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Caches have become increasingly important with the widening gap between main memory and
processor speeds. Small and fast cache memories are designed to bridge this discrepancy. However,
they are only effective when programs exhibit sufficient data locality. In addition, caches are a
source of unpredictability, resulting in programs sometimes behaving in a different way than

expected.
Detailed information about the number of cache misses and their causes allows us to predict

cache behavior and to detect bottlenecks. Small modifications in the source code may change
memory patterns, thereby altering the cache behavior. Code transformations which take the
cache behavior into account might result in a high cache performance improvement. However,
cache memory behavior is very hard to predict, thus making the task of optimizing and timing
cache behavior very difficult.

This article proposes and evaluates a new compiler framework that times cache behavior for
multitasking systems. Our method explores the use of cache partitioning and dynamic cache
locking to provide worst-case performance estimates in a safe and tight way for multitasking
systems. We use cache partitioning, which divides the cache among tasks to eliminate inter-task
cache interferences. We combine static cache analysis and cache locking mechanisms to ensure
that all intra-task conflicts, and consequently, memory access times, are exactly predictable.

The results of our experiments demonstrate the capability of our framework to describe cache
behavior at compile time. We compare our timing approach with a system equipped with a non-
partitioned but statically locked data cache. Our method outperforms static cache locking for
all analyzed task sets under various cache architectures, demonstrating that our fully predictable
scheme does not compromise the performance of the transformed programs.
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1. INTRODUCTION

With ever-increasing clock rates and the use of new architectural features, the speed
of processors increases dramatically every year. However, memory speeds have
lagged behind, thus increasing memory latency [Hennessy and Patterson 1996].
This widening performance gap affects all computer systems, and is a key obstacle
to achieving high processor utilization due to memory stalls. The basic solution
that almost all systems rely on is the use of cache memories.

Memory is organized hierarchically in such a way that the lower levels are smaller
and faster. In order to fully exploit the memory hierarchy, one has to ensure that
most of the memory references are handled by lowest levels of cache. Programmers
spend a significant amount of time improving locality, which is tedious and error
prone. Compilers apply useful loop transformations and data layout transforma-
tions to take better advantage of the memory hierarchy. In all cases, a fast and
accurate assessment of a program’s cache behavior is needed at compile time to
make an appropriate choice of transformation parameters.

Unfortunately, cache memory behavior is hard to predict. That makes it very
difficult to statically analyze the interaction between a program’s reference pattern
and the memory subsystem. This work describes a static approach to characterizing
whole programs’ cache memory behavior, which is used to accurately time memory
performance. Our method explores the use of cache partitioning and dynamic cache
locking to provide worst-case performance estimates in a safe and tight way for
multitasking systems.

1.1 Motivation

Hard real-time systems are those where a failure to meet a deadline can be fatal.
To guarantee their behavior, the worst-case behavior has to be analyzed. It will be
used to ensure timely responses from tasks and as input to scheduling algorithms.

When using caches in hard real-time systems there is an unacceptable possibility
that a high cache miss penalty combined with a high miss ratio might cause a
missed deadline, jeopardizing the safety of the controlled system. Besides, caches
also increase the variation in execution time, causing jitter. Thus, many safety-
critical systems either do not have caches or disable them. Nevertheless, a system
with disabled caches will waste a lot of resources; the CPU will be underutilized,
and also the power consumption will be larger since memory accesses that fall into
the cache consume less power than accesses to main memory. Thus, bounding
memory performance tightly in hard real-time systems with caches is important to
use the system resources well.

That implies that it is necessary to know the execution times for the tasks in a
real-time system. The analysis from a high-level point of view is concerned with all
the possible paths through the program. Low-level analysis determines the effect
on the program timing of machine-dependent factors, such as caches. While control
flow can be modeled precisely, hardware (caches, branch predictors, etc.) can give
rise to actual unpredictability. Therefore, real-time systems have to be analyzed as
a whole, where both software and hardware play their respective roles.

In order to obtain an accurate worst-case execution time (WCET), a tight worst-
case memory performance (WCMP) is needed. Current WCET platforms are applied
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to rather simple architectures (they usually do not consider data caches) and make
simplifying assumptions such that the tasks are not preempted. In order to con-
sider the costs of task preemption, some studies incorporate into the schedulability
analysis the costs of manipulating queues, processing interrupts and performing
task switching [Burns et al. 1995; Burns and Wellings 1993; Jeffay and Stone 1993;
Katcher et al. 1993].

However, cache behavior is very hard to predict, which leads to an overestimation
of the WCMP, and thus for the WCET as well. Our goal is to guarantee an exact
prediction of hits or misses for all memory accesses. In modern processors, it
may happen that a cache hit is more expensive than a cache miss [Lundqvist and
Stenström 1999b]. If a memory access is not classified definitely as a hit or miss,
a subsequent calculation pass in a WCET analysis would have to consider both
situations to detect the worst-case path, which would increase the complexity of
the problem, and thus, the time needed to calculate the WCET.

1.2 Problem Statement

The computation of WCET in the presence of instruction caches has progressed in
such a way that it is now possible to obtain an accurate estimate of the WCET for
non-preemptive systems [Alt et al. 1996; Arnold et al. 1994; Healey et al. 1995].
These results can be generalized to preemptive systems [Basumallick and Nielsen
1994; Busquets-Mataix et al. 1996; Busquets-Mataix et al. 1997; Campoy et al.
2001; Kirk 1989; Lee et al. 1998; Müeller 1995; Puaut and Decotigny 2002]. How-
ever, there has not been much progress with the presence of data caches. Instruc-
tions such as loads and stores may access multiple memory locations (such as those
that implement array or pointer accesses), which makes the attempt to classify
memory accesses as hits or misses very hard.

Current approaches [Alt et al. 1996; Ferdinand and Wilhelm 1999; Kim et al.
1996; Lim et al. 1994] provide an estimation of WCET by considering data caching
where only memory references which are scalar variables are considered. Thus,
they do not study real codes with dynamic references (i.e., arrays and pointers).
White et al [White et al. 1997] propose a method for direct-mapped caches based
on static simulation. They categorize static memory accesses into (i) first miss, (ii)
first hit, (iii) always miss and (iv) always hit. Array accesses whose addresses can
be computed at compile time are analyzed, but they do not describe conflicts which
are always classified as misses.

Hence, there is a need for a tool that computes the WCET in the presence of
set-associative data caches for real programs.

1.3 Overview

This paper presents a compiler algorithm to estimate the worst-case memory perfor-
mance (WCMP) for multitasking systems in the presence of data caches [Vera et al.
2003b]. We use cache partitioning to eliminate inter-task conflicts, thus we can
analyze each task in isolation. Tasks now use a smaller cache. Hence, we apply
compiler cache optimizations such as tiling [Lam et al. 1991; Xue and Huang 1998]
and padding [Rivera and Tseng 1998] to reduce the number of misses.

An accurate information of the cache memory behavior is essential to both op-
timize and time memory behavior. We use an analytical method presented in our
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previous work [Vera et al. 2004; Vera and Xue 2002] which describes the cache
misses of a given path with regular computations. This analysis is the first step
required by any compiler transformation or WCET analysis.

However, when computing WCET we may have to consider different paths, which
may cause cache contents to be different than expected. Moreover, the state of the
cache can only be determined if all memory addresses are known. The state of
the cache is unknown from the point in the code where an unknown cache line is
accessed. Thus, even if we know the memory addresses of the future memory ac-
cesses, the cache behavior cannot be predicted exactly; it may be that the unknown
memory access has trashed the cache line we planned to reuse; it may be that it
has actually brought the data we are going to reuse.

We have developed a compile-time algorithm that identifies those regions of code
where we cannot exactly determine the memory accesses. In those situations (i.e.,
merging of two different paths or non-predictable memory accesses), the cache is
locked so we do not jeopardize the cache analysis [Vera et al. 2003a]. Precisely, the
cache is locked just before such a code region is executed and unlocked just after the
region has been executed. We shall see shortly that such a dynamic locking scheme
is preferred since static locking can cause significant performance degradations. In
order to obtain the most benefit from the cache, we use a locality analysis based on
Wolf and Lam’s reuse vectors [Wolf and Lam 1991] to select data to be loaded and
locked in. Since the state of the cache is known when leaving the region, we can
apply our static analyzer [Vera and Xue 2002] for the next regions of code, thus
having both predictability and good performance. To the best of our knowledge,
this is the first framework that obtains an exact WCMP for multitasking systems.

We have implemented our system in the SUIF2 compiler. It includes many of
the standard compiler optimizations, which allows us to obtain a code competitive
to production compilers. Using SUIF2, we identify high-level information (such as
array accesses and loop constructs) that can be further passed down to the low-
level passes as annotations. We plan to integrate our WCMP calculation with an
existing WCET tool [Engblom and Ermedahl 2000] that already analyzes pipelines
and instruction caches.

In order to show to what extent our method can estimate the WCMP, we present
results for a collection of task sets consisting of programs drawn from several related
papers [Alt et al. 1996; Kim et al. 1996; White et al. 1997]. This collection includes
kernels operating on both arrays and scalars, such as sqrt or fibonacci. We have
also used fft to show the feasibility of our approach for typical DSP codes. For
the sake of concreteness, we have chosen the cache architectures of a set of modern
processors widely used in the real-time area: microSPARC-IIep [Sun Microelectron-
ics 1997], PowerPC 604e [Motorola Inc. 1996], IDT 79RC64574 [Integrated Device
Technologies 2001] and MIPS R4000 [MIPS Technologies 2001].

