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SAT–based Unbounded Model Checking based on Craig Interpolants is often able to overcome BDDs
and other SAT–based techniques on large verification instances. Based on refutation proofs gener-
ated by SAT solvers, interpolants provide compact circuit representations of state sets, as they ab-
stract away several nonrelevant details of the proofs. We propose three main contributions, aimed
at controlling interpolant size and traversal depth. First of all, we introduce interpolant–based
dynamic abstraction to reduce the support of computed interpolants. Subsequently, we propose
new advances in interpolant compaction by redundancy removal. Finally, we introduce interpolant
computation exploiting circuit quantification, instead of SAT refutation proofs. These techniques
heavily rely on an effective application of the incremental SAT paradigm. The experimental results
proposed in this paper are specifically oriented to prove properties, rather than disproving them,
i.e., they target complete verification instead of simply hunting bugs. They show how this method-
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1. INTRODUCTION

Symbolic model checking [Burch et al. 1994] is a method for verifying temporal
properties of finite state systems which relies on a symbolic representation of
sets, typically through Binary Decision Diagrams (BDDs) [Bryant 1986].
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By contrast, bounded model checking (BMC) [Biere et al. 1999] can fal-
sify temporal properties using Boolean satisfiability (SAT). Unlike BDD-based
methods, BMC focuses on finding bugs of bounded length k, subsequently in-
creasing the bound to search for longer traces. Given a design and a correct-
ness property, it generates a Boolean formula by unrolling the model for k time
frames, so that the formula is satisfiable if and only if there is a counterexample
of length k. Using a modern SAT solver, this method is efficient in producing
counterexamples [Bjesse et al. 2001] and it has been proved to be more robust
and scalable than symbolic model checking methods based on BDDs. However,
although BMC can find bugs in larger designs than other BDD-based meth-
ods, the verification process cannot be complete, since it only guarantees the
correctness of a property for the given bound.

To extend the methodology to full verification, a novel approach was pro-
posed by McMillan [2003], who used Craig interpolants for unbounded Model
Checking. Modern SAT solvers are able to generate proofs of unsatisfiability,
that is, refutation proofs. In our case, a refutation proof demonstrates that
there is no counterexample up to a certain number of steps. Such a proof im-
plies nothing about the truth of the property, but it can be used to produce
overapproximations of the system reachable state space. Given this chance, it
is possible to exploit refutation proofs of (unsatisfied) BMC runs, to compute
overapproximate state sets. The approach can be viewed as an iterative refine-
ment of proof-based abstractions to narrow down a proof to relevant facts. Its
convergence is bound to the diameter of the state graph, and experimental tests
on large circuits showed impressive results in several cases.

Our initial experiences with this Model Checking approach showed that in-
terpolants can be very effective whenever they are able to converge at low
depths (number of reachability iterations), and their sizes stay within tractable
ranges. Unfortunately, this is not always the case. We thus propose three main
contributions, under the general idea of compacting interpolant sizes and re-
ducing traversal depths:

—A dynamic abstraction procedure, based on identifying optimal subsets of
the state variables to be safely abstracted before each reachability step. The
proposed abstraction generally reduces the number of iterations, thus antic-
ipating the convergence of the process.

—An interpolant circuit optimization technique, based on redundancy removal
under observability and External Don’t Care conditions. The strategy we
propose is applied on top of other optimization techniques [Mishchenko 2005]
and effectively exploits the benefits of incremental SAT.

—An interpolant computation based on circuit quantification rather than on
refutation proofs. We introduce this technique (combined with dynamic ab-
straction) in backward reachability, where circuit–based quantification is
more effective.

Our techniques are implemented by successfully exploiting incremental SAT,
that is, by properly formulating a set of SAT problems which are able to share
large portions of their clause database. The main idea of incremental SAT is to
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share the clause database across different SAT solver runs, in such a way that
the knowledge learned by the SAT engine, that is, the set of conflict clauses,
can be safely reused.

Our experimental results focus on correct properties, and they show that the
proposed methods improve the original one by making it faster, more robust
and scalable. We show experiments where we are able to complete difficult
instances, not achievable with previous techniques.

1.1 Related Work

SAT solvers have been applied in unbounded model checking in several ways.
For instance, they have been used in hybrid methods to detect fix-points,

while the quantifier elimination required for image computation is performed
by other means. Williams et al. [2000] adopted Boolean Expression Diagrams
(BEDs), for quantifiers removal. Abdulla et al. [2000] adopted Reduced Boolean
Circuits (RBCs), that is, a variant of BEDs, to represent formulas on which
they performed existential quantifiers elimination through substitution, scope
reduction, etc.

