
Sharing large data collections between mobile peers

Brian Tripney, Christopher Foley, Richard Gourlay, John Wilson
Department of Computer and Information Sciences

University of Strathclyde
Glasgow, G1 1XH. UK

{brian, chris, rsg, jnw}@cis.strath.ac.uk

ABSTRACT
New directions in the provision of end-user computing ex-
periences mean that we need to determine the best way to
share data between small mobile computing devices. Parti-
tioning large structures so that they can be shared efficiently
provides a basis for data-intensive applications on such plat-
forms. In conjunction with such an approach, dictionary-
based compression techniques provide additional benefits
and help to prolong battery life.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems, Distributed Databases; E.4 [Coding and Infor-
mation Theory]: Data compaction and compression

General Terms
Experimentation, Performance

Keywords
Peer-to-peer, data sharing

1. INTRODUCTION
Growth in personal computer sales dropped almost to zero

in 2008. Meanwhile two hundred million smartphones were
sold, an increase of 13% on the previous year1. Smart-
phone users are becoming accustomed to their needs for data
being satisfied on demand, thereby presenting a wealth of
fresh challenges for computer science. In situations where a
plethora of small devices are operating in an infrastructure-
light environment it is more effective to share information
between local mobile peers and only involve a central server
as necessary. Location awareness can be used to ensure that
the right information is available at the right time.

1www.zdnetasia.com/news/communications/0,39044192,
62052144,00.htm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM 2009, December 14-16, 2009, Kuala Lumpur, Malaysia
Copyright 2009 ACM 978-1-60558-659-5/09/0012 ...$10.00.

This paper describes an architecture for sharing large col-
lections of semistructured data between many small mobile
devices with the aim of reducing their dependence on fixed
server infrastructure. It also reports the initial steps we have
taken to implement and evaluate this architecture. We ex-
pect that our work will contribute to an understanding of
query processing and data management in XML data models
particularly in the framework of location and context-aware
applications and services.

We start with a definition of the problem addressed and
show how research in peer-to-peer database systems (PDBS),
mobile and ad hoc networks (MANETs) and semistructured
data provides a basis for our approach. We present the
methodology of our design and the preliminary results. Fi-
nally we characterise the current stage of the project and
the work that is planned to enable an overall evaluation of
our ideas.

2. PROBLEM STATEMENT
For many years, client-server models have dominated the

sharing of data in Internet contexts. More recently, peer-to-
peer (P2P) data exchange has become a widely used method
of resolving the issues presented by server overload. Whilst
this helps to solve the problem of inadequate server infras-
tructure, typical conceptions of P2P topologies are based on
the dynamic creation of ad hoc networks in a wired world.
Performance of such systems is always a concern but given a
balance between the number of uploading and downloading
peers and the available bandwidth, adequate response times
can usually be supported. Since peers in this scenario are
typically desktop or laptop computers, the location of the
user is not significant in the context of the data required.
We have already noted the remarkable growth in the number
and power of small mobile computing devices and the way
that the expectations of the user population have similarly
expanded. Tourism, advertising and entertainment provide
large-scale application areas where users need access to loca-
tion sensitive data. Users increasingly expect instant access
to information on the move, however storage restrictions im-
posed by limited capability mobile devices prevent the pre-
loading of large data collections. On the other hand, partial
disconnection intermittently prevents loading the data from
a server ‘on the fly’. In this context, neither the client-server
model nor the conventional P2P sharing are efficient enough
to support data intensive applications where large numbers
of users demand access to large data collections.

We address this dilemma by using P2P distribution schemes
to share compressed, partitioned XML. We arrange that

queries over this data can be resolved without first fully
decompressing the complete structure. This extends knowl-
edge in the area of PDBS in the context of small mobile
devices. We plan to investigate the most efficient way of
propagating the physical representation of such data to peer
devices that do not already possess it, an issue that has been
neglected in the past. Without establishing this, succeeding
generations of smartphones will continue to struggle with
data intensive applications.

