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ABSTRACT

In developing automated systems to recognize the emotional
content of music, we are faced with a problem spanning two
disparate domains: the space of human emotions and the
acoustic signal of music. To address this problem, we must
develop models for both data collected from humans de-
scribing their perceptions of musical mood and quantitative
features derived from the audio signal. In previous work,
we have presented a collaborative game, MoodSwings, which
records dynamic (per-second) mood ratings from multiple
players within the two-dimensional Arousal-Valence repre-
sentation of emotion. Using this data, we present a system
linking models of acoustic features and human data to pro-
vide estimates of the emotional content of music according to
the arousal-valence space. Furthermore, in keeping with the
dynamic nature of musical mood we demonstrate the poten-
tial of this approach to track the emotional changes in a song
over time. We investigate the utility of a range of acous-
tic features based on psychoacoustic and music-theoretic
representations of the audio for this application. Finally,
a simplified version of our system is re-incorporated into
MoodSwings as a simulated partner for single-players, pro-
viding a potential platform for furthering perceptual studies
and modeling of musical mood.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
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1. INTRODUCTION

The training of supervised machine learning systems for
determining the emotional content in music necessarily re-
quires human-labeled “ground truth” observations, but the
task often lacks a singular well-defined answer. A variety of
factors contribute to a person’s perception of musical mood,
and there is bound to be some variation and disagreement
between user ratings of the same content. Inspired by other
“games with a purpose”, we created MoodSwings [1] to col-
lect second-by-second labels of music clips using the well-
known Arousal-Valence (A-V) space representation of emo-
tions, where valence reflects positive vs. negative emotions
and arousal indicates emotional intensity [2]. The game
was designed specifically to capture data reflecting the time-
varying nature of musical mood and also to collect a distri-
bution of labels across multiple players for a given song or
even a moment within a song.

Because of the time-varying nature of music, developing
systems to automatically organize an entire song or clip us-
ing a single mood label, as in prior approaches [3, 4, 5, 6, 7],
undoubtedly leads to imprecise classifications. Using initial
data collected by MoodSwings, it is instead our ultimate goal
to track the emotional content of music over time. In order
to take full advantage of the A-V space, we formulate our
problem as a regression; developing a functional mapping
from high-dimensional acoustic features to emotion space
coordinates. This mapping is first implemented as a least-
squares regression and later improved using support vector
regression (SVR). We first demonstrate preliminary results
of our system in tracking the emotional content of music
over short time windows, and later implement a simplified
system to be used as a simulated player “Al” for single-player
MoodSwings games.

In searching for the most informative features for mood
detection, no single dominant feature (e.g., loudness, tim-
bre, and harmony all play some role) has yet emerged [8].
In our experiments, we also investigated multiple sets of
acoustic features for each task, including psychoacoustic
(mel-cepstrum and statistical frequency spectrum descrip-
tors) and music-theoretic (estimated pitch chroma) repre-
sentations of the labeled audio.

2. BACKGROUND

The general approach to implementing automatic mood
detection from audio has been to use supervised machine
learning to train statistical models based on acoustic fea-
tures. Li and Ogihara [3] used acoustic features related
to timbre, rhythm, and pitch to train support vector ma-



chines (SVMs) to classify music into 13 mood categories.
Using a hand-labeled library of 499 music clips (30-seconds
each), they achieved an accuracy of ~45%, with 50% of the
database used for training and testing, respectively.

Lu, Liu, and Zhang [4] pursued mood detection and track-
ing (following dynamic mood changes during a song) using
a variety of acoustic features related to intensity, timbre,
and rhythm. Their classifier used Gaussian Mixture Models
(GMMs) for Thayer’s four principal mood quadrants in the
valence-arousal representation. The system was trained us-
ing a set of 800 classical music clips (from a data set of 250
pieces), each 20 seconds in duration, hand labeled to one
of the 4 quadrants. Their system achieved an accuracy of
~85% when trained on 75% of the clips and tested on the
remaining 25%.

Xiao, Dellandrea, Dou, and Chen [5] investigated the op-
timal segment length for mood classification, using the same
classification scheme as [4]. Using 60 unique classical pieces,
each piece is broken down into segments of length 4s, 8s, 16s,
and 32s, and labeled by two reviewers. They found that their
system reached its peak classification performance when 16s
clips were used in both the training and testing, achieving a
classification performance of 88.46%.