1.4 Static Cache Locking

In this work, we propose a dynamic cache locking scheme by which the cache is
locked dynamically for the code regions whose memory accesses are not exactly
known at compile time (and unlocked for the other parts of the program). Another
approach, known as static cache locking, works by pre-loading the most frequently
accessed data in the program into the cache and then locking the cache for the
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Program Analysis Miss Ratios Cycles
MIN MAX AVG Increase (%) Degradation (%)

MM
Normal 1.88 33.53 10.01

721.77 599.55
Static Locking 59.14 99.36 82.27

CNT
Normal 5.67 8.33 7.94

710.92 565.67
Static Locking 18.08 98.72 64.45

ST
Normal 3.57 14.29 7.66

389.87 307.87
Static Locking 3.57 96.80 35.87

SQRT
Normal 1.43 1.43 1.43

0.00 0.00
Static Locking 1.43 1.43 1.43

FIB
Normal 0.49 0.49 0.49

0.00 0.00
Static Locking 0.49 0.49 0.49

SRT
Normal 8.37 16.74 10.93

69.16 58.28
Static Locking 8.37 93.73 18.49

NDES
Normal 0.90 1.74 0.96

38.40 12.30
Static Locking 0.90 6.56 1.33

FFT
Normal 0.59 56.10 9.18

119.37 97.66
Static Locking 0.59 93.64 20.15

Table I. Overhead of static cache locking. For “Normal”, the cache behaves in the normal manner.
For “Static Locking”, the cache is pre-loaded with the most frequently accessed lines and then
locked during the entire execution of the program. Increase (Degradation) represents the average
increase in miss ratios (cycles) of “Static Locking” over “Normal” across all cache architectures.

entire execution of the program. We show that static cache locking is impractical
since it leads to poor cache utilization when data do not fit the cache. In order to
confirm this, we have run a number of different benchmark programs comparing
static locking against the same configuration in which the cache is used but not
locked. Table IV contains a detailed description of these benchmarks.

In order to obtain the most frequently accessed data, we run each program once
and collect statistics for each memory line accessed. Then we load each cache set
with the most frequently accessed memory lines that are mapped to the set.

We have analyzed four cache architectures (4KB, 8KB, 16KB and 32KB (32B per
line)) for three different associativities (direct-maped, 2-way and 4-way). We have
also simulated the microSPARC I cache architecture (direct-maped, 512 bytes, 32B
per line). We present the results accounting only for load/store instructions. We
assume conservatively that a cache hit takes 1 cycle and a cache miss 50 cycles.
Table I shows the results of our experiments. For each program, we report the
minimum, maximum and average miss ratios across all cache architectures for both
“Normal” and “Static Locking” scenarios. The last two columns show to what
extent static locking has degraded performance in terms of the two metrics, miss
ratios and simulated cycles. We can see that performance drops significantly for
most programs, and in some cases, the performance degradation can be more than
500% in cycles. Static locking performs well only in those cases where all data fit
the cache such as SQRT (which only accesses a few floating point values) and SRT
(when the cache is large enough to hold the array being sorted).

1.5 Paper Organization

The rest of this paper is organized as follows. Section 2 gives an overview of the
flow and cache analysis used in our WCMP tool. Section 3 describes our scheme in
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detail. We first present our solution to have predictable programs on a unitask en-
vironment and then extend it to multitasking systems. Section 4 presents extensive
evaluations of our method. We start by evaluating the accuracy and contributions
of all different components independently, followed by performance measurements
for a multitasking system. We discuss some related work in Section 5. Finally, we
conclude and give a road map to some future extensions in Section 6.

2. A WCET TOOL OVERVIEW

A real-time system is a computer-based system where the timing of a computation
is as important as the actual value. In most cases, steady and predictable behavior
is the desired property; sometimes too fast is as bad as too slow.

Hard real-time systems are those where a failure to meet a deadline can be fatal.
To guarantee their behavior, the worst-case behavior has to be analyzed. It will be
used to ensure timely responses from tasks as well as input to scheduling algorithms.

That implies that it is necessary to know the execution times for the tasks in a
real-time system. However, a task does not have a unique execution time. There
are two sources of execution time variation: (i) the task may have different work
loads depending on the input, and (ii) the initial state of the hardware where the
task is executed may change for different runs. Since execution time varies, the
WCET (i.e., the longest execution time for a program for all possible input data)
is used as a safe upper limit.

A näıve approach to computing the WCET of a task would be to run the program
for each possible input. However, this is not possible in practice due to measurement
time. Running the program with the input data that cause the WCET would be
a solution, but it is usually hard to know such data. A third option is running
the code with an estimated very bad input data. Then a safety margin is added.
However, the WCET that is obtained in each of these approaches is not safe, since
it cannot be proved that it is the actual WCET.

We divide static WCET into three different phases:

—Flow analysis, which determines the possible paths through the program

—Low-level analysis, which determines the effect on program timing of hardware
factors like cache memories

—Calculation, which calculates the actual WCET based on the information pro-
vided by the other components.

In this section we first review the task model. Then, we outline the flow and cache
analyses, and how they impact WCET computation.

2.1 Task Model and Schedulability Analysis

We consider a set of N periodic tasks Ti, 1 ≤ i ≤ N . We denote the period and
worst-case execution time of task Ti by Pi and Ci, respectively.

We consider two schedulability analyses for periodic tasks, UA (utilization-based
analysis) and RTA (response time analysis). For dynamic priority preemptively
scheduled systems (e.g., earliest deadline first), the utilization condition U ≤ 1 is
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necessary and sufficient, where U is defined as follows:

U =

N
∑

i=1

Ci

Pi

(1)

For static priority preemptively scheduled systems such as rate monotonic, we
use response time analyses [Joseph and Pandya 1986; Tindell et al. 1994] to obtain
a necessary and sufficient condition. For a task Ti, the idea is to consider all
preemptions produced by higher priority tasks on an increasing window time. The
fixed point of the following recurrence gives the response time Ri of task Ti:

R0
i = Ci

... (2)

Rn+1
i = Ci +

∑

Tj∈HP (Ti)

⌈

Rn
i

Pj

⌉

× Cj

where HP (Ti) is the set of tasks with higher priority than Ti. In order to check
the schedulability of task Ti, one only has to compare the response time Ri with
its period Pi. Task Ti is schedulable if and only if Ri ≤ Pi.

Our approach eliminates cache penalties due to cold-starting the cache after a
context switch. Thus, classical non-cache sensitive schedulability analyses should
be used rather than their cache-sensitive versions, CUA [Basumallick and Nielsen
1994] and CRTA [Busquets-Mataix et al. 1996].

2.2 Flow Analysis

In order to estimate the WCET statically, we must analyze all possible paths.
For each path generated, the execution time will be estimated for a particular
architecture.

Program flow analysis determines the possible paths through a program.

Definition 1 (Path). A path from u to v in the control flow graph of a program
is a sequence of directed control flow edges, n0, n1, . . . , nk, such that n0 = u, nk = v
and (ni, ni+1) is an edge in the graph.

Flow analysis yields information about which functions are called, the number of
iterations of a loop, etc. Unfortunately, it is infeasible to analyze all possible paths
in a program.

Approximations during computation must be selected so that path explosion
is reduced: a simple loop with an if-then-else statement that iterates a hundred
times generates 2100 possible paths. Whenever it is possible, infeasible paths are
removed [Ermedahl and Gustafsson 1997; Lundqvist and Stenström 1998], reducing
the number of paths to be analyzed.

The following restrictions define the scope of programs where the execution path
can be determined statically, and thus, only one path is considered when computing
the WCET:

—Calls are non-recursive.

—All loop bounds and if conditionals must be either known or in terms of the loop
indices of the enclosing loops.
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if (!a[i])
b[i]++;

else
c[i]−−;

for (i=0;i<4;i++)
if (a[i])

break;

for (i=0;i<2;i++){
if (a[i]){

a[i]−−;
break;

}
else

a[2*i]++;
}

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 1. Codes where more than one path has to be analyzed.

We rely on the compiler to identify compile-time and runtime constants. Stan-
dard compile-time techniques can be very helpful in gathering missing information.
To address the symbolic loop bound problem, we use interprocedural constant prop-
agation to eliminate as many symbolic loop bounds as possible. Besides, we assume
that the maximum number of iterations of a loop and the maximum number of re-
cursive calls are known. This can be done either by manual annotations [Ermedahl
and Gustafsson 1997] or by automatic approaches [Gustafsson 2000].

Otherwise, when there is a lack of information at compile time that prevents from
analyzing only one path, we will apply a common technique known as path merging
in order to reduce the number of paths being analyzed and make the analysis more
efficient. This basically consists of reducing the path explosion by merging paths
in those cases where a path enumeration is needed [Ferdinand and Wilhelm 1999;
Healey et al. 1995; Lundqvist and Stenström 1999a]. This includes data-dependent
conditionals, loops with multiple paths inside and loops with unknown loop bounds.
Figure 1 introduces three examples that will be used through this article to illustrate
path merging.

However, this approximation trades performance for accuracy. At every merge
point, the most pessimistic assumptions are made in order to have a safe estimate.
In the presence of caches, this generally translates to an unknown state of the cache,
since the final state of the cache for each path is also merged.

Next, we explain in detail where we insert the merging operator. Later, we will
formally define the merging operator and its impact on cache analysis.