To extend BMC to full verification, a completeness check was proposed by
Sheeran et al. [2000]. The authors provided a proof of correctness for safety
properties based on the longest loop-free path between states. Unfortunately,
the longest loop-free path can be exponentially longer than the diameter of the
reachable state space (for example the longest loop-free path for n-bit counters
is 2n while the reachable diameter is 1).

To overcome this problem, McMillan [2002] adopted quantifier elimination
through the enumeration of SAT solutions (all-solutions SAT). In this approach
a SAT procedure is used to enumerate all state cube solutions, where efficient
state pruning is achieved by the introduction of the so-called “blocking clauses.”
For each new solution, a blocking clause, that is, a clause representing the
negation of the new solution, is added to the original problem database. As a
consequence, each blocking clause prevents the SAT-solver from running into
the same solution twice.

Following the same idea, Kang and Park [2003] used a two-level minimizer
to reduce the growth of the CNF database due to the addition of new block-
ing clauses. However, since the number of required enumerations is bounded
below by the size of a two-level prime and irredundant cover of the entire
state set, quantifier elimination based on cube-by-cube enumeration tends to
be expensive.

Ganai et al. [2004] extended the previous approaches by using “circuit cofac-
toring.” The authors adopted a circuit graph model to represent state sets, and
they used circuit-based cofactoring to capture a large set of states in every SAT
enumeration step.

All the above methods potentially converge faster than Sheeran et al.
[2000], yet they share the common issue of possible exponential state set
representations.

A few recent works follow the interpolant idea. Silva [Marques-Silva
2005] proposes some effective optimizations for interpolant compaction and
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interpolant–based traversals. Transition relation abstraction, oriented to soft-
ware model checking, is explored by McMillan in McMillan and Jhala [2005].

1.2 Outline

Section 2 introduces background notions on SAT–based and Craig interpolant
model checking. Section 3 presents our first contribution, that is, interpolant-
based dynamic abstraction. Section 4 describes circuit optimization by redun-
dancy removal. Section 5 overviews the overall model checking procedure. Sec-
tion 6 discusses the experiments we performed. Section 7 concludes with some
summarizing remarks.

2. BACKGROUND

2.1 Model and Notation

In our notation, B indicates the Boolean space. Symbols ∧, ∨, ¬, ⇒, and ⇔
are used for Boolean conjunction (AND), disjunction (OR), negation (NOT),
implication, and coimplication respectively.

The automata we address are usually represented implicitly by Boolean for-
mulas. The state space of the automaton is defined by an indexed set of Boolean
variables V = {v1, . . . , vn}. Given a variable vi, vi/x j indicates the substitution
of vi with x j . Given a set of variables V , V \vi indicates the same set V with-
out the variable vi. A state S is a corresponding vector (s1, . . . , sn) of Boolean
values. A state predicate P is a Boolean formula over V . We will write P (X ) to
denote P |vi/xi , that is, P with each vi replaced by xi. We also indicate next state
variables with V ′ = {v′

1, . . . , v′
n}.

For our purposes, an automaton is a triple A = (I, T, F), where I is the set
of initial states, T is the relation between the states, and F is the target set of
states. Notice that, in our model, F is the negation of the property we want to
verify.

As T (V , V ′) is the set containing all the couples (current state V − next state
V ′) such that there is at least an input value that lets the system evolve from
state V to state V ′, the definition of an image [Burch et al. 1994] is straight-
forward. In fact, the image computation IMG(T, S) considers only those pairs of
states in which the current one belongs to the current set S and returns the
corresponding next state set S′.

To(V ′) = IMG(T (V , V ′), S(V )) = ∃V (S(V ) ∧ T (V , V ′)).

An overapproximate image IMG
+(T, S) is computed in such a way that, for

every T and state set S, IMG(T, S) implies IMG
+(T, S). Notice that IMG

+(T, S) is
not unique, as it depends on the approximation level.

With abuse of notation, in the rest of this paper, we make no distinction
between the characteristic function of a set and the set itself.

2.2 Bounded Model Checking

SAT-based Bounded Model Checking (BMC) [Biere et al. 1999] considers only
paths of bounded length k and builds a propositional formula f that is satisfi-
able iff there is a counter-example (a path from I to F) of the same length.
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More specifically, a run of A (of length k) is a sequence of states s0, . . . , sk

such that I (s0) is true, T (si, si+1) is true for all 0 ≤ i < k, and F (sk) is true. By
introducing a new set of variables X i = {xi1, . . . , xin}, we will call

T k
0 (X 0, . . . , X k) = ∧

0≤i<k T (X i, X i+1).

In BMC, the existence of a run is translated into a Boolean satisfiability
problem for 0 ≤ i ≤ k as:

BMC
k
0 = I (X 0) ∧ T k

0 (X 0, . . . , X k) ∧ F (X k).

