
Oblivious Enforcement of Hidden Information
Release Policies

Brian Wongchaowart
bpw5@cs.pitt.edu

Adam J. Lee
adamlee@cs.pitt.edu

Department of Computer Science
University of Pittsburgh

210 S. Bouquet St.
Pittsburgh, PA 15260

ABSTRACT
In a computing system, sensitive data must be protected
by release policies that determine which principals are au-
thorized to access that data. In some cases, such a release
policy could refer to information about the requesting prin-
cipal that is unavailable to the information provider. Fur-
thermore, the release policy itself may contain sensitive in-
formation about the resource that it protects. In this pa-
per we describe a scheme for enforcing information release
policies whose satisfaction cannot be verified by the entity
holding the protected information, but only by the entity re-
questing this information. Not only does our scheme prevent
the information provider from learning whether the policy
was satisfied, but it also hides the information release policy
being enforced from the requesting principal. Unlike pre-
vious approaches, our construction requires no guesswork
or wasted computation on the part of the information re-
quester. The information release policies that we consider
can contain third-party assertions that themselves have re-
lease conditions that must be satisfied; we show that our sys-
tem functions correctly even when these dependencies form
cycles.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, authentication; K.6.5 [Management of Com-
puting and Information Systems]: Security and Protec-
tion—authentication

General Terms
Security

Keywords
Hidden policies, hidden credentials, distributed proof

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

1. INTRODUCTION
In this paper we consider an access control setting in which

Alice would like to obtain a secret s from Bob, but Bob
has a policy requiring that a conjunction of quoted asser-
tions made by other principals must be true before s can
be disclosed to Alice. By a “quoted assertion” we mean a
proposition of the form pi says ei, where ei is an arbitrary
expression that can be asserted by some principal pi; the
quoted assertion pi says ei is true if pi is willing to assert
ei. For example, ei may be the assertion that Alice has
some attribute (e.g., that Alice is a student), and pi may be
an authority trusted by Bob to know whether Alice does in
fact have the attribute in question (e.g., the registrar at an
accredited university).

If Bob is able to determine the truth of each proposition
pi says ei in his release policy for s, then he can decide
whether to release s to Alice without any further interac-
tion with her. But Bob’s policy may also refer to private
attributes of Alice that he is not authorized to learn about
directly from the relevant authority. In this case, Bob could
ask Alice to prove that she satisfies his policy by obtain-
ing digitally signed credentials attesting to the truth of each
quoted assertion that he cannot evaluate himself. This so-
lution may be unsatisfactory for both parties, however. On
the one hand, Bob may have to reveal parts of his policy
that he considers sensitive to Alice, as the release policy for
a secret can reveal information about the secret itself. On
the other, Alice may have to disclose the truth of quoted
assertions that she considers private to Bob.

If there were a universally trusted third party (TTP), solv-
ing this problem would be simple: Bob discloses his secret s
and its release policy p to the TTP, which queries principals
about the truth of the quoted assertions in p and releases
s to Alice if and only if p is satisfied. Alice learns nothing
about Bob’s policy aside from whether it was satisfied (un-
less she is queried by the TTP herself), Bob does not learn
whether Alice receives the secret, and no expensive cryptog-
raphy is needed. In this paper we show that a simple and
computationally efficient solution is possible even without a
TTP if Bob has a basic level of trust in the principals whose
quoted assertions his policy depends on. Specifically, Bob
must only trust these principals not to reveal their inter-
actions with Bob to Alice. In our approach, Bob does not
have to be able to learn the truth value of a quoted assertion
in his policy if Alice is allowed to do so, while Alice learns
no more about Bob’s policy than she would learn from in-

teracting with a TTP. Because Bob does not learn whether
his policy was satisfied, we say that our protocol permits the
oblivious enforcement of a hidden information release policy.

This paper is organized as follows. Section 2 develops the
intuition behind our construction, while the full protocol
details are given in Section 3. Section 4 presents a sample
run. We briefly compare our approach to related work in
Section 5, and summarize in Section 6.