We assume a partial disconnection model dominated by
disconnection periods and a class of applications in which
localisation defines the parts of a data collection of great-
est interest. Shoppers wanting to see product promotions
whilst on a busy shopping street represent such a scenario.
Fragmented localised data is propagated between shoppers’
phones or pulled if the shopper requested data not already
present. Fragments of the data are locally autonomous and
the assembly is managed by federation, thereby avoiding the
need for communication with a centralised directory struc-
ture. During busy periods, the database would flow within
the phone population but never be wholly resident on a sin-
gle device. If there are few shoppers on the street, those
who want the data would have to wait for a server connec-
tion or pay for data via GSM. Although available bandwidth
will grow in future, an approach such as ours will be neces-
sary to limit the effects of network congestion. Compression
will also save CPU cycles and consequently battery power;
a significant future limiting factor for small mobile devices.
Our approach to partitioning is an essential component of
this scenario since small partitions and their associated dic-
tionaries can be propagated efficiently between phones and
queried without complete decompression. The decompres-
sion load then becomes proportional to the size of the result
set. The partitions are logically homogeneous so there is
a strong likelihood that user queries over data relevant to
a particular location can be satisfied without recourse to
pulling additional data from other phones, making this ap-
proach the most effective way of servicing shoppers’ needs
during disconnection periods. Queries that span partitions
would be more expensive but processing the incoming par-
tition as a stream will improve the effective performance
of the system. The technique integrates with raw textual
and multimedia data. Query results over partitioned and
compressed data can be provided directly where predicate
values are contained in the partitioned structures or indi-
rectly where reference needs to be made to the underlying
multimedia files.

3. OVERVIEW OF RELATED WORK
Buneman and co-workers combine the XMill[9] approach

for compact representation of atomic data with the approach
for skeleton compression by sharing sub-trees[2] to address
XML join queries. Kaushik et al.[6] include keyword con-
straints on the contained atomic data. In earlier work, we
investigated the use of dictionary compression techniques
for representing both tags and values in XML structures[4,
12] and other investigators have also examined the decom-
position of XML into array-based structures[3]. Dictionary
compression has been used with mobile client systems that
refresh themselves from a central server[10]. PDBS[1] have
attracted significant attention and have typically focused
on the use of distributed hash tables. Algebraic optimi-
sations for managing distributed XML data structures have

also been proposed[7]. There is recognition that a variety of
approaches may be necessary to exploit various communi-
cation architectures[5]. Simulation of client-server and P2P
networks suggest that scaling in client-server systems can
only be addressed by the additional expense of adding more
servers and providing appropriate management for these sys-
tems[8].

A simplified analytical model[11] can be used to assess the
impact of data compression in peer-based architectures. In
such system, there will inevitably be users who will share the
data elements they possess and those for whom the techni-
cal or economic benefits that are available as a consequence
of sharing are insufficient to persuade them to take part
(leeches). The BitTorrrent model of incentivization pro-
motes sharing by down-grading the service to those who
don’t share and improving service to those who are willing
to host software that will perform P2P sharing. Incentiviza-
tion can also be provided by using micropayment models to
offset the potential for increased call charges. However, as
with all P2P-based systems, leeches are likely to be a per-
sistent feature of the environment. The scenario involves
devices that upload only (seeds), download only (leeches)
and both upload and download (peers). The relationships
between these kinds of devices are shown in Figure 1. Each
queue consists of a list of tasks and a server (u - upload, d -
download). The queues form a closed queuing network i.e.
the system has no source or sink. The model is simplified
by assuming that all peers have equal capacity both to up-
load and download and that in a steady state, the number of
uploads and downloads is independent of time. The model
incorporates random churn of the peer pool via the off line
rate (κ) and the abort rate (ρ). These are expressed as a
rate correction to the upload rate (µ) and download rate
(τ) respectively. The model is represented by the expres-
sions shown in Figure 1. Little’s Law is used to produce the
service time (t) experienced by users waiting for the comple-
tion of downloads (3). Compressing data provides leverage
for both upload and download and is incorporated into the
model by the coefficient δ.

Assuming a nominal upload bandwidth (µ) of 12 Mbits/sec,
off line rate (κ) of 50 Mbits/sec, individual peer download
bandwidth usage (τ) of 20 Mbits/sec and an abort rate (ρ)
of 10 Mbits/sec, the analytical model produces estimates of
service time shown in Figure 2. It can be seen from that an
increasing selfish rate increases the expected download time
for other peers but that this is considerably mitigated by
the effect of compression. Similarly, at a fixed selfish rate,
the effective download bandwidth is improved by increasing
compression.