If BMC
k
0 is unsatisfiable, the property has no counterexample of length k, and a

refutation proof RP can be produced. The technique works well in falsification
and partial verification, whereas full verification is usually achieved by BMC
with longer and longer bounds, possibly enhanced with inductive proofs.

2.3 Craig Interpolants in Model Checking

Given two inconsistent formulas A and B (A ∧ B = 0), an interpolant C is a
formula such that:

(1) It is implied by A
(2) It is inconsistent with B, i.e., C ∧ B is unsatisfiable
(3) It is expressed over the common variables of A and B.

Starting from a refutation proof (RP) of A∧ B, an interpolant C = ITP (A, B) is
an AND/OR circuit that can be computed from RP. Albeit the computation can
be performed in linear time with respect to the size of RP, the size of RP itself
can be exponential compared to A and B.

A k-adequate overapproximate image IMG
+
Adq(T, S, F, k) is an IMG

+(T, S)
that does not intersect any state on paths of length k to F. IMG

+
Adq(T, S, F, k) is

undefined iff

IMG(T (X 0, X 1), S(X 0)) ∧ T k+1
1 (X 1, . . . , X k+1) ∧ F (X k+1) 
= 0.

A possible way of computing IMG
+
Adq is interpolation:

IMG
+
Adq(T, S, F, k) = ITP(S(X 0) ∧ T (X 0, X 1), T k+1

1 (X 1, . . . , X k+1) ∧ F (X k+1)).

An image is called adequate if it is k-adequate for any k, that is, no path of any
length can lead from a state within the image to states in F. Since the model is
finite, a k-adequate image is adequate if k ≥ d , where d is the diameter of the
state transition graph.

McMillan [2003] proposed an effective fully SAT-based Unbounded Model
Checking approach, exploiting interpolants generated from proofs of unsatisfi-
ability. The algorithm is sketched in Figure 1.

While INTERPOLANTMC is the entry point of the algorithm, routine FINITERUN

takes care of the interpolant-based overapproximated traversal. The latter
function may end up with three possible results:

—It returns “reachable” if it proves F reachable in k steps, hence the property
has been disproved.
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Fig. 1. Interpolant based verification.

—It returns “unreachable” if the approximate traversal using the IMG
+
Adq image

computation reached a fix-point. In this case the property has been proved.
—It returns “undecided” if F is intersected by the over-approximate state sets.

McMillan [2003] proved that the previous algorithm is sound and complete.
In synthesis, let us assume I and F mutually unreachable: if k < d , a k-adequate
set can produce a non-k-adequate image. In this case, the “undecided” result
is returned and k is increased. Otherwise, when k ≥ d , IMG

+
Adq is adequate:

this means that we only accumulate the (approximate) reachable state set,
eventually reaching the fix-point and terminating.

According to Marques-Silva [2005], k can be incremented by the depth of the
last FINITERUN execution to avoid a quadratic number of image computations.

2.4 Incremental SAT

Incremental SAT is a technique oriented to run a sequence of (related) SAT
problems without destroying the learned clauses database. It was originally
proposed by Whittemore et al. [2001], and then by Eén and Sörensson [2003b]
for inductive problems of increasing depths. In the latter approach (the one
we use, as opposed to the technique implemented in zChaff [Moskewicz et al.
2001]), the main idea is to forbid clause removal, just allowing the addition
of new clauses across different SAT solver runs. This enables the reuse of the
knowledge learned by the solver during all the previous instances, that is, to
preserve conflict clauses. In order to virtually support clause removal, any tem-
porary function fi, required by the problem, is expressed in relational form,
that is, ρi ⇒ fi. The related SAT run is called by assuming ρi = 1 when fi

has to be taken into account, and ρi = 0 when it has to be ruled out. Incre-
mental SAT can provide dramatic improvements, as long as the set of related
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SAT problems share a great amount of learning, like the case of BMC runs with
increasing depths.

3. INTERPOLATION AND ABSTRACTION

Let us start from the observation that interpolation basically provides an over–
approximate image, k-adequate with respect to a given target set F or, in other
words, it guarantees the unreachability of F through paths of length k.

Two desirable effects are related to the use of Craig interpolants in
verification:

—They achieve overapproximation and variable existential quantification (i.e.,
image computation) at the same time.

—The overapproximation process is based on the property under check, so that
the abstraction concentrates on relevant facts.

At the opposite side of the spectrum, problems may arise due to:

—Deep traversals. Let d+ be the sequential depth of the overapproximate
FINITERUN procedure, and d the diameter of the state transition graph. In
general, d+ < d ; that is, overapproximation “bypasses” long state transition
paths and converges faster than exact reachability. Nevertheless, d+ > d is
also possible, whenever interpolants trigger long walks over chains of “un-
reachable” but “adequate” states.