2. PROTOCOL INTUITION
Our construction relies on a public-key encryption scheme

supporting a multiplicative homomorphism. In such an en-
cryption scheme, if E(m1) and E(m2) represent the encryp-
tions of messages m1 and m2 using the same public key, then
these two ciphertexts can be combined to yield E(m1 ·m2)
without knowledge of the private key required to decrypt
E(m1) and E(m2). We further require that the encryption
scheme have the property of IND-CPA security, or indis-
tinguishability of ciphertexts under chosen-plaintext attack,
which ensures that no information can be obtained about
the plaintext corresponding to a given ciphertext without
knowledge of the private key. A concrete example of an en-
cryption scheme with these properties is ElGamal encryp-
tion [5] using a group in which the decision Diffie-Hellman
(DDH) assumption [1] holds.

Suppose that a principal p0 wishes to obtain a secret s
from principal p1, but that p1 is only willing to disclose s to
p0 if certain conditions—the release policy for s—hold. We
model p1’s release policy for s as a set of quoted assertions
of the form pi says ei, where ei is any expression that can
be evaluated to a Boolean value by pi. If p1’s release policy
requires that some of these assertions must be true simulta-
neously, then each relevant ei should include the constraint
that the expression must evaluate to true throughout a time
interval long enough to ensure that the expressions are si-
multaneously true at some point in time despite any clock
differences between the principals.

Since p1 can trivially enforce the part of a release policy
that depends only on information that it can obtain from its
local knowledge, credentials provided by p0, or other princi-
pals in the system, we will assume in the following discussion
that the release policy for s can be evaluated as satisfied or
unsatisfied entirely on the basis of the truth values of quoted
assertions p2 says e2, . . . , pn says en, where p2, . . . , pn are
willing to disclose the truth values of these assertions to p0,
but not to p1. (A release policy that depends on information
available to neither p0 nor p1 cannot be evaluated without
the help of a third party.) We also assume that s can be
encoded as a short binary string of perhaps 128 bits, since
this is sufficient for a symmetric key that can be used by p0
to decrypt additional data or as proof of authorization.

Given these assumptions, p1 can ask each pi ∈ {p2, . . . , pn}
to evaluate the corresponding expression ei from p1’s release
policy. This expression may involve information that pi is
willing to reveal to p0, but not to p1. In order to assert the
truth of the expression ei, pi encrypts the value 1 for p0’s
public key using an IND-CPA-secure homomorphic encryp-
tion scheme and returns the ciphertext to p1; otherwise, pi
encrypts a random value and returns the resulting cipher-
text. These ciphertexts reveal no information at all to p1
because of the IND-CPA security of the encryption scheme.

Now p1 encrypts the secret s using p0’s public key, homo-
morphically combines the encryption of s with each of the

ciphertexts received from p2, . . . , pn, and finally sends the
combined ciphertext to p0. If the quoted assertions p2 says
e2, . . . , pn says en from p1’s release policy were all true,
then p0 receives the encryption of s, since homomorphically
combining the encryption of s with the encryption of 1 has
no effect. Otherwise, one of the ciphertexts that p1 received
from p2, . . . , pn must have been the encryption of a ran-
dom value, so p0 receives the encryption of s multiplied by
a random value, which contains no more information than
the random value. In either case, p0 learns nothing about
the structure of p1’s policy or the fact that p2, . . . , pn were
involved in enforcing it, since p0 always receives a single ci-
phertext from p1. If p0 fails to obtain s by decrypting the
ciphertext, then this fact may simply indicate that p1 deter-
mined that the release policy for s was unsatisfied based on
p1’s local knowledge. In the following section, we describe
this solution in more detail, including how p2, . . . , pn can
enforce release policies of their own on the truth values of
the assertions that they evaluate.

3. PROTOCOL DETAILS
Let M denote the message space of the IND-CPA-secure

homomorphic encryption scheme, Epi(m) denote the en-
cryption of message m using principal pi’s public key, and
Epi(m1)⊗Epi(m2) = Epi(m1 ·m2) denote the homomorphic
combination of two ciphertexts encrypted using pi’s public
key. We will assume that principals can obtain one another’s
public keys and that all communication takes place over se-
cure and authenticated channels. As before, we use p0 to
denote the principal who wishes to obtain a secret s1 ∈ M
and p1 to denote the principal in possession of this secret.

