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ABSTRACT
This paper proposes a major shift in the decoding of proba-
bilistic Tardos traitor tracing code. The goal of the decoder
is to accuse colluders but it ignores how they have been mix-
ing their copies in order to forge the pirated content. As orig-
inally proposed by Tardos, so far proposed decoders are ag-
nostic and their performances are stable with respect to this
unknown collusion attack. However, this stability automat-
ically leads to non-optimality from a detection theory per-
spective. This is the reason why this paper proposes to esti-
mate the collusion attack in order to approximate the opti-
mal matched decoder. This is done iteratively thanks to the
application of the well-known Expectation-Maximization al-
gorithm. We have dropped the stability: the power of our
decoding algorithm deeply depends on the collusion attack.
Some attacks are worse than others. However, even for the
worst collusion channel, our decoder performs better than
the original Tardos decoding.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Information flow
controls

General Terms
Algorithms

Keywords
Traitor tracing, fingerprinting, collusion, iterative decoding,
Expectation-Maximization

1. INTRODUCTION
This article deals with traitor tracing which is also known

as active fingerprinting, content serialization, user forensics
or transactional watermarking. The typical application is
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as follows: A video on demand server distributes personal
copies of the same content to n buyers. Some are dishon-
est users whose goal is to illegally redistribute a pirate copy.
The rights holder is interested in identifying these dishonest
users. For this purpose, a unique user identifier consisting
on a sequence of m symbols is embedded in each video con-
tent thanks to a watermarking technique, thus producing n
different (although perceptually similar) copies. This allows
tracing back which user has illegally redistributed his copy.
However, there might be a collusion of c dishonest users,
c > 1. This collusion mixes their copies in order to forge a
pirated content which contains none of the identifiers but a
mixture of them.

The traitor tracing code invented by Gabor Tardos in 2003
[12] becomes more and more popular. The reader will find a
pedagogical review of this code in [6]. This code is a prob-
abilistic weak fingerprinting code, where the probability of
accusing an innocent is not null but very low. The decoding
of this code is focused, in the sense that it states whether
or not a given user is guilty. Its performances are usually
evaluated in terms of the probability ǫ1 of accusing an in-
nocent and the probability of missing all colluders ǫ2. Most
of the articles dealing with the Tardos code aim at finding
a tight lower bound of the required length of the code for a
given ǫ1 [11, 2]. Other works propose more practical imple-
mentations of the Tardos code such as [10]. A recent trend
is to analyze this code from the information theory view-
point, and to tune the parameter (namely the time sharing
distribution f(p)) at the code generation side to maximize
the achievable rate, ie. to achieve capacity [1, 9].

In this paper, we study the other end of the chain: the
accusation side. We are concerned with decoding of, in gen-
eral, probabilistic traitor tracing codes, and in particular,
those originally proposed by G. Tardos. The decoding al-
gorithms proposed by Tardos and Skoric [12, 11] pose the
remarkable property of providing stable performance inde-
pendently of the collusion channel, provided that the latter
fulfills the so-called“marking assumption” [3]. We called this
rationale the “agnostic” decoding strategy since it does not
use any information about the collusion channel. Its main
advantage is that the bound on the minimal code length
holds whatever the collusion attack. However, this decoding
strategy suffers from three drawbacks.

First, this agnostic decoding strategy has a too strong cou-
pling between the accusation algorithm and the code gener-
ation, since it was designed for an specific f(p). However,
some recent works [1] have shown, from a game-theoretic
viewpoint, that the optimal time sharing distribution f(p)



is strongly dependent on the number of colluders and may
significantly deviate from the f(p) originally proposed by
Tardos. In such conditions, the stable performance prop-
erty of the agnostic decoder is no longer granted. Second,
the stable performance property doesn’t hold either when-
ever the marking assumption is not enforced. For instance,
when the channel introduces random errors, decoding per-
formance rapidly decreases. Third, this agnostic decoding
is highly suboptimal from a hypothesis testing theory view-
point.