This model predicts that compressing data improves ser-
vice to users irrespective of the number of leeches in the
system. In addition to these beneficial effects of compres-
sion, the effect of partitioning data structures so that only
limited relevant data is sent between peers, results in ad-
ditional savings. This further reduction will provide more
efficient use of bandwidth and better resilience to high self-
ish rates than is predicted by the analytical model. Since
the number of available peers varies in inverse proportion
to the number of leeches, the model also suggests that peer
pool variations will be mitigated by compressing data.

4. RESEARCH METHODOLOGY
Compressing data provides a useful step in empowering

u

abort/resume

d

LeechSeed

d

abort/resume

on/offline

u

Peer

1

ι
=

1

1 − β

(
1

µ
− 1

κ

)
(1)

1

θ
= max

(
1

τ
,

1

ι

)
δ (2)

t =
1

θ + ρ
(3)

ι effective upload rate
β selfish rate
µ nominal upload rate
κ off line rate
θ bottleneck bandwidth
τ download bandwidth usage

by each peer
ρ abort rate
δ compression ratio
t service time

Figure 1: Queueing model for P2P data sharing

 0

 0.02

 0.04

 0.06

 0.08

 0 0.2 0.4 0.6 0.8

U
se

r
se

rv
ic

e
tim

e
(t

)

Selfish rate (β)

δ=0

δ=0.5

δ=0.25

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5 10 15 20 25

U
se

r
se

rv
ic

e
tim

e
(t

)

Download bandwidth (τ)

δ=0

δ=0.5

δ=0.25

Figure 2: Performance characteristics of the queueing model

applications running on phones to rapidly receive large vol-
umes of data in response to requests from users. Efficient
processing of XML is helped by choosing the right physical
data structures and supporting them with appropriate in-
dexing techniques. Bisimilarity (i.e. the sharing of common
subtrees) allows resolution of path location steps in linear
time [6]. A family of indexes ((j,k)-F+B-index) can be con-
structed using a range of values for forward or backward
bisimilarity. Embedding the structural elements of queries
into such an index graph can be done using the same al-
gorithms that could be used to embed them into a data
graph. The structural elements of the query can be re-
solved against the index graph but the original data graph
needs to be maintained in order to resolve value predicates.
The approach we have developed (NSGraph) [12] constructs
atomic data dictionaries according to the structural group-
ings. Consequently the part of the dictionary corresponding
to a structural grouping can be incorporated into the node of
the index graph representing it. The vertex identifiers used
in both the dictionaries and the index graph can be replaced
with the entries based on a numbering scheme, creating a
unique address space for validation purposes. This approach
produces a hybrid that represents the cross-product of an in-
dex graph with a signature with its leaf nodes being replaced
by domain dictionaries. Figure 4 illustrates this using the
(1,1)-F+B-index graph of the example data graph shown
in Figure 3. This approach allows queries to be resolved
directly on the compressed data structure with only the re-
turned values being decompressed.

Memory-boundness is a significant limitation of NSGraph.
Our initial implementation requires the complete graph and
the associated leaf values to be present in memory. Dic-

tionary compression and fragmentation of the compressed
XML tree reduces the size of the data structure that needs
to be held in memory. The NSIndex extension builds on the
NSGraph model by supporting non-volatile storage of the re-
sulting structure and providing for its direct interrogation.
This approach gives the advantage of not having to parse and
store the entire data structure in memory in order to evalu-
ate a query, as well as giving opportunities for optimisations
of the data structure. The architecture for this extension is
split into three major modules shown in Figure 5. In the
NSGraph module the underlying source data structure is
read into the structural summarisation and the block-based
dictionaries are generated. This model of the source is fed
into NSStore where the memory-based structure is mapped
to the non-volatile structure seen in the lower part of Figure
5. The NSQuery system can be used to directly read the
non-volatile structure and allow for the evaluation of arbi-
trary queries. The compiled representation is separated into
three components, shown in Figure 5. Partitioning, based
on bisimilarity, is performed as the source data structure is
processed by the NSGraph module. Blocks are produced
by grouping bisimilar data together and these blocks, along
with the structural summarisation, form the complete NS-
Graph data structure. The NSIndex structural summarisa-
tion is a mapping of the blocks that make up the compressed
XML structure. Blocks provide a container for elements
holding the numbering scheme data (pre-order, post-order,
level & size). A DataBlock is a container for data elements,
each being represented as pre, post, level and size, together
with a minimal-bit token to indicate the raw data value con-
tained in the appropriate dictionary. All data elements in
one DataBlock use the same dictionary. The dictionaries

