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ABSTRACT

This paper presents an approach for the recognition of roles
in multiparty recordings. The approach includes two major
stages: extraction of Social Affiliation Networks (speaker
diarization and representation of people in terms of their
social interactions), and role recognition (application of dis-
crete probability distributions to map people into roles).
The experiments are performed over several corpora, includ-
ing broadcast data and meeting recordings, for a total of
roughly 90 hours of material. The results are satisfactory
for the broadcast data (around 80 percent of the data time
correctly labeled in terms of role), while they still must be
improved in the case of the meeting recordings (around 45
percent of the data time correctly labeled). In both cases,
the approach outperforms significantly chance.

Categories and Subject Descriptors: H.3.1 [Content
Analysis and Indexing).
General Terms: Experimentation.

Keywords: Social Network Analysis, Speaker Diarization,
Role Recognition, Broadcast Data, Meeting Recordings.

1. INTRODUCTION

One of the main tenets of sociology is that people involved
in social interactions play roles: ”People do not interact with
one another as anonymous beings. They come together in
the context of specific environments and with specific pur-
poses. Their interactions involve behaviors associated with
defined statuses and particular roles. These statuses and
roles help to pattern our social interactions and provide pre-
dictability” [12]. In this work, we address the problem of
recognizing automatically the role of people in radio pro-
grams and meetings.

The approach we propose is composed of two main stages
(see Figure 1): the first is the extraction of feature vec-
tors accounting for relationships between people, the second
is the mapping of the feature vectors into categories cor-
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responding to the roles. The feature extraction stage (left
dotted box in Figure 1) starts by splitting the data into sin-
gle speaker segments. The speaker sequence is then used
to extract a Social Affiliation Network [14] and to model
the intervention time distribution associated to each role.
The recognition stage (right dotted box in Figure 1) maps
the feature vectors into classes corresponding to the differ-
ent roles. This task is performed using either Bernoulli or
Multinomial distributions [5]. Moreover, the fraction of time
each role accounts for in a given recording is modeled with
Gaussian distributions.

To the best of our knowledge, only a few works have been
dedicated to the automatic recognition of roles. Some of
them recognize functional roles in broadcast data [4][13],
i.e. the tasks that different people perform in television and
radio programs (e.g. anchorman or guest), and another rec-
ognizes functional roles in movies [15] (e.g. hero or hero’s
friends). The recognition is based on lexical features like
the n-gram distribution in [4], and on Social Network Anal-
ysis [14] in [13][15]. Other works recognize the social roles
of meeting participants [17] (e.g. attacker or supporter) us-
ing features like the overall amount of movement and speech
energy, or the roles corresponding to specific actions [3] (e.g.
presentation and briefings) using the total speaking time of
each person and turn-taking statistics.

We performed experiments over three different corpora
(see Section 4.1 for more details): a collection of radio news
bulletins (around 20 hours), a dataset of radio talk-shows
(around 25 hours), and the AMI meeting corpus (around
45 hours) [11]. For the first two datasets, the accuracy,
percentage of time correctly labeled in terms of role, is close
to 80%, while it is around 45% for the meeting data. One
probable reason is that the interactions are more constrained
in the case of the broadcast data and this leads to more
stable patterns associated to the different roles. However,
the performance of the system is significantly higher than
chance for both kinds of data and several roles are recognized
with high accuracy.

Role recognition can be useful in several applications: brows-
ers can be enhanced by enabling users to select interventions
corresponding to a given role, retrieval systems can use the
role as a clue for filtering the results, summarization systems
can use the role as a criterion for the selection of information
rich data segments, etc.

This paper is organized as follows: Section 2 presents the
interaction pattern extraction, Section 3 describes the role
assignment technique, Section 4 presents experiments and
results, and Section 5 draws some conclusions.
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Figure 1: Role recognition approach. The picture show the two main stages of the approach: the feature

extraction and the actual role recognition.