3.1 Core Protocol
The secret requester p0 first sends a message to p1 ask-

ing for its secret s1, along with a newly generated globally
unique session identifier sid. Upon receiving this request, p1
contacts each principal pi listed in its release policy for s1
and asks it to evaluate the corresponding assertion ei. The
session identifier sid generated by p0 is passed along with
this request. At this point, p1 may replace s1 with a ran-
dom value if p1 decides that p0 is not authorized to receive
s1 based on information available to p1.

Each principal pi contacted by p1 selects a local secret si
based on the result of evaluating ei. If ei is true and pi is
(conditionally) willing to disclose this to p0 via p1, then si
is set to 1; otherwise, si is an element of the message space
M chosen uniformly at random. If pi is willing to uncondi-
tionally reveal si to p0, then pi simply returns Ep0(si) to p1.
Otherwise, pi can make the disclosure of the truth value of ei
contingent upon the truth of a set of quoted assertions of the
same form as p1’s release policy for s1 by homomorphically
combining Ep0(si) with additional ciphertexts as described
below. In either case, p1 homomorphically combines the ci-
phertext returned by each pi with Ep0(s1), the encryption of
the secret requested by p0, and returns the final ciphertext
to p0.

It may initially seem as though any principal pi contacted
by p1 can enforce its release policy for si in exactly the same
manner as p1 enforces its release policy for s1. This is almost
the case, but a problem arises when the release policies of
several principals create a cycle of quoted assertions in which
the disclosure of each assertion depends on the disclosure of
another assertion in the cycle. The purpose of the session

identifier passed along with each request is to enable princi-
pals to detect and break such cycles.

3.2 Policy Cycle Resolution
The basic idea of the algorithm that we will present below

is that when a requesting principal pr contacts a principal
pi to ask about some assertion ei, pi must ensure that the
ciphertext that is returned to pr is the encryption of a ran-
dom value if any quoted assertion pj says ej in pi’s release
policy for the truth value of ei is false. If pi always waits for
pj to return a ciphertext corresponding to the truth value of
ej before pi returns an answer to pr, however, a policy cycle
will cause a deadlock.

Our solution is for pi to provisionally act as though the re-
quired ciphertext cj from pj was the encryption of a random
value if a request for cj was previously sent in the current
session but no reply has yet been received. That is, pi homo-
morphically combines the ciphertext ci that it will return to
the requesting principal pr with the encryption of a newly
generated random value. When the real response cj from
pj is eventually received, a number of these random values,
r1, r2, . . . , rn, may have been used, but pi can undo the effect
of r1, r2, . . . , rn by computing (r1r2 · · · rn)−1 and homomor-
phically combining the encryption of this quantity with cj .
Since every ciphertext encrypted for p0 in a session is even-
tually combined into a single ciphertext, (r1r2 · · · rn)−1 will
cancel out r1r2 · · · rn in the final ciphertext received by p0.

Specifically, each principal pi maintains a product table
indexed by the name of a principal, an assertion, and a ses-
sion identifier. The product r1r2 · · · rn of all the random
values that pi generates while waiting for an answer from pj
concerning assertion ej in session sid is stored in table entry
product[pj , ej , sid] and pj ’s answer cj is combined with the
encryption of product[pj , ej , sid]−1 when cj becomes avail-
able. Upon receiving a query concerning ei from a request-
ing principal pr in a session initiated by p0 and identified by
sid, pi initializes the ciphertext ci that will be returned to pr
with Ep0(si), where si = 1 if ei is true and pi is (condition-
ally) willing to disclose this to p0 via pr, and si is a freshly
chosen random element of the message space M otherwise.
Then pi consults its release policy for disclosing the truth
value of ei to p0 via principal pr to obtain a list of quoted
assertions of the form pj says ej . For each assertion pj says
ej in this list, there are now two possible cases:

• If pi is not currently waiting for a reply from pj about
ej in the current session, then pi queries pj about ej
(also sending the session identifier sid) and assigns 1
to product[pj , ej , sid]. When pj eventually replies with
a ciphertext cj , pi homomorphically combines both cj
and the encryption of product[pj , ej , sid]−1 with the
ciphertext ci that will be returned to pr: ci ← ci ⊗
cj ⊗ Ep0(product[pj , ej , sid]−1).