namenamenametitletitletitle

"Stewart"
"Smith"

"Miller"
"Databases"

"Programming"
"Databases"

authorauthoreditor

personpersonpersonbookbook

peoplepublications

bibliography

ROOT&0

proceedings

&24&23&22&21&20&19

&18&17&16

&15

&14

&13

&12&10

&11

&9&8&7&6&5&4

&3&2

&1

Figure 3: Data graph

ROOT

0 24

name

name

bibliography

1 23

proceedings book person person

titletitle

"Databases"

"Programming"

"Databases"

"Miller"

"Smith"

"Stewart"

publications people

24

2 12 15 22

3 3

11 11

16 15

19 18

22 21

editor

18 13

21 16

19

author

10

14 10

6

4 1

0

4

13 8

23

20

17

20

17

14

5

7 7

6

9

2

8 5

12 9

title

Figure 4: NSGraph

Figure 5: NSIndex com-
ponent architecture

may be shared by a number of DataBlocks and contain the
mapping between the token and the raw data value.

5. PRELIMINARY RESULTS
Initial work on NSGraph [12] suggests that useful com-

pression can be obtained. More recently, we have estab-
lished the effects of different levels of forward and backward
partitioning on the data and associated dictionaries. A num-
ber of different datasets (XMark10, NASA, Orders-E15 and
Legal-13) with sizes of 10-15Mbytes were processed.

Each file was partitioned in sixteen ways using a version
of the NSGraph program - these ranged from (0,1)-F+B
(0-forward and 0-back) to (3,3)-F+B. This produced a set
of uncompressed DataBlocks for each partitioning scheme.
The unique values from each DataBlock were then extracted
and used to calculate the size of data and dictionaries un-
der the minimal-bit scheme. For each data file, the total
size of uncompressed blocks is unaffected by the partition-
ing scheme used (as the complete set of blocks will contain
all the data values regardless of how these are distributed
across blocks). However, the compressed data size is af-
fected by the distribution of data values, as the success of
the minimal-bit scheme relies upon the repetition of values
within individual blocks.

Across all files tested, compression was improved by mov-
ing from (0,0)-F+B to (0,1)-F+B. For most files further in-
creases had no effect upon compression (one file showed a
<1% compressed size increase between (0,1)-F+B and (0,2)-
F+B) (Figure 6). The move to (1,n)-F+B (where n < 1)
caused at best a 1% improvement in compression and had an
adverse effect of up to 3% in the worst case. Some files were
completely unaffected by forward bisimilarity (Figure 7).
With no great benefit shown by partitioning using forward

bisimilarity, and noticeably improved compression shown
only when moving up to one level of backward bisimilar-
ity, it would appear that the (0,1)-F+B partitioning scheme
allows for greatest compression with least effort.

However, with a view to sharing the data in individual
blocks, the overall size is only one consideration. The num-
ber of blocks the data is split into is also a factor, as fewer
blocks will necessarily be larger blocks. In all cases the move
from (0,0)-F+B to (0,1)-F+B produces a slightly increased
number of blocks. A move from (0,n)-F+B to (1,n)-F+B
(n > 1) can greatly increase the number of blocks for some
data sets. It follows that partitioning the data into different
numbers of blocks will cause the overall compression level
for that data to change. There is a level of forward and
backward bisimilarity beyond which no significant changes
are made to the data blocks caused by the fairly flat, regular
schema of the test data files. Files with a deeper tree struc-
ture are expected to show further changes in partitioning as
bisimilarity is increased.