Thus, although the code construction is provably good,
Tardos decoding provides stable performances independently
of the collusion channel at the cost of high suboptimality.
This is the reason why we propose a complete shift in the
decoding strategy. Instead of ignoring the collusion chan-
nel, our decoding estimates it in order to use the matched
optimal decoder. This is done iteratively thanks to an ap-
plication of the well-known Expectation-Maximization algo-
rithm [8]. We have dropped the stable performance prop-
erty: the power of our decoding algorithm deeply depends
on the collusion attack. Some attacks are worse than others.
However, we are able to show that even for the worst collu-
sion channel, our decoder performs better than the original
Tardos decoding.

2. THE MATHEMATICAL MODEL
The probability that the random variable A defined over

the alphabet A takes the occurence a is denoted by PA[a].
Vectors and matrices are written in boldface.

2.1 Code generation
We briefly remind how the Tardos code is designed. The

binary code X is composed of n sequences of m bits. The se-
quence Xj = (Xj1, · · · , Xjm) identifying user j is composed
of m binary symbols. Indeed, these symbols are drawn in-
dependently such that PXji

[1] = pi, ∀i ∈ [m], with [m]
denoting {1, . . . , m}. {Pi}i∈[m] are independent and iden-
tically distributed auxiliary random variables in the range
[0, 1]: Pi ∼ f(p). Tardos proposed the following pdf, f(p) =

(π
p

p(1− p)−1, which is symmetric around 1/2: f(p) =
f(1 − p). It means that symbols ‘1’ and ‘0’ play a simi-
lar role with probability p or 1 − p. The actual occurrences
{pi}i∈[m] of these random variables are drawn once for all at
the initialization of the code, and they constitute its secret
key.

2.2 The collusion channel
Denote the subset of colluder indices by C = {j1, · · · , jc},

and XC = {Xj1 , . . . ,Xjc} the restriction of the traitor trac-
ing code to this subset. The collusion attack is the process
of taking sequences in XC as inputs and yielding the pirated
sequence Y as an output.

Fingerprinting codes have been first studied by the cryp-
tographic community and a key-concept is the marking as-
sumption introduced by Boneh and Shaw [3]. It states that,
in its narrow-sense version, whatever the strategy of the col-
lusion C, we have Yi ∈ {xj1i, · · · , xjci}. In words, colluders
forge the pirated copy by assembling chunks from their per-
sonal copies. It implies that if, at index i, the colluders’
symbols are identical, then this symbol value is decoded at
the i-th chunk of the pirated copy.

Our mathematical model of the collusion is essentially
based on four main assumptions. The first assumption is

the memoryless nature of the collusion attack. Since the
symbols of the code are independent, it seems relevant that
the pirated sequence Y also shares this property. Therefore,
the value of Yi only depends on {Xj1i, · · · , Xjci}.

The second assumption is the stationarity of the collusion
process. We assume that the collusion strategy is indepen-
dent of the index i in the sequence. Therefore, we can de-
scribe it for any index i, and we will drop indexing for sake
of clarity in the sequel.

The third assumption is the exchangeable nature of the
collusion: the colluders select the value of the symbol Y
depending on the values of their symbols, but not on their
order. Therefore, the input of the collusion process is indeed
the type of their symbols (i.e. the empirical probability mass
function). In the binary case, this type is fully defined by
the following sufficient statistic: the number Σi of symbols
‘1’: Σi =

Pc
k=1 Xjki.

The fourth assumption is that the collusion process may
be deterministic (for instance, majority vote, minority vote),
or random (for instance, the symbol pasted in the pirated
sequence is decided upon a coin flip).

These four assumptions yield that the collusion attack is
fully described by the following parameter: θ = {θ0, . . . , θc},
with θσ = PY [1|Σ = σ] which reads as the probability that
colluders put a ‘1’ when they have σ ‘1’ among their symbols.
There is thus an infinity of collusion attacks, but we can
already state that they all share the following property: The
marking assumption enforces that θ0 = 0 and θc = 1. A
collusion attack is thus defined by c − 1 real values in the
hypercube [0, 1]c−1. Here are some examples where θ is
given for c = 4:

• Random. The colluders randomly draw one of their
symbols: θ = (0, 1/4, 1/2, 3/4, 1).

• Majority. The colluders put the most frequent symbol:
θ = (0, 0, 1/2, 1, 1).

• Minority. The colluders put the less frequent symbol:
θ = (0, 1, 1/2, 0, 1).

• Coin flip. The colluders flip a coin to decide: θ =
(0, 1/2, 1/2, 1/2, 1/2, 1).

