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ABSTRACT

Capacity planning, as well as protocol design and storage
system design for video distribution systems are dependent
on an understanding of the anticipated workload. Previous
studies have focused on aggregate statistics of video popu-
larity over time, and only recently has work been done which
analyzes user behaviour variability over time. We are inter-
ested in a video storage/distribution system that uses peer
resources to help content providers distribute video content
to nodes in a network over long periods of time. Such a sys-
tem is intended to operate on local principles of utility as-
sociated with each peer. More than ever, a workload model
based on long-term user behaviour is required. In particular,
it is unclear how request patterns driven by local utility can
be shaped to match expected large-scale aggregate request
characteristics such as a Zipf-distribution for overall popu-
larity. In this paper, we describe early work in developing a
workload generator for a Peer-based PVR (Personal Video
Recorder) system to demonstrate some of these challenges.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Modeling tech-
niques

General Terms

Experimentation, Performance

Keywords
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1. INTRODUCTION

Research efforts over the past two decades to understand
access patterns to large-scale media servers, media content
distribution networks, and video-on-demand systems gener-
ally reflect several common fundamental insights about the
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distribution of requests for media objects. Most notably, it
is widely understood that media object popularity usually
has a Zipf-like distribution [2, 3, 12]. While specific details
about the shapes of these distributions are, of course, go-
ing to be application and content specific, we can draw a
number of important general inferences. First, for the most
popular items, the high frequency of requests results in a
situation where on average there is always more than one
concurrent request for the media object. Second, the vast
majority of media objects exist in the “tail” of the distribu-
tion. These objects are, for the most part, equally popular
(or more aptly, unpopular). At any given time the number
of current requests for these objects is either one or zero.

In light of these general insights, a designer of any media
distribution system should be most concerned with only the
most popular items. This is because system design can be
optimized to exploit the concurrency of several outstanding
requests in order to increase system performance be that
measured by response time, buffering delay, server load, or
some other objective function. Over the years a number
of different techniques have been developed for doing so in-
cluding batching, patching [6], prefix caching, and pyramid
broadcasting [7, 13] just to name a few. For the most part,
past work on media distribution systems has not been con-
cerned with developing models for the popularity of individ-
ual media objects and/or the media requests of individual
users. It has been sufficient to understand that some set
of media objects will receive the bulk of the requests with-
out necessarily needing to understand exactly which media
objects these are or how the set changes over time.

Decentralized peer-to-peer systems, however, are funda-
mentally different than media distribution systems for which
there is a global objective function for performance. In par-
ticular, each participant optimizes local resources to maxi-
mize the utility of participating relative to an objective func-
tion that may be unique to each individual client. For any
given peer, the utility of a particular media object may be
unrelated to the popularity of that object globally. In fact,
we can expect the utility of a particular media object to be
primarily determined by local conditions at the peer such
as whether or not the media object has already been “con-
sumed” (i.e., viewed) at least once already, the length of
time that the object has been held by the peer, and the
presence (or absence) of related media objects such as prior
or subsequent episodes of a series.

An important difference between the utility of a media
object with respect to an individual in a peer-to-peer sys-
tem and the utility of a media object with respect to the



aggregate of all media requests across the system is that we
can not expect a Zipf-like distribution of utility among the
media objects held by an individual peer. In other words,
we do not expect an individual to value one media object
twice as much as another media object simply because one
media object is twice as popular with all the other peers in
the system. The very fact that a peer has chosen to obtain a
media object at all is an allocation of resources (both band-
width and storage) that reflects a utility that is essentially
infinitely greater than for objects not held. While some of
these media objects will in fact be globally popular, most
will not. From the perspective of the system as a whole
(i.e., the perspective of a centralized or globally-designed
system), only the most popular items will matter. From the
perspective of an individual peer within a decentralized sys-
tem, however, the majority of local resources are generally
spent on media objects that have relatively high local utility
but relatively low global popularity. In other words, if we
look at the problem from the bottom-up, the tail matters. If
the system is deployed in a decentralized fashion, centralized
policies are unenforceable, and untenable.