2.3 Merging Operator Placement

Merge points can be chosen arbitrarily depending on accuracy and execution time
desired. We use a strategy where the number of paths to be explored are reduced
from nk to kn for a loop that contains n possible paths and iterates k times. In
each iteration, all n paths are analyzed, but at the start of the next iteration all
these paths are merged into one. Note that we only consider natural loops, which
may have multiple exits. In the other cases, path merging is not applied and thus
all paths are analyzed.

Conditionals are also treated in a special way. When a conditional branch whose
condition is unknown is found, both paths have to be analyzed. In order to keep
the number of paths that are analyzed reasonable, both paths are merged. We
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(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 2. Control-flow graph for examples in Figure 1. Dashed boxes represent entry/exit nodes.

Merge Point Merge Point Merge Point

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 3. Basic merge situations.

enumerate the situations where the merge operator is applied below. We will use
the code snippets in Figure 1 as concrete examples. Their associated control-flow
graphs are shown in Figure 2, where the dashed nodes represent the entry/exit
nodes. The unfolded versions are shown in Figure 3.

Data-dependent conditionals. This includes all constructs like the C-language
switch and if-then-else conditionals that cannot be determined at compile time.1

Figure 3(a) shows an example of such a case. At compile time, it is impossible to

1From now on, we will refer to this case as IF conditionals.
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figure out which branch is going to be executed. The merge point is set in such a
way that it merges the outcomes from both branches.

Unknown number of iterations of a loop. This situation arises when either the
loop bounds are unknown or there is a jump out of the loop. Either way, a path is
created for each possible number of iterations, and all of them merged later when
they exit the loop (see Figure 3(b)).

Notice that these two situations can be combined. When analyzing a loop with a
data-dependent conditional, we may want to merge the branches of each iteration
and later, all the iterations (see Figure 3(c)).

2.4 Merging Operator

We now discuss how path merging impacts cache analysis.

Definition 2 (System State). For each path p, we denote its system state as the
result of its (partial) execution, and it may include information about the program
counter (which instruction is executed), memory locations, registers contents, etc.

Regarding our analysis, we are only concerned about the program counter (PC)
and the cache state (CC).

Definition 3 (Set of Cache Lines). L is the set of cache lines.

Definition 4 (Memory). S is the set of all memory lines. To represent the
absence of any block in a cache line, we introduce a new element I 6∈ S, S ′ = S∪{I}.

Definition 5 (CC). The state of the cache is a mapping

CC : L → S′

When considering set-associative caches, we assume that cache lines are sorted
within sets according to the replacement policy.2

For each merge operation, one must union the system states of all merging paths.
The merging operator t that merges paths is outlined in Figure 4. The union oper-
ation for cache states is defined as usual [Alt et al. 1996; Lundqvist and Stenström
1998]:

a tCC b = CC : L → S′

l 7→ a(l) tL b(l)

x tL y =

{

I if x 6= y
x otherwise

Note that the program counter of two merging paths at the merge point is the
same by definition. However, the cache states do not have to be the same, thus
some approximations when merging are taken. Our approach will eliminate this
situation: all merging paths have the same cache state at the merging point.

2The current implementation only supports LRU replacement policy, which is the one adopted by
all studied real-time processors.

ACM Transactions on Embedded Computing Systems.



Data Cache Locking for Tight Timing Calculations · 11

input

pa = a path
pb = a path

pre-condition:
pa.state.PC = pb.state.PC

output

pa t pb = a path

algorithm

pc is a path
pc.state.PC := pa.state.PC;
pc.state.CC := pa.state.CC tCC pb.state.CC ;

pa t pb :=pc

Fig. 4. Merging operator for paths.

2.5 Cache Analysis Review

Given an execution path, we use FindMisses [Vera and Xue 2002], an analytical
method which builds on the top of the Cache Miss Equations [Ghosh et al. 1999].
In order to get the best performance from the cache, we should try to lock it as
few times as possible. Besides, each locked region should be as small as possible.
Thus, the more constructs we can analyze statically, the better. We have extended
Cache Miss Equations to make whole-program analysis feasible. FindMisses sets
up a set of equalities and inequalities that describe the cache behavior of whole
programs with regular computations, which may consist of subroutines, call state-
ments, if statements and arbitrarily nested loops. This provides a framework that
can be integrated into any static tools, like compiler optimizations or WCET anal-
ysis tools.

Abstract Call Inlining [Vera and Xue 2002] allows us to quantify the impact of
subroutine calls precisely. It works in two steps:

(1) It models the accesses to the runtime stack, so we can handle conflicts between
stack locations and accesses to arrays and other major data structures. The
runtime stack is modeled as a 1-D array, and then treated just like an ordinary
array.

(2) It transforms the references to dummies so that the information of the matching
actuals is incorporated into the new references.

Notice that library and operating system calls whose source code is not available
cannot be analyzed. Thus, in order to have a predictable code, we will have to lock
the cache for that particular call.

The following restrictions define the memory references that are analyzable stat-
ically:

—The base addresses of all non-register variables including actual parameters (scalars
or arrays) must be known at compile time.

—The sizes of an array in all but the first3 dimension must be known statically.

3This applies to C codes. For FORTRAN77 codes it would be the last dimension.
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In order to ensure that our analysis can be done in the polyhedral model [Feautrier
1996; Xue 2000], we add the following constraint:

—The subscript expressions of array references and loop bounds are affine.

If any of the previous conditions does not hold, we lock the cache (and load it with
data likely to be accessed) as we do when we place merging operator, thus ensuring
that the cache contents are always known. We discuss it in detail in Section 3.2.2.

Impact of replacement policies. FindMisses assumes a k -way set-associative
cache with LRU replacement policy. However, some processors have caches with
less predictable replacement policies, such as pseudo-random or pseudo-LRU. If one
has the description of the replacement policy (i.e., its behavior can be reproduced
in software), it can be incorporated into FindMisses. Otherwise, the analysis will
not guarantee hits or misses for all memory accesses. Moreover, we will not be able
to guarantee a safe WCET.

2.6 Integration in a WCET tool

Some WCET tools integrate the cache analysis into the calculation phase. For
instance, Li et al [Li et al. 1996] describe cache behavior as a set of constraints,
which are solved as part of the calculation phase. A different approach is to perform
a separate cache analysis phase to determine the cache behavior, and then use this
information in the calculation phase.

Since our cache analysis [Vera and Xue 2002] describes cache behavior by means
of linear constraints and details cache behavior for every memory access, it can
be used in both situations. One may decide to add the linear constraints to the
description of the WCET and solve them as part of the calculation phase, or may
decide to solve them beforehand, and use that information in the calculation phase.
We plan to integrate our approach to an IPET-based WCET tool such as [Engblom
and Ermedahl 2000], where equations will be solved for any path that the WCET
tools requests.

3. PREDICTABLE CACHE BEHAVIOR

When considering cache memories, schedulability analyses should consider the cost
of reloading the cache lines that may have been evicted from cache. When a pre-
empted task resumes its execution, it may spend a lot of time reloading those cache
lines that have been displaced from cache. Recent studies incorporate some cache-
related preemption costs into the schedulability analysis [Basumallick and Nielsen
1994; Busquets-Mataix et al. 1996; Lee et al. 1998]. They basically assume that
the preempted task will incur a miss for each cache line when resuming execution.
However, this approach cannot be used when dynamic cache locking is used, since
the cost of preempting a task that is accessing a locked region may be much larger
than a cache miss for every cache line. A preempting task may unlock the cache
and load it with its own data; when the preempted task resumes its execution, it
will not reload the cache since the cache is locked. Thus, there may be more extra
misses than one per cache line throughout the locked region.

Our goal is to have a method that allows obtaining an exact (we want to guar-
antee an exact classification of memory accesses as cache hits or misses) and safe
WCMPs of tasks for multitasking systems with data caches, so that current schedula-
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input

S = a set of tasks
C = a cache architecture

output

PredictMultiTask(S, C) = <set of tasks, set of partitions>

algorithm

CP := CreatePartitions(S, C); // set of partitions
S aux := ∅; // set of modified tasks
for each task Ti ∈ S

CPi is Ti’s cache partition
P aux:= LockAndLoad(Ti); // modified task after locking
P aux:= CacheOptimize(P aux, CPi);
S aux.insert(P aux);

PredictMultiTask(S, C) := < S aux, CP >

Fig. 5. An algorithm for obtaining a predictable set of tasks on a multitasking system.

bility analyses can be applied without modifications. We propose the use of cache
partitioning for avoiding inter-tasks conflicts. This allows us to compute the WCMP

of each task in isolation. We combine it with some compiler cache optimizations
(such as tiling and padding) to reduce the loss of performance due to the use of a
smaller cache. When calculating the WCMP of a task, we use FindMisses combined
with dynamic cache locking. We first transform the program issuing lock/unlock
instructions to ensure a tight WCMP estimate at static time. In order to keep a high
performance, load instructions are added when necessary.

PredictMultiTask given in Figure 5 takes as input a set of tasks and a cache
architecture, and generates a set of cache partitions and a set of analyzable tasks
that have the same semantics as the original tasks. Then, we run FindMisses for all
possible execution paths, obtaining an exact WCMP for each transformed task. Below
we explain in detail the different parts of the algorithm in separate sections. We first
discuss the implications of using the cache partitioning technique. Then, we outline
how we solve the problem of predictability for data caches. In order to optimize
the cache behavior of tasks, we have implemented padding and tiling as described
in [Vera et al. 2003]. Thus, the performance of the tasks is not jeopardized.