—Interpolant size. It is generally difficult to predict the size of interpolants, as
they come from refutation proofs, and their initial size is strongly related to
the SAT solving process. It has been observed [McMillan 2003; Marques-Silva
2005] that interpolants are often highly redundant. Furthermore, different
refutation graphs are possible for a given proof, producing different inter-
polant circuits. McMillan [McMillan and Jhala 2005] explored a full range
of refutation graph transformations, and their resulting interpolant circuits,
basically looking for tighter overapproximations.

3.1 Dynamic Abstraction

In order to face the indicated problems, we follow the general idea of abstrac-
tion by localization reduction [Kurshan 1994], as a well-known (and successful)
way of analyzing overapproximate behaviors, by removing some details and/or
mutual dependencies, such that the proof is still achievable.

Following McMillan [2003], we resort to proof-based abstraction, rather
than counterexample-based refinement. Although interpolation itself can be
viewed as an abstraction technique, we explicitly introduce localization reduc-
tion within the two nested iterations of interpolant-based model checking. We
specifically consider overapproximation by state variable (existential) abstrac-
tion and we apply it:

—In the initial part of function FINITERUN (see Figure 1). For a given k value,
we provide an abstract transition relation which is able to guarantee the
consistency of the initial k-bound BMC instance. Notice that, in this case,
unlike standard abstraction-refinement methods [Lin et al. 2003; Chauhan
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Fig. 2. k–Step BMC safe dynamic abstraction.

Fig. 3. k-Adequate dynamic abstraction.

et al. 2002], we do not refine previous abstractions. This task is performed
by procedure DYNABSTRBMC (see Figure 2).

—Within the traversal loop of function FINITERUN, at the IMG
+
Adq level, as a

pre-processing step of standard interpolation. In this case, the abstraction is
accomplished by procedure DYNABSTRADQ (see Figure 3), where we consider
abstraction itself as an interpolation process, able to produce k-adequate
over-approximations.

Both our abstractions can be viewed as localization reductions, targeted to
safely remove some state variables, still yielding unsatisfiability of a given
SAT run.

We called our abstraction process dynamic, as we recompute transition rela-
tion abstractions on the fly. These two levels are analyzed in Section 3.2 and 3.3.

3.2 BMC-Based Abstraction

The aim of this abstraction is to generate an abstract transition relation, to be
used within an entire FINITERUN over-approximate traversal. We do not adopt
an abstraction-refinement scheme, as localization reduction is controlled by a
k-bound BMC instance. Abstractions are tighter “by construction,” since we
loop through increasing k values.
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Let α be a subset of (present or next state) variables to be abstracted from
the transition relation (we will show how to select α in Section 3.4). Given the
α set, we compute an abstract transition relation � by localization abstraction
through the ABSTR operator:

�(X , X ′) = ABSTR(T (X , X ′), α).

The general formulation of the above abstraction is expressed by existential
quantification:

ABSTR(T (X , X ′), α) = ∃αT (X , X ′).

Due to the complexity of existential quantification over a circuit representa-
tion, we explicitly perform it only for next state variables quantification from
functional transition relations. Whenever the transition relation comes from a
circuit, it can be expressed as:

T =
∧

i

(x ′
i ⇔ δi(X )),

where δi(X ) indicates a next state function as a formula over present state vari-
ables X . Existential quantification of any x ′

i variable is achieved in a straight-
forward way by simply removing the corresponding component in T. In all other
cases we defer quantification to the subsequent SAT solver run, by renaming
the α variables to free, that is, pseudo-input, variables.

The BMC-based abstraction is done in such a way that � does not change
the result of k-bound BMC:

SAT(I (X 0) ∧ �k
0 (X 0, . . . , X k) ∧ F (X k)) = SAT (BMC

k
0).

This abstraction is a preliminary step for an entire FINITERUN call. The intu-
ition under this choice is that we exploit an abstract transition relation that
still guarantees a correct k-bound BMC. As FINITERUN is called with increasing
bounds the abstraction becomes tighter at each new call.

3.3 Adequate Abstraction

Given a formulation similar to the previous one, for the α variables and the
� abstract transition relation, we operate a new dynamic abstraction at each
image computation step. Starting from �, we look for new α variables to dy-
namically abstract away under the control of k-adequacy checks. Let us call �̂

the corresponding abstract transition relation:

�̂(X , X ′) = ABSTR(�(X , X ′), α).

The performed abstraction is k-adequate iff

IMG(�(X 0, X 1), S(X 0)) ∧ �k+1
1 (X 1, . . . , X k+1) ∧ F (X k+1) = 0

⇒
IMG(�̂(X 0, X 1), S(X 0)) ∧ �k+1

1 (X 1, . . . , X k+1) ∧ F (X k+1) = 0.