5.1 Current stage of the project
We have completed a working implementation of the parser

that constructs the NSGraph and NSStore (Figure 5) el-
ements of our architecture. We are currently working on
NSQuery. There are three basic approaches to query evalu-
ation in decomposed tree structures. Queries can either be
evaluated based on the root of the structure and extending
through the tree in a top-down fashion and finally validating
the results against the dictionary. The bottom-up alterna-
tive to this involves resolving predicates at the dictionary
level and joining these results to the tree structure. A hy-
brid of these approaches is also possible.

We are also further investigating the potential for splitting

 0

 20

 40

 60

 80

 100

 0 1 2 3

Si
ze

 (
%

 o
f

un
co

m
pr

es
se

d
si

ze
)

Level of backward bisimilarity

NASA

Orders-E15

Legal-13

XMark10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3

N
o

of
 d

at
a

bl
oc

ks

Level of backward bisimilarity

NASA

Orders-E15

Legal-13
XMark10

Figure 6: Effects of increasing backward bisimilarity (f=0)

 0

 20

 40

 60

 80

 100

 0 1 2 3

Si
ze

 (
%

 o
f

un
co

m
pr

es
se

d
si

ze
)

Level of forward bisimilarity

NASA

Orders-E15

Legal-13

XMark10

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 1 2 3
N

o
of

 d
at

a
bl

oc
ks

Level of forward bisimilarity

NASA

Orders-E15

Legal-13

XMark10

Figure 7: Effects of increasing forward bisimilarity (b=1)

dictionaries and re-combining small dictionaries to optimise
the use of minimal bit tokens. We are also planning to eval-
uate the sharing of the partitioned elements between devices
in the context of location-based data.

6. FUTURE PROSPECTS
Our initial results suggest that bisimilarity provides a ba-

sis for partitioning large data structures so that they can be
compressed efficiently. The need to process large structures
that may not fit into main memory has led to the develop-
ment of interest in XML stream processing and the poten-
tial for compressed streams of XML to be made accessible
to query processing. Stream processing will provide better
response times for our target class of applications and we
plan to explore the use of this approach in conjunction with
sharing both dictionary and block information. Security and
integrity of data in such an environment are important issues
and we plan to address the implications of authentication,
access control, privacy and encryption.

7. REFERENCES
[1] A. Bonifati et al. Distributed databases and

peer-to-peer databases: past and present. SIGMOD
Rec., 37(1):5–11, 2008.

[2] P. Buneman et al. Path queries on compressed XML.
In Proc 29th VLDB, pages 141–152, 2003.

[3] P. Buneman et al. Vectorizing and querying large
XML repositories. In ICDE, pages 261–272, 2005.

[4] R. Gourlay, B. Tripney, and J. Wilson. Compressed
materialised views of semi-structured data. In
Workshops of the 24th BNCOD, pages 75–82, 2007.

[5] J. Kangasharju and S. Tarkoma. Benefits of alternate
XML serialization formats in scientific computing. In
Proc SOCP’07, pages 23–30, 2007.

[6] R. Kaushik, R. Krishnamurthy, et al. On the
integration of structure indexes and inverted lists. In
ICDE 2004, page 829. IEEE Computer Society, 2004.

[7] G. Koloniari and E. Pitoura. Peer-to-peer
management of xml data: issues and research
challenges. SIGMOD Rec., 34(2):6–17, 2005.

[8] K. Leibnitz et al. Peer-to-peer vs. client/server:
Reliability and efficiency of a content distribution
service. In Int. Teletraffic Cong., pages 1161–1172,
2007.

[9] H. Liefke and D. Suciu. XMILL: An efficient
compressor for XML data. In Proc SIGMOD, pages
153 – 164, Dallas, Texas, USA, May 2000.

[10] Y. Natchetoi et al. EXEM: Efficient XML data
exchange management for mobile applications.
Information Systems Frontiers, 9(4):439–448, 2007.

[11] D. Qiu and R. Srikant. Modeling and performance
analysis of BitTorrent-like peer-to-peer networks. In
SIGCOMM ’04, pages 367–378, New York, NY, USA,
2004. ACM.

[12] J. N. Wilson et al. A resource efficient hybrid data
structure for twig queries. In Proc XSym’06), pages
77–91, 2006.