3.1 Cache Partitioning (CreatePartitions)

Inter-task interference occurs when memory accesses from different tasks conflict
in cache (i.e., different tasks use the same cache lines and thus, a task may evict
data that have been brought by another task), which causes unpredictability. Cache
partitioning [Kirk 1989] divides the cache into disjoint partitions, which are assigned
to tasks in such a way that inter-conflicts are removed.

Let {T1, . . . , Tn} be a set of tasks. Usually, cache partitioning creates n + 1
partitions, one for each real-time task and another one which is shared among non-
real-time tasks. Each task is only allowed to access its own partition, thus removing
inter-task conflicts. Note that tasks that have the same priority (thus, they are non-
preemptively related to each other) can share the same partition, since they are only
preempted by tasks that have higher priority, and thus the predictability of cache
behavior is not affected. Therefore, it is enough to divide the cache in p partitions,
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input

P = a program

output

LockAndLoad(P ) = a predictable program

algorithm

P aux is a program
P aux := LockMergingPoints(P );
P aux := LockDataDependent(P aux);
P aux := OptimizeLock(P aux);
P aux := LoadData(P aux);

LockAndLoad(P ) := P aux

Fig. 6. An algorithm for obtaining a predictable program.

where p is the number of different priorities.
Cache partitioning can be implemented by either software [Müeller 1995; Wolfe

1993] or hardware [Kirk 1989]. Both techniques restrict the partition size to be a
power of two, so that the pointer transformation to access data structures can be
performed in a fast way.4 The software approach requires compiler and linker sup-
port [Müeller 1995], which are responsible for relocating data to provide exclusive
mappings on the cache for each task.

When a cache is partitioned, each task will access a smaller fraction of the cache,
which may cause capacity misses to increase. Thus, the size of the partitions has
an impact on the overall performance. In order to obtain the best data cache
partitioning, the decision should be taken based on the priorities and the reuse
patterns of tasks. For instance, a task that has a workload of 8KB but only accesses
each cache line once only needs one cache line, whereas a task with a workload of
1KB that reuses each cache line one million times would suffer a performance loss
with a partition smaller than 1KB.

Our approach works with both hardware and software mechanisms, and it does
not depend on the size of the partitions created. From now on we assume that
the cache is divided in n equally-sized partitions, one for each task. Such a simple
approach is good enough for scheduling real sets of tasks and better utilizing the
CPU than other approaches. An algorithm to obtain even better performance, by
choosing different cache partition sizes for different tasks, is left as future work.

3.2 Dynamic Cache Locking (LockAndLoad)

LockAndLoad given in Figure 6 takes as input a general program, and generates an
analyzable program with the same semantics. In this section, we explain in detail
the different parts of the algorithm to have a predictable program.

3.2.1 Path Merging (LockMergingPoints). A practical limitation for WCET es-
timation is that the number of paths to be analyzed can easily be prohibitive, es-
pecially when studying loop constructs with multiple paths inside. We have shown
in Section 2.2 how we manage to bound the number of analyzed paths to just a few

4This restriction does not apply to instruction caches.
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(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 7. Control-flow graphs with lock/unlock nodes for examples in Figure 2. Black boxes represent
the lock/unlock nodes with the lock/unlock instructions.

by means of path merging. However, merging paths leads to an unknown state of
the cache, since a new state of the cache is created based on the state of the cache
at the end of each path [Alt et al. 1996; Lundqvist and Stenström 1999a].

When a memory access is analyzed on the pipeline and it cannot be classified as
a hit or a miss, both situations should be analyzed to identify the longest path [En-
gblom and Ermedahl 1999]. This translates to larger analysis times. In order to
avoid an unknown state of the cache due to merging, we lock the regions where
paths are merged.

LockMergingPoints makes use of the control-flow graph of the program. It inserts
lock/unlock instructions (lock/unlock nodes in the control-flow graph) exactly for
the situations described in Section 2.3:

—The lock instruction is placed at the top of the entry node of the IF or loop
construct.

—The unlock instruction is placed after the exit node of the if or loop construct.
For loops with multiple exits, an unlock instruction is placed for each possible
exit. Without loss of generality, from now on we only consider loops with one
exit.

Figure 7 shows the resulting control-flow graphs after the lock/unlock instructions
have been inserted for the control-flow graphs shown in Figure 2. Figure 8 shows
the codes with the lock instructions for the corresponding codes in Figure 1.

3.2.2 Data Cache Locking (LockDataDependent). We have discussed in Sec-
tion 2.5 the situations where FindMisses cannot accurately predict the cache behav-
ior for an execution path. This includes indirection arrays (e.g., a[b[i]]), variables
allocated dynamically (e.g., mallocs), pointer accesses that cannot be determined
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lock();
if (!a[i])

b[i]++;
else

c[i]−−;
unlock();

lock();

for (i=0;i<4;i++)
if (a[i])

break;
unlock();

lock();
for (i=0;i<2;i++){

lock();
if (a[i]){

a[i]−−;
break;

}
else

a[2*i]++;
unlock();

}
unlock();

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 8. Non-analyzable codes with lock instructions.

statically, and non-linear array references (e.g., a[i*j]). We also include library and
operating system calls whose source code is unavailable. We obtain a tight predic-
tion of the WCMP by automatically locking (and loading if necessary) the cache.

When a non-analyzable memory reference is found, we place a lock instruction
at the top of the control-flow node where the memory access is realized. The
corresponding unlock instruction is placed at the bottom. When memory references
are found within a loop, we lock the cache for the loop nest, thus minimizing the
overhead of executing lock/unlock instructions.

In order to obtain an accurate WCMP of a task with library calls, we would need to
analyze the source code of the library to generate annotations that would help our
analysis. Otherwise, to just ensure that those calls do not interfere with our anal-
ysis, we lock the cache before each call statement and unlock it afterwards. A lock
instruction is placed at the top of the control-flow node where the call statement is
placed. An unlock instruction is placed at the bottom. Unfortunately, the memory
accesses within the library call will not be guaranteed as hits or misses, thus both
situations will be analyzed in the pipeline analysis of the WCET calculation.

3.2.3 Optimizing Placement of Lock/Unlock Instructions (OptimizeLock). Au-
tomatic placement of lock/unlock instructions may cause performance degradation
for a program. On one hand, the execution of lock/unlock instructions incurs a
run-time overhead. This can be particularly so for instructions placed within loops,
since they will execute several times. On the other hand, locking the cache when
it is not necessary usually worsens performance.

Let us consider the code in Figure 8(c). At first sight, the lock/unlock instructions
within the loop nest are unnecessary, due to the lock/unlock instructions placed
at the entry/exit of the loop respectively. If we assume that each lock/unlock
executes in 1 cycle, removing the unnecessary instructions will reduce the number
of cycles needed to run the code by 2*k, where k is the number of iterations. For
our example, we would save 4 cycles.

OptimizeLock goes through the control-flow graph looking for redundant lock/un-
lock instructions. It is an algorithm that keeps iterating while some progress is done.
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lock();
lock();
for (i=0;i<2;i++){

if (a[i]){
a[i]−−;
break;

}
else

a[2*i]++;
}
unlock();
unlock();

lock();
for (i=0;i<2;i++){

if (a[i]){
a[i]−−;
break;

}
else

a[2*i]++;
}
unlock();

lock();
for (i=0;i<2;i++){

if (a[i]){
a[i]−−;
break;

}
else

a[2*i]++;
}
unlock();

(a) After 1st iteration (b) After 2nd iteration (c) Final code

Fig. 9. Application of OptimizeLock on the code in Figure 8(c).

We have currently implemented the following optimizations, where “;” represents
arcs between nodes in the control-flow graph.

Rule 1. Lock/unlock instructions that lock the whole loop body are placed out-
side the loop.

loop;lock;S;unlock;endloop V lock;loop;S;endloop;unlock

Rule 2. Remove nested lock regions.

lock;lock;S;unlock;unlock V lock;S;unlock

Rule 3. Fuse two consecutive locked regions.

lock;S1;unlock;lock;S2;unlock V lock;S1;S2;unlock

Rule 4. Inspecting the memory accesses for the different outcome branches of an
IF statement may allow us to detect that the memory accesses are actually the
same, thus we do not have to distinguish among them.

if S1.memory accesses=S2.memory accesses then
lock;if;then S1;else S2;unlock V if;then S1;else S2

We show in Figure 9 the results of running the code in Figure 8(c) through
OptimizeLock. The first iteration applies Rule 1, whereas in the second iteration it
uses Rule 2 to remove the innermost locked region. Finally, it stops at the third
iteration since no further changes are done. The final code is shown in Figure 9(c).

Whereas Rules 1–4 are beneficial, overhead in deeply nested loops may be large if
we cannot lift lock/unlock instructions to higher levels. Thus, we define two extra
rules that may allow to lock whole loop bodies by moving lock instructions:

Rule 5. Move a statement past a lock instruction.

S1;lock;S2;unlock V lock;S1;S2;unlock

Rule 6. Move an unlock instruction past a statement.

lock;S1;unlock;S2 V lock;S1;S2;unlock
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input

P = a program [with locked regions]

output

LoadData(P ) = program with selective
load instructions

algorithm

1 P aux := P is a program
2 Lock(P ) := locked regions of P;

3 for each locked region L ∈ Lock(P )
4 NAV (L) := non-analyzable variables ∈ L;
5 AV (L) := analyzable variables ∈ L;
6 P aux := IssueInstrForAV(P aux, AV (L));
7 P aux := IssueInstrForNAV (P aux, NAV (L));

8 LoadData(P ) := P aux

Fig. 10. Algorithm for selective loading.