Once �̂ has been computed, the FINITERUN procedure can:
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—Compute exact images adopting �̂. As �̂ is a k-adequate overapproximation
of �, this operation, per se, gives overapproximate results and it is an alter-
native to SAT based interpolation.

—Consider the abstraction as a pre-processing step of interpolant-based image
computations that further approximate starting from refutation proofs of k-
adequacy SAT checks.

We expect two main advantages from such an abstraction. First of all, we reduce
the set of support, and hopefully the circuit size, of the image state set. Secondly,
we reduce the number of iterations of the reachability process.

Intuitively, we start from the observation that minimal support is often re-
lated to lower circuit size. SAT solvers are unlikely to achieve minimum support
of the refutation proofs by themselves, as the heuristics driving them are based
on different targets. Although we generally expect that refutation proofs do not
include variables that are not relevant for a proof, we don’t expect minimal
support interpolants.

A specifically targeted abstraction, paying some overhead, is more likely to
get to such a minimal support interpolant. Moreover, shorter traversal depths
come from abstraction by variable quantification, that projects the state tran-
sition graph over a subspace. This tends to produce more compact graphs and
shorter state transition paths.

3.4 Selecting the Abstraction

Let us consider now the process of finding the α set of variables. Our target
is to obtain a minimum-size interpolant. Unfortunately (to the best of our
knowledge) Minimum-Cost Satisfiability Tools (MinCostSAT) [Manquinho and
Marques-Silva 2002] have been studied, whereas the reduction of the unsatis-
fiability proof (from which an interpolant is extracted) has not been taken into
account.

This is an optimization problem that we can face by trading off performance
for optimality. Iterating through all candidate subsets, in order to find BMC-
safe (or k-adequate) abstractions, and selecting the optimal one, is clearly too
expensive. We chose a suboptimal greedy approach that incrementally builds
the α set by looping through all next state variables.

Figures 2 and 3 show the procedures, for the BMC-based and adequacy-based
abstractions, respectively.

In Figure 2, the generic x ′
i variable is tentatively added to the abstraction set

α (initially empty), and validated by a BMC instance. The result is sensitive to
the chosen variable order.

A similar approach is used in Figure 3. In this case α is validated for k-
adequacy. Given a state set S and a transition relation T, k-adequacy of their
image with respect to F is tested by a SAT check. This is done by a preliminary
test with � (to filter out undefined interpolants), then repeated for all candidate
abstract transition relations �̂.

The process requires a linear number of SAT calls (related to the amount of
state variables), which can still be too expensive. Incremental SAT is crucial
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for an efficient implementation, that is, to reduce the cost of the iterated SAT
checks. For the sake of simplicity, we omit describing the incremental approach
in DYNABSTRBMC, whereas we give a brief formalization for the DYNABSTRADQ

case.
Let X be the set of common state variables shared by �̂ and �k+1

1 . In order to
relationally express several �̂ (with different α sets), we use wire cutting instead
of explicit existential quantification. We generate two sets of fresh variables x̂
and γ . Variable x̂i replaces xi in �̂, so that now �̂ and �k+1

1 do not share state
variables any more. Conditional variable sharing is captured by an additional
term ∧

i

(γi ⇒ (̂xi ⇔ xi)),

where γi = 1 means the existence of a wire connection between x̂i and xi, γi = 0
means no connection (no relation) between them. In other words, γi = 0 is
equivalent to the existential quantification of xi in �̂ (as x̂i is an unconstrained
free variable). We now express �̂ as follows:

�(x/̂x) ∧
∧

i

(γi ⇒ (̂xi ⇔ xi)).

We now load all terms (including � in relational form) once and for all into the
SAT solver (in terms of CNF clauses). The generic SAT call, to test k-adequacy
of a given α set, is done incrementally. To do that, we first assume a proper
values for all γ variables; that is, any γi is set to 0 if xi belongs to the α set, 1
otherwise:

assumption = ⋃
i(γi ⇔ ¬(xi ∈ α))

After that, each call to the SAT solver over a predicate P is constrained with
this assumption, which we indicate as SATassumption(P ). Notice that assumption
represents a set of literals instead of a set of variables; that is, we add and
remove from assumption signed variables like vi and ¬vi.

A further improvement we adopted (omitted here for sake of simplicity) is
the introduction of a time bound on SAT calls. This improves scalability, but
leaves undecided k-adequacy tests. The undecided variables are further refined
by a second loop, starting from the assumption that all those variables are
abstracted. This set is then refined until the abstraction is proved k-adequate.