We have observed some video workloads where the ma-
jority of the requests and (presumably) the majority of the
bytes transferred are from objects in the tail of the distribu-
tion. Thus, the long term ability for servers to store these
unpopular objects requires immense storage capacity or dis-
tribution over many nodes. Careful allocation of this storage
must be performed by some entity in the system.

Thus, in a peer-based system that is active over long pe-
riods of time, it is not sufficient to determine the aggregate
popularity of media objects at specific time scales. Instead,
it is equally important to understand which users are in-
terested in which videos at which times, since any caching
system that is decentralized needs to operate on the current
utility of the objects in the local cache, and some notion
of the current state of the cache of peers. A more sophisti-
cated model of workload requests is necessary. In particular,
we must be able to generate media requests at the level of
individual users which collectively demonstrates aggregate
behaviour consistent with measurements taken in previous
studies of centralized systems while at the same time is con-
sistent with our intuition about how people actually value
and use media objects locally.

Our goals in this paper are to:

e Describe a generalized model of a peer-to-peer media
distribution system in which independently managed
digital video recorders (i.e., TiVo-like devices) are able
to communicate and share media objects.

e Report on early efforts to construct a model for media
requests driven by peer-specific utilities for individual
media objects that collectively generate an aggregate
Zipf-like distribution.

The main contribution of this paper is to make the case
that it is important to understand how large-scale Zipf-like
aggregate media request distributions arise from individual
peer-assigned object utilities. Our early experience suggests
that doing so is challenging and not trivial. We believe that
the early models we have developed in this paper provide an
important starting point for addressing these challenges.

The rest of this paper is organized as follows. Section 2
contains a description of a peer-to-peer system driven by lo-
cal utility that serves as a driving application. In Section 3,

we provide a survey of related work in the area of caching
infrastructures for video as well as video request modeling
and analysis. The system model implemented in our sim-
ulations is covered in Section 4, with particular emphasis
on a workload model and workload generator. The design
and results of simulation experiments are given in Section
5. These results lead us to some analysis and validation
of the results against data captured from a deployed data
set from a single subnet (edge) access log of a centralized
system. Finally, we present conclusions and suggestions for
future work in Section 6.

2. PEER-TO-PEER PVR

In this section, we describe a peer-based shared Personal
Video Recorder (PVR) system that represents the kind of
peer-to-peer media distribution networks that requires a re-
quest model grounded in user-assigned utility for specific
media objects. A key element of this system is that each
peer chooses its own objective-function for maximizing util-
ity with respect to local resources.

Our envisioned model is an extension of a PVR that is able
to record content broadcast by a set of content-providers
(i.e., channels on a digital cable or satellite system) for the
purpose of viewing the material at a later time (i.e., time
shifting) or repeatedly in the future (i.e., longer-term archiv-
ing). Such devices (e.g., TiVo) are widely deployed today
and are generally included as a component of digital cable
and digital satellite services.

Extending this PVR model with peer-to-peer communica-
tion allows peers to share the contents of their local PVR.
By doing so, any media object can be requested by any peer
at any time after the media object has been distributed orig-
inally. Obviously there are costs associated with both stor-
ing a local copy (i.e., space in the PVR) as well as with
requesting a non-local copy from a peer (i.e., bandwidth).
Thus, each individual peer needs to make decisions as to
which media objects to cache upon broadcast and which can
remain uncached. Currently, these decisions are purely lo-
cal since peer-to-peer communication does not exist among
PVR users. These decisions are reasonably straightforward
since the only factor to be considered is whether the utility
of a newly available media object is greater than the utility
of some object already held in the PVR cache. If so, the new
object is cached in place of an existing, less useful object.