Unlike Rules 1–4 that do not modify cache behavior, these last two rules may
not always be beneficial. If data accessed in the newly locked statements is already
in cache, then these transformations do not hurt performance. However, they may
create later opportunities for other optimizations. The automatic placement of
lock/unlock instructions to achieve the best performance remains as future work.5

3.2.4 Selecting Data to Lock in the Cache (LoadData). The benefit of cache
locking is clear from the predictability point of view. Locking the cache allows
us to analyze data-dependent constructs while not jeopardizing the analysis of the
forthcoming code. However, locking disables the normal behavior of the cache, and
hence programs may not hide the memory latency if the data they access is not in
cache.

In order to overcome this problem, we can load the cache with data likely to be
accessed. Nevertheless, determining accurately which data in the cache gives best
performance is too expensive; it would be the same as knowing, before running the
program, the most frequently accessed memory lines for each cache set. However,
we can use a simple analysis based on reuse analysis [Sánchez et al. 1997; Wolf
and Lam 1991] to determine which data to load, if any, for those variables that are
statically analyzable.

Figure 10 outlines LoadData, the algorithm we use to load the cache selectively.
The for in line 3 analyzes all locked regions sequentially. For each locked region, it
collects all variables that are accessed within it, classifying the variables depending
on whether they have data-dependent (non-analyzable) accesses or not (analyzable).
For a thorough understanding of reuse vectors, we refer the interested reader to
previous work [Wolf and Lam 1991; Vera et al. 2004].

3.2.5 Loading Analyzable Variables. We first study those variables whose mem-
ory accesses are statically analyzable. Since we want to maximize the locality,

5This is equivalent to optimize the conversion of data between two formats which is known to be
NP-hard.
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input

P = a program
S = set of variables

output

IssueInstrForAv(P ,V ) = program with selective
load instructions

algorithm

1 P aux := P is a program

2 for each variable V ∈ S (in desc. order)
3 UGR(V ) := classify references ∈ V in UGR classes;
4 for each reference class R ∈ UGR(V ) (in desc. order)
5 if (R has no locality)
6 P aux := AddLoads(P aux,R);

7 IssueInstrForAv(P ,V ) := P aux

Fig. 11. Algorithm for issuing load instructions for analyzable variables.

IssueInstrForAV in Figure 11 analyzes variables in descending order; the variable
that has more memory references is going to be allocated first. In order to decide
which memory lines to load, we compute, for each variable, the range of addresses
that it accesses. When analyzing array variables, we use the concept of uniformly
generated references (UGR) [Gannon et al. 1988] to decide which part of the array
is accessed within the region. Two references are called uniformly generated when
their array subscripts are affine and differ at most in their constant terms [Gannon
et al. 1988].6 At line 3 we classify all memory references to the studied variable V
into uniformly generated classes.

We estimate the amount of data that can be reused from outside the locked
region using the reuse vectors. The for in line 4 studies all UGR classes, again in
descending order, giving priority to those that have more references. Our algorithm
is a simple volume analysis based on reuse vectors (line 5). It is a modified version
of those proposed previously [Sánchez et al. 1997; Wolf and Lam 1991] in order to
handle locked regions.

If we detect that some elements will not be in cache when we lock the cache,
AddLoads includes the necessary load instructions to place them in cache. For large
data sets, we may try to load a memory line that maps to a cache set that is already
full. In those cases, we do not reload it since it has been loaded by a variable with
higher locality.

3.2.6 Loading Non-Analyzable Variables. A precise approach to computing WCET
uses global information (such as cache behavior) as input to the local low-level
analysis, simulating the result of the cache miss/hit on the actual execution of in-
structions in the processor pipeline. However, when the result of a cache access is
unknown, both possible results have to be simulated.

Our IssueInstrForNAV analyzes those variables that have non-analyzable ac-
cesses. Since it is not possible to determine at compile time which part of the array

6For instance, reference a[i][j] is uniformly generated with respect to references a[i][j + 1] and
a[i − 1][j], but not with respect to reference a[j][i].
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input

P = a program
S = set of variables

output

IssueInstrForNAV(P ,V ) = program with selective
load instructions

algorithm

1 P aux := P is a program

2 for each variable V ∈ S (in desc. order)
3 if (V does not fit in cache)
4 P aux := InvalidateArray(P aux,V );
5 for each variable V ∈ S (in desc. order)
6 if (V fits in cache)
7 P aux := LoadArray(P aux,V );

8 IssueInstrForNAV(P ,V ) := P aux

Fig. 12. Algorithm for issuing load instructions for non-analyzable variables.

is accessed, we assume that the whole array is accessed. Besides, since we want to
avoid those situations where a cache access cannot be classified, we load the whole
array if there is space in the cache. Otherwise we remove all elements present in
cache, thus ensuring cache misses for all accesses to that array. This algorithm is
illustrated in Figure 12. It first makes room in the cache invalidating all data from
variables that do not fit in cache (lines 2–4). Then, it tries to load into cache those
variables that do fit in cache.

3.2.7 Architectural Support. Several commercial processors (such as (PowerPC
604e [Motorola Inc. 1996], 405 and 440 families [IBM Microelectronics Division
1999], Intel-960, some Intel x86, Motorola MPC7400 and others) offer the ability to
load and invalidate cache lines selectively, with cache fill and invalidate instructions
respectively. Thus, no special hardware support is necessary to implement our
LoadData algorithm.

However, both of them could be “simulated” in software if necessary, even though
at the cost of some performance loss.

3.2.8 Remarks. In the discussions so far, we have ignored the effects of possible
conflicts with memory accesses coming after the locked region. It may happen
that due to the added load instructions, a memory line that otherwise would have
been reused later is flushed out from cache, thus worsening cache behavior for that
particular access. This would cause, in the worst case, one miss per each cache line.
However, keeping those lines could cause a poor performance for the locked region.
Achieving the best overall performance (i.e., deciding which memory lines to load
taking into account the whole program) is a challenging problem that we plan to
address in the future.

3.3 Putting It All Together

In this subsection, we will use the code in Figure 13(a) to illustrate how Lock-
DataDependent and LoadData work. We assume, for this example, a 4KB direct-
mapped cache with 16B per line.
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int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)

a[i]=random(i);
for (i=0;i<100;i++)

c[i]=b[a[i]]+c[i];
for (i=0;i<100;i++)

if (c[i]>15)
k++;

c[i]=0;

Non-analyzable constructs:
b[a[i]]
c[i]>15

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)

a[i]=random(i);
lock(); /*region 1*/
for (i=0;i<100;i++)

c[i]=b[a[i]]+c[i];
unlock();
for (i=0;i<100;i++){

register int temp=(c[i]>15);
lock();/*region 2*/
if (temp)

k++;
unlock();
c[i]=0;

}

(a) Original Code (b) Code with lock/unlock

Fig. 13. A code before and after applying LockDataDependent and OptimizeLock.

Anal. Vars Refs Locality Load

c: c[i], c[i] N/A YES
a: a[i] YES NO

⇓ UGR classes for c ⇓
c[i]

⇓ c has not locality ⇓
Issue loads for c[i], i = 0 . . . 99

⇓ UGR classes for a ⇓
a[i]

⇓ a has locality ⇓
Do not issue loads

Non-Anal. Vars Refs Fits

b: b[. . . ] YES

⇓ b fits the cache ⇓
Issue loads for b, i = 0 . . . 99

Fig. 14. Detailed steps for the LoadData execution for region 1.

We start running LockDataDependent, which detects those constructs that are
not analyzable at compile time and places lock/unlock instructions. After having
applied OptimizeLock to avoid unnecessary locks/unlocks at every iteration, we
obtain the code shown In Figure 13(b).

The next step consists in running LoadData to decide which data to load. We
summarize the steps applied when analyzing the first locked region in Figure 14.

We start studying the analyzable variables for each region. For the first region,
it identifies two analyzable variables, c and a. It first analyzes c since it has two
references, and then a, determining that c is not in cache yet. Thus, it issues
the corresponding load instructions. Using the reuse vectors, we detect temporal
locality between the two occurrences of a[i], and the volume analysis says that
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int a[100], b[100];
int c[100], k=0;

for (i=0;i<100;i++) lock(); /*region 1*/
a[i]=99-i; for (i=0;i<100;i++)

load(c[0]); c[i]=b[a[i]]+c[i];
load(c[4]); unlock();
..
. for (i=0;i<100;i++){
load(c[92]); register int temp=(c[i]>15);
load(c[96]); lock();/*region 2*/
load(b[0]); if (temp)
load(b[4]); k++;
... unlock();
load(b[92]); c[i]=0;
load(b[96]); }

Fig. 15. Transformed code with lock/unlock and load instructions.

neither access will flush the datum accessed out from the cache. A similar analysis
is performed for the second region, determining that k is already in cache due to
the initialization.

Then, the non-analyzable variables for each locked region are analyzed. Our
approach identifies variable b in the first locked region, which is accessed for the
first time. Assuming that there are no interferences, there is enough space in the
cache to load b.

Eventually, the worst-case memory performance will be computed. Figure 15
shows the final transformed code. With the information of when a memory access
is to be a miss/hit, we compute that the longest path is the one where c[i]>15
holds in all instances. It results in 26 misses due to first accesses to k and a, 50
misses due to the loading of b and c and 775 hits. In case that array b did not fit
the cache, we would estimate all its accesses as a miss, since we would not know
the memory lines being accessed (besides, we would have invalidated array b since
FindMisses would not take advantage of it).