4. CIRCUIT COMPACTION

Circuit compaction is another way to attack the size of interpolant representa-
tions (interpolants are potentially highly redundant), as well as circuit-based
state set representations in general.

Among the available possibilities, we concentrated on redundancy removal,
whose basic steps consist in identifying circuit nodes replaceable by constant
nodes. Although testing techniques have been successfully applied in this
framework [Berkelaar and van Eijk 2002], as redundancies are related to
untestable stuck-at faults, we resorted to SAT-based algorithms [Mishchenko
and Brayton 2006b; Mishchenko and Brayton 2006a]. We expected major
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improvements from the recent developments in the SAT technology, the incre-
mental approach, and an aggressive use of don’t care based simplifications.

First of all, we looked at incremental SAT, as redundancy removal is essen-
tially a set of SAT checks over several circuit nodes, to prove/disprove candidate
substitutions with constant nodes. Given a circuit f (identified by the set of its
outputs), and a subset N of its nodes (to be checked for redundancy) we build
up a miter M for each redundancy test, comparing the outputs of the original
f with the new ones, produced through the injection of a set of constants. More
formally, being ni ∈ N the node to be checked for 0–redundancy, we do the
following check:

¬SAT( f 
= f (ni/0)) ⇒ ni is 0 − redundant.

Where the f (ni/0) expression means that the ni node is assigned the 0 constant
value, and the dependency from its fan-in circuit is removed. We proceed dually
for 1-redundancy. In order to apply incremental SAT over the set N of nodes, we
basically need to express every constant injection in terms of variable decisions
only. Subsequently, for each ni ∈ N , we generate two new variables: ci, selecting
the proper constant value (0 or 1), and γi, selecting between nonredundancy
(γi = 1, ni connected to its original fan-in) and redundant behavior (γi = 0,
ni fed by ci). Then, all the ni nodes in N are replaced by ITE (γi, ni, ci). Now
each redundancy check over N can be achieved incrementally, through proper
assumptions on the γ and c variables.

We experimentally found that it was not worthwhile to work with too large N
sets, for example, the whole set of f nodes. Different redundancies are not only
related/implied each–other (so it might be unnecessary to prove all of them),
but a given circuit can be recomputed and highly compacted, just after a subset
of ITE redundancies is known. So we decided to work with “clusters” of nodes
for the N set. Nodes are added to the cluster N following their topological depth
under a size threshold constraint. Limiting the size of N allows us to control
the overall number of variables for the SAT problem, and to rebuild f after
redundancies over N are found, yet exploiting incremental SAT for all checks
on a given N .

Our redundancy removal procedure is shown in Figure 4. Let f be the func-
tion (represented by a combinational network) we want to optimize, and Care
be an external care condition. The REDREMOVAL procedure loops through suc-
cessive redundancy removal iterations. First of all, procedure SELECTCLUSTER

considers a set of candidate nodes of size Th. It sorts nodes by topological level,
and it first considers nodes near the inputs. Then, the previously selected nodes
are checked for redundancy. Then, at the end of each iteration, function RECOM-
PUTEAIG optimize f exploiting the redundancies found. Finally, the procedure
iterates by considering a wider set of nodes (Th is doubled) until no redundancy
is found, or the upper bound for Th (maxTh) on tested nodes is reached.

A relevant contribution for stronger optimizations is provided by a careful
and effective use of don’t cares, which quite often allows finding far more re-
dundancies than with the original circuit alone.

We exploit an External Don’t Care (EDC) set optimization with the idea that
already reached states can work as EDC conditions for further reachability
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Fig. 4. Redundancy removal under external care conditions.

steps (Care = ¬EDC = ¬Reached). The previous simplification was key for ad-
vances in BDD-based reachability, where the “restrict” cofactor [Coudert et al.
1989; Coudert and Madre 1991], was used to minimize the size of reachable
state sets feeding image operators [Cho et al. 1990]. We then implicitly take
into consideration both the Input Don’t Care (IDC) set and the Output (or Ob-
servability) Don’t Care (ODC) set, within our miter model. Historically, most
practical redundancy removal approaches are quite often limited to the IDC
set, as redundancy removal under IDCs preserves the circuit function: a node
is replaced with a constant node whenever it is constant under all allowed in-
puts. Practically speaking, the miter includes a comparison output exactly on
the redundant node ni.

ODC conditions take into account more aggressive node transformations:
they allow different values, for a given node, from the original and the trans-
formed circuit, provided that they are not observable on the checked outputs.
The main problem with this kind of redundancies is that two ODC-based redun-
dancies are not mutually unrelated, that is, any accepted simplification modi-
fies the circuit for the next check. This makes simulation-based pre-processing
less effective, and efficient SAT processing crucial. Furthermore, the overall
result depends on the order of redundancy checks. Incremental SAT is key to

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 3, Pub. date: January 2008.