In 2007, the Music Information Research Evaluation eX-
change (MIREX) first included a “beta” task on audio music
mood classification with 8 systems submitted. The audio
clips used for this task were assigned to one of 5 mood
clusters, aggregated from mood labels (adjectives) taken
from the All Music Guide. Using 600 30-second hand-
labeled clips, the clips were selected to be distributed equally
among the 5 mood clusters that were used in the evaluations.
All participants performed reasonably well (far higher than
chance) with the highest performing system achieving cor-
rect classifications slightly over 60% of the time [9]. It should
be noted that several of the systems were primarily designed
for the genre classification task, but were also appropriated
to the mood classification task [6].

Most similar to our work, Yang, Lin, Su, and Chen
[7] introduced the use of regression for mapping of high-
dimensional acoustic features to the A-V space. Support
vector regression [10], as well as variety of boosting algo-
rithms including AdaBoost.RT [11], are applied to solve the
regression problem. The ground-truth A-V labels were col-
lected by recruiting 253 college students to annotate the
data, and only one label was collected per clip in their study.
The work is primarily focused on the regression methods
themselves as opposed to acoustic feature selection and anal-
ysis. The feature set used consists of 114 dimensions com-
puted using publicly available extraction tools, which were
then reduced to a tractable number of dimensions using prin-
cipal component analysis (PCA).

3. GROUND TRUTH DATA COLLECTION

As discussed in [1], traditional methods for collecting per-
ceived mood labels, such as the soliciting and hiring of hu-
man subjects, can be flawed. MoodSwings is a game for on-
line collaborative annotation based on the two-dimensional
arousal-valence model. In the game, players position their
cursor within the A-V space while competing (and collabo-
rating) with a partner player to correctly annotate five 30-
second music clips. Glimpses of the partner’s position are
provided every three seconds and scoring is based on the
amount of overlap between the players’ cursors, which en-
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courages consensus and discourages nonsensical labeling. As
an additional incentive for proactive and independent label-
ing, bonus points are awarded to the player who first reaches
a particular location, making it impossible to out-score an
opponent by simply following their cursor.
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Figure 1: The MoodSwings gameboard.

3.1 Summary of Data Collection

The song clips used in MoodSwings are drawn from the
uspop2002 database [12], and overall we have collected over
100,000 individual A-V labels spanning more than 1,000
songs. Since the database consists entirely of popular music,
the labels collected thus far display an expected bias towards
high-valence and high-arousal values. Although inclusion of
this bias could be useful for optimizing classification per-
formance, it is not as helpful for learning a mapping from
acoustic features that provides coverage of the entire emo-
tion space. Because of this trend, we developed a reduced
dataset consisting of 15-second music clips from 240 songs
selected, via labels collected through the game, to approxi-
mate an even distribution across the four primary quadrants
of the A-V space. These clips were subjected to intense fo-
cus within the game in order to form a corpus, referred to
here as MoodSwings Lite, with significantly more labels per
song clip.

Although we used the MoodSwings Lite corpus as the
basis for classification, the original (uniform) distribution
across the quadrants shifted slightly as more labels were
collected for each individual clip. The final distribution of
“ground truth” class labels is given in Table 1.

Class No. | Arousal | Valence | No. of Examples

1 high high 72
2 low high 51
3 low low 56
4 high low 61

Table 1: Quadrant-based class assignments of all
MoodSwings Lite music clips.



4. ACOUSTIC FEATURE COLLECTION

As previously stated, there is no single dominant feature,
but rather many that play a role (e.g., loudness, timbre, har-
mony) in determining the emotional content of music. Since
our experiments focus on the tracking of emotion over time,
we chose to focus on solely on time-varying features. Our
collection contains many features that are popular in music
information retrieval and speech processing encompassing
both psychoacoustic as well as music-theoretic representa-
tions.

4.1 Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCCs) are among
the most widely used acoustic features in speech and audio
processing. MFCCs are essentially a low-dimensional repre-
sentation of the spectrum warped according to the mel-scale,
which reflects the nonlinear frequency sensitivity of the hu-
man auditory system [13].

4.2 Chroma

The chromagram is a well-established method for esti-
mating the western pitch class components within a short
time-interval [14]. It is essentially a circular version of the
logarithmically warped spectrogram, where the frequencies
corresponding to chroma in different octaves are grouped to-
gether and summed to estimate the energy at each of the 12
pitch classes. Using this feature, it is sometimes possible to
obtain an indication of the overall musical key and modality.