• If pi has previously contacted pj about ej but has not
yet received a reply (possibly because this is the sec-
ond time around a cycle of quoted assertions), then
pi chooses a random element r from M and multi-
plies product[pj , ej , sid] by r: product[pj , ej , sid] ←
product[pj , ej , sid] · r. Then pi homomorphically com-
bines the encryption of r with the ciphertext ci that
will be returned to pr: ci ← ci ⊗ Ep0(r).

Finally, pi returns the resulting ciphertext ci to pr.

While pi may be tempted to cache a ciphertext cj received
from principal pj so that pi will never need to query pj more
than once about any assertion within a single session, this is
inadvisable because the same random value would be reused
multiple times if cj was the encryption of a randomly chosen
element of the message space. That is, reusing cj would
not be indistinguishable from using a fresh element of the
message space chosen uniformly at random.

4. AN EXAMPLE
Suppose that Alice is a reporter who has heard a rumor

about a certain government agency. She asks Bob, who
works at this agency, whether the rumor is true (this is Bob’s
secret sB). Bob is willing to tell sB to Alice if his superior
Carol says that it is all right (Carol says eC). Carol is not
willing to say that it is all right unless David also approves
(David says eD), while David is not willing to say that it
is all right unless Carol approves (Carol says eC). Suppose
that Carol and David both approve of Bob telling Alice the
secret, so eC and eD are true.

In our protocol, Alice first contacts Bob, who contacts
Carol, which causes Carol to contact David, who then con-
tacts Carol again. At this point the chain ends, since Carol
has already contacted David concerning eD in the current
session. The ciphertexts passed back up the chain from
Carol to Alice are shown in Figure 1. At the end of the
chain, Carol has not yet received a reply from David con-
cerning eD, so she chooses a random element r fromM and
sets product[David, eD, sid] ← r. The encryption of r is
combined with the encryption of Carol’s secret sC (which
is 1, since eC is true), and the resulting ciphertext is then
returned to David. At this stage Carol has revealed no in-
formation about her secret value sC , since it is completely
obscured by multiplication with the random value r.

Upon receiving EAlice(rsC) from Carol, David combines it
with the encryption of his secret sD (which is also 1 in this
case, because eD is true) and passes the resulting ciphertext
up the chain to Carol. While David does not know that this
ciphertext contains the random factor r, he can assume that
it contains the factor sC , which would be a random value
that conceals David’s secret sD unless eC is true. Upon re-
ceiving the combined ciphertext from David, Carol cancels
out the random factor r that she added earlier by combin-
ing EAlice(rsCsD) with EAlice(product[David, eD, sid]−1) =
EAlice(r

−1). Carol also multiplies the combined secret by sC
for a second time, but this has no effect since sC = 1 (if eC
were false, then Carol would use a new random value for sC
each time she is queried about eC). Although r has now been
removed from the ciphertext, Carol’s secret sC is protected
by the inclusion of the factor sD. When Bob receives the
combined ciphertext from Carol, he contributes sB , yield-
ing EAlice(rr

−1sBs
2
CsD). Since rr−1 = 1 and s2CsD = 1,

Bob’s response to Alice is just EAlice(sB). Thus Alice has
no reason to believe that Bob has consulted anyone about
releasing his secret value sB .

5. RELATED WORK
Hidden credentials [7, 2], oblivious signature-based enve-

lope (OSBE) [9], and multiauthority attribute-based encryp-
tion [3, 4] are cryptographic mechanisms that allow a mes-
sage to be protected by a release policy whose satisfaction is
verified by the recipient of the message. In hidden creden-

Alice Bob Carol David

Confirm rumor?
Tell Alice?

Tell Alice?

Tell Alice?

