – 11. Let
us examine L1 first. The access frequency of d is 16∗4 = 64 bytes
(if one float is 4-byte long). The split benefit is 64 ∗ (100 − 1) =
6336 while the split cost is (90 + 10 ∗ 26 ∗ 4) ∗ 2 = 2260. As a

1 float a[32], b[16], c[48], d[26];
2 int i, sum;
3 ...
4 for (i = 1:16) {
5 b[i] = b[i] + a[2i]*c[3i] + d[i];
6 }
7 ...
8 sum = 0;
9 for (i = 1:16) {
10 sum = sum + b[i]*d[i+10];
11 }
12 data_save(sum);

Figure 3: An example program.

result, it is beneficial to perform live range splitting. The live range
splitting for d in loop L2 and for other arrays is done similarly. The
final program is given in Figure 4. The live ranges before/after the
splitting step are shown in Figure 5.

1 float a[32], b[16], c[48], d[26];
2 int i, sum;
3 ...
4 float a'[32], b'[16], c'[48], d'[26];
5 copy(a, a');
6 copy(b, b');
7 copy(c, c');
8 copy(d, d');
9 for (i = 1:16) {
10 b'[i] = b'[i] + a'[2i]*c'[3i] + d'[i];
11 }
12 copy(b', b);
13 copy(d', d);
14 ...
15 sum = 0;
16 float b"[16], d"[26];
17 copy(b, b");
18 copy(d, d");
19 for (i = 1:16) {
20 sum = sum + b"[i]*d"[i+10];
21 }
22 data_save(sum);

Figure 4: The program of Figure 3 after splitting.

4.2 Finding the Critical Path
Let us continue our discussion with our algorithm in Figure 2.

In line 3, the IG Go for all array live ranges is built. Among all
the live ranges, the ones introduced in Vt during live range splitting
are expected to be placed in SPM. So the interference subgraph
induced by them, Gt, is extracted from Go (line 5). In line 6, the
algorithm checks to see if Gt is a comparability graph, which holds
in many applications, since the array IGs tend to be disjoint cliques
(complete graphs), which are trivially comparability graphs. If Gt

is not a comparability graph by itself, the minimal comparability
completion algorithm is performed to make it so (line 9). Next, a
transitive orientation α of the comparability graph is attained (line

a b c d

Vo

a b c d a' b' c' d' b"d"

Vo Vt

(a) Before (b) After

Figure 5: Live ranges before/after splitting.

11), and from which the heaviest directed path PHt is derived (line
12). The transitive orientation α corresponds to an optimal interval
coloring of Ht. Thus, PHt is actually the critical path that deter-
mines precisely the amount of SPM space required by Ht.

a':32

b':16

c':48

d':26

b":16 d":26
0 20 40 60 80 100

d"

a'c' d'

b"

120

b'

(a) Gt (b) Coloring

Figure 6: Interference subgraph and its coloring.

For the program in Figure 4, the interference subgraph Gt and its
transitive orientation are depicted in Figure 6(a). With two disjoint
cliques, Gt is trivially a comparability graph. The heaviest directed
path is highlighted in thick arrows, b′ → d′ → a′ → c′, with a
total weight of 122, which gives a lower bound for the SPM capac-
ity to fully hold all these live ranges. The optimal coloring, i.e.,
the optimal allocation corresponding to the orientation is shown in
Figure 6(b).

4.3 Live Range Coalescing
If the weight of PHt is not larger than the SPM size (line 14 in

Figure 2), then the current candidates in Ht can all be placed in the
SPM. In this case, we apply coalescing to remove unnecessary copy
operations (if any) introduced during live range splitting. However,
coalescing may increase SPM pressure and is thus performed with
the IG being always colorable (line 29).

The move-related nodes that are not originally in Gt are inserted
back into Gt and coalesced by applying Coalesce_Live_Ranges in
line 29 using the optimistic coalescing algorithm [18]. Every time
after some coalescing has been done, the current graph is checked
to see if it remains a comparability graph. If it is not, the minimal
comparability graph completion is performed to make it so. Next,
the heaviest path PHt is recalculated. If w(PHt) ≤ SPM_Size,
the coalescing results are kept, otherwise discarded, until all coa-
lescing possibilities have been tried. Finally, a transitive orientation
to the final IG, i.e., a SPM allocation is returned (line 31).