2. FEATURE EXTRACTION

This section presents the technique used to extract and
represent the interaction pattern of each person. The tech-
nique includes two steps: the first is the segmentation of
the recordings into single speaker segments (speaker diariza-
tion), the second is the extraction of an Affiliation Network
from the resulting speaker sequence (see left dotted box in
Figure 1).

In our experiments, we considered two kinds of data: broad-
cast material where there is a single audio channel and meet-
ing recordings where each participant wears a headset mi-
crophone. This requires the application of different speaker
diarization techniques: in the first case (single audio chan-
nel), an unsupervised speaker diarization technique identi-
fies the voices of the different people (see Section 2.1). In
the second case (headset microphones), the diarization splits
the channel of each microphone into speech and non-speech
segments (see Section 2.2). Section 2.3 shows how the out-
put of the speaker diarization is used to build an Affiliation
Network and represent people with vectors accounting for
their social relationships.

2.1 Speaker Diarization for Single Audio
Channel Data

A full description of the speaker diarization technique
used for the single audio channel data (broadcast material)
is given in [1][2]. The algorithm is based on a fully con-
nected continuous density Hidden Markov Model (HMM)
where each state corresponds to a cluster of observation
vectors and, in principle, to a single speaker voice. The
emission probability is modeled with a Gaussian Mixture
Model (GMM) [5]. Each observation vector has 12 dimen-
sions corresponding to the Mel Frequency Cepstral Coeffi-
cients (MFCC) extracted every 10 ms from a 30 ms long
window [9]. The MFCC are used because they have been
shown to be more effective than other features in speaker
recognition tasks, thus they seem to capture the different
voices and their characteristics [1].

The first step of the process is the initialization of the
above HMM. The audio data is segmented into M uniform
non-overlapping segments, where M is the initial number
of states in the HMM. Since the number of speakers is not
known a-priori, an initial guess must be provided for M.

This parameter is set to a value much higher than the ex-
pected number of speakers because the algorithm achieves
good results only when starting from an oversegmentation.
The resulting HMM is trained using the uniform segmenta-
tion as groundtruth and the result is a parameter set O,
The resulting HMM can be aligned with the data using the
Viterbi algorithm to find the best sequence of states (i.e.
speakers):

¢ = argmaxp(q|0,0') (1)
qeQ

where ¢ is a sequence of states, Q is the set of all possible
sequences of states, and O = {01,...,0k} is the sequence
of the observation vectors. The alignment results into a
segmentation different from the uniform one used for the
initialization. The HMM can thus be retrained and a new
parameter set O is obtained:

0 = argmaxp(¢” |0, 0) 2

where © = {61,...,0Mm}, i.e. the parameter set of the HMM,
can be thought of as a set of GMM parameters, if the tran-
sition probabilities and the intial state probabilities are kept
uniform.

Since the number M is higher than the actual number of
speakers, the data is oversegmented and there are clusters
that should be merged since they contain data belonging
to the same speaker. For this reason, the two most similar
states (in terms of the GMM parameters) are merged when
the following condition is met:

log p(Om+n | Om+4n) > 10gP(Om |0m) +1logp(On | 0,) (3)

where O, O, and Op,4+n are the observation vectors at-
tributed to cluster m, n and their union respectively, 0,, and
0., are the parameters of GMMSs in states m and n and 0, 4n,
are the parameters of a GMM trained with Expectation-
Maximization on Oy, 4n.

After the merging, the HMM has fewer states and it can
be realigned with the data in order to obtain a new seg-
mentation which can be used to train again the HMM. The
new states satisfying the above condition will be thus merged
again and the whole procedure will be iterated. The merging
between states is performed by keeping constant the number
of parameters:

|0mtn| = 10m] + 10n], (4)



| Step | Parameter Setting || Step | Parameter | Setting |
Training | Training examples > 22M || Inference | Minimum duration | 20 states
Feature sampling rate 100 Hz Insertion penalty -40
Feature dimensionality 54 Silence/speech prior 0.8/0.2
Input layer 810 (54 x 15) units Silence collar 100 ms
Hidden layer 25 arctan units Silence merge 250 ms

Table 1: Summary of parameters in the training and inference steps in the automatic speech segmentation

system.

the above condition is achieved by setting the number of
Gaussians in the state resulting from the merging to the
sum of the numbers of Gaussians in the merged states. In
this way, the likelihood will increase until the states that are
merged actually correspond to the same or similar voices and
will decrease when the states that are merged correspond to
voices too different. This provides the stopping criterion for
the iteration process. In fact, the alignment and training
steps are repeated until the likelihood reaches its maximum.
The segmentation corresponding to the maximum likelihood
is retained as the result of the speaker diarization process.