A peer-to-peer PVR system, however, is complicated by
inter-peer dynamics of utility. In particular, the cost of ob-
taining a popular media object are inversely proportional to
its global popularity. In other words, a very popular object is
easier to obtain because there are a greater number of peers
who can be expected to have the object. Conversely, any
media object that has a degree of local utility for a paticu-
lar peer that is relatively unpopular globally among all peers
is very costly to retrieve since many fewer peers also have a
cached copy. We envision that the combination of these two
competing forces will lead to interesting and complex strate-
gies that govern how peers behave. For example, if too many
peers rely on the expectation of other peers caching media
objects that are globally popular, the result will be too few
copies of the popular content with respect to the aggregate
demand for that content. While this model of interaction is
similar to how BitTorrent! clients interact, only recent en-

Lwww.bittorrent.com



hancements to BitTorrent permit streaming, and our target
system would also incorporate object utility and incentives
to share in a comprehensive manner.

Furthermore, we can envision a number of interesting strate-

gies that are enabled by adaptation techniques such as mu-
tiple description coding and forward error correction. Video
data is unique in that it can be scaled/subdivided on many
dimensions (temporal, spatial, colour), each of which can
generate a different version of a particular quality. Depend-
ing on the encoding, different versions can be combined to
provide a higher-quality version of the object (i.e. base and
enhancement layers). If peers probabilistically cache differ-
ent versions of each object, the quality of a video object can
be increased by exchanging versions cached at other peers.

We want to provide a system without centralized con-
trols, but with common policies, such that each user can
cache content in order to maximize local utility for the ob-
jects cached. At the same time, however, high global utility
is achieved by providing appropriate incentives for sharing.
Such a model requires that the long-term behaviour of the
users is modeled, since caching video content for use by peers
implies that this cache will have a long lifetime relative to
the viewing time of a single object. Furthermore, we expect
users to have a non-zero utility associated with archiving ob-
jects with relatively low global popularity in order to main-
tain access to those objects. In other words, a peer should
prefer to maintain a copy of a media object that would oth-
erwise disappear from the system entirely.

To explore this interesting system space, however, requires
the ability to generate peer-specific utility values for each
media object. Unfortunately, prior studies of media access
provide only a view of aggregate media access distributions.
Furthermore, simply projecting the aggregate distribution to
each peer is not reasonable with respect to how one would
expect a real user to behave. For example, while the ag-
gregate demand for each media object can be expected to
maintain a Zipf-like distribution with respect to its overall
popularity rank, one can not expect the requests generated
by individual users to be Zipf-like at all. In other words,
if in the aggregate distribution the most popular movie is
expected to be twice as popular as the second most popu-
lar movie, we do not expect any particular user to consume
the most popular movie twice as often as the second most
popular movie. What we do expect is that most peers con-
sume the most popular movie once (or a small number of
times) and half as many will consume the second most pop-
ular movie once (or a small number of times), resulting in
the observed aggregate effect.

The challenge that remains is to construct a model for
generating peer-specific utilities for media objects that in
aggregate create demand for media objects that mirror the
Zipf-like distributions that we know exist, but that exhibit
reasonable local characteristics. In particular, we would ex-
pect that local utility for a media object is coherent (i.e.,
does not change randomly with time) and that utility gen-
erally decays with both consumption and time.

3. RELATED WORK

Choong et al. describe a content distribution system that
inserts a proxy layer which distributes rewards to clients for
storing/forwarding media content within the scope of the lo-
cal last-mile network [1]. Peer-to-peer streaming with selfish
competition is introduced by Shrivastava and Banerjee [11].

They describe natural incentives in such a model to improve
the quality of media streams by collaborating.

Huang et al. evaluate the PPLive VoD System in devel-
oping principles for the architecture of P2P VoD systems
[8]. They consider similar issues to our model, such as video
segmentation and replication strategy. They measure user
behavior and user satisfaction on a small window of time (1
week) and carefully examine many short-term properties of
user behaviour and object popularity.

The distribution of video requests has been studied for
many years and has not been resolved to any degree of cer-
tainty in the existing literature. One of the first investiga-
tions was by Griwodz et al. [4], which predated deployments
of on-line video distribution systems. The authors developed
a model for popularity decay that was exponential and su-
perimposed a random effect dependent on the size of the
user population. They found that long-term trends differed
from day-to-day measurements.