• Worst Case Attack (WCA) is the attack minimizing
EP [D(P, θ)] and hence the loss (14) (See Sect. 3.1).
More details are given in [7]. A minimization algorithm
gives θ = (0, 0.488, 0.50, 0.512, 1).

2.3 The agnostic decoder
The most well-spread decoding algorithm is the symmet-

ric version of the Tardos decoding function proposed by B.
Skoric et al [11]. Once the sequence Y is extracted from
the pirated content, the algorithm calculates a score for any
user: sj =

Pm
i=1 U(yi,xji, pi), j ∈ [n], with

U(1, 1, p) =

r

1 − p

p
U(0, 0, p) =

r

p

1 − p
(1)

U(1, 0, p) = −

r

1 − p

p
U(0, 1, p) = −

r

p

1 − p
(2)

Statistically, the scores of the colluders are bigger than the
scores of the innocents. The decoding accuses the user with
the biggest score, or, as originally proposed by Tardos, the
users whose scores are above a given threshold.



Asymptotically, as m → ∞, the scores are distributed
according to two Gaussian distribution (basic application of
the Central Limit Theorem):

Innocent: Sj ∼ N (0, m), (3)

Colluder: Sj ∼ N (2π−1mc−1, m(1 − 4π−2c−2)).(4)

3. THE INFORMED DECODER
This section provides some arguments why the agnostic

decoding strategy is not optimal.

3.1 Kullback Leibler distance
Our first argument is taken from classical hypothesis test-

ing theory [5, Chap. 12]. The accusation is indeed a test
based on the observations (Xj ,Y) that consists of checking
which of the two following hypothesis is true:

• H0: User j is innocent,

• H1: User j is a colluder.

The accusation process is composed of two building blocks:
the calculus of the score and the comparison to a threshold.
By Stein’s Lemma, the best asymptotic false positive error
exponent is given by the Kullback Leibler distance between
the pdfs under hypothesis H1 and H0, which is given by

D(PY,Xj |H1
||PY,Xj |H0

). (5)

Unless the statistic used in the decision is a“sufficient statis-
tic”, the actual asymptotic error exponent of a given test is
necessarily smaller.

In the Tardos decoder, it is not possible to evaluate the
Kullback Leibler distance of the scores Sj of Sect. 2.3, ex-
cept in the asymptotical regime when the pdf are deemed
Gaussian. Then the Kullback Leibler distance between the
pdf of the scores D(PSj|H1

||PSj |H0
) is given by:

D(PSj|H1
||PSj |H0

) =
2m

c2π2
−

„

log(1 −
4

π2c2
) +

4

π2c2

«

. (6)

As this holds for m → ∞, the dominating term is 2mc−2π−2.
The mathematical model of the collusion of Sec. 2.2 allows

us to evaluate (5) before the scoring function. First, the
memoryless property of the collusion channel and the inde-
pendence of the bits of the code sequence simplifies not only
the distributions under both hypothesis Hℓ with ℓ ∈ {0, 1}:

PY,Xj |Hℓ
=

m
Y

i=1

PYi,Xji|Hℓ
, (7)

but also the distance:

D(PY,Xj |H1
||PY,Xj |H0

) =
m

X

i=1

D(PYi,Xji|H1
||PYi,Xji|H0

)

(8)
Under H0, Xji is statistically independent of Yi:

PYi,Xji|H0
[y, x] = PYi

[y]PXji
[x], (9)

with PXji
[x] = px

i (1 − pi)
(1−x). The probability of the pi-

rated symbol is slightly more complex and involves the col-
lusion model introduced in Sect. 2.2:

PYi
[1] =

c
X

σ=0

θσPΣi
[σ], (10)

with PΣi
[σ] = (c

σ) pσ
i (1 − pi)

c−σ, the probability that c col-
luders have σ times the symbols ‘1’ at index i. Obviously,
PYi

[0] = 1 − PYi
[1].

Under H1, Xji was used to create Yi:

PYi,Xji|H1
[y, x] = PYi|Xji,H1

[y|x]PXji
[x]. (11)

This conditional probability is slightly different than (10):

PYi|Xji,H1
[1|x] =

c−1+x
X

σ=x

θσ

`

c−1
σ−x

´

pσ−x
i (1 − pi)

c−1+2x−σ.