For example, Figure 7(a) depicts the IG Go corresponding to the
program in Figure 4 with two copy-related nodes b and d being in-
serted. Figure 7(b) shows the graph after the two move-related pairs
(b, b”) and (d, d”) are coalesced. Figure 7(c) shows the graph after

a':32

b':16

c':48

d':26

b":16 d":26

b:16 d:26

a':32

b':16

c':48

d':26

b:16 d:26

a':32

c':48

d:26b:16

(a) Original (b) b&b", d&d" (c) b&b’, d&d’

Figure 7: Live range coalescing.

b d b' d' b"d" b d b' d' b d

(a) Original (b) b&b", d&d" (c) b&b’,d&d’

Figure 8: Effects of coalescing on live ranges.

the two more move-related pairs (b, b′) and (d, d′) are further coa-
lesced. Figure 8 illustrates intuitively the effects of these coalescing
steps on live ranges.

1 float a[32], b[16], c[48], d[26];
2 int i, sum;
3 ...
4 float a'[32], c'[48];
5 copy(a, a');
6 copy(c, c');
7 for (i = 1:16) {
8 b[i] = b[i] + a'[2i]*c'[3i] + d[i];
9 }
10 ...
11 sum = 0;
12 for (i = 1:16) {
13 sum = sum + b[i]*d[i+10];
14 }
15 data_save(sum);

Figure 9: The program after live range coalescing.

Figure 9 gives the program after live range coalescing is per-
formed. Compared to the original program in Figure 4, six copy
operations have been eliminated.

4.4 Spilling
If the weight of PHt , w(PHt), is larger than the SPM size, we

resort to spilling or data tiling to reduce the weight of PHt . We pre-
fer data tiling since doing so enables more live ranges to be placed
in the SPM, resulting in often more significantly improved SPM
utilization.

Let us return to our algorithm in Figure 2. In line 17, the set of
tileable arrays TASPHt

is extracted from PHt . If no array can be
tiled (line 18), spilling has to be performed. We adopt the heuristic
introduced in [15] except that we find the heaviest path rather than
(maximum) cliques related to Ht so that the resulting spilling (and
data tiling) phases are polynomial.

The colorability of Ht is governed by:

α(Ht) =
SPM_SIZE

max(SPM_SIZE,w(PHt))
×PHt .freq (2)

where PHt is the heaviest path of an transitive orientation of Ht

and PHt .freq is the sum of the access frequencies of all arrays
in PHt . Intuitively, if w(PHt) is no larger than the given SPM
size, then its colorability is PHt .freq. Otherwise, its colorability
is approximated as a percentage reduction of PHt .freq in terms
of the ratio SPM_SIZE

w(PHt
)

, which represents the percentage of data in
PHt that cannot be placed in the SPM.

As a result, the benefit for spilling v from Ht is:

v.spillbenefit = (α(Ht − {v})−α(Ht))× (Smem−Sspm) (3)

The spilling cost, i.e., penalty incurred by v is estimated by:

v.spillcost = v.freq × (Smem−Sspm) (4)

where v.freq is the access frequency of array v.

We choose a node in PHt to spill such that the spilling profit
defined below is maximized among all v in PHt :

v.spillprofit = v.spillbenefit− v.spillcost (5)

A spilled node in PHt is excluded from the current IG Ht. No
spilling code needs to be generated. Since a subgraph G′ of a com-
parability graph G remains a comparability graph, and a transitive
orientation of G remains transitive in G′ and does not need to be
recomputed. However, the heaviest path PHt , which may have
changed in the current IG, should be recomputed (line 23).

a':32

b':16

c':48

b":16 d":26

Figure 10: Interference graph of Figure 6(a) after spilling d′.

For the IG given in Figure 6(a), with SPM_Size = 100, then
w(PHt) = 122 > SPM_Size. If spilling is performed according
to the heuristic (5), then d′ can be selected to spill. We simply
remove d′ from Figure 6(a), obtaining the resulting graph as shown
in Figure 10. The heaviest path now is b′ → a′ → c′ with a
total weight of 96. For the program in Figure 4, no spilling code
needs to be generated. We only need to undo the live range splitting
for d in loop L1 and eliminate the hot array d′ introduced and the
associated copy operations.