Jin and Bestavros developed the GISMO workload gener-
ator [9] to provide more realistic workload traces than had
previously been used in media server analysis and design.
Their work is more comprehensive in that the model gener-
ates demand requests that consider the inter-arrival time of
sessions, size distributions and user-interactivity behaviour,
in addition to the bit-rate requirement variability over time.
Our model is significantly simpler in scope, and more specifi-
cally deals with a restricted mechanism for making new con-
tent available in the system.

Guo et al. [5] show that several internet media access pat-
terns exhibit the characteristics of a stretched exponential
distribution, and are not zipf-like, when only the media ob-
jects themselves are considered. Many data requests are for
metadata or content associated with an ad server. In ad-
dition, much content is filtered by caches along the way, so
that accurate measurements from either the client side or the
server side are difficult. When these requests are removed,
the video request patterns in 16 different data sets were an-
alyzed and showed a good fit to the stretched exponential
distribution.

Gill et al. found that YouTube video requests on a univer-
sity campus do exhibit a Zipf distribution [3], and otherwise
confirm similar results of other previous work. There are
diurnal effects, and day of week effects visible in the data.
News and sports have high, but short-term popularity, while
music, comedy, and other entertainment videos are most
popular in the long-term. Garcia et al. analyze the user in-
teractions in a News-On-Demand website [2]. The authors
divide interactions into sessions, requests and interactions.
They analyze the interdependence of the various variables
used as parameters for request generators.

Any peer-based system will exhibit characteristics of so-
cial networking. Ostrowski and Sarhan evaluated traces of
social networking video [10]. They found Zipf distributions
for the top videos over different time intervals, as well as
diurnal and weekly viewing patterns.

An artifact of currently-deployed systems is that the ca-
pabilities of the technology significantly affect the behaviour
of the users. In particular, slow network connections may
result in an incomplete viewing or may cause the user to
time-shift to a time when the network is less busy. At the
extreme, users may choose to download, rather than stream
the content. Users adapt to the limitations of the system,
and as such, the requests captured in a trace may not reflect



their desired watching behaviour. These traces do, however,
provide a potential target request pattern distributions that
our system should be able to generate. Since the evidence
from measurement studies is sufficiently contradictory, our
model should be capable of generating requests that ulti-
mately match a wide array of popularity distributions.

4. SYSTEM/SIMULATION MODEL

The architecture of our model is based on two entities in
the system: a client/peer node and a content server. They
store information about two other entities: a user and a
video. Peers and the server process wviewing requests and
execute cache management operations. The size and length
of the simulation is governed by several parameters, which
are factors in the performance/scalability experiments per-
formed in the next section.

The parameters of size include: a) Number of channels, b)
Number of videos and ¢) Number of users. The parameter
of configuration is the decay factor for utility in time.

The content provider publishes a number of new videos
every time period equal to the number of channels. The ini-
tial popularity of each video is is determined by the system
to correspond to a Zipf distribution with particular parame-
ter a. From this initial popularity, probabilistic peer-specific
utilities are derived. During each time period, a user gener-
ates a request for a video chosen by a probabilistic process
weighted by its peer-specific utility values.

Every time unit, utility values of each user for each video
previously published are adjusted. For simplicity, we con-
jecture that popularity decays with time since release for
normal videos, so, all existing videos are decayed. Further-
more, once a user has viewed a video, the utility of that
video is discounted. Thus, each viewed video in the simula-
tion has an extra decay applied for the users that watched
that video in the current time period.

Because of the time varying nature of a video’s popularity,
and the current user’s viewing behaviour, the utility for an
object will change over time. The policy to be followed at
the client may be complicated, but its basic nature will be
to retain the most valuable objects in the local cache, so
as to maximize local utility. This will require the client to
perform one or more of the following activities: a) purge less
desirable content, b) transcode content that is still valuable,
but less valuable than in the previous time period, and c)
pre-fetch content for which the utility has increased enough
to displace previously cached content.