3:14 • G. Cabodi et al.

Fig. 5. Forward traversal.

effectively handle ODC conditions, as it allows different checks to exploit com-
mon ODC conditions (and the related conflict clauses). Concerning the order
of checks, we currently rely on topological heuristics, though we expect that
further improvements are possible.

5. FORWARD/BACKWARD VERIFICATION

It is well known that forward or backward reachability can be selectively applied
to get better results, as each one can overcome the other depending on the model
under check. The choice of using one approach instead of the other depends on
the depth of the forward/backward reachability, and the easiness to express the
corresponding state sets. In our interpolant-based framework we implemented
both the approaches. They share common features, and correspond to the main
traversal scheme represented in Figure 1, with the addition of dynamically
computed abstractions.

Forward verification is shown in Figure 5. Starting from T, it generates the
α set and it obtains a first abstraction � from T. Then, within the loop, the set
β is used at each iteration to generate a second abstraction �̂ starting from �.
�̂ is employed within IMG

+
Adq images to achieve the desired overapproximation.

Backward reachability is similar, as the roles of the initial (I) and target (F)
states are swapped, and the pre-image operator uses the transition relation in
the reverse direction. However, it is possible to exploit different optimizations
(see Figure 6).

We cannot generate the k-adequate � by component removal, as true quan-
tification (before or within pre-image computation) is required. Nevertheless,
we can apply state variable quantification by composition within the pre-image
computation. This can drastically reduce the amount of variables to be quan-
tified in pre-image, and allows us to adopt exact pre-image (using) � (at least
partially). The LAZYPREIMG procedure performs exact circuit quantification, for
primary inputs and α variables, whenever convenient (otherwise the variable is

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 3, Pub. date: January 2008.



Boosting Interpolation with Dynamic Localized Abstraction • 3:15

Fig. 6. Backward traversal.

kept) with a method inspired by Abdulla et al. [2000] and Cabodi et al. [2005].
If we are able to fully complete exact pre-image with LAZYPREIMG, then we
avoid SAT-based overapproximation by interpolant, thus providing a tighter
pre-image. Otherwise we interpolate.

The peculiar aspect of the above procedure is to achieve quite often a full
interpolation by dynamic abstraction and circuit quantification, without resort-
ing to SAT-based Craig interpolants The procedure showed very good results
in some experimental cases, where it was able to outperform forward interpo-
lation, even though it is less general.

6. EXPERIMENTAL RESULTS

We compare interpolant-based Model Checking, with and without the optimiza-
tions described in this paper. Our procedures are implemented on top of the
Minisat [Eén and Sörensson 2003a] SAT tool. We also use our own implemen-
tation of an AIG library, and we exploit the ABC tool [Mishchenko 2005] for
different kinds of logic synthesis optimizations.

Our experiments ran on a Pentium Dual Core 3GHz Workstation with
3GByte of main memory, running Debian Linux. We performed extensive exper-
iments on selected benchmarks, with both forward and backward interpolation,
by specifically addressing proofs of correctness.

We present results on:

—Some standard benchmarks belonging to the VIS distribution.
—The Sun PicoJava II microprocessor as presented in McMillan [2003]. It in-

cludes 20 true safety properties with a number of state variables (after cone
of influence reduction) ranging from about 50 to 350.
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Table I. Forward CPU Time (in seconds) for the Different Strategies

Model # FF Fwd +DA +RR +AR +DA+RR+AR

Ns21 67 648 201 406 283 216
Ns22 67 791 72 481 398 101
IndustrialA1 78 − 190 390 281 105
IndustrialA2 79 378 143 308 228 199
PicoJava5 88 49 34 23 57 70
Ns3 103 − − 1606 629 285
Blackjack 103 534 1236 840 305 352
31 2 batch 1 122 1470 124 − 795 63
Soap1 140 − − 1163 906 728
Soap2 140 − − − 604 860
IndustrialB1 186 164 39 101 64 32
IndustrialB2 202 556 − − 116 142
PicoJava16 290 61 228 201 100 116
Feistel 296 519 133 465 509 215
PicoJava6 322 130 212 284 233 298
PicoJava15 364 45 52 46 37 22
IndustrialC1 377 782 62 224 175 144
IndustrialC2 673 − 1453 − 368 521

“−” means time out after 1800 seconds.