4.5 Data Tiling with Optimal Tile Sizes
If there are tileable arrays in TASPHt

, then data tiling (instead
of spilling) can be applied to a selected loop. Data tiling causes
some temporary arrays, called tile arrays, to be introduced in the
selected loop. Their sizes can be expressed as multiples of a tile
size variable for the selected loop. The critical path PHt gives an
upper bound for the tile size to be used. By combining this upper
bound constraint with the cost benefit analysis for all tileable arrays
expressed as a function of the tile size variable, the best tile size can
be solved analytically or numerically.

The focus of this paper is on demonstrating the feasibility of
performing on-demand data tiling together with scratchpad alloca-
tion. To this end, we describe a simple approach to selecting which
loop to tile and which tileable arrays to tile inside the selected loop.
More sophisticated tiling heuristics, as discussed at the end of this
section, will be developed in future work.

Let us consider our algorithm in Figure 2 again. If some arrays
in TASPHt

can be tiled, we select a loop L to tile where some
tileable arrays in TASPHt

are accessed. Presently, we select L
such that the sum of the access frequencies of all the tileable arrays
accessed in L is the largest. We then undo the live range split-
ting performed earlier for the tileable arrays accessed in L. Then
data tiling, together with loop tiling, is applied to L with the tile
size being symbolically represented by x, and the procedure De-
termine_Optimal_Tile_Size() is called to find the optimal tile size
(line 27), as detailed in Figure 11.

The basic idea behind Figure 11 is simple. The weight of a
tileable array in TASPHt

is replaced with the weight of its cor-

1: procedure Determine_Optimal_Tile_Size
2: Input: Loop L to be tiled and the heaviest path PHt

3: Output:Optimal tile size x
4: Let Sold be the set of m tileable arrays in L of TASPHt

5: Let Snew be the set of m new “tiled arrays”
6: Let f be a bijective function from Sold to Snew

7: for every array A ∈ Sold do
8: Replace the weight of A with the size of f(A)
9: end for

10: Recalculate w(PHt) (which is now a function of x)
11: x = Maximize_Profit()
12: return x
13: end procedure

Figure 11: Optimal tile size selection.

responding tiled array. Thus, w(PHt) is expressed as a function in
terms of the tile size variable x. Then a cost-benefit analysis is per-
formed to determine the value of x. For every tileable array A in
L, we write Len(A) to represent its original size and Len(f(A))
to represent the size of its corresponding tiled array. Then the ac-
cess benefit is A.freq ∗ (Smem − Sspm) and the transfer cost is
(Cs + Ct ∗ Len(f(A))) ∗ num_copies.A ∗ Len(A)

Len(f(A))
, where

num_copies.A denotes the dynamic number of copy operations
executed for A prior to tiling. In line 11, we call Maximize_Profit
to find x by maximizing the net profit obtained:

max

 ∑
A∈Sold

(A.freq × (Smem − Sspm)

−(Cs+Ct×Len(f(A)))× num_copies.A× Len(A)

Len(f(A))
)

)
(6)

subject to the following SPM capacity constraint:

w(PHt) ≤ SPM_Size

and other constraints, including, for example, those constraints re-
lated to the sizes of the tileable arrays in Sold and the loop bounds.

Let us consider the IG in Figure 6(a) with the heaviest path be-
ing PHt = b′ → d′ → a′ → c′ and w(PHt) = 122. Let the
SPM size be 64. Some arrays must be tiled to be placed in the
SPM. Suppose that L1 is selected with Sold = {a′, b′, c′, d′}. Let
Snew = {ta′, tb′, tc′, td′} be the set of the corresponding tiled ar-
rays introduced. Applying data tiling, together with loop tiling, to
L1 yields the program in Figure 12. As a result, the IG shown in
Figure 6(a) evolves into the one shown in Figure 13, giving rise to
w(PHt) = 7x.