5. EXPERIMENTS

The simulator generates requests by a static user popula-
tion from a video population that changes over time. Videos
are added, but not removed from the population each pub-
lishing period. A run of the simulator consists of publishing
the specified number of videos on the specified number of
channels, and issuing requests for available videos at each
publishing time. The number of time units that the sim-
ulation runs is thus the ratio of videos to channels. We
selected the Zipf distribution as the target distribution, be-
cause it matches most of the previous research. Future work
will examine request generators that can produce requests
according to other distributions.

The objective of the experiments is to generate a represen-
tative sample of video requests from the population of users

and videos and determine whether the original Zipf distri-
bution of popularity used to derive peer-specific utilities is
recreated by the aggregate of peer requests across time. The
video requests should match a target distribution in terms
of aggregate popularity at multiple time scales. As well, it is
desirable that the component behaviour of an individual user
and the requests for individual videos conform to our intu-
ition regarding the proposed interaction model for a user and
the system, both as instantaneous measurements and over
long periods of time. In particular, it is not clear whether or
not such aggregate behavior properly emerges given utility
decay and the introduction of new video objects.

Preliminary experiments varied the number of users, the
number of videos, and the number of channels in an indepen-
dent fashion with a constant decay factor. The next round
of experiments kept the size parameters constant and modi-
fied the decay parameter. This was in an effort to determine
how to control the time-varying nature of object popularity
so that the overall distribution remained the same over all
time periods.

We performed a number of experiments that varied the
number of users, the number of videos and the number of
channels. As expected, the major results of these experi-
ments were a change in the density of traffic, but not in the
shape of the popularity of the objects relative to each other.
After generating many experimental runs, we graphed the
popularity of a video object against its rank within the set
of all objects. When graphed on a log-log scale, data that
exhibits a Zipf distribution results in a straight line with a
negative slope, indicating the Zipf parameter of the distribu-
tion. In the following graphs, the lines represent the average
of 10 replications of a request generating session with the
same configuration. The deviation is very small (less than
0.03%), so error bars are not shown.

Figure 1 shows the results for one sample experiment. Ex-
cept for the very tail of the graph, the video requests form
a Zipf distribution, since decay was chosen appropriately.

64 videos, 10000 users, 16 channels
0.1

Video Rank ——

Popularity

o
o
=

1 10
Video Rank

Figure 1: Sample Rank vs. Popularity

Figure 2 shows two runs that have 5000 users, and 128
videos with 0.29 for the decay value. The simulation lasts
for more time units in one run than the other, because of
the different numbers of channels. When 64 channels are
utilized, the simulation lasts 2 time units, whereas when we
publish on 16 channels, the simulation lasts 8 time units.
We can see that the higher popularity videos (the top 6) in



the 16 channel case do not show a Zipf distribution, because
they decay too quickly; most of the requests for an object
come in the initial publishing time interval. We also see a
drop off in the tail of the distribution for the 64 channel
case, possibly because second interval low popularity videos
have only one time interval in which to be selected.

128 videos, 5000 users, decay = 0.29

2 time intervals —+— |
8 time intervals ——6-—

01F

Popularity

°
o
=

1 10 100
Video Rank

Figure 2: Effect of Number of Channels (64 and 16)
The effect of an improper decay value can be seen an-

other way. In Figure 3, what can be seen is that the tail of
the distribution drops off if the decay factor is incorrect. If

128 videos, 16 channels, 5000 users

" 0.67 decay ——
0.29 decay —o——

0.01

Popularity

0.001

10 100
Video Rank

Figure 3: Effect of Decay (8 time units)

the decay factor is too small (i.e. decay occurs too slowly),
then the older videos continue to be very popular and newly
released videos that are popular within the set of videos
that were released at the same time never become globally
popular. This is inconsistent with our experience with real-
world systems. If decay is too large, then videos only get
watched in the first few time periods after release and in
the long term, there will be a large number of videos with
approximately the same popularity, namely those that were
tagged as the most popular at publishing/release time. Fu-
ture work is required to determine a more realistic pattern
of decay for accurate aggregate behaviour for videos in the
tail of the distribution.