Table II. Backward CPU Time (in seconds) for the Different Strategies

Model # FF Bwd +DA +RR +AR +DA+RR+AR

Ns21 67 − 453 201 − 464
Ns22 67 − − 397 − 636
IndustrialA1 78 1062 504 742 341 125
IndustrialA2 79 241 144 185 90 127
PicoJava5 88 53 24 32 180 10
Ns3 103 − − 1404 − 1141
Blackjack 103 − − 1168 − 589
31 2 batch 1 122 − − − − −
Soap1 140 − 304 801 − 938
Soap2 140 848 144 539 1075 298
IndustrialB1 186 1534 653 750 721 402
IndustrialB2 202 72 38 89 77 28
PicoJava16 290 − − − − −
Feistel 296 − 1563 1228 − 907
PicoJava6 322 − − 1561 1062 546
PicoJava15 364 − − − − −
IndustrialC1 377 − − − − −
IndustrialC2 673 231 51 35 43 30

“−” means time out after 1800 seconds.

—The IBM Formal Verification Benchmark Library [IBM 2003]. This library
includes 75 circuits, each one with one property, with a size ranging from 95
to 917 memory elements.

—Some industrial circuits coming from STMicroelectronics.

Tables I and II include detailed results for the forward and backward ap-
proach respectively. They compare the running time of the different strategies

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 3, Pub. date: January 2008.



Boosting Interpolation with Dynamic Localized Abstraction • 3:17

we implemented, that is, the original forward and backward versions against
the ones obtained with our optimizations.

We consider only runs that needed more than 20 second of CPU time (in both
the forward and backward directions), and that we were able to complete, in
less than 1800 seconds, with at least one strategy. Each line reports data on
one single property. More lines labeled with the same circuit name indicate that
more properties are verified on the same circuit. Bold characters show the best
result for each property.

The two tables report the number of memory elements for each circuit (after
COI extraction), and the verification time for the different interpolation strate-
gies. The bottom-line strategy is represented by Fwd (Bwd), where we indicate
the time for the original interpolation method [McMillan 2003] reimplemented
in our tool in the forward and backward directions. +DA presents results by
adopting dynamic abstraction at the image level (see Figure 3). +RR indicates
the presence of redundancy removal. +AR includes abstraction refinements at
the traversal level (see Figure 2). In all the strategies we adopted synthesis
optimization techniques as delivered by the ABC tool [Mishchenko 2005].

Overall, we can do the following observations. Forward reachability is gener-
ally better than backward, though some cases exist where the backward verifi-
cation is much faster than the forward one, for example, circuit IndustrialC2. Re-
dundancy removal has a larger impact on backward reachability. In the forward
direction it represents, at least in some cases, just an overhead. The three con-
tributions have different impact on different benchmarks. Even if combining all
of them does not correspond to the best possible performance, it often produces
a more robust verification framework. To this respect, we were able to complete
5 (7) problems in the forward (backward) direction with the Fwd+DA+RR+AR
methodology, that we were not able to achieve with the original approach. On
the other hand, circuits PicoJava16 and PicoJava6 are the only two benchmarks
for which the original (forward) strategy gives the best result.

Figures 7 and 8 show further information exactly on the same set of bench-
marks presented in Tables I and II. More in details, Figure 7 reports some
data concerning the number of reachability iterations (within the FINITERUN

procedure) for the Fwd+DA+RR+AR method against the Fwd strategy. For the
experiments that run out of time in Table I, we provide the results we obtained
just before the time limit.

The figure plots the number of FINITERUN calls (external interpolation loop)
and the number of FINITERUN inner iterations (inner interpolation loop). For
the last one, we report both the maximum value (maximum number of inner
iterations on all main iterations) and the total value (total number of inner
iterations performed on all main iterations). Figure 7 clearly shows that most
of the points are below the x = y line; that is, the number of outer and inner
iterations of FINITERUN is drastically reduced.

Figure 8 reports the maximum size of the support of the To set, for the same
two strategies compared in Figure 7.

A direct comparison between the original and the proposed method shows
that the latter one is able to reduce the support of the computed state sets,
backing up the original claims of the paper.
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Fig. 7. Number of FINITERUN calls (external interpolation loop) and number of FINITERUN inner
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method against Fwd.

7. CONCLUSIONS

This paper shows how Craig interpolants, derived from SAT proofs, can be
further optimized by:

—Extending the idea of interpolation to variable abstraction.
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—Effectively exploiting redundancy removal under External and Observability
Don’t Care conditions.

—Circuit-based quantification adopted in the backward direction.

Our optimizations heavily rely on an efficient use of incremental SAT, which
permits grouping several related problems with common learning.

To conclude, an interpolation approach still shows its main limits with se-
quentially deep verification instances correlated with large interpolant circuits.
Solving the preceding problems seem to be the main challenge for future works
in interpolant-based verification.

Another interesting options is to better integrate and combine inter-
polant verification with other state-of-the-art methods such as abstraction-
refinements, inductive verification and automated generation of lemmas.
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