When performing the cost benefit analysis, the transfer cost is
8640/x+ 5760 and the access benefit is 16 ∗ 4 ∗ 5 ∗ (100− 1) =
31680. So the net profit to be maximized is 31680 − 8640/x −
5760 = 25920− 8640/x subject to the space constraint 7x ≤ 64.
To be practical, the tile size x is required to be at least 2. So the
optimal tile size for L1 is x = 8 as shown in Figure 14.

Let us return to our algorithm in Figure 2. Once data tiling has
been performed, we go back in line 28 to line 2 to rebuild the IG
and repeat the same process until the weight of the heaviest path in
the current IG is no longer larger than the SPM size.

Our simplistic tiling heuristics can be further improved along a
number of directions. The search space for data tiling is defined by
a number of factors, including, which loop(s) to tile, which tileable

1 float a[32], b[16], c[48], d[26];
2 int i, sum;
3 ...
4 float ta'[2x], tb'[x], tc'[3x], td'[x];
5 for (i = 1:16:x) {
6 load_tile(a[i:i+2x-1], ta');
7 load_tile(b[i:i+x-1], tb');
8 load_tile(c[i:i+3x-1], tc');
9 load_tile(d[i:i+x-1], td');
10 for (j = 1:x) {
11 tb'[j] = tb'[j] + ta'[2j]*tc'[3j] + td'[j];
12 }
13 store_tile(tb', b[i:i+x-1]);
14 store_tile(td', d[i:i+x-1]);
15 }
16 ...

Figure 12: The program after data tiling (applied to L1).

ta':2x

tb':x

tc':3x

td':x

b":16 d":26

Figure 13: The heaviest path after data tiling (applied to L1).

array(s) in a selected loop to tile, what tile size to use to tile a se-
lected loop, and what tile size, i.e., array size to use for a selected
tileable array in a selected loop. The most aggressive option is
to analytically try all possibilities and pick the best according to
some heuristics employed. The most computationally-efficient op-
tion could be to randomly pick one loop and one contained tileable
array in the loop to tile. The solution introduced above represents
a simple compromise. Better tiling heuristics that are useful for
on-demand data tiling will be developed in future work.

5. EXPERIMENTS

0

10000

20000

30000

0 2 4 6 8 10

Tile Size

P
r
o

fi
t

Figure 14: The net profits calculated according to (6) for differ-
ent tile sizes.

We have modified SimpleScalar to integrate SPM instead of cache.
There are four parameters to be considered. The cost of commu-
nicating n bytes between the SPM and off-chip memory is esti-
mated as Cs + Ct × n in cycles. Two other parameters are Sspm

and Smem, which represent the number of cycles required for one
memory access to the SPM and the off-chip memory, respectively.
The values of the four parameters are set to be Cs = 90, Ct =
10, Sspm = 1 and Smem = 100.

We have implemented our algorithm in the SUIF compiler infras-
tructure. We take a C program as input, perform a source-to-source
transformation by applying our algorithm, and finally, produce as
output a new C program with SPM operations inserted. Then the
program is compiled by GCC and run on SimpleScalar. If the pro-
gram is originally in FORTRAN, then the f2c tool is used to convert
it to C code first.

The benchmarks, which are all taken from SPEC2000, are the
computation-intensive procedures of the corresponding benchmarks.
In more detail, resid and psinv are from 172.mgrid, buts from 173.ap-
plu, calc1 and calc2 from 171.swim, zaxpy is from 168.wupwise.

These benchmarks are modified with all arrays of more than one
dimension being replaced by 1-D arrays so that data tiling can be
applied by our algorithm.