4.3 Statistical Spectrum Descriptors (SSD)

In music and audio processing, statistical spectrum de-
scriptors are often related to timbral texture [15]. For each
spectral shape function, we begin by dividing the data into
short-overlapping segments, applying a Hanning window,
and computing the magnitude DFT. A short explanation
of each of the SSD features can be seen in Table 2.

Feature | Description

Centroid | The weighted-average (center of mass)
of the spectrum

Flux The Euclidean distance between succes-
sive spectral frames

Rolloff The frequency beneath which a given
proportion of the total spectral energy
lies, typically 85%

Flatness | Quantifies how close the spectral distri-
bution is to uniform (white)

Table 2: Description of spectral shape features.

4.4 Octave-Based Spectral Contrast

Many spectral features perform some averaging of the
spectral distribution, which results in a loss of spectral infor-
mation (note that two different spectra can yield very similar
results for many spectral shape features). Spectral contrast
features provide a rough representation of the harmonic con-
tent in the frequency domain based upon the identification
of peaks and valleys in the spectrum, separated into different
frequency sub-bands [16].
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S. EXPERIMENTS AND RESULTS

In order to properly make the case for regression meth-
ods, we first investigated the use of classification techniques
involving discrete emotion classes based upon the four quad-
rants of the A-V space. We next investigated the emotion
regression of the same clips using traditional least-squares
regression as well as support vector regression (SVR). For
both classification and regression, we averaged feature di-
mensions across all frames of a given 15-second music clip,
thus representing each clip with a single vector of features.
Although this is a significant reduction, it provides a con-
sistent representation that facilitates direct comparisons be-
tween the various classification and regression methods.

Since it is our ultimate goal to track the emotional con-
tent over time, higher-order statistics of the features become
less and less meaningful as we shorten the window length.
In emotion tracking we investigated regression performance
at shorter window lengths to develop a system that we ul-
timately implemented back into MoodSwings as the second
player “Al” for single player games.

In all experiments, classification and regression, we di-
vided the MoodSwings Lite corpus 70%/30% between train-
ing and testing samples. To avoid the “album-effect” [17, 18],
we ensured that any songs that were recorded on the same
album were either placed entirely in the training or test-
ing set. Additionally, each experiment was subject to over
50 cross-validations, varying the distribution of training and
testing data sets.

5.1 C(lassification

Support vector machines (SVMs) were chosen as our pri-
mary classification method, based upon their past successful
application to similar music classification tasks (e.g., artist
and genre classification) [19]. Using kernel methods, SVMs
can be used to construct non-linear decision boundaries and
have proven to be robust to some types of noise [20, 21, 22].
Given the binary nature of the SVM, to solve our four-class
problem we implemented four one-versus-all SVMs, choos-
ing the binary classifier providing the highest confidence as
the class estimate.

Shown in Table 3 are the 4-way classification results using
the individual acoustic feature sets, as well as stacking all
features and stacking only MFCCs and spectral contrast. As
there is no single dominant feature for emotion classification,
it is expected that a method which fuses multiple features
is necessary to obtain higher performance.

Feature Type |

MFCC

Chromagram

Spectral Shape

Spectral Contrast

All Features Stacked

MFCC & Spec. Contrast Stacked

Accuracy

47.74 + 5.31%
38.97 + 5.60%
36.99 + 4.79%
48.67 + 6.10%
38.24 + 4.60%
50.18 +4.18%

Table 3: Results for four-way mood classification.

In dividing the data into discrete classes, clips for which
A-V labels are in fact quite similar may be categorized into
completely different classes. Such severe quantization of es-
sentially continuous label data is likely the primary factor
resulting in generally poor 4-way classification performance.



Collected Labels vs Labels Projected From Features
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Figure 2: Collected A-V labels and projections resulting from regression analysis. A-V labels: second-by-
second labels per song (gray e), i of collected labels (red e), o of collected labels (red ellipse). Projections:
least-squares spectral contrast projection (green +), least-squares MFCC projection (magenta ¢), SVR spec-
tral contrast projection (blue O), and SVR MFCC projection (black X).

5.2 Regression

Given the continuous nature of the collected A-V la-
bels and the myriad problems produced by discrete emo-
tional classes, we investigated multiple regression methods
for mapping acoustic features into the A-V space. We start
by performing regression on the same 15-second clips, but
then move to regression over time, investigating multiple
window lengths for optimal performance, and finally inte-
grate a regression system back into MoodSwings as the sec-
ond player “Al”.