2.2 Speech/ Non-Speech Segmentation for
Headset Microphone Data

The approach for the segmentation of the headset mi-
crophone channels employs a Multilayer Perceptron (MLP)
for estimating the posterior probability of audio frames as
speech or non-speech classes [6]. Input to the classifier uses
standard speech recognition features combined with features
specifically designed for the detection of cross-talk in head-
set microphone recordings, as this has been found to be a
major source of segmentation errors in such meeting room
data [16]. The input features are summarised as follows: 13
Mel filterbank perceptual linear predictive coefficients (MF-
PLP) including CO0, plus normalised log-energy; Log cross-
channel normalised energy which is estimated as the loga-
rithm of the energy of the current headset microphone minus
the logarithm of the sum of energies across all headset mi-
crophones for the current meeting; Signal kurtosis, which
should be large during single speaker activity (since speech
signals tend to be super-Gaussian) and approach zero dur-
ing silence; Mean cross-channel correlation and Maximum
cross-channel correlation, where, for a given time frame, we
take the maximum cross-correlation values between the cur-
rent headset microphone channel and all other headset mi-
crophones and obtain the mean measure as the arithmetic
mean of these cross-correlation values and the mazimum
measure as the maximum cross-correlation value. In prac-
tice, we concatenate the first and second order differences of
these features thus giving a feature dimensionality of 54. Fi-
nally, we take several consecutive frames and provide these
as input to the MLP.

The classifier is trained using meeting room data from
several non-AMI meeting room corpora (specifically, ICSI,
NIST, CMU corpora, see [6] for further details). Error back-
propagation was used to train the MLP parameters, with a
separate validation data set being used to control over-fitting
of the parameters. A frame error of 3.9% was measured on
this validation set. The ground truth segmentation for train-
ing of the classifier was generated using forced alignment of
manual transcriptions of the corpora using acoustic models

from our meeting transcription system [8]. We have previ-
ously observed that such semi-automatic ground truth seg-
mentations are more reliable than the original manual corpus
segmentations since manual segmentations have a tendency
to have too-coarse granularity and are inconsistent between
different corpora.

The segmentation is carried out using hidden Markov mod-
els (HMM) for speech and non-speech classes with mini-
mum duration and insertion penalty constraints to ensure
that the segmentation is consistent with that observed for
the ground truth. Emission likelihoods for the HMM states
are estimated as scaled likelihoods in which MLP posterior
probabilities are divided by their respective prior class prob-
ability. A final smoothing step is applied by padding speech
segments by an additional amount and merging resulting
speech segments which have a silence gap less than a prede-
fined duration. The tuning of the various system parameters
has been carried out to maximise performance for meeting
room automatic speech recognition performance. Table 1
summarises the main parameters in the training and infer-
ence steps.

The system described above was run on the entire AMI
corpus to provide automatic segmentation of the audio data
for subsequent processing for speaker role analysis.

2.3 Affiliation Network Extraction

The result of the speaker diarization process is that each
recording is split into a sequence S = {(s;, At;)}, where
i =1,...,]5|, s; is the label assigned to the speaker voice
detected in the i*" segment of audio, and At; is the du-
ration of the i*" segment. The label s; belongs to the set
A = {a1,...,ac} of unique speaker labels, output by the
speaker diarization process (see lower part of Figure 2). The
sequences extracted from the speaker diarization are used
to create a Social Network representing the relationships
between the speakers, more specifically an Affiliation Net-
work. An Affiliation Network is a graph with two kinds of
nodes: the actors and the events [14]. Actors can be linked
to events, but no links are allowed between nodes of the
same kind (see upper part of Figure 2). In our experiments,
the actors correspond to the speakers in the broadcast news
and in the meetings and the events correspond to uniform
non-overlapping windows spanning the whole length of the
recordings. The reason is that this network is expected to
capture the relationships between the speakers and one of
the most reliable evidences of interaction is the proximity
in time [7]. In fact, two persons talking during the same
window are more likely to interact with each other than two
people talking in different windows.