4. EXPERIMENTAL RESULTS

We now present results from our simulation studies. We first introduce the cache
architectures simulated. Then, we present simulation results from our approach.

We start analyzing dynamic cache locking. We first evaluate the accuracy of our
static data cache analysis when adding the locking features. Then, we analyze the
efficiency of our loading algorithm for reducing the performance degradation due
to the lock/unlock instructions. Next, we present our estimated WCMP for the set of
benchmarks for different architectures.

As a second step, we discuss the impact of partitioning the cache on the system’s
throughput. Later, we compare the performance of different methods that ensure
predictability when applied to partitioned caches. Finally, we show the worst-case
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Name Freq. L1(C,L,k) H/M

microSPARC II-ep 100MHz (8,16,1) 1/10

PowerPC 604e 300MHz (16,32,4) 1/38

MIPS R4000 250MHz (16,16,1) 1/40

IDT 79RC64574 200MHz (32,32,2) 1/16

Table II. Microprocessors and microcontrollers used for the experimentation. C stands for cache
size in KB, L stands for cache line size in bytes, and k stands for the degree of associativity. H/M
is the hit/miss cycles for each cache level.

Yes/No
Task
Set

Cache
Partitioning

Partition  1
Task 1

Partition  n
Task n

Static Analysis Schedulability
Analysis

Dynamic Locking
WCMP

Analysis WCMP

Dynamic Locking
WCMP

Analysis WCMP

Cache

Fig. 16. A framework for worst-case performance computation.

performance when our method is applied, and compare it with static data cache
locking [Puaut and Decotigny 2002].

4.1 Experimental Framework

Embedded systems are commonly considered very specific systems based on a mi-
croprocessor with memory integrated on the chip. Nowadays, emerging areas like
car computers demand real-time capabilities but at a relative low cost. Yet, some
of these new applications require a high throughput.

Microprocessor companies are moving from 4-, 8- and 16-bit processors to the
current 32-bit architectures. This includes the new ARM processors, some down-
scaled x86, and simplified PowerPC and MIPS processors. Caches are mainly used
on many high-end embedded 32-bit processors. We have conducted experiments
for data caches commonly used in real-time systems.

The cache configurations and access times are the ones specified in Table II. We
name the cache configurations after the processors that include them, and latencies
have been obtained from vendors’ specifications. Otherwise, we make clear which
cache architecture is used. Each instruction to load the cache is treated as a normal
memory access. We present results in terms of WCMP. Integrating our approach into
a WCET tool remains as future work.

Figure 16 depicts the framework used for computing the worst-case performance
and studying the schedulability of a task set. The paths that are used to obtain
the path corresponding to the worst-case scenario are currently manually fed to our
system.

The central component is the static analyzer. We have used our FindMisses
algorithm (see Section 2.5) to obtain precisely which memory accesses result in
a miss. We present the performance of our approach for two real task sets. We
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Workload WCMP Period Period
Name (bytes) (no cache) (Normal) (HP)

Large Task Set

mm 120000 153140000 117800000 102093333
srt 8000 113925998 159496397 227851996

fib 16 7790 155800000 3895
fft 8192 1655808 152334336 3311616

Medium Task Set

cnt 40000 1140000 570000 285000
sqrt 16 5360 241200 2680
st 16000 532000 266000 266000

ndes 960 220938 331407 110469

Table III. Task Sets used.

Name Description Workload

mm Multiply two 100x100 Int matrices 120000

cnt Count and sum values in a 100x100 Int matrix 40000

st Calc Sum, Mean, Var (2 arrays of 1000 doubles) 16000

sqrt Computes square root of 1384 16

fib Computes the first 30 Fibonacci numbers 16

srt Bubblesort of 1000 double array 8000

ndes Encrypts and decrypts 64 bits 960

fft Fast Fourier transformation of 512 complex numbers 8192

Table IV. Real-time benchmarks used. Workload is expressed in bytes

set up a large task set in order to evaluate the efficiency of cache partitioning and
compiler optimizations. The medium task set is used to show that even for smaller
workloads, our approach performs better than static cache locking. An overview of
the two task sets can be seen in Table III. The programs are introduced in Table IV.
They are all written in C, drawn from different real-time papers that analyze data
cache behavior [Alt et al. 1996; Kim et al. 1996; White et al. 1997]. For each task,
we present its name, its description, and the WCMP when the data cache is disabled.
We give two possible periods. The normal periods of tasks have been selected so
that the relation between CPU utilization7 and amount of data is the same for each
task set. We have chosen a CPU utilization of 2.03 for the large task set and 4.69
for the medium. For the HP (high performance) periods, the CPU utilizations
for the large and medium task sets are 4.5 and 10.0, respectively, so that tasks
will have higher throughput. As a result, the task sets will not be feasible if a data
cache is not used for any of the period configurations.

4.2 Dynamic Cache Locking

The goal of using data cache locking is to eliminate unpredictability by locking
those regions in the code where a static analyzer cannot be applied. However, cache
locking may cause degradation in performance, which we try to avoid by means of
loading the cache with data likely to be accessed. In order to isolate the results from

7In terms of our simple timing model.
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Name C. Unlock Lock Lock & Load ∆U (%) ∆L(%) #Loads

S 158 330 158 108.8 0.0 1
P 214 881 214 311.6 0.0 1

sqrt M 185 456 185 146.4 0.0 1
I 218 960 218 340.3 0.0 1

S 7507 7507 7507 0.0 0.0 0
P 12285 12285 12285 0.0 0.0 0

srt M 10513 10513 10513 0.0 0.0 0
I 12787 12787 12787 0.0 0.0 0

S 6299 6992 6992 11.0 11.0 0
P 6970 6970 6970 0.0 0.0 0

ndes M 6641 7361 7361 10.8 10.8 0
I 7034 7034 7034 0.0 0.0 0

S 88696 231296 118544 160.7 33.6 256
P 52736 805888 52736 1428.1 0.0 128

fft M 50944 356480 50944 599.7 0.0 256
I 53248 847104 53248 1490.8 0.0 128

Table V. Memory cost in cycles for the lock & load algorithm. S stands for microSPARC-IIep, P
for PowerPC 604e, M for MIPS R4000, and I for IDT 79RC64574. ∆U=loss of performance with
locks/unlocks but without loads and ∆L=loss of performance with locks/unlocks and loads. In
both cases, the baseline is the same system with the same cache when neither locks/unlocks nor
loads are used. ∆U and ∆L are computed with respect to the execution of the program without
lock and load instructions for the cache.

those of the WCMP computation, we consider as a particular case the actual path
that is executed (i.e., we do not use the longest path). We only analyze programs
where lock/unlock and load instructions were issued. For the other programs, our
flow analysis managed to identify only one path, and FindMisses could analyze all
memory references. Thus, locking was not necessary. Compared to previous work,
White et al [White et al. 1997] overestimate the memory cost by 10% and 17% for
mm and st respectively.

4.2.1 Impact of Loads. To evaluate the effectiveness of loading the cache, we
first compare the memory cost of the resulting code with lock/unlock instructions
against the same code extended with selective load instructions. The baseline is the
execution of the program on the same system with the same cache except that nei-
ther lock/unlock instructions nor load instructions are used. In order to accurately
evaluate to what extent selectively loading the cache can improve performance, we
do not consider the additional cycles due to the extra loads and locks/unlocks used.
The results of this experiment are shown in Table V. We can see that in the gen-
eral case, locking the cache without loading it leads to a significant performance
degradation, in one case as large as over 1000%. srt exhibits almost the same per-
formance regardless whether the load instructions are used or not. This is because
when the lock regions are executed, all data accessed are already in the cache. The
same happens to ndes. However, in the case of microSPARC-IIep, the small cache
cannot hold all data and thus the performance drops. In the case of MIPS R4000,
the performance drops since it uses a direct-mapped cache.

When loading the cache, performance degradation is usually eliminated. In those
cases where there are conflicts among data accessed in the locked regions, loading
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Fig. 17. Overall overhead of the cache locking. S stands for microSPARC-IIep, P for Pow-
erPC 604e, M for MIPS R4000, and I for IDT 79RC64574.

the cache reduces the performance degradation, but it cannot eliminate it com-
pletely. Finally, the last column indicates that the reduction of memory cost can
be achieved with a few selected loads issued to load the cache.

4.2.2 Performance Evaluation. We have evaluated the overall overhead of the
resulting code in more detail. Figure 17 contains the results where cycles due to
locks/unlocks and extra loads are considered. The memory cost is normalized to
the memory cost of the actual execution of the program running on the same system
with the same cache when neither lock/unlock nor load instructions are used. We
can see that the slowdown ranges from 0% to 43%, mainly because the cache is not
big enough to contain all data accessed in the locked regions. For instance, fft has
an overhead of 43% for the microSPARC-IIep architecture. When the cache size is
increased, the conflicts disappear and the overhead is minimal.

ndes deserves special comments. The overhead is basically due to the lock/unlock
instructions. This happens because a majority of these instructions are nested
in loops, and consequently, cannot be removed by applying Rules 1–4 given in
Section 3.2.3 alone. Thus, we have decided to apply Rules 5–6 to optimize the
placement of lock/unlock instructions in these benchmarks. Figure 18 shows the
reduced overhead for ndes when Rules 5–6 are used. The transformations as defined
in these two rules have worked as enablers, i.e., they have enabled Rules 1–4 to
achieve a better instruction placement. As a result, our algorithm has now issued
only 12 load instructions each for microSPARC-IIep and MIPS R4000, and 22
each for PowerPC 604e and IDT 79RC64574. Table VI details the contributions
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Fig. 18. Overhead of cache locking for the ndes program after the placement of lock/unlock
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S P M I
Overhead

B A B A B A B A

Locking instructions 39.5% 4.7% 35.5% 8.8% 37.3% 9.2% 35.2% 8.7%

Conflicts 4.1% 4.4% 0.0% 0.1% 10.8% 11.1% 0.0% 0.1%

Table VI. Detailed overhead before (B) and after (A) applying Rules 5–6 for ndes. S stands for
microSPARC-IIep, P for PowerPC 604e, M for MIPS R4000, and I for IDT 79RC64574.

of locking and cache conflicts to the total overhead. When Rules 5–6 are used,
the overhead due to lock/unlock instructions drops, whereas the number of cache
conflicts increases slightly due to the extra loads introduced.