As with classification, we implement supervised methods
for our regression, using least-squares and support vector
regression (SVR) [10] methods to create optimal projections
from mean acoustic features to mean A-V values. There
are many possible methods for evaluating regression per-
formance. Our primary performance metric is the average
Euclidean distance between the projected coordinates and
the collected A-V labels, as a normalized percentage of the
A-V space. To benchmark the significance of the regres-
sion results, we compared the projections to those of an es-
sentially random baseline. Given a trained regressor and a
set of labeled testing examples, we first determined an A-V
prediction for each sample. The resulting distance to the
corresponding A-V label was compared to that of another
randomly selected A-V label from the test set. Comparing
these cases over 50 cross-validations, we computed Student’s
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T-test for paired samples to verify the statistical significance
of our results.

5.2.1 Feature Selection

Without the need for forcing the data into discrete classes,
we achieve qualitatively higher performance. For single fea-
ture sets, regression using least-squares regression and spec-
tral contrast features results in the smallest average devia-
tion (14.90%) from the mean labels of the test samples. The
corresponding T-test value for this case (5.28), given the de-
grees of freedom (72 test data samples), provides >99.9%
confidence of statistical significance.

Support vector regression using single acoustic features
results in a smaller average deviation in almost all cases,
with the highest performance (lowest average distance) using
MFCCs. Again, the T-test indicates very high confidence of
statistical significance.

The primary advantage of regression over classification is
for A-V labels close to an axis, where a very accurate regres-
sion projection can still lead to a misclassification, according
to the discrete class labels. Shown in Figure 2 is the pro-
jection of six 15-second clips into the arousal-valence space
resulting from multiple regression methods and acoustic fea-
tures. The performance of the regression can be evaluated
both in terms of the distance from the mean of the col-
lected labels and also whether or not the regression label



Least-Squares Regression

Feature | Avg. Distance | Avg. Rand. Dist. | T-test
MFCC 0.158 4+ 0.008 0.232 +0.015 4.271
Chroma 0.197 + 0.009 0.207 £+ 0.010 0.591
S. Shape 0.163 + 0.009 0.222 +0.011 3.557
S. Contrast 0.149 +0.010 0.238 £ 0.014 5.280
All Feat. Stacked 0.154 + 0.008 0.256 + 0.015 5.796
MFCC & S.C. 0.159 4+ 0.008 0.248 + 0.015 5.116
Support Vector Regression
MFCC 0.138 +£ 0.007 0.235+0.014 5.538
Chroma 0.178 + 0.009 0.213 +0.012 2.149
S. Shape 0.170 £ 0.010 0.231 +£0.014 3.422
S. Contrast 0.146 4+ 0.009 0.231 £+ 0.016 5.028
All Feat. Stacked 0.169 4+ 0.008 0.237 +0.015 3.723
MFCC & S.C. 0.141 + 0.007 0.241 +0.013 5.629

Table 4: Regression results for individual sets of
acoustic features.

falls within the first standard deviation of the labels (shown
as an ellipse).

5.2.2  Multi-level Regression

While most individual features perform reasonably in
mapping to A-V coordinates, a method for combining in-
formation from these domains (more informed than simply
concatenating the features) could potentially lead to higher
performance. We implemented a two-level regression scheme
by feeding the outputs of individual regressors, each trained
using distinct features, into a second-stage regressor deter-
mining the final prediction. We investigated two topologies:
in one case the secondary arousal and valence regressors re-
ceive only arousal and valence estimates, respectively; in the
second case the secondary arousal and valence regressors re-
ceive both arousal and valence estimates from the first-stage.
We will refer to these two topologies as multi-level separate
and multi-level combined.

In all cases the secondary regressors employ linear least-
squares and are trained using a leave-one-out method (on
each iteration we train the first-stage regressors leaving one
example out and use the estimates of that example from the
first stage to train the second stage). The results for both
cases are shown in Table 5.

Least-Squares Regression
Topology | Avg. Distance | Avg. Rand. Dist. | T-test

Seperate 0.144 + 0.006 0.233 + 0.016 5.246
Combined | 0.144 + 0.006 0.232 £ 0.013 5.317
Support Vector Regression
Seperate 0.138 4+ 0.006 0.235 4+ 0.014 5.451
Combined | 0.137 + 0.005 0.213 £ 0.012 5.896

Table 5: Multi-layer regression results.