One of the main advantages of this representation is that
each actor a; can be represented with a vector #; where
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Figure 2: Interaction pattern extraction. The picture shows the Affiliation Network extracted from a speaker
segmentation. The events of the network correspond to the windows w; and the actors are linked to the
events when they talk during the corresponding windows. The actors are represented using vectors ¥; where
the components account for the links between actors and events.

the component j accounts for the participation of a; in the
4" event. In our experiments, we used two kinds of rep-
resentation: in the first one, the j%* component is 1 if the
speaker talks during the j** window and 0 otherwise (the
corresponding vectors are shown at the bottom of Figure 2).
In the second the 5 component is the number of times that
speaker a; talks during the j** window. In the first case
the vectors are binary, in the second case they have integer
components higher or equal to 0. In both cases, people that
interact more with each other tend to talk during the same
windows and are represented by similar vectors. The choice
of the number of windows used to segment the recordings
as well as the length of the windows used in this work, are

justified in Section 4.

3. ROLE RECOGNITION

This section describes the statistical foundations of the
role assignment process used in our experiments. Section 2
has shown that the relationship pattern of each speaker i
can be represented with a vector &; = (z;1,...,%ip), where
D is the number of windows, that can have either binary or
positive integer components. Furthermore, every speaker ¢
talks during a fraction 7; of the total time of a bulletin. We
can thus represent every speaker by a vector ¥; = (73, %;).

Consider the vector ¥ = (r1,...,7g), where 7; is the role
of speaker ¢, and the vector of observation Y = {#1, ..., ¥},
where ¢; is the vector representing speaker i. The problem
of assigning the role to all speakers can be thought of as the
maximization of the a-posteriori probability p(¥|Y). By
applying the Bayes Theorem and by taking into account
that p(Y) is constant during the recognition this problem is

equivalent to finding 7 such that:

it

= arg max p(Y'|7) p(7), (4)

where R is the set of the predefined roles. In order to sim-
plify the problem, we make the assumption that the observa-
tions are mutually conditionally independent given the roles.
In the case we are considering, it seems also reasonable to
assume that the observation #; of speaker i only depends on
its role r; and not on the role of the other speakers. Equa-
tion (5) can thus be rewritten as:

G
7 = arg max p(7 Uk | Tk)- 6
gFERGP(ﬁgp(ykl ") (6)
In order to further simplify the problem, we assume that
Z; and 7; are statistically independent given the role, thus:

p(yi [ i) = p(Zs [ 7:) p(7i | 7). (7)

In this work, we only considered the most simple model for
p(7). This model assumes that the roles are independent and
thus that p(7) is simply the product of the a-priori proba-
bilities of the roles. In this model, Equation (5) boils down
to:

G

7 = arg max [ [ p(r) p(@x | 7) p(7 | ) (8)
FERG Pty
The main advantage of this approach is that the obser-
vations became independent and the maximization of the
product can be achieved by maximizing separately each fac-
tor p(#k | k) p(rk)-
In the next subsections, we will show how we estimate

p(Z[r), p(7|r) and p(r)
3.1 Modeling Binary Interaction Patterns

This subsection shows how we model the interaction pat-
terns extracted from the Affiliation Networks when the com-
ponents of the vectors #; are binary, i.e. x;; = 1 when actor
a; talks during window j and O otherwise. Given a labeled



training set, there are IV, speakers playing the role r. Each
one of them is represented by a binary vector Z. The most
natural way of modeling binary vectors is to use Bernoulli
discrete distributions:

D
(@i | i) = [ ey’ (1= pg) =75, (9)
j=1

where D is the number of events in the network (see Sec-
tion 2), and [ir = (fr1,...,4rp) is the parameter vector of
the distribution related to role r. The maximum likelihood
estimates of the ur; parameters are as follows [5]:

1 &

T
n=1

where N, is the number of people playing the role r in the
training set, and z,; is the j** component of the vector
representing the n‘® person playing the role r. A different
Bernoulli distribution is trained for each role.