In the following section, we show how this small performance degradation leads
to a fully predictable program. Thus, we can compute the WCMP for a program in
a tighter way than it has to be estimated pessimistically. Even though the actual
execution time of the task may increase, the WCMP will be smaller. As a result, we
will be able to make better use of resources available.

4.3 WCMP

Locking may sometimes increase the actual execution time, and thus the WCET
of a program. However, without locking the WCET may have to be more pes-
simistically estimated, so that the WCET estimate without locking may be actually
greater than the WCET estimate obtained with locking and loading. This section
presents experimental results validating this point (at least for the benchmarks
used). WCET’s are important for the design and validation of hard real-time sys-
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Fig. 19. Estimates of the WCMP.

tems, but since the WCET estimate is what is available it is the size of the estimate
that is important in practice.

Our locking algorithm will be successful if the presence of locked regions allows
us to compute a smaller WCMP than before, i.e., if

WCMP(task + locks/unlocks + loads) < WCMP(task)

In order to see the effectiveness of our approach, we have compared our method
to compute WCMP with two other methods that are currently used:

—Cache disabled (i.e., cache locked all the time).

—Cache unlocked, making pessimistic assumptions whenever we do not know what
happens. If the addresses of the memory accesses are unknown, we consider an
empty cache where we would unlock the cache in our approach. Otherwise, we
only invalidate cache lines where there is a conflict due to merging.

We use as a reference the actual WCMP of the program without lock instructions,
which is obtained running the program with the worst-case input data.

Figure 19 compares the different estimates for each method. When the cache is
disabled, all memory accesses are considered as misses, which yields a very large
overestimation of the WCMP. The estimated WCMP is between 5 and 38 times larger
than the actual one. The pessimistic approach performs better but the estimated
WCMP, which is between 2 and 22 times larger than the actual WCMP, is far from tight.
Our approach gives an exact WCMP of the transformed program (i.e., the program
with lock/unlock and load instructions).
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4.4 Dynamic Locking: Summary

We have shown the effectiveness of dynamic locking. Whereas some performance
may be lost due to the locking mechanism (in the worst case, the program runs 0.4
times slower), we can achieve a perfect estimate of WCMP for the benchmarks given.
Besides, we have seen that the estimate of WCMP(task+locks/unlocks+loads) is much
smaller than the best estimate of WCMP(task). For those programs where lock/unlock
instructions are not issued, our estimate is exact and there is no overhead.

We have presented results that highlight the accuracy of our static approach.
Later, we have seen that in all cases, our selective locking technique allows us to
accurately predict the cache behavior, which translates to an exact computation of
the WCMP. We have shown that estimating the WCMP without the help of locking the
cache is very hard, and it usually yields very large overestimates. Moreover, the
knowledge of the memory behavior will allow us to compute tighter WCET.

Analysis time Our experiments were done on a Pentium-4 processor at 1.6GHz.
The average execution time needed to analyze a cache configuration is 0.6 seconds.
In particular, mm takes the longest to analyze, with 3 seconds for each configuration.
The problem size is N=100, which means that we have to evaluate around 3 million
accesses. We believe this time is reasonable for the kind of analysis performed.

4.5 Performance of Cache Partitioning

For analyzing the whole system, we have chosen 16KB and 32KB caches with 32B
lines (like the ones of PowerPC 604e and IDT 79RC64574). For each cache, we
have considered a direct-mapped cache, 2-way and 4-way set associative caches.8

We chose the hit and miss access times after the PowerPC 604e [Motorola Inc.
1996], where each hit takes 1 cycle and each miss 38 cycles. Lock and unlock
instructions take 1 cycle each.

The goal of using cache partitioning is to eliminate unpredictability due to inter-
task conflicts for multitasking systems that have data caches. However, they trade
predictability for performance, which may cause some performance degradation. In
order to evaluate the effectiveness of applying cache partitioning, we have compared
the following three situations, where cache locking is not used:

—Fully dynamic execution. Each task uses the whole cache.

—Partitioned dynamic execution. We create equally-sized partitions. Each
task runs on its own partition.

—Cache disabled. We consider the system without cache.

Figure 20 shows the results of this experiment. We present results in terms of
slowdowns when compared to the memory cost of each task when fully dynamic ex-
ecution is allowed. We can observe that the average memory cost increases by 79%
and 2470% for partitioned dynamic execution and a system without cache, respec-
tively. This demonstrates that cache partitioning degrades performance compared
to a system where each task uses the whole cache, but it is much better than not
having a cache at all. Thus, we are trading performance for predictability.

8Caches with larger associativity usually use random or FIFO replacement policies.
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Fig. 20. Cache partitioning impact: comparison of performance degradation for a system with a
partitioned cache and a system without a cache.

4.6 Optimizations

The use of cache partitioning increases predictability by removing inter-task cache
conflicts. However, it may increase intra-task cache conflicts since each task uses a
smaller cache. This can be critical for direct-mapped caches, whereas set-associative
caches can handle conflicts in a better way. In order to reduce intra-task conflicts,
we apply tiling and padding as shown in [Vera et al. 2003] in concert with dynamic
cache locking. For the large task set, the application of tiling has translated to a
5.6% (1%) WCMP reduction for mm on the 16KB direct-mapped (2-way) partitioned
cache, and padding has reduced the WCMP for fft by 99.9% on the 32KB direct-
mapped partitioned cache. The average memory cost compared to the partitioned
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Large Task Set Medium Task Set
32KB 16KB 32KB 16KB

Ways 1 2 4 1 2 4 1 2 4 1 2 4

Lock 0.93 0.93 0.93 1.19 1.19 1.19 1.51 1.75 1.74 2.16 2.19 2.18

Ours 0.29 0.13 0.10 0.81 0.68 0.65 0.43 0.43 0.43 0.57 0.57 0.57

Table VII. Performance of static cache locking and our cache analysis.

dynamic execution scheme drops to 189.12% and 7.23% for the 16KB cache and
32KB cache respectively. This has allowed us to schedule successfully the large data
set on the 16KB direct-mapped cache, whereas it has reduced the CPU utilization
on the other cases.

4.7 Worst-Case Performance: Schedulability

In order to see the effectiveness of our approach, we have compared our method
(all optimizations are on) to have a predictable multitasking system with data
caches when static cache locking [Campoy et al. 2001; Puaut and Decotigny 2002]
is applied. For that purpose, we have loaded the cache with the most frequently
accessed memory lines9 for each task set, and locked it for the entire execution (it is
the same as Lock-MU in [Puaut and Decotigny 2002]). This is the best worst-case
performance that can be obtained with a shared cache using static cache locking;
it gives better results than applying static locking for each task independently once
the cache is partitioned since tasks that use the cache intensively use more cache
lines.

The worst-case system performance of both task sets is given in Table VII. Each
cell contains the CPU utilization (if it is smaller than 1, it is schedulable for dy-
namic priority preemptive schedules by (1)). A bold number indicates that the
task set is not schedulable according to fixed priority schedules by (2). We can see
that our dynamic cache locking performs better than static cache locking for all
cases. Even though our approach only uses a fourth of the whole cache for each
task, the combination of dynamic locking and static analysis makes better use of
the cache, thus reducing the WCMP. Static cache locking is only able to schedule
(both dynamic and fixed priority systems) the large task set for all 32KB cache
configurations. However, our approach schedules all task sets for all cache architec-
tures. Furthermore, the CPU utilization is between 3.2 and 9.8 times smaller for
the 32KB architecture, and between 1.5 and 3.8 times smaller for the 16KB cache.

4.8 High-Performance Systems

Finally, we show results for a high-performance multitasking system, where through-
put is higher and thus the CPU utilization increases. For that purpose, we have
chosen the HP periods in the last column of Table III. Since the magnitude of the
periods is very different among tasks, fixed priority systems do not perform well,
and thus we only compute the CPU utilization. We can observe that our approach
works better under tight deadlines, and it is able to schedule all task sets. However,
static cache locking fails to schedule any of the task sets. In this case, the CPU

9We assume the worst-case path for each task is known.
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Large Task Set Medium Task Set
32KB 16KB 32KB 16KB

Ways 1 2 4 1 2 4 1 2 4 1 2 4

Lock 3.55 3.55 3.55 3.85 3.85 3.85 2.97 3.44 3.44 5.11 4.37 4.37

Ours 0.40 0.21 0.17 0.99 0.85 0.81 0.79 0.79 0.79 0.92 0.93 0.93

Table VIII. Performance of static cache locking and our cache analysis for a high-performance
system.

utilization of our method is between 3.8 and 20.0 times smaller for a 32KB cache
and between 3.8 and 5.5 for the 16KB architecture. This indicates that our method
scales better than static cache locking for systems that need high throughput.