(12)
Having the expressions of all the probabilities, it is straight
forward to calculate each summand of (8) as a function
D(pi, θ) of pi. Averaging over the ensemble of auxiliary
sequences, we obtain:

D(PY,Xj |H1
||PY,Xj |H0

) = mEP [D(P, θ)] , (13)

with EP [a(P )] the expectation of a(P ), ie.
R 1

0
a(p)f(p)dp.

The Kullback-Leibler distance of the input sequences is
strongly dependent on the collusion channel. The loss due
to the use of the agnostic decoder is therefore asymptotically
equal to:

λ(θ) = m(EP [D(P, θ)] − 2c−2π−2). (14)

Table 1 shows the loss for different collusion channels which
are commonly addressed in the literature and defined in
Sec. 2.2. In all cases, the loss represents at least 45% of
the achievable rate.

c 2 3 4 5 6 7 8

Random 61 66 71 75 78 81 84
Majority 61 149 150 217 219 275 276
Minority 61 71 145 334 452 668 780
Coin flip 61 49 51 60 71 82 94
WCA 61 45 51 47 52 52 54

Table 1: Loss λ(θ) in percentage for some collusion
channels. WCA stands for Worst Case Attack, ie.
θ
∗ = arg minθ EP [D(P, θ)]

.

3.2 The expression of the informed decoder
The Neyman-Pearson theorem tells us that a score based

on any monotonically increasing function of the likelihood
is optimal in the sense that its loss is null. The likelihood
L(y,xj) is the ratio

L(y,xj) =
PY,Xj |H1

[y,xj ]

PY,Xj |H0
[y,xj ]

=
m

Y

i=1

PYi|Xji,H1
[yi|xji]

PYi
[yi]

, (15)

which can be evaluated thanks to (10) and (12). Thus, the
optimal decoder computes the likelihood ratio for each user
sequence, and deems that those whose likelihood is above a
certain threshold are colluders.

Nevertheless, this optimal decoder is a priori not realiz-
able since it needs to know in advance the collusion size c
and the collusion channel model θ. We named it the in-
formed decoder. Moreover, the pdf of this likelihood ratio
is certainly dependent of the collusion channel, so the ac-
cusation threshold cannot be a priori fixed to guarantee a
given probability of error. Instead, this threshold must be
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Figure 2: Block diagram of the iterative decoder.

a function of θ. Once again, since the collusion channel is
not known, this suggests that the informed decoder cannot
be implemented.

Figure 1 shows the ROC (Probability of false alarm vs.
probability of false negative) for the agnostic decoder and
the informed decoder, illustrating the huge gap. The er-
ror probabilities have been computed using the rare event
probability estimator proposed in [7].

4. THE E.-M. DECODER
This section shows a possible implementation of a decoder

that tries to approximate the optimal decoder by means
of estimating the collusion channel. We propose to apply
the Expectation-Maximization algorithm [8] to our problem.
The only prior work we are aware of is [4] where the authors
propose a decoding algorithm a la E.-M. or in the spirit of
the E.-M. However, they do not use any likelihood functions
but adaptive scoring Tardos functions, which brings a lot of
sub-optimality.

As explained in Sect. 3, an approach based on collusion
channel estimation opens the door to powerful decoding.
The key idea of the EM decoder is to perform an iterative
learn and match strategy:

1. Given an estimated collusion channel, use its matched
decoder to suspect some colluders,

2. Given some suspected colluders, their sequences and
the pirated sequence, build a more accurate estimate
of the collusion channel.

In other words, as we better estimate the collusion chan-
nel, we better accuse dishonest users (i.e. we accuse less
innocents, and miss less colluders), and in turn, we better
estimate what they have been doing as a collusion process.

Another argument is that the decoder gets a mixture of
observations {xj} which belong to two families ‘innocent’
or ‘colluder’. Therefore, decoding boils down to estimating
the hidden state, a.k.a. ‘latent variable’ in E.-M. literature,
of each observation. This is indeed the event H1 that user
j is a colluder. Our decoding problem is thus very similar
to a mixture modelling which is a typical application of the
E.-M. algorithm.

The main blocks and variables of the iterative decoder are
shown in Figure 2. A detailed explanation is given below.