3.2 Modeling Multinomial Interaction Patterns

This subsection details the model we use for the Affilia-
tion Networks when the components z;; correspond to the
number of times that actor a,; talks during window j, i.e.
the components are integers greater or equal to 0. Given
a vector ¥ = (x1,...,Zp), where D is the number of win-
dows, each component xz; can be represented with a vector
Z; defined as follows:

.,ZiT), (11)

where T is the maximum number of times that an actor can
talk during a given window, z;; € {0, 1}, and Z?:l zij = 1.
In other words, x; is represented with a T-dimensional vector
where all the components are 0 except one, i.e. the compo-
nent z;, = 1, where n is the number of times that the actor
represented by & talks during event i. As a result, Z is rep-
resented with a concatenation of vectors Z = (Z1,...,2p).
The vector Z’ can thus be modeled with a multinomial dis-
tribution:

Z_‘:; = (Zih--

D

p(z 1) = [T TT wi (12)

i=15=1

The parameters ji can be estimated by maximizing the like-
lihood over a training set X. This leads to a closed form
expression for the parameters:

1 <
i
Mij = Zzz(j)v (13)
T
1=1
where N, is the number of vectors corresponding to role r.

3.3 Modeling Durations

This section shows how we estimate the probabilities p(7 | ).

Given a labeled training set, there is a number N, of speak-
ers playing role r. Each one of them accounts for a frac-
tion 7, of the bulletin he or she is involved in, where n =
1,...,N,. We model p(7|r) using a Gaussian Distribution
N(7|pr,0r), where p, and o, are mean and variance re-
spectively. The Maximum Likelihood estimates of the pa-
rameters are the sample mean:

Hr = N Tn (14)

and the sample variance:

Ny
1
or = N, Z:l(Tn — )’ (15)
A different Gaussian distribution is obtained for each role.

3.4 Estimating Role Probabilities

This section shows how we estimate the probability p(r)
of a given role being observed. Given a labeled training set,
the total number of people is denoted by N, and the number
of people playing role r is N,.. Then, we have the following
estimation of the a-priori probability:

p(r) = — (16)

i.e. the fraction of individuals in the training set labeled
with the role r.

4. EXPERIMENTS AND RESULTS

This section presents experiments and results obtained in
this work. The next three sections describe data and roles,
the performance measures and the role recognition results.

4.1 Data and Roles

The experiments of this work have been performed over
three different corpora. The first, referred to as C1 in the
following, contains 96 news bulletins with an average length
of 11 minutes and 50 seconds. The corpus contains all news
bulletins broadcasted by Radio Suisse Romande, the French
speaking Swiss National broadcasting service, during Febru-
ary 2005 and can thus be considered a representative sample
of these kinds of programs. The second corpus, referred to
as C2 in the following, contains 27 one hour long talk-shows
broadcasted by Radio Suisse Romande (see above) during
February 2005. Also in this case, the corpus can be consid-
ered a representative sample of this specific kind of program.
The third corpus, referred to as C3 in the following, is the
AMI corpus [10], a collection of 138 meeting recordings for
a total of 45 hours and 38 minutes of material. The meet-
ings are simulated and are based on a scenario where the
participants are the members of a team working on the de-
velopment of a new remote control.

The set of the predefined roles is the same for C1 and
C2: the Anchorman (AM), i.e. the person managing the
program, the Second Anchorman (SA), i.e. the person sup-
porting the AM, the Guest (GT), i.e. the person invited to
report about a single and specific issue, the Interview Par-
ticipant (IP), i.e. interviewees and interviewers, the Abstract
(AB), i.e. the person reading a short abstract at the begin-
ning of the program, and the Meteo (MT), i.e. the person
reading the weather forecasts. In C3, the set of the roles is
different and contains the Project Manager (PM), the Mar-
keting Exzpert (ME), the User Interface Ezpert (UI), and the
Industrial Designer (ID).