EAlice(rsC)

EAlice(rsCsD)
EAlice(rr

−1s2CsD)
EAlice(rr

−1sBs
2
CsD)

Figure 1: Queries and replies in the example of Section 4.

tials and OSBE, a message is encrypted in such a way that
only a recipient who possesses certain digital credentials can
decrypt the message. The identity of the intended recipient
needs to be known to the message sender when this infor-
mation is included in the recipient’s digital credentials, as is
usually the case. In multiauthority attribute-based encryp-
tion, a ciphertext is associated with a set of attributes such
that any user who has been issued decryption keys (possibly
by different authorities) that correspond to a satisfying set
of attributes can decrypt the message. Thus no knowledge
of the identities of potential recipients is needed at the time
of message encryption. Unlike our work, however, in all of
these schemes decrypting the message implies knowledge of
at least one way of satisfying the sender’s release policy.

Protocols based on scrambled circuit evaluation can be
used to allow an information provider to keep a release policy
partially hidden even when a message recipient satisfies the
provider’s policy. The three schemes of progressively greater
complexity presented in [6] respectively reveal a superset of
the attributes in the policy, the number of attributes in the
policy that are satisfied, and an upper bound on the total
number of attributes in the policy. Nevertheless, these “hid-
den policies with hidden credentials” protocols still require
the message recipient to supply a set of credentials that po-
tentially satisfies the unknown policy. In our system, the
issuers of the credentials would be contacted directly by the
information provider without any participation from the re-
cipient; the trade-off, of course, is that partial information
about the policy is revealed to the credential issuers.

Our work is also related to the notion of confidentiality-
preserving distributed proof introduced in [8], which allows
information providers to place release conditions that are
verified by the querier on facts used in distributed inference.
On the one hand, these release conditions need to be known
to the querier, unlike the hidden dependencies in our pro-
tocol, but on the other, information providers communicate
only with the querier and not with one another, which hides
the source of dependency relationships from the providers of
facts that satisfy those dependencies.

6. CONCLUSION
In this paper we have described a scheme for enforcing in-

formation release policies whose satisfaction cannot be veri-
fied by the principal holding the protected information, but
only by the principal requesting this information. Our con-
struction hides the information release policy being enforced

from the requesting principal and at the same time hides
whether the release policy was satisfied from the information
provider. The quoted assertions in the information release
policy can themselves have release conditions that must be
satisfied and our system functions correctly even when these
dependencies form cycles.

Acknowledgments
This research was supported by the National Science Foun-
dation under grant number CCF–0916015.

7. REFERENCES
[1] D. Boneh. The decision Diffie-Hellman problem. In

Proceedings of the Third International Symposium on
Algorithmic Number Theory, pages 48–63, 1998.

[2] R. W. Bradshaw, J. E. Holt, and K. E. Seamons.
Concealing complex policies with hidden credentials. In
Proceedings of the 11th ACM Conference on Computer
and Communications Security, pages 146–157, 2004.

[3] M. Chase. Multi-authority attribute based encryption.
In Proceedings of the Fourth Theory of Cryptography
Conference, pages 515–534, 2007.

[4] M. Chase and S. S. M. Chow. Improving privacy and
security in multi-authority attribute-based encryption.
In Proceedings of the 16th ACM Conference on
Computer and Communications Security, pages
121–130, 2009.

[5] T. ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472,
1985.

[6] K. Frikken, M. Atallah, and J. Li. Attribute-based
access control with hidden policies and hidden
credentials. IEEE Transactions on Computers,
55(10):1259–1270, 2006.

[7] J. E. Holt, R. W. Bradshaw, K. E. Seamons, and
H. Orman. Hidden credentials. In Proceedings of the
2003 ACM Workshop on Privacy in the Electronic
Society, pages 1–8, 2003.

[8] A. J. Lee, K. Minami, and N. Borisov.
Confidentiality-preserving distributed proofs of
conjunctive queries. In Proceedings of the Fourth ACM
Symposium on Information, Computer, and
Communications Security, pages 287–297, 2009.

[9] N. Li, W. Du, and D. Boneh. Oblivious signature-based
envelope. Distributed Computing, 17(4):293–302, 2005.