5.1 Performance
Figure 15 gives the performance speedups over the non-tiling

graph coloring SPM allocation algorithm [13]. For resid, when
the SPM size is smaller than 256KB without tiling, none or only
some of the arrays can be placed in SPM. Therefore, our algorithm
achieves relatively large speedups in these cases. When the SPM is
256KB or larger, all the arrays can be placed in SPM. So both al-
gorithms achieve the same performance. For psinv, the same trend
is observed except that the demarcation line is 128KB. We have
identified buts as an interesting application. The computation is
performed in a five-level loop nest. The three innermost loops ac-
cess consecutive array elements. However, the two outermost loops
access array elements with a large non-unity stride. According to
the cost-benefit analysis, it is not worth it to copy all the arrays
accessed in the loop nest into SPM. However, it is beneficial to
copy the array elements accessed in the three innermost loops into
SPM (in which case data tiling is needed), requiring only a small
SPM (smaller than 16KB). In addition to this loop nest, there are
some other small loop nests containing arrays that can all fit into
a 16KB SPM. That is why under different SPM sizes, our algo-
rithm achieves the same speedup. For calc1, without tiling, no ar-
ray can be placed in the SPM even with a size up to 512KB, in
which case, the performance is equal to the one when the SPM is
not used. When data tiling is used, the situation is different. As
the SPM size increases, the optimal tile size becomes larger and
larger, and consequently, the number of copy operations becomes
smaller and smaller, as validated in Figure 16. That is why our al-
gorithm achieves increasingly better speedups when the SPM size
increases. Finally, calc2 and zaxpy are similar to calc1, except that
zaxpy demonstrates a much lower computation intensity.

Figure 17 gives the execution times when the SPM sizes range
from 16KB to 512KB, normalized to the execution time obtained
with an infinite large SPM. By demonstrating performance close to
the best possible, we show that our algorithm makes a good utiliza-
tion of the limited SPM space.

5.2 The Impact of Live Range Coalescing
Figure 18 demonstrates the impact of live range coalescing on

performance for resid through eliminating unnecessary copy oper-
ations. As described before, when the SPM size reaches 128KB

0

2

4

6

8

resid psinv buts calc1 calc2 zaxpy

sp
ee

d
u

p

16 32 64 128 256 512SPM Size (KB)

Figure 15: Performance speedups over the non-tiling graph coloring technique [13].

1
1.1
1.2
1.3
1.4
1.5
1.6

16 32 64 128 256 512 Inf

SPM Size (KB)

E
x

ec
u

ti
o
n

 T
im

e

resid psinv buts calc1 calc2 zaxpy

Figure 17: Execution times normalized to the execution time obtained when the SPM size is +∞.

0

0.4

0.8

1.2

1.6

16 32 64 128 256 512 Inf

SPM Size (KB)

C
o

p
y

 C
o

st

Figure 16: Copy cost under different SPM sizes for calc1.

or beyond, some or all of the arrays can be placed in the SPM. In
addition, their live ranges may be selectively coalesced with the
corresponding arrays in move-related nodes.

0

1

2

128 256 512

SPM Size (KB)

S
p

ee
d

u
p

Figure 18: Speedups for resid calculated by execution time (un-
coalesced) / execution time (coalesced).

6. CONCLUSION
This paper proposes a new comparability graph coloring alloca-

tor that integrates data tiling and SPM allocation for arrays by tiling
arrays on-demand to improve utilization of the SPM. The novelty
lies in repeatedly identifying the heaviest path in an array inter-
ference graph and then reducing its weight by tiling certain arrays
on the path appropriately with respect to the size of the SPM. The
effectiveness of our algorithm is validated by using a number of
selected benchmarks for which existing algorithms are ineffective.

7. ACKNOWLEDGMENTS
This research is supported in part by the Funds for Creative Re-

search Groups of China (60921062), the National Natural Science
Foundation of China (60873014), and an Australian Research Coun-
cil Grant (DP0881330).

8. REFERENCES
[1] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee,

M. Balakrishnan, and Peter Marwedel. Scratchpad memory:
design alternative for cache on-chip memory in embedded
systems. In CODES ’02: Proceedings of the tenth
international symposium on Hardware/software codesign,
pages 73–78. ACM, 2002.

[2] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J.
Kerbyson, Mike Lang, Scott Pakin, and Jose C. Sancho.
Entering the petaflop era: the architecture and performance
of roadrunner. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–11.
IEEE Press, 2008.

[3] G. J. Chaitin. Register allocation & spilling via graph
coloring. In SIGPLAN ’82: Proceedings of the 1982

SIGPLAN symposium on Compiler construction, pages
98–101. ACM Press, 1982.

[4] J.d. Cuvillo, W. Zhu, H.u. Ziang, and G.R. Gao. Fast: A
functionally accurate simulation toolset for the cyclops64
cellular architecture. In MoBS2005: Workshop on Modeling,
Benchmarking, and Simulation, pages 11–20. ACM Press,
2005.