Table 2 shows the distribution of the data time across
the roles in C1 and C2. The fraction of data time each
role accounts for in C3 is reported in Table 3. Roles and
distributions are significantly different in C1, C2 and C3
and this enables us to test the robustness of our approach
with respect to changes in the data.



Corpus | AM SA GT 1P AB MT
C1 41.2% | 5.5% | 34.8% | 4.0% | 71% | 6.3%
C2 17.3% | 10.3% | 64.9% | 0.0% | 4.0% | 1.7%

Table 2: Role distribution. The table reports the
percentage of data time each role accounts for in C1
and C2.

Corpus PM ME Ul 1D
C3 36.6% | 22.1% | 19.8% | 21.5%

Table 3: Role distribution. The table reports the
percentage of data time each role accounts for in
Cs.

4.2 Speaker Diarization Results

The relationship patterns used at the role assignment step
are extracted from the speaker segmentation obtained with
the diarization process. Errors in the diarization (e.g. people
detected as speaking when they are silent) lead to spurious
interactions that can mislead the role assignment process.

The effectiveness of the diarization is measured with the
Purity m, a metric showing on one hand to what extent all
feature vectors corresponding to a given speaker are detected
as belonging to the same voice, and on the other hand to
what extent all vectors detected as a single voice actually
correspond to a single speaker. The Purity ranges between
0 and 1 (the higher the better) and it is the geometric mean
of two terms: the average cluster purity w. and the average
speaker purity ws. The definition of 7. is as follows:

ng NG

ZZ§£7 (17)

k=11=1
where Ny is the number of speakers, N, is the number of
voices detected in the diarization process, nix is the number
of vectors belonging to speaker [ that have been attributed
to voice k, ng is the number of feature vectors in voice k and
N is the total number of feature vectors. The definition of
s 1s as follows:

ng nlk
; ; N (18)
(see above for the meaning of the symbols).

The application of the speaker diarization process in the
case of radio programs requires the setting of the initial num-
ber of states M in the fully connected Hidden Markov Model
(see Section 2). The value of M must be significantly higher
than the number of expected speakers for the diarization
process to work correctly. In our experiments, we set a-
priori M = 30 for C1 and M = 90 for C2. No other values
have been tested. The average purity is 0.81 for C1 and 0.79
for C2. The average purity for C3 is 0.99. The difference in
purity is explained by the different methods used to obtain
the speaker segmentation.

4.3 Role Recognition Results

For our experiment, we used the accuracy a as the perfor-
mance measure. The accuracy is defined as the percentage
of data time correctly labeled in terms of role. We used a
leave-one-out approach [5] to train our models and select the

all | AM [SA | GT | IP | AB | MT
B | 812|978 |40 926 | 6.0 | 478 | 749

[M]81.0] 97827 ]92.6 ] 21478 75.6 |

Table 4: Role recognition performance for C1. The
table reports the role recognition results for the cor-
pus C1. The results show both the overall accuracy
and the accuracy for each role. The ”B” stands for
Bernoulli, and the "M?” stands for Multinomial.

all | AM [ SA | GT | IP | AB | MT
B | 839750883906 | 0.0]545 | 13.3

[M]820]623]923]86.7]0.0] 984 [ 2238 |

Table 5: Role recognition performance for C2. The
table reports the role recognition results for the cor-
pus C2. The results show both the overall accuracy
and the accuracy for each role. The ”B” stands for
Bernoulli, and the "M” stands for Multinomzial.

number D of windows used to split the recordings (see Sec-
tion 2). This means that each recording in a corpus is used
iteratively as test set, while the others are used as training
set. In this way, the whole corpus can be used as test set
while still preserving the rigorous separation between train-
ing and test data necessary to assess realistically the perfor-
mance of the role recognition system. Tables 4, 5 and 6
report the role recognition results for corpora C1, C2 and C3
respectively. The distribution used to model the interaction
patterns is indicated with B (Bernoulli) and M (multino-
mial). The overall « is above 82 percent for both C1 and C2
and this means that the role recognition approach is robust
with respect to changes in the time distribution across the
roles. This is important because the same role is played in
different ways depending on the specific program and the
approach seems to be capable of adapting automatically to
the different situations.