4.1 E-step
The goal of the E-step is to have a better guess about the

identities of the colluders. At iteration k + 1, its inputs are
the sequences of the users and the pirated sequence. It also
benefits from the estimate c(k) of the collusion size and an
estimate θ

(k) of the collusion channel. It simply calculates

the probability πj(θ
(k)) that user j is guilty according to

this collusion channel:

πj(θ
(k)) = P[H1|y,xj ] (16)

=
PY|Xj ,H1

[y|xj ]P[H1]

PY|Xj ,H1
[y|xj ]P[H1] + PY|Xj ,H0

[y|xj ]P[H0]
,

where the application of the Bayes rules lead to the second
line. Since there are c(k) colluders out of n users, we have
P[H1] = c(k)n−1 and P[H0] = 1− c(k)n−1. Note that we can
integrate in these prior probabilities suspicion for some user
based on geographical or behavioral arguments. Under H0,
Y is independent of Xj , and PY|Xj ,H0

[y|xj ] = PY [y].

πj(θ
(k)) =

c(k)

c(k) + (n − c(k))
PY [y]

PY|Xj ,H1
[y|xj ]

, (17)

The probabilities appearing in this last equation have al-
ready been expressed in the previous section (just replace θ

by θ
(k)).

4.2 M-step
The goal of the M-step is to have a better guess about

the collusion process. At iteration k + 1, its inputs are
the sequences of the users, the pirated sequences, the previ-
ous estimation of the collusion channel θ

(k) and the estima-
tion of the identities of the colluders thanks to probabilities
{πj(θ

(k))}n
j=1 evaluated in the E-step.

According to the classical E.-M. formulation, we can refine
the estimate of the collusion channel by maximizing in θ the
following functional

Q(θ; θ(k)) =
X

s

PS [s|y, X,θ(k)] log (P[X,y, s|θ]) . (18)

The sequence s represent the hidden state of the system.
It is composed of n binary variables indicating which users
are colluders. (18) requires that we consider the 2n possi-
ble hidden states, which is of course out of question for a
large number of users. We need to introduce the following
simplifications:

P[xj ,y, s|θ] = P[xj ,y, sj |θ], (19)

PS [s|y,X, θ] =

n
Y

j=1

PSj
[sj |y,xj , θ]. (20)

Obviously those equations are not true because guilty users
depend on each other, but this is a relaxation needed for
having affordable complexity.

Assume for the moment that c is known, the E-step refines
the estimation of the collusion channel with the following
simplified functional

θ
(k+1) = arg max

θ

Q̃c(θ; θ(k)), (21)

with
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Figure 1: Probabilities of false alarm and false negative with the informed decoder and agnostic decoder, for
c = 3 (a) and c = 8 (b).

Q̃c(θ; θ(k))

=

n
X

j=1

X

sj={0,1}

PSj
[sj |y,xj , θ

(k)] log
`

PXj
[xj ,y, sj |θ]

´

= log (PY [y|θ])

+

n
X

j=1

πj(θ
(k)) log

`

PXj ,Sj
[xj , 1|y, θ]

´

+

n
X

j=1

(1 − πj(θ
(k))) log

`

PXj ,Sj
[xj , 0|y, θ]

´

. (22)

With some more work:

PXj ,Sj
[xj , 0|y, θ] = PXj

[xj ](1 − c/n), (23)

PXj ,Sj
[xj , 1|y, θ] = PXj

[xj |H1, θ,y]c/n (24)

=
PY|Xj ,H1

[y|xj ]PXj
[xj ]c

PY [y]n
. (25)

Unfortunately there is no closed form expression for the
solution of the M-step, so it must be sought by numerical
means. A typical optimization runs as follows:

1. For a parameter c starting from 1 to cmax, the func-
tion Q̃c(θ|θ

(k)) is maximized. Standard optimization
algorithms like Newton-Raphson can be used to find
out the optimal θ

⋆
c .

2. Then, the cmax local maxima Q̃c(θ
⋆
c |θ

(k)) are com-
pared in order to isolate the global maximum, and the
parameter θ

(k+1) is updated accordingly:

c(k+1) = arg max
c∈[cmax]

Q̃c(θ
⋆
c |θ

(k)), (26)

θ
(k+1) = θ

⋆
c(k+1) (27)

4.3 Initialization and termination of the E.-M.
algorithm

At the beginning, the accusation process has no idea about
the values of the hidden states s, the number of colluders and

the collusion attack. We propose to pretend that c(0) = 2
and θ(0) = [0, 1/2, 1], then next comes the E.-step.