[5] William J. Dally, Francois Labonte, Abhishek Das, Patrick
Hanrahan, and Jung-Ho Ahn et al. Merrimac:
Supercomputing with streams. In SC ’03: Proceedings of the
2003 ACM/IEEE conference on Supercomputing, pages
35–42, 2003.

[6] Janet Fabri. Automatic storage optimization. SIGPLAN Not.,
14(8):83–91, 1979.

[7] Martin Charles Golumbic. Algorithmic Graph Theory and
Perfect Graphs (Annals of Discrete Mathematics, Vol 57).
North-Holland Publishing Co., 2004.

[8] S. Louis Hakimi, Edward F. Schmeichel, and Neal E. Young.
Orienting graphs to optimize reachability. Inf. Process. Lett.,
63(5):229–235, 1997.

[9] Pinar Heggernes, Federico Mancini, and Charis
Papadopoulos. Minimal comparability completions of
arbitrary graphs. Discrete Appl. Math., 156(5):705–718,
2008.

[10] Qingguang Huang, Jingling Xue, and Xavier Vera. Code
tiling for improving the cache performance of pde solvers. In
ICPP, pages 615–624, 2003.

[11] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan,
I. Kadayif, and A. Parikh. Dynamic management of
scratch-pad memory space. In DAC ’01: Proceedings of the
38th conference on Design automation, pages 690–695, New
York, NY, USA, 2001. ACM.

[12] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali.
Data-centric multi-level blocking. SIGPLAN Not.,
32(5):346–357, 1997.

[13] Lian Li, Hui Feng, and Jingling Xue. Compiler-directed
scratchpad memory management via graph coloring. ACM
Trans. Archit. Code Optim., 6(3):1–17, 2009.

[14] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: A
compiler approach for scratchpad memory management. In
PACT ’05: Proceedings of the 14th International Conference
on Parallel Architectures and Compilation Techniques, pages
329–338, 2005.

[15] Lian Li, Quan Hoang Nguyen, and Jingling Xue. Scratchpad
allocation for data aggregates in superperfect graphs. In
Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for
embedded systems, pages 207–216. ACM, 2007.

[16] Lian Li, Hui Wu, Hui Feng, and Jingling Xue. Towards data
tiling for whole programs in scratchpad memory allocation.
In ACSAC’07: Proceedings of the 12th Asia-Pacific
Computer Systems Architecture Conference, pages 63 – 74,
2007.

[17] J. Makino, K. Hiraki, and M. Inaba. Grape-dr: 2-pflops
massively-parallel computer with 512-core, 512-gflops
processor chips for scientific computing. In SC ’07:
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1–11. ACM, 2007.

[18] Jinpyo Park and Soo-Mook Moon. Optimistic register
coalescing. ACM Trans. Program. Lang. Syst.,
26(4):735–765, 2004.

[19] Sumesh Udayakumaran and Rajeev Barua.
Compiler-decided dynamic memory allocation for
scratch-pad based embedded systems. In CASES ’03:
Proceedings of the 2003 international conference on
Compilers, architecture and synthesis for embedded systems,
pages 276–286, New York, NY, USA, 2003. ACM.

[20] Sumesh Udayakumaran, Angel Dominguez, and Rajeev
Barua. Dynamic allocation for scratch-pad memory using
compile-time decisions. ACM Trans. Embed. Comput. Syst.,
5(2):472–511, 2006.

[21] Manish Verma, Lars Wehmeyer, and Peter Marwedel.
Dynamic overlay of scratchpad memory for energy
minimization. In CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages
104–109. ACM, 2004.

[22] Xuejun Yang, Li Wang, Jingling Xue, Yu Deng, and Ying
Zhang. Comparability graph coloring for optimizing
utilization of stream register files in stream processors. In
PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 111–120, 2009.

[23] Chunhui Zhang and Fadi Kurdahi. On combining iteration
space tiling with data space tiling for scratch-pad memory
systems. In ASP-DAC ’05: Proceedings of the 2005 Asia and
South Pacific Design Automation Conference, pages
973–976. ACM, 2005.