The 20 percent of mislabeled data time is due to two main
sources of error: the first is the delay of the diarization
process in correspondence of speaker changes. On average,
the speaker changes in the output of the diarization pro-
cess are delayed by around 2 seconds with respect to the
actual speaker changes. The average number of changes in
C1 is 30 and this results into roughly 60 seconds of mislabel-
ing (around 10 percent of the average C1 recording length).
Similar figures can be found for C2 where roughly 10 per-
cent of the time again is mislabeled because of the delays
between actual and detected speaker changes. The perfor-
mance of the system when using the ground-truth speaker
segmentations rather than the output of the speaker diariza-
tion is 95.3 percent for C1 and 96.5 for C2. This seems to
confirm that around 10 percent of the error is actually due
to the above phenomenon (the results have been obtained
using a single Bernoulli distribution).

The second major source of error is the classification of
IP, MT and AB into GT. Such roles have similar interaction
patterns, but the higher a-priori probability of the GT bias
the recognition toward the latter. Fortunately, the IP, MT
and AB do not account for a large fraction of the data time
and the impact on the overall performance is small.



all | PM | ME | UI ID
B | 436 | 794|195 | 33.0 | 13.0

[M]428 764144302 ] 225 |

Table 6: Role recognition performance for C3. The
table reports the role recognition results for the cor-
pus C3. The results show both the overall accuracy
and the accuracy for each role. The ”B” stands for
Bernoulli, and the "M?” stands for Multinomial.

In the C3 corpus, the overall « is around 43 percent. The
results show that the role recognition approach presented in
this paper is less effective for a more spontaneous database
with small groups such as the AMI meeting corpus. The
relationship features are not stable, and thus the models are
not able to classify correctly the participants into the four
different roles. The Project Manager is the only role that
is correctly captured. Its interaction pattern is distinct of
the other roles (with a high activity throughout the meet-
ing). This difference is well captured by our approach and
the PM is labeled with an accuracy close to 80%. The three
other roles, i.e. ME, Ul ID, have similar interaction pat-
terns, thus our approach does not achieve a good accuracy.
The accuracy over the groundtruth speaker segmentation is
49.5% (achieved with a Bernoulli distribution). Like in the
case of C1 and C2, the relative loss when passing to the
automatic speaker segmentation is around 12%. The main
reason the approach is less effective over C3 is probably that
the number of meeting participants is too small (only 4 per
recording) to build meaningful Affilitation Networks [14].

5. CONCLUSIONS

In this paper, we have presented an approach for the auto-
matic recognition of people’s roles in multiparty recordings.
The approach is based on Social Network Analysis and it
has been applied over different kinds of data to assess its ro-
bustness and its limits. The results show that the approach
is effective for the broadcast data where the interactions be-
tween people are sufficiently constrained, while still requires
improvements for the meetings where the interactions are
more spontaneous.

The approach uses only the audio channel even if the AMI
corpus includes videos captured with three different cameras
and synchronized with the audio. One one hand, this is an
advantage because it allows the application of the approach
to data like the radio programs where only the audio is avail-
able. On the other hand, it is a disadvantage because for
data where the video is available important information is
probably missed if the visual aspects are not taken into ac-
count. For this reason, the future work will focus on the
inclusion of visual features in the meetings data to build
a multi-modal approach (see [11][17] for examples of tech-
niques based on multiple modalities). Moreover, in the ex-
periments of this work the roles are considered statistically
independent, while they are dependent and they must re-
spect several constraints, e.g. the news bulletins must have
only one anchorman. These constraints can be included in
the recognition stage to improve the performance.
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