4.9 Cache Partitioning: Summary

We have demonstrated the effectiveness of our approach. We have evaluated the
impact of applying cache partitioning on a multitasking system. We have seen that
even though the performance degrades, partitioning the cache is much better than
not having a cache at all. Then, we have evaluated the application of static locking
and dynamic locking to ensure predictability once the cache is partitioned. We have
also pointed out how the application of compiler cache optimizations can be useful
to reduce the performance degradation caused by the use of a small fraction of the
cache. Finally, we have compared our approach with static cache locking in which
all the tasks share the whole cache. We have shown that our method performs
much better, and is capable of scheduling tasks that need a high throughput.

5. RELATED WORK

During the last years, the real-time community has intensified the research in the
area of predicting WCET of programs in presence of caches. Calculation of a
tight WCET bound of a program involves difficulties that come from the very
characteristics of data caching. Even though some progress has been done when
studying processors with instruction caches [Arnold et al. 1994; Healey et al. 1995;
Li et al. 1995], few steps have been done towards analyzing data caches.

We summarize below the approaches that can be used for analyzing WCET in
the presence of data caches for multitasking hard real-time systems.

(1) Static Cache Analyses. They attempt to classify statically the different
memory accesses as hits or misses. However, the best static cache analyses do
not consider preemptive systems and are limited to codes free of data-dependent
constructs. In addition, only results for direct-mapped caches have been re-
ported [Kim et al. 1996; Li et al. 1996; Lim et al. 1994; White et al. 1997].

(2) Cache-Preemption Delays. When a task resumes its execution, it may
spend a long time reloading the cache with previously loaded cache blocks.
This increases the execution time of the task, and may invalidate the results of
schedulability analysis. Some studies have addressed the issue of incorporating
cache preemption costs into schedulability analysis [Basumallick and Nielsen
1994; Busquets-Mataix et al. 1996; Lee et al. 1998]. However, preemption
changes the cache contents in an unpredictable manner. Thus, a cache-sensitive
analysis of a task assumed to run in isolation might be invalid in a context where
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the task is preempted: the worst-case execution path may not be the same
anymore since hits may be turned into misses and vice versa. Adding a penalty
by assuming the cache is cold-started might be unsafe on processors with out-of-
order instruction scheduling, where a cache hit under some circumstances may
be more expensive than a miss [Lundqvist and Stenström 1999b]. Moreover,
this method resorts to a static cache analysis to obtain the WCET.

(3) Cache Locking. The ability to lock cache contents is available on several
commercial processors (PowerPC 604e [Motorola Inc. 1996], 405 and 440 fam-
ilies [IBM Microelectronics Division 1999], Intel-960, some Intel x86, Motorola
MPC7400 and others). Each processor implements cache locking in several
ways, allowing in all cases static locking (the cache is loaded and locked at
system start) and dynamic locking (the state of the cache is allowed to change
during the system execution). Provided that the cache contents are known, the
time required for a memory access is predictable. Cache locking can be applied
to each task in isolation or at system startup [Puaut and Decotigny 2002].

(4) Cache Partitioning. These techniques [Busquets-Mataix et al. 1997; Kirk
1989; Liedtke et al. 1997; Müeller 1995] give reserved portions of the cache to
certain tasks to guarantee that data will be in cache despite preemptions, thus
eliminating inter-task conflicts. The reduction of the cache size that each task
uses may, however, translate to a significant loss of performance.

Now, we describe the most relevant approaches in detail. Alt et al [Alt et al.
1996; Ferdinand and Wilhelm 1999] provide an estimation of WCET by means of
abstract interpretation. As well as the usual drawbacks from abstract analysis (i.e.,
time consuming and lack of accuracy), they only analyze memory references which
are scalar variables. When providing experimental results, they only deal with
instruction caches. Lim et al [Lim et al. 1994] present a method for computing
the WCET taking into account data caching. However, they only analyze static
memory references (i.e., scalars), failing to study real codes with dynamic references
(i.e., arrays and pointers). Kim et al [Kim et al. 1996] propose a method that
improves the previous method extending the analysis that classifies references as
either static or dynamic. However, they deal with neither arrays nor pointers (i.e.,
only detecting temporal locality). Further, it is limited to basic blocks, without
taking into account possible reuse among different subroutines or loop nests. Li
et al. [Li et al. 1996] describe a method which does not merge the cache state but
tries to calculate possible cache contents along with the timing of the program.
The whole CPU is modeled by a linear integer programming problem, and a new
constraint is added for each element of a calculated reference. This requires a very
large computation time, and has problems of scalability with large arrays. Besides,
they do not report results for WCET in the presence of data caches.

White et al [White et al. 1997] consider direct-mapped caches based on static
simulation by categorizing static memory accesses into (i) first miss, (ii) first hit, (iii)
always miss and (iv) always hit. Array accesses whose addresses can be computed
at compile time are analyzed, but they fail to describe conflicts which are always
classified as misses. As a result, they overestimate the memory cost by 10% and
17% for MM and ST respectively (we estimate the WCMP exactly without issuing
lock instructions).
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Lundqvist and Stenström [Lundqvist and Stenström 1999a] propose an approach
where variables that have non-analyzable references are mapped onto a non-cacheable
memory space. They show that the majority of data structures in their benchmarks
are predictable, but they have not presented the overhead of the transformed pro-
gram. Neither have they reported results for WCET or WCMP using their approach.

Campoy et al [Campoy et al. 2001] introduce the use of locking instruction caches
for multitasking systems. They use static locking and present a genetic algorithm
in an attempt to reduce the solution space when selecting the best contents for the
cache. They represent each memory block by means of one bit, which flips between
0/1 (in-cache/out-cache). On one hand, we have shown that static locking is not a
good solution for data caches. On the other hand, while this approach may work
for small programs, it is not easy to see how it can be extended to data caches:
(i) each possible solution would occupy a lot of memory (data is typically much
larger than programs), and (ii) we would need a static analysis to evaluate each
potential solution. Puaut and Decotigny [Puaut and Decotigny 2002] extend it by
introducing two polynomial algorithms to select the instructions to lock in cache.

6. CONCLUSIONS

We have introduced an approach that combines cache partitioning and dynamic
data cache locking with static cache analysis to estimate the worst-case memory
performance of a multitasking system in a safe, exact and fast way.

Our method partitions the cache in equally-sized partitions, which are assigned
to tasks. Cache partitioning allows us to eliminate unpredictability due to inter-
task conflicts. In order to overcome the problem of data-dependent constructs, we
combine it with dynamic cache locking. Finally, we run a static analysis. This
results in a tool that predicts the worst-case memory performance in an exact and
safe way, with an acceptable loss of performance. Combined with a timing analysis
platform, we may estimate a tight worst-case performance.

Overall, we contribute a new technique that provides a considerable step toward
a useful worst-case execution time prediction for actual architectures. To the best
of our knowledge, this is the first approach that presents a method to estimate
worst-case performance for multitasking systems in the presence of set-associative
data caches.

We believe this approach is highly attractive for hard-real time systems, where
the problem sizes are not very big. Moreover, while being not really large, the
compilation time can be amortized across the number of products shipped. We also
believe that the higher throughput of the systems due to the smaller overestimation
of the WCET may make this approach very useful. A better use of the cache is
very useful in order to reduce power consumption and better utilize the CPU, which
allows running more real-time tasks simultaneously.

While this work represents an important step towards program predictability in
presence of data caches, there are still some issues that can be investigated further.
Pointer analysis can be used to determine some pointer values [Wilson 1997]. Be-
sides, programmer annotations may be used to tighten the analysis. It may also be
interesting to take into account the overall performance when inserting lock/unlock
instructions and selecting data to lock in the cache. We plan to investigate these
research directions in order to have fully predictability and better performance.
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Vera, X., Bermudo, N., Llosa, J., and González, A. 2004. A fast and accurate framework to
analyze and optimize cache memory behavior. ACM Transactions on Programming Languages
and Systems (TOPLAS) 26, 2.

Vera, X., Lisper, B., and Xue, J. 2003a. Data cache locking for higher program predictability. In
Proceedings of International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’03). 272–282.

Vera, X., Lisper, B., and Xue, J. 2003b. Data caches in multitasking hard real-time systems.
In Proceedings of International Real-Time Systems Symposium (RTSS03).

Vera, X. and Xue, J. 2002. Let’s study whole program cache behaviour analytically. In Pro-
ceedings of International Symposium on High-Performance Computer Architecture (HPCA 8).
Cambridge.

White, R. T., Müeller, F., Healy, C., Whalley, D., and Harmon, M. 1997. Timing analysis
for data caches and set-associative caches. In Proceedings of Third IEEE Real-Time Technology
and Applications Symposium (RTAS’97). 192–202.

Wilson, R. P. 1997. Efficient context-sensitive pointer analysis for C programs. Ph.D. thesis,
Stanford University.

Wolf, M. and Lam, M. 1991. A data locality optimizing algorithm. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI‘91). 30–
44.

Wolfe, A. 1993. Software-based cache partitioning for real-time applications. In Proceedings of
the 3rd International Workshop on Responsive Computer Systems.

Xue, J. 2000. Loop Tiling for Parallelism. Kluwer Academic Publishers.

Xue, J. and Huang, C.-H. 1998. Reuse-driven tiling for data locality. International Journal of
Parallel Programming 26, 6, 671–696.

ACM Transactions on Embedded Computing Systems.