5.2.3 Emotion Tracking Over Time

Although the projection from acoustic features to A-V
coordinates is quite promising, the ultimate goal of our re-
search is to be able to track the changes of emotion within
music over time. Shown in Figure 3 is the performance of
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spectral contrast regression for varying window lengths. It
can be seen that it is possible to obtain the short-time infor-
mation with only minimal loss in individual frame accuracy.

Performance for Different Window Lengths
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Figure 3: Performance data for varying window
lengths.

Using these shorter window lengths we sought to imple-
ment our regression system to track the emotional changes
within our clips over time. Shown in Figure 4 are the pro-
jections of three clips of audio obtained using only spectral
contrast features and our most most simple (least-squares)
regression technique. In this example, each clip has been
broken down into three five second examples. Each individ-
ual label, which is shown as a dot, gets darker over time to
show the overall emotional shift of the song. Of each five-
second segment, we compute the mean as our ground truth
and display that as a red X. Using our trained emotion re-
gressor, we use the acoustic features from the five second
chunks and project the predicted A-V position over time as
well (blue O). As we continue to expand the label collec-
tion and pursue more intelligent feature fusion methods for
regression, we are working towards the goal of accurately re-
flecting changing emotions within any song on a short-time
basis.

5.2.4 MoodSwings “Al”

To further test our system, and to obtain additional hu-
man feedback, we have incorporated a simplified version of
our regression into MoodSwings to compensate for one of
our most major issues with the game-that oftentimes no
human partners are available online. Single-player games
can be played using “partner” labels recorded from a prior
game, but this eliminates songs for which annotations have
not been previously recorded. Our previous solution was
to intersperse use of an “Al” opponent that generates ran-
dom labels centered around the player’s position, which is
relatively easy to detect and can be highly frustrating for
a player. In our new solution, we implement our regres-
sion system limiting ourselves to only simple least-squares
regression and spectral contrast features. During gameplay,
we provide the second player’s annotations at one-second in-
tervals, which are projected from only the average spectral
contrast over a two-second window. The “Al” is available for
demo on the web anytime using MoodSwings Single Player*
(SP), a limited version of the game which only uses the “AI”
as the secondary player.

6. DISCUSSION AND FUTURE WORK

In working with a continuously labeled space such as A-
V it is clear that regression provides a more informative

"MoodSwings SP: http://music.ece.drexel.edu/mssp
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Figure 4: A-V labels and projections over time for
three example 15-second music clips (markers be-
come darker as time advances): second-by-second
labels per song (gray e), mean of the collected la-
bels over 5-second intervals (red X), and projection
from acoustic features in 5-second intervals (blue O).

result over classification that is less sensitive to small vari-
ations (e.g., near the quadrant boundaries). In examining
acoustic features for classification and regression, spectral
contrast and MFCCs consistently provided the best perfor-
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mance across the classification and regression tasks, while
spectral shape and chroma did not perform to expectations.
MFCCs and spectral contrast capture different aspects of
frequency-domain variation, so it is somewhat surprising
that the combination of the two features improved classi-
fication but not regression performance. This is likely due
to the “curse of dimensionality” (exponentially more data is
required to fill a volume in feature space as more dimen-
sions are added). Thus, adding feature dimensions, rather
than leading to more informed decisions, could have hin-
dered overall performance. The relative scaling of different
features also presents problems, since variations in magni-
tudes may lead to artificially inflated or reduced contribu-
tions from particular features.

The regression results are quite promising, even using the
most elementary techniques (least-squares). In order to im-
prove our regression system, we plan to continue pursuing
techniques to appropriately combine information from mul-
tiple acoustic features for audio mood estimation. That is,
instead of choosing a subset of features or performing dimen-
sionality reduction (e.g., principal components analysis) on
a combined feature set, we train a separate system for each
feature set and use ensemble methods to determine the rel-
ative contribution of each single-feature system to improve
overall performance. In addition to (or in place of) multi-
level regression, feature fusion methods could be used to
combine information spaces. For example, the residual er-
ror of the trained regressors could be used as a measure of
the confidence of each projection, which could weight higher
and lower performing feature projections accordingly.

The collection of accurate labels is clearly a crucial com-
ponent for developing systems to organize music by emo-
tion. We believe that these experiments demonstrate the
MoodSwings game to be a powerful tool for such data col-
lection, turning the labeling process into a fun activity, and
capturing information reflecting the time-varying nature of
musical mood. We believe that the performance of the cur-
rent regression system could be believable as an anonymous
“human” partner, and greatly improves our ability to collect
additional data when a secondary partner is not available.
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