The E and M steps are iterated until some termination
criterion, usually when Q(θ(k+1), θ(k)) is no longer improv-
ing or when a maximum number of iteration kmax has been
reached. Let kf be the last iteration, the final decision of
the decoder is made by computing the likelihood ratio given
in (15) with θ = θ

(kf ). Notice that the set of probabilities

{πj(θ
(kf ))}j∈[n] suffice for performing the decision, because

(17) is just a monotonic mapping of (15) from [0,∞] to the
interval [0, 1]. Hence, a threshold η ∈ [0,∞] in (15) is equiv-
alent to a threshold T = c

c+(n−c)/η
in (17). We first select

the scores bigger than T . If the number of these scores is big-
ger than the estimated collusion size, we only keep the c(kf )

biggest ones. This second rule avoids false alarm (to accuse
innocent users) and is typically impossible with a classical
Tardos decoding.

5. EXPERIMENTAL RESULTS
The experimental work is divided in two parts. First, we

investigate whether the proposed iterative decoder correctly
estimates the collusion attack. If this is the case, then it
would perform as well as the optimal matched decoder. In
any case, it doesn’t mean that no error would be committed,
but that as few errors as theoretically possible would be
done. On the contrary, a mismatch in the estimation of the
collusion channel doesn’t imply a bad decoding as the second
part assessing the decoding performances shows.

The experimental setup is the following. There are n =
1000 users, we consider code sequences of length m = 250
bits, and the number of colluders ranges from 3 to 9. The
iterative decoder is assuming that the maximum number
of colluders is 9. Hence, the parameter cmax introduced in
Sect. 4.2 is set to 9. The maximum number of iterations for
the E.-M. decoder is set to kmax = 5. Two collusion attacks
are considered: Minority vote and the Worst Case Attack.
As explained before, the performance of the optimal decoder
is largely dependent on the collusion channel. The purpose



3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

P
ro

b[
co

rr
ec

t e
st

im
at

io
n]

 

 

Minority
Worst

Figure 3: Probabilities P[C(kf ) = c] for m = 400.

of focusing in these two particular attacks is to illustrate
the performance of our decoder against a “gentle” attack
(Minority) and against the worst attack, respectively (c.f.
Tab. 1).

5.1 Accuracy of the estimated collusion attack

5.1.1 Estimation of the collusion size
The first experiment is a Monte-Carlo simulation with

N = 1000 runs. Each run generates a secret sequence p
and a code X of n sequences, c of these collude, and the E.-
M. decoding proceeds with the received pirated sequence.
We measure the probability of correctly estimating the col-
lusion size by the ratio of the number of times where c(kf )

equals c divided by N . Fig 3 shows that this probability
decreases as the collusion attack is worse: more colluders
and/or more harmful process.

5.1.2 Estimation of the collusion process
With the same experiment, when the estimate of the collu-

sion side is correct, we measure the accuracy of the estimated
collusion attack by the following distance:

d(θ(kf ), θ) = max
σ∈[0,c]

|θ
(kf )
σ − θσ| ≤ 1 (28)

If d(θ(kf ), θ) = 0, then the E.-M. succeeds in retrieving the
exact value of the collusion attack, and therefore the decod-
ing is optimal. Fig. 4 shows that the estimation becomes
inaccurate as c increases. However, there is a big gap be-
tween the two attacks: the minority collusion seems to be
easier to estimate than the worst collusion. This behavior
suggests that the information about the collusion channel
leaking from the observations is significantly higher for the
minority collusion.

5.2 Decoding Performances

5.2.1 Thresholding
When the scores are compared to a threshold as detailed

in Sec. 4.3, there are two types of error:
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Figure 4: Distances d(θ(kf ), θ) for m = 400.

• False Alarm: at least one innocent is accused,

• False Negative: none of the colluders is accused.