Figure 4 shows video requests over time for one of the
most popular video objects for a run that spanned 100 time
units with 5000 users and 10 channels. Only the first 30

units of time are shown as very few requests occurred later.
Similar results were obtained for other popular videos.
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Figure 4: Third Most Popular Video (Model)

To determine if our simulation data is qualitatively sim-
ilar to observed behaviour in a deployed system, we have
obtained an anonymized data set of YouTube video requests
from the University of Calgary (obtained by permission) [3].
The identity of the requester was made anonymous, but the
identity of the video object was retained. Gill et al. per-
formed an exhaustive analysis of the characteristics of this
data set from the request level to the byte level, and over
different time-scales. This is a somewhat similar in con-
text to our envisioned deployment scenario, but we are only
interested in the requests for video objects over time by dif-
ferent users. Nevertheless, real data from a deployed system
provides us with a large comparison data set.

We expected that object popularity would decline as a
function of time since release. Some of the videos showed
this property, but some did not. The most popular video is
requested at the beginning of the trace period, reaches its
popularity peak at day 30, and then shows a decline, but
still has a steady number of requests until the end of the
trace period. We show the third most popular video (Figure
5) as an example of the decay pattern observed in 5 of the
top 10 videos from the YouTube data set.

This compares well to our results from the simulator. It
is also appropriate to note that videos released late in the
capture time period were able to become globally as popular
over the time period as those released earlier. The third
most popular video was not viewed at all until Day 60. The
request distribution over time for other objects shows very
different decay patterns, indicating that several models will
be required in a full-featured request generator.

An analysis of the tail of the distribution showed that
over three months of data collection 99% of the objects were
requested fewer than 8 times. As well, 90% of the requests
were made to these objects in the long-tail. The relative
size of each object was not analyzed, but if objects are close
to the same size, then a significant majority of the bytes
transferred are also contained in these requests.

The user-based approach is necessary to provide the ba-
sis for a user having utility in keeping certain content in
their long-term cache. First of all, it is clear that we can
model individual requests for videos in a manner consis-
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Figure 5: Third Most Popular Video (YouTube)

tent with some aspects of at least one case of real-world
data. Users have a time-varying behaviour that influences
their own personal storage requirements. Secondly, the time
varying nature of the requests for an individual video also
shows similarity to some video objects in the case study.
This is encouraging, but is also an area for further work in
which alternate video types are incorporated that show a
different decay pattern. These different decay patterns may
influence other factors in the system, such as desired level
of replication of a particular object. Finally, we note that
the aggregate request behaviour for all objects still follows
a zipf distribution if we start each distribution period with
a set of videos explicitly chosen from a zipf distribution and
decay values are carefully chosen. Further work will verify if
these properties can be maintained with other distributions
and if critical decay values can be analytically derived.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we make a case for developing a user-specific
utility-based request model for media objects. We believe
having such a model will be important for developing and
evaluation decentralized peer-to-peer media distribution sys-
tems. In particular, we anticipate that any such model will
need to incorporate realistic user behavior such as utility
decay over time and due to consumption, the introduction
of new media objects over time, and aggregate request dis-
tributions that are Zipf-like and thus consistent with prior
studies of centralized systems.

We implemented a request generator that utilized global
popularities of videos, associating each request with a user.
The results showed that we can artificially generate a pat-
tern of requests that has a Zipf distribution by selection of
appropriate decay parameters and arbitrarily assigning ini-
tial popularity values to each video. However, the resulting
distribution is sensitive to the specific decay values used and
the scale of the simulation. While request patterns for spe-
cific media objects compared favorably with patterns seen in
empirical measurements, the empirical data exhibit a num-
ber of patterns that our model is unable to generate.

Future work is required to develop more accurate models
of request arrivals, distribution of requests over users and
request patterns from individual users for individual videos.

In particular, we intend to make the workload model more
realistic by considering viewing operations taking place in
between publishing periods and extending the specifications
of media object types (length, genre). A dynamic population
of users would also be more realistic.
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