The performances of the decoder are evaluated by the proba-
bilities of these two events, PF A(T ) and PF N(T ), measured
experimentally by Monte Carlo. Fig. 5 shows the experi-
mental ROC curve, obtained with N = 3200 realizations, as
the decision threshold T ranges from 0 to 1. Fig. 5(a) shows
the resulting ROC when the colluders implement a Minor-
ity vote. In this case, the gap between the agnostic decoder
and the iterative decoder is impressive, and moreover the
latter performs closely to the optimal informed decoder. On
the other hand, Fig. 5(b) shows the ROC when the col-
luders implement the Worst Case Attack. Clearly, the gap
between the informed decoder and the agnostic decoder is
greatly reduced. However, even in this case the performance
of the proposed iterative decoder is very close to that of the
informed decoder, and always better than the agnostic de-
coder.

Fig. 6 plots PF A(T ) vs. PF N(T ) from another perspective.
Now, we fix T ⋆ such that PF N(T ⋆) = 0.2, ie. 20% of the
time we miss all the colluders, and show the corresponding
PF A(T ⋆) for different attacks and collusion size. Similar
comments as for Fig. 5 apply in this case. Note that the
rate of the code is log2 n/m ≈ 0.04 bits per sample which
exceeds the collusion channel capacity for c ≥ 4. Therefore,
big probabilities of errors are expected for c ≥ 4. In real
applications, the code should be longer.

Finally, it is interesting to note that the huge variabil-
ity in performance among different attacks, that has been
observed in this set of experiments, is certainly correlated
to the theoretical results shown in Tab. 1, where we can see
that Minority has the biggest loss with regard to the optimal
decoder.

5.2.2 Maximum score heuristic
Instead of a thresholding decision rule, we can use a maxi-

mum score heuristic, where only one user is accused: the one
whose score is the largest. Thus, there is no threshold and
the two errors mentioned above become now the same event.
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Figure 5: Probabilities of false alarm and false negative with the iterative, informed, and agnostic decoders,
for c = 5, m = 300, n = 1000 (a) Minority Attack and (b) Worst Case Attack.
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Figure 6: Probability of false alarm when PF N(T ⋆) =
0.2, m = 250, n = 1000.

Fig. 7 shows the probability of being wrong in accusing the
user having the biggest score. The curves were obtained by
Monte Carlo, in a set of N = 1000 experiments. The same
behavior as in Sect. 5.2.1 can be noticed. Two comments
are in order. First, the WCA is not the worst attack for
this framework. The WCA is indeed defined as the collu-
sion attack minimizing the mutual information between the
symbols of the pirated copy and the user codeword. Thus,
the WCA minimizes in general the upper bound on the ac-
cusation performances, but it might not be the worst attack
for a given accusation process. Second, the curve of the it-
erative decoder against a minority attack is hidden behind
the one for the informed decoder, ie. the probability of error
is null.
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Figure 7: Probability of error for the maximum
score heuristic, with m = 400, n = 1000.

6. CONCLUSION
The preliminary results of this paper show that the new

proposed approach, based on joint channel estimation and
decoding, opens the door to powerful decoding schemes for
probabilistic traitor tracing codes. The main drawback of
the E.-M. decoder resides in its complexity. The evaluation
of the Q̃ function needs O(nmc) elementary operations, and
we must perform a maximization of several of these func-
tions. This is the reason why experiments presented in this
paper do not tackle long codes and many users. They clearly
show that the E.-M. decoder performs significantly better
than the agnostic decoder, and sometimes as good as the
informed decoder. However, this experimental setup would
not be applicable to scenarios where a huge number of users



is involved. Our future work will investigate less complex
decoders and preprocessing techniques able to prune most
of the users. We will investigate as well the fundamental
limits in the estimation of the collusion model, in terms of
the code length and the type of collusion attack.

On the other hand, the proposed decoding approach brings
new possibilities that, to the best of our knowledge, have not
been exploited yet in the decoding of traitor tracing codes.
For instance, the approach can be extended to more general
collusion models, other than the marking assumption used
in this paper and in many others in the literature. Indeed,
nothing prevents us from encompassing symbol erasures and
random errors in the statistical model of the collusion. The
difficulty is that the iterative decoder must estimate even
more parameters. Yet, the agnostic decoder is not at all
robust against erasures and especially random errors, since
they violate the marking assumption. A larger gap between
the agnostic decoder and the informed decoder can be ex-
pected in such case.
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